
Dissertation presented to obtain the Ph.D degree in Neuroscience
Instituto de Tecnologia Química e Biológica António Xavier | Universidade Nova de Lisboa

Towards a unified approach

Pietro Vertechi

Latent variable decoding in
biological and artificial agents

Oeiras,
September, 2020

Pietro Vertechi

Dissertation presented to obtain
the Ph.D degree in Neuroscience
Instituto de Tecnologia Química e Biológica António Xavier
Universidade Nova de Lisboa

Oeiras, September, 2020

Latent variable decoding in
biological and artificial agents
Towards a unified approach

Research work coordinated by:

Latent variable decoding in biological and
artificial agents: towards a unified approach.

Pietro Vertechi

A Dissertation
Presented to the Faculty

of Universidade Nova de Lisboa
in Candidacy for the Degree

of Doctor of Philosophy

Supervisor: Zachary F. Mainen

September, 2020

Never stay up on the barren heights of
cleverness, but come down into the
green valleys of silliness.

Ludwig Wittgenstein

iii

Acknowledgments

There are several people without whom this work would not have been
possible. I am indebted to Christian K. Machens, who introduced me
to theoretical neuroscience and taught me many of the skills required in
academia. Even though I was unable to express this at the time, I highly
value his focus on clarity in thought and writing. I am grateful to Wieland
Brendel for the many interesting conversations we had over time, and for
teaching me how to program.

I thank Eran Lottem and Dario Sarra for their invaluable guidance and
support: I would have felt lost without them. My thanks also go to the
labmates with whom I collaborated more closely in the main project of
my Ph.D.: Beatriz Godinho, Tiago Quendera, Isaac Treves, and Matthijs
Nicolai Oude Lohuis.

I am thankful to Mattia G. Bergomi for showing me a different way of
doing research, and for supporting me during a difficult phase of my Ph.D.
I also thank our collaborators: Massimo Ferri and Patrizio Frosini.

I wish to express my gratitude to my supervisor Zachary F. Mainen.
Thanks to his focus on independence and freedom, as well as his ability to
see value in seemingly outlandish projects, I was able to attempt many dif-
ferent ideas during my Ph.D. and become a more independent researcher.

I am thankful for the moral and emotional support of my family and
my partner over the years. I am grateful to Madalena Fonseca and Cindy
Poo for their advice on professional and psychological difficulties.

Finally, I acknowledge the financial support generously granted by the
Fundação para a Ciência e a Tecnologia and by the Fundação Champali-
maud.

iv

Abstract

Decision-making in the presence of uncertainty is a pervasive computa-
tion. Latent variable decoding—inferring hidden causes underlying visible
effects—is commonly observed in nature, and it is an unsolved challenge
in modern machine learning.

On many occasions, animals need to base their choices on uncertain
evidence; for instance, when deciding whether to approach or avoid an
obfuscated visual stimulus that could be either a prey or a predator. Yet,
their strategies are, in general, poorly understood.

In simple cases, these problems admit an optimal, explicit solution.
However, in more complex real-life scenarios, it is difficult to determine the
best possible behavior. The most common approach in modern machine
learning relies on artificial neural networks—black boxes that map each
input to an output. This input-output mapping depends on a large number
of parameters, the weights of the synaptic connections, which are optimized
during learning.

While useful in practice, these solutions are not intelligible: the specific
parameter values reached at the end of learning do not shed light on the
nature of the problem. Moreover, even when artificial neural networks can
be trained to almost optimally decode a latent variable from a series of
noisy observations, the link with biological agents and biological neural
networks remains unclear.

Here, we approach the latent variable decoding problem using three dis-
tinct lenses: animal behavior, intelligible machine learning, and modeling
of biological neural networks.

First, we examine animal behavior in carefully designed tasks, to un-
derstand whether mice and humans can learn what variables are relevant
in a task, and how those variables should be first inferred, and then used,
to solve the task successfully. Using optogenetics, we distinguish the role
of different prefrontal cortical areas in performing this computation.

v

Then, we turn to a normative approach. Even though optimal solutions
are often intractable, we develop different flavors of parametric machines:
simple, but computationally flexible, artificial agents. We implement these
machines in PyTorch and showcase their performance on nonlinear regres-
sion and image classification tasks on small datasets.

Finally, investigating which synaptic plasticity mechanisms would cor-
respond to optimal decoding, we build a bridge between normative and bio-
logical neural solutions. We find that efficient coding can be achieved via a
class of simple plasticity rules that aim to tighten the excitation/inhibition
balance of the network.

Taken together, these complementary approaches provide an initial
step towards a unified normative understanding of decision-making under
uncertainty in biological and artificial agents.

vi

Título e Resumo

Descodificação de variáveis latentes em agentes biológicos e
artificiais: em direção a uma estratégia comum.

Tomar decisões na presença de incerteza é uma computação om-
nipresente. A descodificação de variáveis latentes—inferir causas es-
condidas subjacentes a efeitos visíveis—é frequentemente observada na
natureza, e é também um desafio não resolvido no setor de aprendizagem
de máquina.

Em muitas ocasiões, os animais precisam de basear as suas escolhas
em evidências incertas, por exemplo quando decidem se se devem aprox-
imar ou afastar dum estímulo visual ofuscado que poderia ser uma presa
ou um predador. No entanto, as suas estratégias são, no geral, pouco
compreendidas.

Em casos simples, estes problemas admitem uma solução ótima e ex-
plicita. Todavia, em casos realísticos mais complexos, é difícil determinar
o melhor comportamento possível. A abordagem mais comum em apren-
dizagem de máquina baseia-se no conceito de rede neuronal artificial: uma
“caixa negra” que associa a cada input um output. Esta associação en-
tre input e output depende dum grande número de parâmetros que são
otimizados durante a aprendizagem.

Embora úteis na prática, estas soluções não são inteligíveis: os valores
dos parâmetros obtidos no fim da aprendizagem não esclarecem a natureza
do problema. Além disso, mesmo quando redes neuronais artificiais podem
ser treinadas para descodificar quase otimamente uma variável latente a
partir duma série de observações, a relação com agentes e redes neuronais
biológicas permanece pouco clara.

Aqui, abordamos o problema de descodificação de variáveis latentes sob
três óticas distintas: comportamento animal, aprendizagem de máquina
inteligível e modelação de redes neuronais biológicas.

vii

Primeiro, examinamos o comportamento animal em tarefas cuidadosa-
mente concebidas, para perceber se os ratinhos e os humanos podem apren-
der quais variáveis são relevantes numa tarefa, e como essas variáveis de-
vem ser primeiro inferidas, e depois utilizadas, para resolver a tarefa com
sucesso. Usando optogenética, distinguimos o papel de diferentes áreas do
córtex pré-frontal na realização deste cômputo.

Depois, recorremos a uma estratégia normativa. Ainda que as soluções
ótimas sejam frequentemente espinhosas, desenvolvemos diferentes tipos
de máquinas paramétricas: agentes artificiais simples mas computacional-
mente flexíveis. Implementamos estas máquinas em PyTorch e demon-
stramos o seu desempenho em tarefas de regressão não linear e classificação
de imagens em pequenos conjuntos de dados.

Finalmente, tentamos construir uma ponte entre os agentes norma-
tivos e as soluções biológicas neuronais, investigando quais mecanismos
plausíveis de plasticidade sináptica correspondem a uma descodificação
ótima. Descobrimos que a codificação eficiente pode ser alcançada através
duma classe de regras de plasticidade simples que visam a melhorar o
equilíbrio de excitação/inibição da rede.

No seu conjunto, estas estratégias complementares representam um
primeiro passo na direção duma compreensão unificada do processo de
tomada de decisões sob incerteza em agentes biológicos e artificiais.

viii

Author Contributions

This thesis was written by Pietro Vertechi. Detailed contributions are
provided per chapter in the “Author contributions” section.

Chapter 2 is a published manuscript, in collaboration with Eran
Lottem, Dario Sarra, Beatriz Godinho, Isaac Treves, Tiago Quendera,
Matthijs Nicolai Oude Lohuis, and Zachary F. Mainen. Chapter 3 is an
ongoing work, in collaboration with Mattia G. Bergomi and. Patrizio
Frosini. Chapter 4 is a published manuscript, in collaboration with
Wieland Brendel, Ralph Bourdoukan, Christian K. Machens, and Sophie
Denève.

Artwork courtesy of Shira Lottem and Diogo Matias.

Financial Support

This work was carried out under the International Neuroscience Doc-
toral Programme (INDP), funded by the Portuguese FCT (Fundação para
a Ciência e a Tecnologia, FCT Bolsa PD / BD / 105944 / 2014) and the
Fundação Champalimaud.

ix

Contents

Acknowledgments . iv
Abstract . v
Título e Resumo . vii
Author Contributions and Financial Support ix

1 Introduction 1
1.1 Decision-making under uncertainty 1
1.2 Intelligible artificial intelligence 3
1.3 Biologically plausible learning 4
1.4 Overview . 5

2 Inference based decisions in a hidden state foraging task 9
2.1 Introduction . 10
2.2 Results . 13

2.2.1 A probabilistic foraging task 13
2.2.2 Mice accumulate evidence and not rewards 16
2.2.3 Accumulation of evidence is tuned to task parameters 21
2.2.4 Humans perform inference and tune behavior to task

parameters . 23
2.2.5 OFC, but not ACC, is necessary for the correct in-

ference process . 25
2.3 Discussion . 28

x

2.4 Materials and methods . 33
2.4.1 Key resources table 34
2.4.2 Lead contact and materials availability 34
2.4.3 Experimental model and subject details 34
2.4.4 Method details . 36
2.4.5 Quantification and statistical analysis 41
2.4.6 Data and code availability 49

2.5 Author contributions . 49

3 Parametric machines 50
3.1 Introduction . 50
3.2 Results . 53

3.2.1 Machines . 53
3.2.2 Finite and infinite depth 61
3.2.3 Kernel machines . 69

3.3 Discussion . 82
3.4 Materials and methods . 84
3.5 Author contributions . 85

4 Learning to represent signals spike by spike 86
4.1 Introduction . 87
4.2 Results . 88

4.2.1 Efficient spike coding requires balance of excitation
and inhibition . 90

4.2.2 Recurrent synapses learn to balance a neuron’s inputs 92
4.2.3 Feedforward weights change to strengthen postsy-

naptic firing . 100
4.2.4 Networks with separate excitatory and inhibitory

populations . 104
4.2.5 Learning for correlated inputs 106
4.2.6 Robustness of Learning against perturbations 110

xi

4.2.7 Manipulating plasticity 113
4.3 Discussion . 117
4.4 Materials and methods . 119
4.5 Author contributions . 120

5 General discussion 121
5.1 Decision-making under uncertainty 121
5.2 Intelligible artificial intelligence 122
5.3 Biologically plausible learning 124
5.4 Future directions . 126

Bibliography 129

xii

Chapter 1

Introduction

Different branches of research have studied intelligent behavior in biolog-
ical and artificial agents. Determining the adequate course of action in
light of partial and uncertain evidence is a challenge that both animals
and machine learning frameworks need to overcome. Many approaches
exist, and each of them presents its challenges. Here I will discuss how be-
havioral neuroscience, artificial intelligence, and theoretical neuroscience
have tackled this problem.

1.1 Decision-making under uncertainty

The study of human and animal behavior has made great progress since
the advent of Behaviorism [120] in the first half of the 20th century. Simple
and elegant models of stimulus-response associations [104] were later gener-
alized to sophisticated Reinforcement Learning (RL) algorithms capable of
learning almost arbitrary tasks from a scalar reinforcement function [130].

The RL formulation is deceptively simple. An agent explores a finite
set of states and can perform one of a finite number of actions. Each action
may entail a reward or punishment and leads the agent to a potentially
different state. Experiencing the task many times, the agent optimizes

1

its policy—the rule that associates each state to the corresponding action.
Stimulus-response tasks can then be easily interpreted in this framework,
where stimuli correspond to states and responses to actions.

However, extending the RL framework from stimulus-response tasks
to more general scenarios rapidly encounters a fundamental problem: the
dimensionality of the state space is often too large for most RL algorithms.
Even when the environment is simple (e.g., a lab environment with only a
few stimuli), this dimensionality explosion may happen due to the stimulus
dynamics. As the agent’s policy is only a function of the state, the state
must be maximally informative about future events. Hence, it should
encompass all the information concerning the stimulus history that could
be predictive of future outcomes. That is problematic when the stimuli are
not drawn independently and have a hidden temporal structure. If the last
ten stimuli are more predictive of the future than just the last one, then
the agent should remember all of them, that is to say, each state should
encompass a long stimulus history. As this is often unfeasible, the optimal
agent has to discover what features of stimulus history are predictive of
the future and encode those in the state representation.

While this is a complex problem in general, it can often be solved in
practice using a simple idea. The stimuli the agent experiences may be
noisy observations of an underlying Markov process, which is hidden. The
state of the RL problem is then the inferred probability of being in each
possible state of the Markov process, given the history of observations.

There is evidence that animals can use hidden states to guide behavior,
both from the analysis of behavior (see [92] for a review) and neural signals.
In particular, the activity of dopaminergic neurons, thought to encode the
difference between observed and expected value [113], could actually en-
code a posterior distribution of possible hidden states in mice [127]. [108]
show that primates can learn to infer a contingency change via counter-
factual reasoning, and the contingencies themselves are encoded both in

2

prefrontal cortical regions and in the Amygdala. However, it remains un-
clear whether such neural signatures are causally linked to the behavioral
signatures of inference.

