28 research outputs found

    Intraindividual time-varying dynamic network of affects: linear autoregressive mixed-effects models for ecological momentary assessment

    Get PDF
    An interesting recent development in emotion research and clinical psychology is the discovery that affective states can be modeled as a network of temporally interacting moods or emotions. Additionally, external factors like stressors or treatments can influence the mood network by amplifying or dampening the activation of specific moods. Researchers have turned to multilevel autoregressive models to fit these affective networks using intensive longitudinal data gathered through ecological momentary assessment. Nonetheless, a more comprehensive examination of the performance of such models is warranted. In our study, we focus on simple directed intraindividual networks consisting of two interconnected mood nodes that mutually enhance or dampen each other. We also introduce a node representing external factors that affect both mood nodes unidirectionally. Importantly, we disregard the potential effects of a current mood/emotion on the perception of external factors. We then formalize the mathematical representation of such networks by exogenous linear autoregressive mixed-effects models. In this representation, the autoregressive coefficients signify the interactions between moods, while external factors are incorporated as exogenous covariates. We let the autoregressive and exogenous coefficients in the model have fixed and random components. Depending on the analysis, this leads to networks with variable structures over reasonable time units, such as days or weeks, which are captured by the variability of random effects. Furthermore, the fixed-effects parameters encapsulate a subject-specific network structure. Leveraging the well-established theoretical and computational foundation of linear mixed-effects models, we transform the autoregressive formulation to a classical one and utilize the existing methods and tools. To validate our approach, we perform simulations assuming our model as the true data-generating process. By manipulating a predefined set of parameters, we investigate the reliability and feasibility of our approach across varying numbers of observations, levels of noise intensity, compliance rates, and scalability to higher dimensions. Our findings underscore the challenges associated with estimating individualized parameters in the context of common longitudinal designs, where the required number of observations may often be unattainable. Moreover, our study highlights the sensitivity of autoregressive mixed-effect models to noise levels and the difficulty of scaling due to the substantial number of parameters

    Components of Behavioral Activation Therapy for Depression Engage Specific Reinforcement Learning Mechanisms in a Pilot Study

    Get PDF
    Background: Behavioral activation is an evidence-based treatment for depression. Theoretical considerations suggest that treatment response depends on reinforcement learning mechanisms. However, which reinforcement learning mechanisms are engaged by and mediate the therapeutic effect of behavioral activation remains only partially understood, and there are no procedures to measure such mechanisms. Objective: To perform a pilot study to examine whether reinforcement learning processes measured through tasks or self-report are related to treatment response to behavioral activation. Method: The pilot study enrolled 13 outpatients (12 completers) with major depressive disorder, from July of 2018 through February of 2019, into a nine-week trial with BA. Psychiatric evaluations, decision-making tests and self-reported reward experience and anticipations were acquired before, during and after the treatment. Task and self-report data were analysed by using reinforcement-learning models. Inferred parameters were related to measures of depression severity through linear mixed effects models. Results: Treatment effects during different phases of the therapy were captured by specific decision-making processes in the task. During the weeks focusing on the active pursuit of reward, treatment effects were more pronounced amongst those individuals who showed an increase in Pavlovian appetitive influence. During the weeks focusing on the avoidance of punishments, treatment responses were more pronounced in those individuals who showed an increase in Pavlovian avoidance. Self-reported anticipation of reinforcement changed according to formal RL rules. Individual differences in the extent to which learning followed RL rules related to changes in anhedonia. Conclusions: In this pilot study both task-and self-report-derived measures of reinforcement learning captured individual differences in treatment response to behavioral activation. Appetitive and aversive Pavlovian reflexive processes appeared to be modulated by separate psychotherapeutic interventions, and the modulation strength covaried with response to specific interventions. Self-reported changes in reinforcement expectations are also related to treatment response

    What Drives Perceptions of Foreign News Coverage Credibility? : A Cross-National Experiment Including Kazakhstan, Russia, and Ukraine

    Get PDF
    Research on news credibility and susceptibility to fake news has overwhelmingly focused on individual and message-level factors explaining why people view some news items as more credible than others. We argue that the consistency of the message’s content with the dominant mainstream narrative can have a powerful explanatory capacity as well, particularly in the domain of international news. We test this hypothesis experimentally using a sample of 8,559 social media users in three post-Soviet countries. Our analyses suggest that the consistency with the dominant narrative increases the perceived credibility of foreign affairs news independently of their veracity. We also demonstrate the moderating role of international conflict, government support, and news language in some national contexts but not others. Finally, we report how the effects of these factors on credibility vary according to whether the news items are real or fabricated and discuss the societal implications of our findings

    Individual Differences in Holistic and Compositional Language Processing

    Get PDF
    Individual differences in cognitive abilities are ubiquitous across the spectrum of proficient language users. Although speakers differ with regard to their memory capacity, ability for inhibiting distraction, and ability to shift between different processing levels, comprehension is generally successful. However, this does not mean it is identical across individuals; listeners and readers may rely on different processing strategies to exploit distributional information in the service of efficient understanding. In the following psycholinguistic reading experiment, we investigate potential sources of individual differences in the processing of co-occurring words. Participants read modifier-noun bigrams like absolute silence in a self-paced reading task. Backward transition probability (BTP) between the two lexemes was used to quantify the prominence of the bigram as a whole in comparison to the frequency of its parts. Of five individual difference measures (processing speed, verbal working memory, cognitive inhibition, global-local scope shifting, and personality), two proved to be significantly associated with the effect of BTP on reading times. Participants who could inhibit a distracting global environment in order to more efficiently retrieve a single part and those that preferred the local level in the shifting task showed greater effects of the co-occurrence probability of the parts. We conclude that some participants are more likely to retrieve bigrams via their parts and their co-occurrence statistics whereas others more readily retrieve the two words together as a single chunked unit