1.2 Intelligible artificial intelligence

Decoding hidden variables is not only a problem for biological agents: it
has also been studied extensively in the field of artificial intelligence. The
first studies on how to solve decision-making problems under uncertainty
originated in the domain of control theory, in the case where not all control
variables could be measured [8, 122]. Starting with the work of Cassandra,
Kaelbling, and Littman [29, 80], the AI community also became interested
in the topic, and efficient algorithms were found in the context of Partially
Observable Markov Decision Processes (POMDP) [124]. Even though the
POMDP framework is quite abstract, several studies investigated links
between inference in POMDPs and motor control [133] or planning [9].

With the advent of Deep Learning (DL), deep neural networks became
the preferred method to tackle problems traditionally in the domain of
POMDPs [53, 88]. However, while artificial neural networks have been
extremely successful in practice, they are not fully satisfactory from a neu-
roscientific perspective. Even though such over-parameterized networks
can generally approximate good solutions to difficult problems, they are
often not intelligible [141]: designing and training a large deep network on
a big dataset (or on simulated data) is a brute-force approach that rarely
brings any insight into the nature of the problem. It is hard to deduce,
from the optimal parameter values of the fully trained network, which fea-
tures of the data were used to solve the task, and how they were combined
to do so.

Our lack of understanding of the functioning of deep networks has an
additional drawback. The choice of architecture has a decisive impact on

3

the performance of a neural network. Yet there is almost no theory on
architecture design that would yield provable guarantees of convergence to
the desired solution.

1.3 Biologically plausible learning

It is tempting to think that artificial neural networks (ANNs) are, some-
how, a computational model of biological ones. Indeed, convolutional neu-
ral networks share many features with the mammalian cortex: receptive
fields of simple cells in the primary visual cortex (V1) are qualitatively sim-
ilar to optimal filters in an efficient coding framework [60, 95]. Of course,
on closer inspection, it becomes clear that ANNs lack many of the com-
plexities of biological networks. Most ANNs only consider one cell type,
and the dynamics of artificial neurons have often little in common with
the biophysical properties of the different cell types of the cortex.

While these problems could probably be fixed by designing more com-
plex ANNs where each neuron has richer dynamics, there remains a striking
conceptual issue that concerns learning. A given ANN learns how to solve
a task by taking the gradient of an appropriate objective function with re-
spect to its parameters (loosely speaking, the network’s synaptic weights).
One could be tempted to assume that biological networks might learn in
a similar way and that the ANN’s learning rule corresponds to some kind
of synaptic plasticity. Unfortunately, the quantity that should determine
whether each synapse potentiates or depotentiates is often global and de-
pends on the activity of all other cells in the network, as well as on the
value of the objective function. Do mathematically derived learning rules
admit biologically plausible approximations, where the locality constraints
of available information are taken into account?

4

1.4 Overview

The hidden state foraging task

The aim of chapter 2 is to establish that latent variable decoding (infer-
ring hidden causes underlying visible outcomes) can be tested in a labo-
ratory environment, both in humans and in mice, and causally linked to
the activity of prefrontal cortical regions. To do so, we developed a task
where rewards are probabilistic and depend on a hidden state that changes
stochastically. The main challenge, in terms of task design, consists in in-
troducing hidden Markov models while maintaining the environment suf-
ficiently simple.

Structure. Section 2.2.1 describes the hidden-state foraging task, a be-
havioral task that builds on the probabilistic task developed in [81], with
two important modifications. On the one hand, it simplifies the structure
of the task, so that a single hidden variable (which one of two water ports is
rewarding) is a sufficient statistic to describe the task state. On the other
hand, the hidden-state foraging task, by design, has a steeper loss func-
tion, in that small deviations from the optimal behavior can incur a high
cost. As a consequence, the mice’s behavior closely matched predictions of
the optimal model, which we verified in two ways. First, in section 2.2.2,
we show how the inferred probability of the value of the hidden variable
governing the task is more predictive of the mice’s behavior than simpler
quantities such as the reward count. Second, in section 2.2.3, we show
that the mice learn to adjust their behavior as a function of the probabil-
ities governing the hidden Markov process. Mice were faster in detecting
transitions in protocols where observed events were more informative of
the hidden state. In section 2.2.4, we test an adaptation of the task (in
the form of a video game) on human subjects and demonstrate that, like
their rodent counterpart, humans also match predictions of the normative

5

model and accumulate evidence rather than rewards. Finally, section 2.2.5,
explicitly tests a prediction put forward in [146], where the authors suggest
that the ability to base the state representation on quantities that are not
directly observable, relies on the Orbito-Frontal Cortex (OFC).

Parametric machines

Chapter 3 serves as a prototype of intelligible artificial intelligence. There,
we introduce the notion of machine—the atomic component of our frame-
work. The definition of machine allows us to link mathematical results on
function spaces with fundamental properties of neural networks: modular-
ity and alternation of linear and nonlinear functions.

To construct interesting examples of machines, we adopt two different
strategies, corresponding roughly to finite- and infinite-depth architectures.
We show how our finite-depth architectures generalize classical neural net-
works, whereas our infinite-depth architectures generalize neural ordinary
differential equations.

To achieve guarantees of optimality, we build on the theory of operator-
valued kernels. Given operator-valued kernels compatible with finite or
continuous filtrations of a Hilbert space X, we define a function space H
of continuous endomorphisms of X, such that each f ∈ H is a machine
on X. We can then borrow ideas from the field of kernel methods to
select, among all the available small machines in f , the one that is most
suitable to solve the computational problem at hand. In our simulations,
this approach performs well on small datasets.

Structure. First, we set our categorical foundations. We only need two
basic notions to build upon—machine and independence—which we define
in section 3.2.1. Section 3.2.2 discusses finite- and infinite-depth archi-
tectures, generalizing classical neural networks and neural ordinary differ-
ential equations. In section 3.2.3, we combine kernel methods with the

6

framework established in sections 3.2.1 and 3.2.2. We formalize the notion
of kernel machine and give two distinct classes of examples (based on fi-
nite and continuous filtrations of Hilbert spaces), which we benchmark on
nonlinear regression and classification problems on small datasets.

Learning to represent signals spike by spike

In chapter 4, building on [34], we show that, by minimizing postsynap-
tic voltage fluctuations, biologically plausible spiking neural networks can
learn to encode arbitrary signals robustly and efficiently. In particular, we
replace the efficient coding loss function with approximations that aim to
either minimize the variance of the postsynaptic membrane potential or to
balance the excitatory current received by the postsynaptic neuron.

While the computational problem described in chapter 4 may ap-
pear quite simple—as the network only needs to output a signal that it
received—sparsity costs make the computation more interesting. In par-
ticular, the network can perform latent variable decoding: PCA and ICA
can be interpreted as an efficient coding problem with sparsity constrains,
as detailed in [76].

Structure. In section 4.2.1, we show that a well-known feature of cor-
tical networks—the balance of excitatory and inhibitory currents [148]—
is closely linked with the efficient coding objective. In section 4.2.2, we
put forward a possible learning rule for recurrent synapses that would,
over time, bring a recurrent network to a tightly balanced stable state,
whereas in section 4.2.3, we show that, even after having learned the exci-
tation/inhibition balance, the coding performance can be further enhanced
by tuning the feedforward connections to the statistical properties of the
input signal. The following sections discuss how to adjust the framework
to be more realistic. Section 4.2.4 details how the neural network architec-
ture and learning rules can be adjusted to include separate populations of

7

excitatory and inhibitory cells. In sections 4.2.5 and 4.2.6, we show that
the network, and associated learning rule, do not only work in idealized
scenarios, but are robust both to input correlation, random currents, and
connectivity constraints. Finally, in section 4.2.7, we discuss experimen-
tally testable predictions of our learning rules.

8

Chapter 2

Inference based decisions in a
hidden state foraging task

Summary

Essential features of the world are often hidden and must be inferred by
constructing internal models based on indirect evidence. Here, to study the
mechanisms of inference we established a foraging task that is naturalistic
and easily learned, yet can distinguish inference from simpler strategies
such as the direct integration of sensory data. We show that both mice and
humans learn a strategy consistent with optimal inference of a hidden state.
However, humans acquire this strategy more than an order of magnitude
faster than mice. Using optogenetics in mice we show that orbitofrontal
and anterior cingulate cortex inactivation impact task performance, but
only orbitofrontal inactivation reverts mice from an inference-based to a
stimulus-bound decision strategy. These results establish a cross-species
paradigm for studying the problem of inference-based decision-making and
begin to dissect the network of brain regions crucial for its performance.

9

2.1 Introduction

In natural foraging behaviors, animals must continually choose between
trying to exploit resources at their current location and leaving to explore
another, potentially superior one, at the expense of a possibly costly travel
period. Viewed from the perspective of optimal decision-making, the cru-
cial question is when is it best to leave the current site for another one?
According to the marginal value theorem, in order to maximize returns, an
optimal forager ought to leave its current site when the immediate rate of
reward drops below the average rate [31]. However, this elegant solution
to the foraging problem only applies in deterministic environments [70],
in which both immediate and average reward rates are knowable to the
agent. In a more realistic scenario—for example, where rewards are en-
countered probabilistically—the immediate reward rate is ill-defined and
the marginal value theorem does not apply.

One widely-used and powerful approach to model decision-making in
dynamic and stochastic environments is reinforcement learning (RL) [130].
In RL, the values of different actions (such as leaving a foraging site or stay-
ing on) are continuously updated through trial and error, based on their
outcomes, allowing agents to adaptively modify their preferences as condi-
tions change. In its simplest form, model-free RL assigns each action with
a value that is updated based on its immediate outcome, with no regard
to the causal, and often hidden, structure that links actions to outcomes.
While computationally efficient and consistent with a large body of exper-
imental data on both Pavlovian and operant tasks [44, 114], model-free
RL is not the best available strategy in many situations. Consider, for
instance, a lion that has just successfully captured prey. If the fact that
in doing this it has most likely scared away all other animals is ignored,
the lion may continue to hunt in the same region, wasting a considerable
amount of time searching for the now long-gone prey. Conversely, things

10

may turn out badly for a zebra if it assumes that its current foraging
ground was safe (that is, lion-free) just because it had not seen a lion
yet in its immediate surroundings. What these examples illustrate is that
relying solely on recent outcomes, while ignoring causal structures in the
world, may have suboptimal (if not catastrophic) consequences. Instead, in
structure learning [22, 23, 97], a form of inference-based RL, agents choose
actions based on their beliefs about the current state of the world, which
is determined by both incoming sensory evidence (such as outcomes) and
knowledge of the underlying causal structure of the environment. How
humans and animals implement such strategies remains an important and
poorly understood question [35, 93, 127].

The study of the neural mechanisms underlying flexible, integrative
behavior has drawn special attention to the prefrontal cortex and the com-
putational role of its different areas. Although the mapping of the rodent
prefrontal cortex has not reached a consensus, here we adopt the descrip-
tion of [137], which defines as rat prefrontal cortex those areas comparable
to the primate prefrontal cortex in terms of thalamic reciprocal connec-
tions, corticocortical connections, and functional aspects, including the or-
bitofrontal cortex (OFC) and the anterior cingulate cortex (ACC). It has
been suggested that the OFC is crucial for hidden state representation,
and hence for inference-based decisions. For example, in both rats and
primates, lesions or inhibition of OFC impairs subjects’ ability to adjust
their behavior in reversal learning tasks, where the depletion of a previ-
ously rewarding site (or the futility of a previously rewarding action) may
be viewed as a change in the (hidden) state of the world [146], even though
this result may be technique-dependent: [106] found that aspiration lesions
(which also damage passing fibers), but not excitotoxic lesions, of monkey
OFC impaired reversal learning. The adjacent ACC, often considered part
of the rodent medial prefrontal cortex (see for example [127, 131]), has
been implicated in monitoring value during foraging [54, 69] and could be

11

responsible for encoding the value of alternative options [71] and changing
behavior based on the decreasing value of the current option [118, 145].

Here, we describe a foraging task in which subjects may seek rewards at
either one of two foraging sites. This task has a special hidden structure:
at any given moment, only one of the sites can deliver rewards and the
site of the rewards switches with a certain probability after each foraging
attempt. Importantly, even when reward is available, it is not delivered for
every attempt, but rather with a probability less than 1. This makes the
task a partially observable Markov decision process (POMDP): the true
state of the world (i.e., the identity of the rewarding site) is hidden and
subjects must infer it based on noisy observations. A defining feature of
this task, due to the hidden structure, is the asymmetry of the evidence
provided by rewards and failures (unrewarded attempts): a single failure
provides partial evidence in favor of a site switch, whereas a single reward
provides full certainty that the current site is rewarding. A “stimulus-
bound” agent, in the sense of [146], would assign value to observable states
(being on the left or on the right or the other foraging site) by linearly
combining rewards and failures. Such a process does not capture the es-
sential asymmetry of the task. Ten rewards are much better than one
reward in terms of value, but under optimal inference, one single reward
is as informative as ten, since it already gives absolute certainty that the
current site is active. Thus, leaving decisions under stimulus-bound and
inference-based strategies in this task will be qualitatively different. A
stimulus-bound agent will become more persistent the more rewards it has
received at a site, whereas an inference-based agent will not show such an
effect. We found that both mice and humans display hallmarks of inference
in the performance of a foraging task and are able to build a non-trivial
representation of task space. We further show that optogenetic inhibition
of the OFC in mice selectively disrupts optimal inference behavior, biasing
mice towards a sub-optimal stimulus-bound strategy. Similar inhibition of

12

the adjacent ACC, results in delayed leaving decisions but does not dis-
rupt the inference process itself, suggesting a specific role of OFC in this
important cognitive function.

2.2 Results

2.2.1 A probabilistic foraging task

We developed a self-paced probabilistic foraging task. Subjects sought
rewards by actively probing a foraging site. Each try at the active site
yielded reward with probability pRWD, and could cause a switch with
probability pSW (fig. 2.1a). After a state switch, to obtain more rewards,
subjects needed to travel to a second site at some distance and therefore
bear a travel cost. Subjects were thus tasked with inferring a hidden
state of the current site through a sequence of observations of stochastic
events (rewards and failures). There are actually many ways of integrating
rewards and failures to form a decision. In a stimulus-bound process, the
relative value of the left site with respect to the right site V = VLEFT −
VRIGHT would increase gradually with left rewards, decrease gradually
with right rewards, and decay to 0 with failures (fig. 2.1b). In formulas,
given a decay coefficient γ, a reward indicator rt, a site indicator st (1 for
left, −1 for right), and signed outcomes ot = rt · st:

Vt+1 = (1− γ)Vt + γot+1. (2.1)

On the other hand, an agent that is aware of the structure of the
task—the fact that a hidden state determines which site is rewarding at
any time—could use rewards and failures differently, allowing it to better
infer whether the current foraging site is active or inactive. The relative

13

R
el

at
iv

e
va

lu
e

1 2 3 4 5 6
-1.5

-1.0

-0.5

0.0

0.5

1.0

Number of rewards

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6
Number of rewards

R
el

at
iv

e
va

lu
e

(L
ef

t -
 R

ig
ht

)

Left active Right active

L R
0

1
PRWD

L R
0

1
PRWD

PSW

PSW

Inference-basedStimulus-bound

ed

b

a

c

Stimulus-bound
Inference-based

Left active
Right active

1.0

-1.0

C
on

se
cu

tiv
e

fa
ilu

re
s

be
fo

re
 le

av
in

g
(m

ea
n

su
bt

ra
ct

ed
)

Reward

Failure

Figure 2.1: (legend on next page)

14

Figure 2.1: A Probabilistic Foraging Task Can Dissociate Stimulus-
Bound from Inference-Based Evidence Accumulation. (a) Formally, the
task is a hidden Markov model with LeftActive and RightActive states. It has
two parameters: probability of reward given state and probability of state tran-
sition. (b and c) Estimated relative value (left minus right) as a function of
trial history (rewards in green, failures in gray) in the stimulus-bound model and
inference-based model respectively. Shaded patches indicate actual state. (d)
Effect of rewards on relative value in stimulus- bound and inference-based mod-
els: the two models are simulated in a trial with only rewards on the same site.
Relative value increases with reward number in the stimulus-bound but not in
the inference-based model. (e) Consecutive failures before leaving (normalized
subtractively) as a function of reward number in a simulated data of stimulus-
bound and inference-based models: reward number has an effect on consecutive
failures in the stimulus-bound but not in the inference-based model.

value would then be:

Vt = pRWD(P (LeftActive | r1, s1, . . . , rt, st)−

P (RightActive | r1, s1, . . . , rt, st)),

(see section 2.4.5 for a detailed treatment of the probability computation).
Unlike the stimulus-bound mechanism in fig. 2.1b, this process is able to
track effectively the rapidly evolving value of the foraging sites (fig. 2.1c).
Both accumulation processes can be used as generative models of the be-
havior by defining the probability of staying on, e.g., the left site as a
sigmoidal function of the relative value:

P (NextLeft | V, s) = σ(β(V + s · T)),

where β represents a softmax parameter (the higher it is, the more deter-
ministic the behavior), and T represents the staying bias (when the value
of the left and the right site are estimated as equal, the subject should still
prefer to stay to avoid the travel cost).

15

Both models predict that the probability of leaving increases with the
number of consecutive failures. However, the effect of a reward is very
different between them. In a stimulus-bound model the probability of
leaving decreases with the number of rewards, as each reward contributes
to the accumulated value. In the inference-based model it does not, as a
single reward is sufficient to deduce with certainty that the current site is
active (fig. 2.1d). Thus a simple test of whether subjects are using inference
is to check whether the number of failures before leaving changes with the
number of preceding rewards (fig. 2.1e).

2.2.2 Mice accumulate evidence and not rewards

We first developed the hidden state foraging task as a rodent behavioral
task (fig. 2.2a) in which mice had to nose-poke at one of two possible ports
to obtain water rewards (2 µL each). We trained 18 C57BL/6 wild type
mice of 2 months age for 12 days in a baseline protocol with pRWD = 0.9

and pSW = 0.3 and observed the effect of rewards on behavior during
learning.

Since our task was a foraging style task, the mapping to choice and
feedback are not present in a trial. Each trial contains a number of pokes,
each of which contains feedback in the form of water (or not), as illustrated
in fig. 2.2b. The choice of the mouse is whether to continue to poke (ex-
ploit) at the current site or whether to leave (explore), a choice it makes
after each poke. The only incorrect choice is to leave to the other site
before the state has switched. When the mouse switches site too early, no
rewards will be emitted by the other port; the mouse is obliged to return to
the original port and continue to poke. Mice made only about 2.25±0.47%

(N = 18 mice) errors on average. An example of the behavior of a trained
animal is shown in fig. 2.2c (see Fig. S1 for summary statistics of the
durations of the various task epochs).

16

c

ed

a

g

0 1 2 3 4
0

2

4

6

8

10

F
ai

lu
re

s
af

te
r

re
w

ar
d

Failures before reward

f

1 2 3 4 5 6
0

2

4

6

8

10

C
on

se
cu

tiv
e

 fa
ilu

re
s

be
fo

re
 le

av
in

g

Number of rewards
2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

Training day

R
eg

re
ss

io
n

co
ef

fic
ie

nt

Late
Early

Early Late
-0.5

0.0

0.5

1.0

1.5

2.0

Consecutive failures

N
um

be
r

of
 r

ew
ar

ds

P
rob

ability of leaving

0

0.2

0.4

0.6

0 1 2 3 4 5

1

2

3

4

5

0 2 4 6

L
R
L
R
L
R
L
R
L
R
L
R
L
R
L
R
L
R
L
R

Time (seconds)

T
ri

al
s

Reward
Failure

Left siteL

Right siteR

Left active

Right active

Left pokes

Right pokes

State
switch

State
switch

b

h

Figure 2.2: (legend on next page)

17

Figure 2.2: Mice Accumulate Inferred Evidence for State Switches and
Not Site Value. (a) Schematic of rodent task. Mice shuttle back and forth
between two reward sites to obtain water rewards. (b) Example sequence of pokes.
Pokes in the correct site can be rewarded or not, whereas pokes in the incorrect
site are never rewarded. Following a state switch, the animals need to travel to
the other site to obtain more rewards. (c) Example behavior: sequence of poke
bouts (i.e., trials) with rewards in green and failures in gray. (d) Consecutive
failures before leaving as a function of reward number in early training (days
1 to 3, purple) compared with late training (days 10 to 12, black). (e) Slope
coefficient in ConsecutiveFailures ∼ 1 +RewardNumber for early training and
late training. Slope coefficient is higher in early trials, likelihood ratio test on
linear mixed-effect model ConsecutiveFailures 1 + RewardNumber + Early +
RewardNumber&Early+(1 |MouseID) versus a null model with no interaction:
p < 10−10, N = 18 mice (see section 2.4.5 for a description of the formula
notation). (f) Evolution of reward number coefficient across days. (g) Probability
of leaving as a function of number of rewards and consecutive failures in late
training. (h) Failures after reward as a function of failure before reward in trials
with only one reward in a more difficult protocol.

Mice tended to alternate bouts of pokes at a given site (6.98 ± 0.14

pokes per bout, N = 18 mice) with trips to the opposite site, producing
a natural segmentation in trials (i.e. poke bouts on the same site). This
presumably reflects the clear asymmetry in time cost between nose-poking
again on the same site, a very cheap action (Fig. S1, inter-poke interval =
0.16 ± 0.025 seconds, unrewarded poke duration = 0.33 ± 0.006 seconds,
N = 18 mice), and switching site, a much more expensive option (Fig. S1,
3.15± 0.18 seconds, N = 18 mice).

We found that the number of consecutive failures since the last reward
(ConsecutiveFailureIndex) was a better predictor of mouse choice than
the time spent at the nose poke (TimeSpentAtPort) (Lottem et al., 2018).
We fitted two logistic regression models with random effects. Here and
throughout the text we use Wilkinson notation [143] (see section 2.4.5 for

18

a detailed explanation):

LeavingPort ∼ 1 + ConsecutiveFailureIndex+ (1 |MouseID)

and

LeavingPort ∼ 1 + TimeSpentAtPort+ (1 |MouseID).

The ConsecutiveFailureIndex model was overwhelmingly better (deviance
= 10892) than the TimeSpentAtPort model (deviance = 14771). As con-
firmation, we also tested a model that included both predictors:

LeavingPort ∼1 + ConsecutiveFailureIndex+ TimeSpentAtPort

+ (1 |MouseID),

and only the ConsecutiveFailureIndex had a positive coefficient (0.78 ±
0.013) whereas the TimeSpentAtPort had a small negative coefficient
(−0.046± 0.006).

In the early part of training, animals were unaware of the structure
of the task and exhibited hallmarks of a stimulus-bound strategy: more
failures were needed to leave the foraging port in rich foraging bouts, with
many rewards before a state switch, compared to poor foraging bouts, with
as little as one reward before a state switch. After training, however, the
number of rewards had no effect on the number of failures before leaving,
consistent with an inference-based strategy (fig. 2.2d). To quantify this
effect at a single animal level, we fitted a linear regression model that
predicted the number of consecutive failures before leaving as a function
of the number of prior rewards in the current trial (i.e. foraging bout at a
given site): ConsecutiveFailures ∼ 1 + RewardNumber (fig. 2.2e). The
data show that during the first days of training there was a strong positive
correlation between these two quantities, but with continued training this

19

correlation decayed to zero (fig. 2.2f). Therefore, experienced mice, unlike
naïve animals, decide when to leave the foraging site in a manner consistent
with inferring a hidden state, rather than directly integrating rewards and
failures.

As another way of seeing this, a stimulus-bound integration strategy
would effectively weigh similarly each reward and failure with opposite
signs (see eq. (2.1)). Correct inference instead, given the structure of this
task, requires that rewards are weighted nonlinearly (the first counting a
lot and subsequent nothing) and differently from failures, which should
add linearly. Indeed, in the trained mice, the effect of rewards and failures
in shaping the behavior is qualitatively asymmetric in just this way, as
can be seen by visualizing the probability of leaving as a function of both
reward number and consecutive failures (fig. 2.2g).

Furthermore, stimulus-bound and inference-based models predict dif-
ferent interactions of rewards with preceding failures. Consider, for ex-
ample, trials in which the animal receives a single reward: the later the
reward, the smaller the value of the current site at the time of reward de-
livery. In the stimulus-bound model, the received reward value is simply
added to the current value estimate, so the later in the train the reward
arrives the lower the current value of the port (given that we are assuming
only failures before this reward). Therefore, fewer subsequent failures will
be tolerated before the animal leaves. On the other hand, in inference-
based models a single reward resets the count of accumulated failures up
to that point, and therefore the position of the reward (or equivalently the
number of failures prior to the reward) has no consequence on subsequent
behavior. To test these alternatives, we analysed how the position of that
reward influenced the overall number of failures before leaving in a proto-
col with lower probability rewards (pRWD = 0.3 and pSW) and found that
the number of failures after the last reward did not decrease when it was
preceded by more and more failures, on the contrary it slightly increased

20

(fig. 2.2h, slope = 0.2 ± 0.06, N = 20 mice), consistent with a resetting
effect of reward as predicted by the inference-based model.

2.2.3 Accumulation of evidence is tuned to task parameters

Having found that the foraging behavior of mice is consistent with the
accumulation of evidence to infer a hidden world state, we asked whether
this inference process is appropriately tuned to the statistics of the forag-
ing environment, represented here by two parameters: reward probability
pRWD and state switch probability pSW . Intuitively, if is high, then a sin-
gle failure is strong evidence in favor of a state switch, leading to a faster
accumulation process. Similarly, if is high, then a failure also carries more
evidence in favor of a state switch compared to if it is low (fig. 2.3a; see
section 2.4.5 for a formal justification of this intuitive argument).