    Comparing Transformers and RNNs on predicting human sentence processing data

    Get PDF
    Recurrent neural networks (RNNs) have long been an architecture of interest for computational models of human sentence processing. The more recently introduced Transformer architecture has been shown to outperform recurrent neural networks on many natural language processing tasks but little is known about their ability to model human language processing. It has long been thought that human sentence reading involves something akin to recurrence and so RNNs may still have an advantage over the Transformer as a cognitive model. In this paper we train both Transformer and RNN based language models and compare their performance as a model of human sentence processing. We use the trained language models to compute surprisal values for the stimuli used in several reading experiments and use mixed linear modelling to measure how well the surprisal explains measures of human reading effort. Our analysis shows that the Transformers outperform the RNNs as cognitive models in explaining self-paced reading times and N400 strength but not gaze durations from an eye-tracking experiment

    Towards a unified approach

    Get PDF
    "Decision-making in the presence of uncertainty is a pervasive computation. Latent variable decoding—inferring hidden causes underlying visible effects—is commonly observed in nature, and it is an unsolved challenge in modern machine learning. On many occasions, animals need to base their choices on uncertain evidence; for instance, when deciding whether to approach or avoid an obfuscated visual stimulus that could be either a prey or a predator. Yet, their strategies are, in general, poorly understood. In simple cases, these problems admit an optimal, explicit solution. However, in more complex real-life scenarios, it is difficult to determine the best possible behavior. The most common approach in modern machine learning relies on artificial neural networks—black boxes that map each input to an output. This input-output mapping depends on a large number of parameters, the weights of the synaptic connections, which are optimized during learning.(...)

    Patients with chronic pain exhibit individually unique cortical signatures of pain encoding

    Get PDF
    Chronic pain is characterised by an ongoing and fluctuating intensity over time. Here, we investigated how the trajectory of the patients\u27 endogenous pain is encoded in the brain. In repeated functional MRI (fMRI) sessions, 20 patients with chronic back pain and 20 patients with chronic migraine were asked to continuously rate the intensity of their endogenous pain. Linear mixed effects models were used to disentangle cortical processes related to pain intensity and to pain intensity changes. At group level, we found that the intensity of pain in patients with chronic back pain is encoded in the anterior insular cortex, the frontal operculum, and the pons; the change of pain in chronic back pain and chronic migraine patients is mainly encoded in the anterior insular cortex. At the individual level, we identified a more complex picture where each patient exhibited their own signature of endogenous pain encoding. The diversity of the individual cortical signatures of chronic pain encoding results bridge between clinical observations and neuroimaging; they add to the understanding of chronic pain as a complex and multifaceted disease

    On Cluster Robust Models

    Get PDF
    Cluster robust models are a kind of statistical models that attempt to estimate parameters considering potential heterogeneity in treatment effects. Absent heterogeneity in treatment effects, the partial and average treatment effect are the same. When heterogeneity in treatment effects occurs, the average treatment effect is a function of the various partial treatment effects and the composition of the population of interest. The first chapter explores the performance of common estimators as a function of the presence of heterogeneity in treatment effects and other characteristics that may influence their performance for estimating average treatment effects. The second chapter examines various approaches to evaluating and improving cluster structures as a way to obtain cluster-robust models. Both chapters are intended to be useful to practitioners as a how-to guide to examine and think about their applications and relevant factors. Empirical examples are provided to illustrate theoretical results, showcase potential tools, and communicate a suggested thought process. The third chapter relates to an open-source statistical software package for the Julia language. The content includes a description for the software functionality and technical elements. In addition, it features a critique and suggestions for statistical software development and the Julia ecosystem. These comments come from my experience throughout the development process of the package and related activities as an open-source and professional software developer. One goal of the paper is to make econometrics more accessible not only through accessibility to functionality, but understanding of the code, mathematics, and transparency in implementations

    Child-Oriented Word Associations Improve Models Of Early Word Learning

    Get PDF
    How words are associated within the linguistic environment conveys semantic content; however, different contexts induce different linguistic patterns. For instance, it is well known that adults speak differently to children than to other adults. We present results from a new word association study in which adult participants were instructed to produce either unconstrained or child-oriented responses to each cue, where cues included 672 nouns, verbs, adjectives, and other word forms from the McArthur-Bates Communicative Development Inventory (CDI; Fenson et al., 2006). Child-oriented responses consisted of higher frequency words with fewer letters, earlier ages of acquisition, and higher contextual diversity. Furthermore, the correlations among the responses generated for each pair of cues differed between unconstrained (adult-oriented) and child-oriented responses, suggesting that child-oriented associations imply different semantic structure. A comparison of growth models guided by a semantic network structure revealed that child-oriented associations are more predictive of early lexical growth. Additionally, relative to a growth model based on a corpus of naturalistic child-directed speech, the child-oriented associations explain added unique variance to lexical growth. Thus, these new child-oriented word association norms provide novel insight into the semantic context of young children and early lexical development
    corecore