To test this, we trained a separate batch of mice on a set of three differ-
ent foraging site statistics (Easy environment: pRWD = 0.9 and pSW = 0.9;
Medium environment: pRWD = 0.9 and pSW = 0.3; Hard environment:
pRWD = 0.3 and pSW = 0.3; see fig. 2.3b). Since changing the forag-
ing environment’s statistics can affect average reward rates (i.e. average
number of rewards per trial), we adjusted the magnitude of individual re-
wards in order to equalize the amount of reward at a given site before
state switch across conditions. As predicted normatively, mice increased
the number of failed attempts they would tolerate as the state switch-
ing probability and the reward probability dropped (fig. 2.3c, d; differ-
ence in failed attempts after last reward in Easy-Medium = −1.61± 0.03,
difference Hard-Medium = 1.77 ± 0.04, N = 20 mice, likelihood ratio
test on ConsecutiveFailures ∼ 1 + Protocol + (1 |MouseID) versus
ConsecutiveFailures ∼ 1 + (1 |MouseID) : p < 10−10).

An important additional prediction of optimal decision theory in the
context of a foraging task is that travel cost should modulate the thresh-
old to leave a given foraging site. To test this, we increased the travel

21

S
w

itc
h

pr
ob

ab
ili

ty

0.0

0.5

1.0

Reward probability

ba P
 active after one failure

Consecutive failures

P
ro

ba
bi

lit
y

ac
tiv

e

1 2 30

B
arrier

0 93 6
0

9

3

6

c d
Barrier
No barrier

0

2

4

6

30
 -

30

90
 -

30

90
 -

90

30 - 30
90 - 30
90 - 90

PRWD - PSW

Consecutive failures
before leaving, no barrier

C
on

se
cu

tiv
e

fa
ilu

re
s

be
fo

re
 le

av
in

g,
 b

ar
rie

r

C
on

se
cu

tiv
e

fa
ilu

re
s

be
fo

re
 le

av
in

g

0.0 0.3 0.6 0.9
0.0

0.3

0.6

0.9

0

1

Figure 2.3: Accumulation of Inferred Evidence Is Tuned to Task Param-
eters. (a) Probability of being on the correct site after a failure as a function
of reward probability and transition probability. (b) Probability of being on the
correct site as a function of trial history for three protocols (Easy environment:
pRWD = 0.9 and pSW = 0.9; Medium environment: pRWD = 0.9 and pSW = 0.3;
Hard environment: pRWD = 0.3 and pSW = 0.3). Leaving decisions can be mod-
eled by setting a threshold on this probability that changes as a function of the
travel cost (black lines). (c) Consecutive failures before leaving as a function of
the environment statistics and barrier condition. (d) Consecutive failures before
leaving split by subject and environment statistics, barrier versus no barrier.

22

cost by placing a physical barrier between the two locations (travel time
without barrier = 1.86 ± 0.13 s, N = 20 mice; travel time with barrier =
2.69± 0.13 s). Once again, the accumulation process was modulated con-
sistently with the normative prediction, longer travel times resulting in a
longer accumulation process and delayed leaving (fig. 2.3c, d, effect of bar-
rier in number of failed attempts after last reward = 0.42± 0.03, N = 20

mice, likelihood ratio test on ConsecutiveFailures ∼ 1 + Protocol +

Barrier + (1 |MouseID) versus ConsecutiveFailures ∼ 1 + Protocol +

(1 |MouseID): p < 10−10).

2.2.4 Humans perform inference and tune behavior to task
parameters

To test whether our findings were valid across species, we developed a
translation of our behavioral assay for human subjects, in the form of a
video game, where players would drag a character from one side of a touch
screen to the other and tap to achieve points. The statistics of the video
game (pRWD and pSW) were the same as those used in the rodent task.

In humans we again observed hallmarks of inference-based foraging:
the number of rewards had little to no effect on the behavior (Fig 4a, b),
similar to the behavior of the trained mice. Unlike mice, however, humans
needed almost no training to learn this strategy, displaying it from the first
session.

Analogously to their rodent counterparts, human subjects modu-
lated their behavior according to reward statistics as well as travel
time (here affected by a manipulation in the character’s velocity) con-
sistent with the normative predictions (fig. 2.4c, d, difference in failed
attempts after last reward in Easy-Medium = −1.39 ± 0.03, differ-
ence Hard-Medium = 1.48 ± 0.03, N = 20 subjects, likelihood ratio
test on ConsecutiveFailures ∼ 1 + Protocol + (1 | SubjectID) ver-
sus ConsecutiveFailures ∼ 1 + (1 | SubjectID): p < 10−10, effect of

23

0

2

4

6

30
 -

30

90
 -

30

90
 -

90

c d

0

1

4

2

3

1 2 3 4 5 6

R
eg

re
ss

io
n

co
ef

fic
ie

nt

Number of rewards

ba

Late
Early

Barrier
No barrier

n.s.

Early Late
-0.5

0.0

0.5

1.0

1.5

2.0

C
on

se
cu

tiv
e

fa
ilu

re
s

be
fo

re
 le

av
in

g
C

on
se

cu
tiv

e
fa

ilu
re

s
be

fo
re

 le
av

in
g

0 93 6
0

9

3

6

Consecutive failures
before leaving, no barrier

C
on

se
cu

tiv
e

fa
ilu

re
s

be
fo

re
 le

av
in

g,
 b

ar
rie

r

30 - 30
90 - 30
90 - 90

PRWD - PSW

Figure 2.4: Humans Perform Optimal Inference and Tune Behavior to
Task Parameters. (a) The number of rewards has little effect on the probabil-
ity of leaving during both early (purple) and late (black) training. (b) Number of
consecutive failures as a function of reward number for human in early versus late
part of training. Unlike mice, humans learn the statistics of the environment ex-
tremely quickly: slope coefficient is similar (and around 0) in both early and late
trials: likelihood ratio test on linear mixed-effect model ConsecutiveFailures ∼
1+RewardNumber+Early+RewardNumber&Early+(1 | SubjectID) versus
a null model with no interaction: p = 0.45, N = 20 subjects. (c) Consecutive
failures before leaving as a function of the environment statistics and barrier con-
dition. (d) Consecutive failures before leaving split by subject and environment
statistics, barrier versus no barrier.

24

barrier in number of failed attempts after last reward = 0.59 ± 0.02,
N = 20 subjects, likelihood ratio test on ConsecutiveFailures ∼
1 + Protocol + Barrier + (1 | SubjectID) versus the model with no bar-
rier ConsecutiveFailures ∼ 1 + Protocol + (1 | SubjectID): p < 10−10).

2.2.5 OFC, but not ACC, is necessary for the correct in-
ference process

Finally, to study the brain mechanisms of inference in this task, we tested
the involvement of different regions of prefrontal cortex by silencing them
using optogenetic stimulation of inhibitory GABAergic interneurons in
VGAT-ChR2 mice (mice expressing the excitatory opsin channelrhodopsin-
2 in inhibitory GABAergic neurons). We examined 19 mice. Nine were
bilaterally implanted with optic fibers (table S1) in the anterior cingu-
late cortex (ACC; fig. 2.5a, S2a), six of these mice were ChR2-expressing
(HET) and three were control wild-type littermates (WT) implanted and
stimulated in the same manner. Ten (six HET and four WT) were bilater-
ally implanted in the orbitofrontal cortex (OFC; fig. 2.5a, S2b). Transient
inactivation of ACC (3 mW power per fiber, 10 ms pulses at 75 Hz, dur-
ing poking; triggered by the first poke in 50% of trials and maintained
for 500 ms after each poke in the trial; fig. 2.5b) significantly increased
the average number of consecutive failures before leaving (fig. 2.5c effect
of stimulation on consecutive failures after last reward = 0.48 ± 0.05, N
= 6 mice, likelihood ratio test on versus : p < 1e-10). The same proto-
col applied to control mice had no effect (fig. 2.5e, effect of stimulation =
0.003±0.07, N = 7 mice, likelihood ratio test: p = 0.96). More specifically,
we found that ACC inactivation multiplicatively increased the number of
consecutive failures before leaving, consistently across protocols and ani-
mals (fig. 2.5f, and interact when predicting , likelihood ratio test: p =
1.46e-6, but not when predicting renormalized , likelihood ratio test: p
= 0.15, N = 6 mice). Transient inactivation of OFC also increased the

25

ba
VGAT-ChR2 mice

c

gf

e

h

ACC OFC

+1.94mm +2.96mm

WTACC d OFC

0 4 8 12
0

4

8

12

0 4 8 12
0

4

8

12

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0 4 8 12

0.0

0.5

1.0

1.5

0

4

8

12

Consecutive failures
before leaving, control

Consecutive failures
before leaving, control

Consecutive failures
before leaving, control

C
on

se
cu

tiv
e

fa
ilu

re
s

be
fo

re
 le

av
in

g,
 s

tim
.

C
on

se
cu

tiv
e

fa
ilu

re
s

be
fo

re
 le

av
in

g,
st

im
./c

on
tr

ol

30 - 30
90 - 90

30-30
barrier

Stim.

Stop

50% of trials

Start

Port

10ms @ 75Hz

Reward

Failure

Control
Stim.

-2

-1

0

1

30
 -

30

90
 -

90

ba
rri

er

30
 -

30
-2

-1

0

1

30
 -

30

90
 -

90

ba
rri

er

30
 -

30
-2

-1

0

1

30
 -

30

90
 -

90

ba
rri

er

30
 -

30

0 1 2 3 4
0

3

6

9

12

15

0

3

6

9

12

15

0 1 2 3 4

Number of rewards Number of rewards

i j k

l m

C
on

se
cu

tiv
e

fa
ilu

re
s

be
fo

re
 le

av
in

g

S
tim

 a
nd

re
w

ar
d

nu
m

be
r

in
te

ra
ct

io
n

0 1 2 3 4
0

3

6

9

12

15

Number of rewards

n

Figure 2.5: (legend on next page)

26

Figure 2.5: OFC, but Not ACC, Is Necessary for Optimal Inference.
(a) Scheme of the optic fiber placement. (b) Bilateral photostimulation at 3
mW happened during nose-poking: it was triggered by the first poke in 50%
of trials and lasted for 500 µs after the last poke in. (c–e) Consecutive fail-
ures before leaving split by environment statistics, barrier condition, and sub-
ject inactivation versus control trials, for ACC implanted heterozygotes (c),
OFC implanted heterozygotes (d), and wild-types (e), respectively. (f–h) Ra-
tio of consecutive failures before leaving split in the same way as (c)–(e) for
ACC implanted heterozygotes (f), OFC implanted heterozygotes (g), and wild-
types (h), respectively. When predicting renormalized consecutive failures, Stim-
ulation and Protocol interact for OFC implanted heterozygotes (p < 10−10,
N = 6 mice) but not for ACC implanted heterozygotes (p = 0.15, N = 6
mice) or wild-types (p = 0.77, N = 7 mice). (i–k) An animal by animal
quantification: the coefficient of the interaction term in ConsecutiveFailures ∼
1 +Stimulation+Rewardnumber+Rewardnumber&Stimulation for ACC im-
planted heterozygotes (i), OFC implanted heterozygotes (j), and wild-types (k).
(l–n) Number of consecutive failures as a function of reward number in the 30-30
barrier protocol for ACC implanted heterozygotes (l), OFC implanted heterozy-
gotes (m), and wild-types (n).

average number of consecutive failures before leaving (fig. 2.5d; effect of
stimulation on consecutive failures after last reward = 0.41± 0.08, N = 6
mice, likelihood ratio test on versus : p = 5.38e-7). However, unlike the
case for ACC inactivation, it did so in a manner that was dependent on
the statistics of the environment. That is, the direction of effect for OFC
inactivation actually reversed between easy and difficult protocols (effect
of stimulation in hard protocol = 1.52± 0.24, effect of stimulation in easy
protocol = −0.19± 0.05, N = 6 mice). This suggests that these two brain
areas are differentially involved in the task. To further investigate the in-
volvement of these prefrontal areas in the inference process and task space
representation, we considered a key difference in prediction between the in-
ference model and the simpler stimulus-bound model: the effect of rewards
on behavior. As noted above, under normal conditions, rewards fully reset
the accumulation process, so that leaving times are not affected by the

27

number of previous rewards (fig. 2.1e). Strikingly, we found that OFC,
but not ACC inactivation, disrupted this pattern: in OFC-inactivated tri-
als, animals became sensitive to the number of rewards: the more rewards
gained, the more delayed leaving decisions became (fig. 2.5i, j; for ACC,
interaction effect of stimulation and reward number = −0.038± 0.07, N =
6 mice, likelihood ratio test on versus

p = 0.58; for OFC, interaction effect of stimulation and reward number
= 0.36± 0.1, N = 6 mice, likelihood ratio test: p = 0.0003; triple interac-
tion term of stimulation, reward number and fiber location = 0.47± 0.11,
likelihood ratio test: p = 3.44e-5). This pattern of behavior (illustrated in
fig. 2.5l, m) is similar to the one observed in naïve mice first introduced to
this task (fig. 2.2d, e), and is indicative of a less effective stimulus-bound
strategy. Thus, the OFC is crucial for behavioral strategies in foraging
environments in which states are hidden and require inference based on
noisy observations.

2.3 Discussion

In this study, we developed a task in which subjects had to alternate
between two foraging sites, only one of which was active at any given
moment. The task embodied an important form of non-sensory uncertainty
because the active port only delivered rewards with a certain probability.
The task thus required subjects to infer whether each omitted reward was
simply a stochastic failure or was instead an actual switch of state, offering
us a way to directly test whether they have the ability to perform state
inference. To solve this task optimally, subjects were essentially required
to infer a hidden state of the world (i.e. which site is active) rather than
directly assigning a value to each foraging site, as would be optimal, for
example, in a matching task [57, 129]. We found that both mice and

28

humans displayed hallmarks of optimal, inference-based behavior, reaching
very similar solutions.

Our analysis of the behavioral data, particularly the number of con-
secutive non-rewarded tries before leaving, revealed that leaving decisions
agreed with normative predictions of an inference-based foraging strategy
in four important ways: (1) the number of consecutive failures was posi-
tively correlated with the propensity to leave; (2) rewards had a resetting
effect on the leaving decision process; (3) subjects were sensitive to quan-
titative changes in the statistics of the foraging site; and (4) subjects were
sensitive to the travel cost. However, mice and humans differed in an im-
portant way: while it took around six days for rodents to understand the
environment statistics and integrate trial history correctly, humans started
displaying hallmarks of the optimal behavior already during the first ses-
sion. This difference may be due to faster learning but could also reflect
the ability to generalize prior structural knowledge relevant to the task.

The accumulation of evidence is considered a primary cognitive compu-
tation. Similarly to sensory-guided tasks, in which integration of sensory
evidence over time is needed to “average out” stimulus noise [24, 51, 117],
here too repeated sampling is needed to determine which of two sites is
currently rewarding. Specifically, each failure conveys ambiguous informa-
tion, as it may be due to either an unlucky attempt at the rewarding site,
or a guaranteed failure in the non-active site, and it is only by counting
(integrating) the number of consecutive failures that a more accurate state
estimation can be made. Our analysis of the leaving probability revealed
that, much like in sensory-based tasks, subjects do integrate this infor-
mation when deciding whether to stay or leave. Moreover, by changing
reward and transition probabilities, we were able to precisely control the
amount of information associated with each failure and observed that sub-
jects readily adapted their leaving decisions to these changing conditions,

29

such that the lower the information content of each sample was, the more
such samples were needed before leaving.

In the framework of reinforcement learning under uncertainty, given
the entire task history—i.e. the sequence of rewards and failures at each
port since the beginning of the task—the optimal agent needs to compute
a low-dimensional state representation [92] that is most informative of fu-
ture events. For a formal definition, see [130, Sect. 17.3]. We considered
two distinct algorithms for doing this. In the ‘inference-based’ algorithm,
we hypothesize that animals recover a meaningful state representation that
allows them to take the most advantage of the task structure. The current
state is represented by the posterior probability of being at the active site
given the task history, which in practice is a function of the number of con-
secutive failures since the last reward. In this algorithm, the final learned
solution is optimal and independent of the learning rate used during train-
ing. Alternatively, in the ‘stimulus-bound’ algorithm, the animal only uses
observable states based on currently available perceptual information [146].
The entire task history is summarized by the current location of the animal
(left or right site). In the hidden state task, this representation only allows
for suboptimal stable solutions, i.e. policies that depend on the site, but
not on the reward history.

A primary distinction between sub-optimal, stimulus-bound and opti-
mal, inference-based strategies lies in the impact consecutive rewards have
on leaving decisions. In a stimulus-bound behavior, which assigns values
directly to the foraging site, the more consecutive rewards are gained at a
given site, the higher the value of staying becomes, and consequently, leav-
ing decisions tend to be delayed. In contrast, optimal inference in this task
requires ignoring the number of consecutive rewards, since the delivery of a
single reward is sufficient to know for certain which site is currently reward-
ing. As shown in fig. 2.2, we found that, although initial behavior appeared
to be sensory bound, after learning, subjects’ leaving decisions became in-

30

dependent of the number of rewards, consistent with an inference-based
approach to leaving decisions. We presume that the change in behavior
(between stimulus-bound and inference-based decisions) over the course of
training reflects learning, but not that the change in performance necessar-
ily reflects a change in learning rate. What we posit is that two different
behavioral controllers, one stimulus-bound and one inference-based, exist,
which might correspond to a striatal system and a prefrontal system re-
spectively. Over the course of training, the inference-based controller learns
the structure of the task—the correct state representation—through a slow
process. In parallel, the inference-based controller’s contribution to behav-
ioral choices is increased over training. This scheme is similar to what was
proposed by [36]. Alternatively, the change in behavior over time could
be accomplished by meta-learning of hyper-parameters: a more complex
stimulus-bound agent could keep track of two different learning rates, one
for reward and one for failures. With training, the agent would learn that
the optimal reward learning rate is one (complete reset) whereas the fail-
ure learning rate is adjusted over time to account for different protocols.
Even though this algorithm is distinct, it still requires the ability to adjust
a failure learning rate in such a way that it is big for informative failures
(in easy protocols) and small for uninformative ones (in harder protocols).
Consequently, it results in a computation analogous to the inference model.

Recent accounts [92, 112, 126, 146] proposed that the OFC is cru-
cial for accurate state representations, particularly when states are hidden
(that is, not explicitly given by the presence of a sensory cue, for exam-
ple) and have to be inferred from fuzzy evidence. Our findings mesh well
with this theory, as we found that OFC, but not ACC inhibition disrupted
inference-based behavior. Unlike under control conditions, in which the
number of failures before leaving was independent of the number of previ-
ously gained rewards, inhibiting the OFC resulted in mice performing more
failures when experiencing large amounts of reward. This latter pattern

31

is consistent with a stimulus-bound strategy and suggests the possibility
that the stimulus-bound strategy serves as a default behavioral approach,
and is suppressed by the OFC when inference-based behavior is required.
The observation that naïve mice behave very similarly to OFC-inactivated
mice supports this idea. Several specific computational roles of OFC could
account for this effect. OFC could be encoding the representation directly,
or be necessary to access or update such representation. Alternatively, the
representation could be still available, even when the OFC is inactivated,
but the region would be responsible for computing the posterior of the
hidden states given the representation.

The ACC has been implicated, in Pavlovian and operant tasks, as
a potential candidate for the implementation of integration-to-threshold
models. In [66], the authors observe neurons in the primate ACC whose
firing rate scales with the number of consecutive negative outcomes in a
Pavlovian task. In the setting of an operant task, [109] showed that such
negative outcome accumulation is modulated by the error type (the more
surprising the error, the stronger the response) and that microstimulation
of ACC accelerates the detection of a context switch. From the foraging
perspective, [54] reported cells in the ACC encoding the value of a depleting
option. However, ACC inactivation in our task, unlike OFC inactivation,
had only a modulatory effect on behavior: we did not observe qualitative
changes in the strategy of the animals, but only an overall tendency to stay
longer at the current port, which interacted multiplicatively both with the
task statistics and with increased travel times. The potential activation
of neurons in regions immediately adjacent to ACC, e.g. prelimbic cor-
tex or secondary motor cortex, is possible (Fig. S2c). However, the areas
targeted in the two experiments (ACC and OFC) are considerably further
apart (Fig. S2c). Since we observed a double-dissociation of effects it is
unlikely that the fields of neurons activated across these two experiments
were substantially overlapping. Although caution is required in comparing

32

primate and rodent ACC, given the reported anatomical [137] and func-
tional differences [90, 115], our results seem most compatible with the idea
that the ACC encodes the value of alternative options, as proposed in [71],
while not having a primary role in the computations required for the state
inference process.

By developing a human video-game and a rodent task requiring the
same underlying computation to be solved, we could compare computa-
tional and cognitive processes across species. From a theoretical stand-
point, this strengthens the generality of those results that held true for the
two species, such as the ability to infer the hidden structure of the environ-
ment and to tune behavior to environmental statistics. From a practical
standpoint, the hidden state foraging task makes it possible to use rodent
experimentation to more closely guide human clinical research into the
mechanisms of manipulations (e.g. drugs) or conditions (e.g. depression)
that may affect processes such as state inference.

2.4 Materials and methods

Table S1, figures S1,2, and the supplementary videos are available on-
line at the following URL: https://www.sciencedirect.com/science/
article/pii/S089662732030043X#app2.

33

https://www.sciencedirect.com/science/article/pii/S089662732030043X#app2
https://www.sciencedirect.com/science/article/pii/S089662732030043X#app2

2.4.1 Key resources table
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins
DAPI SIGMA ALDRIC Cat#D9542; RRID:AB_2801570

Experimental Models: Organisms/Strains
C57BL/6NCrl Charles River Laboratories strain code: 027; RRID:IMSR_CRL:475

Dat-Cre Jackson Laboratory stock number: 006660; RRID:IMSR_JAX:006660
Gad-Cre Jackson Laboratory stock number: 010802; RRID:IMSR_JAX:010802

VGAT-ChR2 Jackson Laboratory stock number: 014548; RRID:IMSR_JAX:014548
FI12-Cre Mutant Mouse Regional Resource Centers stock number: 017262-UCD; RRID:MMRRC_017262-UCD

Sert-Cre mouse line 61 Mutant Mouse Regional Resource Centers stock number: 017260-UCD; RRID:MMRRC_017260-UCD
Software and algorithms

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

Construct 2 Scirra Ltd. https://www.scirra.com/construct2

Julia language Bezanson et al., 2017 https://julialang.org/

MixedModels.jl Bates et al., 2019 https://github.com/JuliaStats/MixedModels.jl

Other
Arduino Mega 2560 r3 Arduino A000067

Pokes detector and valve controller Champalimaud Hardware Platform Mice poke simple v1.1
Arduino ports interface Champalimaud Hardware Platform Arduino baseboard v2.2

2.4.2 Lead contact and materials availability

Further information and requests for reagents may be directed to, and will
be fulfilled by the Lead Contact, Zachary F. Mainen. This study did not
generate new unique reagents.

2.4.3 Experimental model and subject details

Mice

Fifty-seven adult male C57BL/6 mice were used in this study. For the
inference-based versus stimulus-bound behavior experiment (fig. 2.2) 18
C57BL/6NCrl wild-type mice of two months age were used. For the proto-
cols manipulation experiment (fig. 2.3), 20 wild-type animal from different
genetic backgrounds (8 Dat-Cre ; 5 Gad2-Cre; 5 Sert-Cre; 1 VGAT-ChR2;
1 F512-Cre) of 6-8 months age were used, in order to reduce animal usage.
For inactivation of anterior cingulate or orbitofrontal cortices (fig. 2.5), 12
VGAT- ChR2 and 7 wild-type littermates were used. Mice genotypes were
determined based on PCR and further verified using histological inspec-
tion of YFP expression which led to the exclusion of a single ACC im-

34

https://imagej.nih.gov/ij/
https://www.scirra.com/construct2
https://julialang.org/
https://github.com/JuliaStats/MixedModels.jl

planted animal from further analysis (see fig. S2d, e). The C57BL/6NCrl
line was obtained from the Charles river laboratories, breeders were or-
dered and bred in-house for a maximum of 4 generations or 2 years (strain
code: 027). The Dat-Cre mouse line was obtained from the Jackson lab-
oratory (stock number: 006660). The Gad2-Cre was obtained from the
Jackson laboratory (stock number: 010802). The Sert-Cre mouse line 61
was obtained from the Mutant Mouse Regional Resource Centers (stock
number: 017260-UCD). The VGAT-ChR2 mouse line 8 was obtained from
the Jackson laboratory (stock number: 014548). The FI12-Cre mouse line
was obtained from the Mutant Mouse Regional Resource Centers (stock
number: 017262-UCD).

All experimental procedures were approved and performed in accor-
dance with the Champalimaud Centre for the Unknown Ethics Committee
guidelines and by the Portuguese Veterinary General Board (Direção-Geral
de Veterinaria, approval 0421 / 000 / 000 / 2016). The mice were kept
under a normal 12 h light/dark cycle, and training, as well as testing, oc-
curred during the light period. Before testing or after surgeries, for the
inactivation experiments, mice were single-housed. During training and
testing the mice were water deprived, and water was available to them
only during task performance. Food was freely accessible to the mice in
their home cages. Extra water was provided if needed to ensure that mice
maintain no less than 80% of their original weight. For the protocols ma-
nipulation experiment behavioral training lasted 12 sessions, once per day,
followed by 2 days of rest at the end of which we commenced testing.
During training mice were exposed to the 3 different protocols (Easy envi-
ronment: pRWD = 0.9 and pSW = 0.9; Medium environment: pRWD = 0.9

and pSW = 0.3; Hard environment: pRWD = 0.3 and pSW = 0.3) for 4 con-
secutive days (1 day of adaptation and 3 of testing) before transitioning to
the next environment. During testing, mice performed 1 session per day,
6 or 7 days a week. In protocols manipulation experiments, the sequence

35

of protocols was counterbalanced across 2 groups of 10 mice (Group A:
Hard, Medium, Easy; Group B: Easy, Medium, Hard). In our analyses we
considered 50 poke bouts per session after the first 10 during testing days
and excluded poke bouts with no rewards.

Human participants

20 right handed healthy adults of Portuguese nationality (10 female and
10 male; 22 to 31 years of age), with no history of psychiatric diagnosis
or prescribed drugs in the last 6 months, participated in this study. All
participants gave written informed consent, and the study was conducted
in accordance with the guidelines of the local ethics committee. The task
consisted of 2 sessions of 1 hour, performed in different days with 2 to 10
days in between sessions. Each session consisted of 4 blocks with differ-
ent protocols, and 10 minutes break after the second block. The sequence
of protocols consisted of a block (Medium environment) followed by a
short break (2 minutes), then a second block (Easy or Hard environment)
followed by a long break (10 minutes), then a third block (Medium envi-
ronment) followed by a short break (2 minutes) and a final block (Hard
or Easy environment). The sequence of environments during testing was
counterbalanced across 2 groups as described in mice experiments. In our
analyses we considered all tapping bouts after the first 10 and excluded
bouts with no rewards.

2.4.4 Method details

Mice behavioral apparatus

The behavioral apparatus for the task was adapted from the design devel-
oped by Zachary F. Mainen and Matt Recchia (Island motion corporation,
Nesconset, NY), originally developed for rat behavior. The behavioral
box (15 × 12 × 18 cm, model 003102.0001, Island motion corporation),

36

contained 3 front walls (135-degree angle between the center and the side
walls) with 2 nose-poke ports attached to the left and right front walls. For
the inference-based versus stimulus-bound behavior experiment (fig. 2.2),
we used a custom-made acrylic replicate of the box (15× 16× 20 cm).

Each port was equipped with infrared emitter/sensor pairs to report the
times of port entry and exit (model 007120.0002, Island motion corpora-
tion). A nose-poke was considered valid if the infrared beam was broken for
at least 100 ms. Water valves (LHDA1233115H, The Lee Company, West-
brook, CT) were calibrated to deliver a drop of 6 µL water for rewarded
pokes in Easy and Hard environments and 2 µL of water in Medium en-
vironment: the reward size was adjusted to keep the reward amount per
correct trial constant. The average number of rewarded attempts per cor-
rect trial is pRWD

pSW
, that is to say 1 in the easy and hard protocol (reward

magnitude = 6 µL, amount of water per correct trial = 6 µL) and 3 in the
medium protocol (reward magnitude = 2 µL, amount of water per correct
trial = 6 µL). In optogenetic experiments, all protocols had an average of
one reward per trial, but the reward size was kept at 4 µL to increase the
trial number. In optogenetic experiments, blue LEDs were placed in the
box ceiling and in all the ports to deliver a masking light.

All signals from sensors were processed by the Arduino Mega 2560
microcontroller board (Arduino, Somerville, US) and output from the Ar-
duino Mega 2560 microcontroller board was implemented to control wa-
ter and light delivery. Arduino Mega 2560 microcontroller was connected
to the sensors and controllers through an Arduino Mega 2560 adaptor
board developed by the Champalimaud Foundation Scientific Hardware
Platform. An example behavioral video is available in the supplemental
information.

37

Human video game task

Human subjects played a video game on a touchscreen device, with analo-
gous features to the rodent behavioral assay. In the game, subjects receive
verbal instructions on how to control a character—a “witch”—on its quest
to find and defeat an enemy that hides behind a castle. The witch must
walk along the wall of a castle, shooting either the left or the right edge of
this wall in search of the enemy that hides, at any given moment, in one
of these two edges. The game obeys the same statistics as the rodent task:
hitting the enemy is analogous to a water reward, the current location of
the enemy corresponds to the active site, and every shot at the active site
hits the enemy with probability pRWD. Moving between the two sides of
the wall has an associated cost (travel cost) that can also be manipulated
with the appearance of rougher terrain (analogous to the physical barrier)
that diminishes the traveling speed. As in the mouse case, reward size
was manipulated to keep the average reward per correct bout constant (3
points). The game ended either when subjects collected 280 points or when
a time limit of 20 minutes was exceeded. Different environments had minor
changes in the background images between them—for the medium proto-
col since it was experienced twice per session, two different backgrounds
were used. After the player transitioned to a different site, the enemy was
displayed to cue whether the transition had been correct, or if instead the
player had to return to the previous site.

The human task was made using custom software developed using the
game engine Construct2 (Scirra Ltd., Studio 117, The Light Bulb 1 Fil-
ament Walk Wandsworth, London, UK). Graphics were made by Shira
Lottem and Tiago Quendera using Inkscape: Open Source Scalable Vec-
tor Graphics Editor. Audio assets were made by Tiago Quendera us-
ing Audacity(R) except for the Wilhelm Scream (Wikimedia Commons).
An example video (not from an experimental subject) showing the dif-
ferent environments is provided in the supplemental material. The task,

38

open-source code, and all assets are available at https://github.com/

quendera/human-foraging.

Optogenetic stimulation

In order to optically stimulate ChR2 expressing VGAT-expressing
GABAergic interneurons we used blue light from a 473 nm laser (LRS-
0473-PFF-00800-03, Laserglow Technologies, Toronto, CA or DHOM-
M-473-200, UltraLasers, Inc., Newmarket, CA) that was controlled by
an acousto-optical modulator (AOM; MTS110-A1-VIS or MTS110-A3-
VIS, AA optoelectronic, Orsay, FR) to deliver 10 ms pulses of light at
75 Hz, connected to Arduino Mega 2560 microcontroller board (Arduino,
Somerville, US). Light exiting the AOM was focused into an optical fiber
patch cord (200 µm, 0.22 NA, Doric lenses Inc, 357 rue Franquet, Quebec,
Quebec, CA), connected to a second fiber patch cord through a rotary joint
(FRJ 1x1, Doric lenses), which was then connected to the chronically im-
planted optic fiber cannula (MFC_200/230-0.48_3mm_ZF1.25(G)_FLT;
Doric lenses Inc, 357 rue Franquet, Quebec, Quebec, CA). We estimated
an average 15% loss of light power between the patch cord tip and the
optic fiber cannula before surgery. In order to deliver light at 3 mW

power, previously to each experiment day, the laser power at the tip of the
patch cord was adjusted to 3.6 mW, to account for the estimated power
loss. To test each protocol, we habituated animals to the new protocol
for two days, then stimulated during six consecutive days. Stimulation
was delivered on 50% of trials and started with the first valid nose-poke
(that is to say after the infrared beam was broken for at least 100 ms).
Stimulation ended if the animal did not nose-poke for 500 ms but would
restart in case of another valid nose-poke on the same site.

39

https://github.com/quendera/human-foraging
https://github.com/quendera/human-foraging

Surgical procedures

Animals were anesthetized with isoflurane (4% induction and 0.5 - 1%
for maintenance) and placed in a motorized computer-controlled Stoelting
stereotaxic instrument with mouse brain atlas integration and real-time
visualization of the surgery probe in the atlas space (Neurostar, Sindelfin-
gen, Germany; https://www.neurostar.de). Antibiotic (Enrofloxacin,
2.5-5 mg/Kg, S.C.), pain killer (Buprenorphine,0.1 mg/Kg, S.C.), and local
anesthesia over the scalp (0.2 mL, 2% Lidocaine, S.C.) were administered
before incising the scalp. Target coordinates were 1.9 mm A.P., ±0.5 mm

M.L., 1.75 mm D.V. for ACC and 2.9 mm A.P., ±1.25 mm M.L., 1.8 mm

D.V. for OFC. Two craniotomies were performed above the target’s coordi-
nates for OFC implants. For ACC implants fiber were implanted over the
target with an angle of ±16◦ on the ML axis to avoid damage to the su-
perior sagittal sinus, and two craniotomies were performed at coordinates
1.9 mm A.P., ±1 mm M.L.

An optical fiber (200 µm core diameter, 0.48 NA, 510 mm) housed inside
a connectorized implant (M3, Doric lenses, Quebec, Canada) was lowered
into the brain (0 degree angle for OFC and 11 degree angle for ACC),
through the craniotomy as the viral injection, and positioned 10 µm above
the target. The implant was cemented to the skull using Super Bond C&B
(Morita, Kyoto, Japan) and once dried covered with black dental cement
acrylic (Pi-Ku-Plast HP 36, Bredent, Senden, Germany). The skin was
stitched at the front and rear of the implant. Gentamicin(48760, Sigma-
Aldrich, St. Louis, MO) was topically applied around the implant. Mice
were monitored until recovery from the surgery and returned to their home
cage where they were housed individually. Behavioral testing started at
least 1 week after surgery to allow for recovery.

40

https://www.neurostar.de

Histology and microscopy

For histological analysis mice were perfused transcardially with 4%
paraformaldehyde (PFA) in phosphate buffer solution (PBS). After re-
moving the brain they were left for 24 hours in 4% PFA solution in PBS,
then transferred in 0.1% sodium azide solution in PBS. Brains were sliced
in 50 µm coronal sections on a vibratome (Leica VT 1000 S), collected
in wells maintaining the anterior-posterior order, and finally mounted on
microscope slides (Thermo scientific, superfrost plus), with mowiol. Fluo-
rescent images were acquired with an automated slide scanner (AxioScan
Z1) equipped with a 10x, 0.45 NA PlanApochromat objective and a
Hamamatsu OrcaFlash camera. Use of the appropriate filter combination
allowed for DAPI and EYFP acquisition (Beam Splitter: 395, excitation:
330-375, emission: 430-470, and Beam splitter: 498, excitation: 453-485,
emission: 507-546 respectively). Optic cannula placement was determined
using coronal sections of the prefrontal cortex through which the fiber
tract was visible. We determined the position by locating the section with
the broadest base of the cannula tract and comparing the DAPI staining
with the Allen Mouse Brain Atlas [75] (fig. S2; table S1).

2.4.5 Quantification and statistical analysis

Statistical analysis

The statistical analysis, which can be found in the Results section and
figure legends, was performed using mixed effect models [85], in particular
the Julia [17] implementation MixedModels.jl [13]. For each mixed model,
we report the maximum likelihood estimate of the coefficient of interest
± the standard error of the estimate. Our N is the number of subjects:
as different experiments had a potentially different number of subjects, we
report it after every statistical test.

41

We fitted models with a random intercept (depending on subject iden-
tity) and compared nested models using a likelihood ratio test: in partic-
ular we used a chi-square test on the difference of the deviance of the two
nested models, using as many degrees of freedom as the difference between
the number of degrees of freedom of the two nested models [144]. That is
to say, given two models m and n where n is a special case of m:

p = 1− cdf
(
χ2
dof(m)−dof(n), deviance(n)− deviance(m)

)
.

When the p value is too small, we do not report the value but simply
write p < 1e − 10, which is floating point notation for p < 10−10. To
describe mixed models we will use Wilkinson notation (Wilkinson and
Rogers, 1973), with | denoting random effects and & denoting interaction
terms. For example the formula:

ConsecutiveFailures ∼ 1 + Protocol + Stimulation+ (1 |MouseID)

uses as predictor for the number of consecutive failures after last reward a
constant intercept, a coefficient for each protocol different than the medium
protocol (which we consider as baseline), a coefficient for stimulation and
a random intercept across mice. The formula

ConsecutiveFailures ∼1 + Protocol + Stimulation+

Protocol&Stimulation+ (1 | MouseID)

would also allow for an interaction term between protocol and stimulation.
We did not test whether the data met the assumptions of the statistical
methods used.

42

Task design

We designed a probabilistic foraging task for parallel use in mice and hu-
mans. Subjects sought rewards (water or points, respectively), by actively
probing a foraging site (nose-poking or screen-tapping, respectively). Each
site could be in one of two states, active or inactive. Each try in the active
state yielded reward with probability pRWD, and could cause the site to
switch to the inactive state with probability pSW . This required the sub-
jects to travel to a second, fresh, site at some distance and bear a travel
cost. Subjects were therefore tasked with inferring a hidden state (active
or inactive) through a stochastic sequence of observations (rewards and
failures).

Relevant statistics in the task

After a rewarded attempt, the subject could be sure to be in the cor-
rect location: ambiguity comes from failures, as it was possible that the
target was correct but the subject was being unlucky. The more unsuccess-
ful attempts, the higher the probability of a transition having occurred.
Accumulated evidence in favor of a switch is a monotonically increasing
function of the task parameters pRWD and pSW : the higher the reward
probability, the more informative a failure is. Trivially, the higher the
switch probability, the more likely the switch.

Possible task space representations

When analyzing our task, we consider two possible state representations.
One is simpler and analogous to traditional approaches to modeling n-
armed bandit tasks: the state corresponds to the current location of the
subject (i.e., one of the two reward sites). The value of the two sites
changes over time, yet the animals may be able to track this change with
fast model-free learning. A second, more principled but more abstract

43

approach, postulates that the subjects tries to infer the optimal state rep-
resentation, i.e., the probability that their current location is rewarding. In
this model, there is no longer any need for fast online learning as the task
representation is stable. The computation happening in real time is the
inference process to compute this probability. To account for variability
in the behavior, we allow both decision noise, distributed according to the
soft-max rule, as well as inference noise (the inference process may be sub-
optimal). We will refer to these two learning paradigms as stimulus-bound
learning and inference-based learning respectively. It is important to note
that, given the richer state representation, inference-based learning is the
optimal way to solve the task and clearly outperforms simpler heuristics
such as stimulus-bound learning.

Stimulus-bound learning

In stimulus-bound learning, we first define the relative value V as the
difference of the value of the leftport and the value of the right port:

V = VLEFT − VRIGHT

We defined two auxiliary variables: a reward variable r indicating the
outcome of each reward attempts, i.e., 1 for a reward and 0 for a failure,
and a site variable s, indicating the current site, 1 for left and −1 for right.

We can define a signed outcome o of each reward attempt, which is:

o = r · s,

that is to say, 1 for a reward on the left, −1 for a reward on the right and
0 for an omission.

44

For any attempt, we can then update the relative value using the signed
outcome and some discount parameter γ

Vt+1 = (1− γ)Vt + γot+1,

which admits an explicit solution:

Vt = (1− γ)t · V0 + γ ·
t∑
i=1

(1− γ)t−i · oi.

The probability of staying is a monotonically increasing function of the
value of staying, so that rewards should make the animal more likely to
stay and omissions more likely to leave, in a symmetric way.

Inference-based learning

We first derive recursive formulas to compute the probability that the
current site is not rewarding as a function of the sequence of successful
and failed reward attempts performed by the subject. In this model, the
subject would compute the relative value as a function of the probability
of the left (or right) site being active given the task history (r1, . . . , rt
represent the outcomes of the various attempts and s1, . . . , st the site of
each attempt):

Vt = pRWD(P (LeftActive | r1, s1, . . . , rt, st)−

P (RightActive | r1, s1, . . . , rt, st)).

From value to decision

We have now defined to different ways to compute the relative value of left
versus right, one directly based on reward accumulation, and one based
on evidence accumulation. To define a behavior from this relative value,

45

we need to consider two more parameters. First of all we need a bias
term T : as the two foraging sites are far apart, subjects should prefer to
repeat site rather than alternate, to avoid the travel cost. Then we need
a “inverse temperature” parameter β to describe how deterministic the
animal is (with a very high β the animal would almost always choose the
option with greater value, whereas with β = 0 the animal would choose
randomly). We can then use the soft-max rule to generate behavior:

P (NextLeft | V, s) = σ(β(V + s · T)),

where s represents the current site (1 for left and −1 for right).
In the simulations we will use the same softmax rule to simulate behav-

ior: the difference between stimulus-bound and inference-based learning
derives from the different procedures used to compute the relative value.

Computing the likelihood ratio

In inference-based learning we defined the relative value as a function of
the relative difference:

P (LeftActive | r1, s1, . . . , rt, st)− P (RightActive | r1, s1, . . . , rt, st).

This quantity can be computed recursively. To do so we will need an
auxiliary variable. We define Rt as the probability ratio that the current
site is active or inactive given task history:

Rt =
P (Inactive | r1, s1, . . . , rt, st)
P (Active | r1, s1, . . . , rt, st)

From Rt we can compute Vt as follows:

Vt = pRWD ·
(

1− 2

R−stt + 1

)
.

46

Rather than computing Vt recursively directly, we notice that Rt respects
a simple recursive equation (likelihood ratio update equation):

Rt+1 =

(
Rt + pSW
1− pSW

)stst+1

· P (rt+1 | Inactive)
P (rt+1 | Active)

where pSW represents the probability of switching from active to inactive
state.

The term Rt+pSW
1−pSW

is the ratio between the following two equations:

P (NextInactive) = P (Inactive) + pSWP (Active)

P (NextActive) = (1− pSW)P (Active)

The exponent stst+1 in section 2.4.5 simply means that the probability
ratio P (Inactive)

P (Active) inverts when the subject changes site. Finally the term
P (rt+1 | Inactive)
P (rt+1 | Active) represents the new evidence acquired with the outcome of
attempt t+ 1. In the case of a reward, P (rt+1 | Inactive) = 0, so:

Rt+1 = 0

If rt+1 is a failure, then P (rt+1 | Inactive) = 1 whereas P (rt+1 | Active) =

1− pRWD, so the likelihood ratio update equation simplifies to:

Rt+1 =

(
Rt + pSW
1− pSW

)stst+1

· 1

1− pRWD
.

Having established that Rt resets to 0 with a reward, we can analyze the
most interesting case for a probability computation: a sequence of attempts
on the same site (let us say s1, . . . , st = 1) where the first attempt is
rewarded (thus resetting the probability) and the following are not.

As the first attempt is rewarded, R1 = 0. Furthermore, if we assume
that all attempts are on the same site, the likelihood ratio grows following

47

the recursive equation:

Rt+1 =
Rt + pSW

(1− pSW)(1− pRWD)
> Rt.

We can define the auxiliary quantity

% =
1

(1− pSW)(1− pRWD)
.

Our recursive equation becomes:

Rt+1 = % · (Rt + pSW).

This is a standard linear recursion that we can solve with a linear trans-
formation

St = Rt +
pSW
%− 1

.

The recursion of St is:

S1 =
pSW
%− 1

and St+1 = % · St,

whose solution is

St = pSW
%t−1

%− 1
,

therefore:

Rt = pSW
%t−1 − 1

%− 1
.

That is to say Rt grows exponentially with rate log(%) = − log(1−pSW)−
log(1−pRWD). Increasing either pRWD or pSW would increase the growth
rate of R.

48

2.4.6 Data and code availability

All analysis was performed using custom code written in Julia [17].
The code used to simulate value or inference models is available on
GitHub, under the MIT license, at https://github.com/piever/

ValueInferenceTools.jl. The data is published on Zenodo with
DOI 10.5281/zenodo.3607558 and can be found at https://zenodo.org/
record/3607558.

2.5 Author contributions

P.V., E.L., D.S., and Z.F.M. designed the experiments and analyses. P.V.,
D.S., B.G., I.T., T.Q., and M.N.O.L. conducted the experiments. P.V.
and E.L. analyzed the data. P.V. wrote the original draft. E.L., D.S., and
Z.F.M. reviewed and edited the paper.

49

https://github.com/piever/ValueInferenceTools.jl
https://github.com/piever/ValueInferenceTools.jl
https://zenodo.org/record/3607558
https://zenodo.org/record/3607558

Chapter 3

Parametric machines

Summary

Using tools from category theory, we provide a framework where artificial
neural networks, and their architectures, can be formally described. We
first define the notion ofmachine in a general categorical context, and show
how simple machines can be combined into more complex ones. We ex-
plore finite- and infinite-depth machines, which generalize neural networks
and neural ordinary differential equations. Borrowing ideas from func-
tional analysis and kernel methods, we build complete, normed, infinite-
dimensional spaces of machines, and discuss how to find optimal archi-
tectures and parameters—within those spaces—to solve a given computa-
tional problem. In our numerical experiments, these kernel-inspired net-
works can outperform classical neural networks when the training dataset
is small.

3.1 Introduction

Background. In recent years, the deep learning framework has achieved
and surpassed state-of-the-art performance in many machine learning

50

tasks, using a variety of architectures. Notably, in the field of computer-
vision, Convolutional Neural Networks (CNNs) showcase impressive
performance [72]. However, a paradoxical problem affects the performance
and robustness of deep neural networks. Deeper networks should in
principle perform at least as well as shallower ones, finding in the limit of
infinite layers a solution where the extra layers approximate the identity
function. However, [55] reports that deeper architectures can cause a
degradation of performance not explained by overfitting. Choosing a
deep architecture is therefore a difficult task, where one needs to rely on
heuristics, or brute trial and error. Current approaches to automated
architecture search [43] rely on large or augmented training datasets and
manually engineered building-blocks. Moreover, they often lack principled
regularization methods and guarantees of optimality.

Aim and contributions. We propose a theoretical framework where
neural networks can be formally described as a special case of a more gen-
eral construction—parametric machines. Using the language of category
theory, we introduce this notion in a variety of settings. Modularity—a
fundamental property of standard neural architectures—is intrinsic to this
construction: it is possible to create complex machines as a sum of simpler
ones. Our notion unifies seemingly disparate architectures, ranging from
hand-designed combinations of layers, graphically represented here via a
hypergraph, to networks defined via differential equations [32]. The key
intuition is that a neural network can be considered as an endomorphism
f on a space of global functions (defined on all neurons on all layers). If
such a network is feedforward, then id − f is invertible, and its inverse
can be computed via a forward pass. The two broad classes of architec-
tures that we describe here are the analogous of the classical results that
id − f is invertible if f is a linear nilpotent map (finite depth) or a con-
traction (infinite depth). Our ambition is to define architectures with little

51

or no human intervention. Infinite-depth machines generalize neural or-
dinary differential equations, by adding a choice of architecture. Unlike
the finite-depth case, whose structure can be represented by a hypergraph,
this architecture is defined in terms of continuous functions and, therefore,
can be parameterized and optimized during training. When the training
dataset is small, we rely on kernel methods to guarantee optimality. Finite-
and infinite-depth kernel machines exhibit all shortcut connections, thus
avoiding pathologies due to the architecture depth. Such dense connec-
tivity does not cause a quadratic increase in the number of parameters in
the case of small datasets. In addition to the theoretical framework, we
test our main algorithms, namely hypergraph neural architecture search,
and discrete and continuous kernel machines, in three applications, prov-
ing their effectiveness, with a focus on small datasets. Each algorithm
has been wrapped as a PyTorch [96] module, and can be used both as
standalone or layer of a classical neural network architecture.

Structure. Section 3.2.1 discusses the necessary categorical preliminar-
ies. Building on those, we introduce the notion of machine and its stable
state. These generalize the connection between global nonlinear opera-
tors on function spaces and the forward pass of a layered neural network
or neural Ordinary Differential Equation (ODE), see section 3.2.2 respec-
tively. In section 3.2.3, taking advantage of the framework developed in
sections 3.2.1 and 3.2.2, we define a novel architecture based on operator-
valued kernels and filtrations of Hilbert spaces. The proposed construc-
tions are tested on different tasks and compared with state-of-the-art meth-
ods.

52

3.2 Results

3.2.1 Machines

We lay our fundamental definitions in arbitrary categories, i.e. collections
of objects (such as vector spaces or topological spaces) and morphisms
(such as linear or continuous functions) between them. The basic ingre-
dient is a functor ι from a linear category L to an arbitrary category C,
that is to say a mapping that associates to each object M ∈ Obj(L) an
object ι(M) ∈ Obj(C), and to each morphism m : M1 → M2 a morphism
ι(m) : ι(M1)→ ι(M2), compatible with identity and composition.

This grants us some additional flexibility: the source category L could
have different levels of structure, adapting to different data types and
giving the possibility to manually incorporate previous knowledge about
the data [16]. The choice of the target category is interesting for two
reasons. On the one hand, it constrains the machine, depending on what
morphisms are allowed in C (e.g., all continuous functions, only Lipschitz
functions, smooth functions). On the other hand, it adds structure to the
machine, allowing, for example, continuous or smooth parameterizations.

Categorical preliminaries

Let R be a commutative ring. A R-linear category (or R-algebroid) is a
category L such that, for L,M ∈ Obj(L), HomL(L,M) is a R-module,
and composition of morphisms is bilinear. We require that both L and
C have finite products, and that the functor ι preserves them. In R-
linear categories, finite products coincide with finite coproducts: they are
generally denoted by ⊕.

Let M be an object in L, X an object in C, and ι : L → C. Then
HomC(X, ι(M)) is a R-module. Indeed, given f, g : X → ι(M), we can
define

X
f×g−−→ ι(M)× ι(M) ' ι(M ⊕M)

ι(+)−−→ ι(M).

53

To simplify the notation, we will denote the resulting morphism f + g.
Given λ ∈ R, and f : X → ι(M), we can consider the morphism ι(λ · id)f ,
which we denote λf for simplicity. Note that, with this definition, it is
always true that (λf + µg) ◦ h = λf ◦ h + µg ◦ h, but not necessarily
h◦ (λf +µg) = λh◦f +µh◦ g. Composition is therefore only linear in one
argument in EndC(ι(M)). However, the latter equality holds whenever
h = ι

(
h̃
)
, for some h̃ ∈ EndL(M).

As a possible example of such pairs of categories, the reader can con-
sider Ban, the category of complete normed vector spaces (Banach spaces)
with bounded (hence, continuous) linear functions as morphisms, andTop,
the category of topological spaces and continuous functions. The forgetful
functor forget : Ban → Top, associating to each Banach space its un-
derlying topological space preserves finite products. Indeed, both Ban

and Top have finite products, denoted ⊕ and × respectively, and they
are compatible with forget: forget(A ⊕ B) is canonically isomorphic to
forget(A)× forget(B).

The concrete case L = Ban and C = Top does not require knowledge
of category theory to be understood. Readers unfamiliar with category
theory may replace morphism in L with linear, continuous function, and
morphism in C with continuous function (non necessarily linear).

Parameterized morphisms. In order to allow parameterizations in our
framework, we will use the classical construction of Kleisli category [82,
Chapt. VI] over the product comonad [136]. As the general construction
on an arbitrary comonad is quite abstract, we describe it concretely in this
case. Given an object P—the parameter space—in a categoryC with finite
products, we can build a new category CP , which has the same objects as
C and such that

HomCP
(X,Y) := HomC(P ×X,Y).

54

CP can be shown to be a category with the obvious composition. Intu-
itively, morphisms in CP can be thought of as morphisms in C parame-
terized by P . We have a functor C→ CP given by the identity on objects
and on morphisms

HomC(X,Y)→ HomCP
(X,Y) = HomC(P ×X,Y)

m 7→ πX ◦m.

It is straightforward to verify that this functor C → CP , preserves prod-
ucts. Hence, whenever we have a functor that preserves finite products
ι : L → C, for each P ∈ Obj(C) we can define by composition a corre-
sponding

ιP : L→ CP , (3.1)

which also preserves finite products.

Stable state

The definitions given in the previous section allow for the creation of a
framework in which complex architectures can be formally described. We
start by describing how, in the classical deep learning framework, different
layers are combined to form a network. Intuitively, function composition
seems the natural operation to do so. A sequence of layers

X0
l1−→ X1

l2−→ . . . Xn−1
ln−→ Xn

is composed into a map X0 → Xn. However, this intuition breaks down
in the case of shortcut connections or more complex, non-sequential archi-
tectures.

55

From a mathematical perspective, a natural alternative is to consider
a global space X =

⊕n
i=0Xi, and the global endofunction

f =

n∑
i=1

li : X → X.

What remains to be understood is the relationship between the function f
and the layer composition ln ◦ ln−1 ◦ · · · ◦ l2 ◦ l1. To clarify this relationship,
we assume that the output of the network is the entire space X, and
not only the output of the last layer, Xn. Let the input function be the
inclusion g : X0 → X. The network transforms g into a map h : X0 → X,
induced by li ◦ · · · ◦ l1 : X0 → Xi, for i ∈ {0, . . . , n}. From a practical
perspective, h computes the activation values of all the layers and stores
not only the final result, but also all the activations of the intermediate
layers.

The key observation, on which our framework is based, is that f and
g alone are sufficient to determine h. Indeed, h is the only map X0 → X

that respects the following property:

h = g + fh. (3.2)

Equation (3.2) holds also in the presence of shortcut connections, or more
complex architectures such as UNet [77] (see section 3.2.2). The existence
of a unique solution to eq. (3.2) for any choice of input function g will
be the defining property of a machine, our generalization of a feedforward
deep neural network.

Definition 1. Let R be a commutative ring, and L a R-linear category. Let
ι : L → C be a functor that preserves finite products, and M ∈ Obj(L).
An endomorphism f ∈ EndC(ι(M)) is a machine if, for all morphisms

56

g : X → ι(M), there exists a unique h : X → ι(M) such that:

h = g + fh.

We call h the stable state of f with initial condition g, and denote by Sf
the stable state of f with initial condition idι(M).

The following result will be crucial to compute stable states in the
remainder of this work.

Theorem 1. f ∈ EndC(ι(M)) is a machine if and only if id − f is
an isomorphism. Whenever that is the case, the stable state with initial
condition g is given by (id − f)−1 ◦ g. In particular, the stable state of f
is Sf = (id− f)−1.

Proof. Let us assume that f is a machine. Sf = id+fSf , so (id−f)Sf = id,
hence id − f is a split epimorphism. Let h, h′ be such that (id − f)h =

(id− f)h′. Then both h and h′ are stable states of f with initial condition
(id − f)h, hence they must be equal, so id − f is monic. A monic split
epimorphism is necessarily an isomorphism. Conversely, let us assume that
id−f is an isomorphism. Then h = g+fh if and only if h = (id−f)−1g.

Parametric machines. The specific choice of categories and functors
in definition 1 determines the nature of the machine. We can incorporate
the notion of parameter space as follows. Given a functor ι : L→ C, such
as forget : Ban → Top, and an object P ∈ C, we can construct a novel
functor ιP given by the composition

ιP : L→ CP ,

as in eq. (3.1). If ι preserves finite products, then so does ιP (see sec-
tion 3.2.1). A machine with respect to the functor ιP is automatically
equipped with a parameterization based on the space P that can be used

57

in optimization. We call such machine a parametric machine, with param-
eter space P .

Convergence and depth

All nilpotent linear endomorphisms of a Banach space are machines. Con-
tinuous endofunctions with norm strictly smaller than 1 (i.e., not necessar-
ily linear contractions) are also machines. In both cases, the stable state
can be found by considering the following sequence:

h0 = id and hn+1 = id + fhn. (3.3)

Even though for different reasons, both in the nilpotent, linear case and in
the contraction case, ‖hm − hn‖ converges to 0 for sufficiently large m,n.
If f is nilpotent and linear, then hn+1 − hn = f(hn − hn−1), so it will go
to 0 in a finite number of steps. If instead f has norm λ < 1, then

‖hn+1 − hn‖ = ‖fhn − fhn−1‖ ≤ λ‖hn − hn−1‖.

Therefore, consecutive distances are uniformly bounded by cλn for some
c, hence, for m ≥ n, ‖hm − hn‖ ≤ cλn

1−λ , thus ensuring convergence.

Definition 2. Let f, {hi}i∈N be as in eq. (3.3). The depth of f is the
smallest integer n (if it exists) such that

hn+1 = hn,

and ∞ otherwise.

Modularity and computability

Under suitable independence conditions, more complex machines can be
created as a sum of simpler ones.

58

Definition 3. Let R,C,L, ι,M be as in definition 1. Let f, f ′ ∈
EndC(ι(M)). We say that f does not depend on f ′ if, for any
X ∈ Obj(C), for any pair of maps b, b′ : X → ι(M), and for all
λ ∈ R, the following holds:

f(b+ λf ′b′) = fb. (3.4)

Otherwise, we say that f depends on f ′.

Remark 1. Independence of f from f ′ is stronger than asking ff ′ = 0,
because in general it is not true that f(a+ a′) = fa+ fa′.

Definition 3 is quite useful to compute stable states. For example, if
f does not depend on itself, then automatically f is a machine, and Sf =

id + f ; we call such machines square-zero. Under suitable assumptions,
machines can be juxtaposed to recover the notion of deep neural networks.

Theorem 2. Let f, f ′ be machines such that f does not depend on f ′.
Then f + f ′ is also a machine, and Sf+f ′ = Sf ′Sf . If furthermore f ′ does
not depend on f , then Sf+f ′ = Sf + Sf ′ − id.

Proof. By theorem 1 and eq. (3.4), f + f ′ is a machine:

(id− f)(id− f ′) = (id− f − f ′), (3.5)

so (id− f − f ′) is an isomorphism (composition of isomorphisms). Equa-
tion (3.5) also determines the stable state:

Sf+f ′ = (id− f − f ′)−1 = (id− f ′)−1(id− f)−1 = Sf ′Sf .

Moreover, if f ′ does not depend on f , then

f(Sf + Sf ′ − id) = f(Sf + f ′Sf ′) = fSf ,

f ′(Sf + Sf ′ − id) = f ′(fSf + Sf ′) = f ′S′f .

59

Hence,
Sf + Sf ′ − id = id + (f + f ′)(Sf + Sf ′ − id).

Theorem 2 allows us to build a broad class of networks from basic
components. Given a set of machines {f1, . . . , fn}, we can define its de-
pendency graph as follows: the set of vertices is {1, . . . , n}, and there is a
directed edge from i to j (for i 6= j) if and only if fj depends on fi. If the
dependency graph is acyclic, then f1 + · · ·+ fn is a machine, and there is
an efficient procedure to compute its stable state. We will need some basic
graph-theoretical notions to describe it.

Layering of acyclic directed graphs. Given a finite directed graph
(V,E), a layering [128] on (V,E) of height k is a partition {V1, . . . , Vk} of
its vertices such that, whenever we have an edge from vi ∈ Vi to vj ∈ Vj ,
then necessarily i < j. A directed graph (V,E) can only admit layerings
if it is acyclic. In that case, the height of a layering must be at least the
length of the longest path in (V,E) increased by one. This lower bound is
tight. Indeed, given a vertex v ∈ V , we can define its depth d(v) to be the
length of the longest path terminating in v. A layering of minimal height
can be defined as follows:

Vi = d−1(i+ 1).

Corollary 1. Let us consider a set of machines {f1, . . . , fn}, and let (V,E)

be its dependency graph. Let us assume that (V,E) is acyclic, with layering
{V1, . . . , Vk}. If we denote f = f1 + · · ·+ fn, then

Sf =

id +
∑
v∈Vk

(Sfv − id)

 . . .

id +
∑
v∈V1

(Sfv − id)

 . (3.6)

60

Proof. We can define a new set of machines {l1, . . . , lk}, where

li =
∑
v∈Vi

fv.

For i < j, li does not depend on lj , so eq. (3.6) follows trivially from the-
orem 2:

Sf = Slk . . . Sl1 =

id +
∑
v∈Vk

(Sfv − id)

 . . .

id +
∑
v∈V1

(Sfv − id)

 .

Corollary 1 establishes a clear link between sums of independent ma-
chines and compositions of layers in classical feedforward neural networks.
Even though, in general, we are not limited to sequential architectures
(see fig. 3.2), the layering procedure determines the order in which ma-
chines should be concatenated.

3.2.2 Finite and infinite depth

Neural networks can be seen as a sum of independent square-zero machines,
one per layer. We first use our machine-based framework to design finite-
depth architectures using directed hypergraphs. This allows for shortcut
connections [18, 105], as in, for instance, residual learning networks [55],
as well as more complex connectivities, such as UNet [77].

Analogously, ODEs correspond to a sum of independent contracting
machines, obtained by splitting the time interval into small sub-intervals.
This is a standard strategy to obtain existence and uniqueness results for
ODEs, which are a consequence of the Caccioppoli-Banach principle [65,
Chapt. XVI]—contractions in a complete metric space admit a unique fixed
point. As described in section 3.2.1, unlike square-zero machines, which

61

v1

v3

v2

v4 v5

v6

v7

v8

E1 : {v1,v2} → {v3}

E2 : {v3} → {v4}

E3 : {v1} → {v6}

E4 : {v4} → {v6,v5,v7}

E5 : {v5} → {v8}

Figure 3.1: Hypergraph representation of a neural network. Given lay-
ers {l1, . . . , l5}, the representation corresponds to the neural network mapping
(x1, x2, x3, x4, . . . , x8) to (x1, x2, l1(x1, x2) + x3, l2(l1(x1, x2) + x3) +
x4, . . . , l5(l4(l2(l1(x1, x2) + x3) + x4) + x5) + x8).

have depth 1, contracting machines can in general have infinite depth. We
describe Volterra machines, a generalization of neural ODEs [32] in our
framework, as an example of an infinite-depth machine.

Hypergraph machines

We will need some basic notions concerning directed hypergraphs from [47].

Definition 4. [47, Sect. 2] Let P : Set → Set denote the power set
functor. A directed hypergraph is a pair of finite sets (V, E) of vertices
and hyperedges, with E ⊆ PV × PV, that is to say each hyperedge E can
have several source vertices (or none) and several target vertices (or none).
We denote the subset of source vertices and target vertices s(E) and t(E)

respectively. In the remainder of this work, directed hypergraphs will simply
be called hypergraphs.

Even though [47] requires hyperedges to have disjoint source and target,
we drop this condition. The notion of acyclic hypergraph is identical as
hyperedges with overlapping source and target are cycles of length 1.

62

Definition 5. [47, Sect. 3] Given a hypergraph (V, E), a path Pab of length
q is a sequence v1 = a,E1, v2, E2, . . . , Eq, vq+1 = b, where:

a ∈ s(E1), vj ∈ t(Ej−1) ∩ s(Ej), j ∈ {2, . . . , q}, and b ∈ t(Eq).

Pab is a cycle if b ∈ s(E1). A hypergraph is acyclic if it has no cycles.

Definition 6. The line graph of a directed hypergraph H = (V, E) is a
directed graph having as nodes the set E of hyperedges of H. E1 is connected
to E2 if and only if t(E1) ∩ s(E2) 6= ∅.

Let (V, E) be an acyclic hypergraph. A nonlinear hypergraph represen-
tation is, for each vertex v ∈ V, an object Mv ∈ Obj(L), and, for each
hyperedge E ∈ E , a map:

ι
(⊕

v∈s(E)Mv

)
ι
(⊕

v∈t(E)Mv

)
.

pE

Let M :=
⊕

v∈VMv. Then pE can be extended to a machine on M :

ι(M) ι
(⊕

v∈s(E)Mv

)
ι
(⊕

v∈t(E)Mv

)
ι(M)

pE

The dependency graph for {pE}E∈E is a subgraph of the line graph of
(V, E), and is therefore also acyclic, hence the endomorphism

∑
E∈E pE is

a machine.

Prunable directed graph architectures. Using the graph-theoretical
ideas developed so far, we devised a simple architecture search algorithm
that requires minimal fine-tuning. We start with a finite number of nodes,
each equipped with an activation function on a given space with a group of
symmetries (i.e., translations for convolution, identity for fully-connected
layers). Each node is connected to all preceding nodes with compatible
dimensionality and has a unique fully-connected output. When reaching a

63

(a) Prunable hypergraph,
initialization.

0
linear

1
relu

2
maxpool

3
relu

4
relu

5
upsample

6
upsample

7
upsample

8
upsample

9
relu

10
relu

11
relu

12
relu

13
relu

14
relu

15
relu

16
relu

17
relu

18
relu

19
relu

20
relu

(b) Trained hypergraph, MNIST.

0
linear

1
relu

2
maxpool

3
relu

4
relu

5
upsample

6
upsample

7
upsample

8
upsample

9
relu

10
relu

11
relu

12
relu

13
relu

14
relu

15
relu

16
relu

17
relu

18
relu

19
relu

20
relu

(c) Learned convolutional architecture.

Input
1 2 3 4 85 6 7 9 10

Figure 3.2: As a starting architecture we consider a directed acyclic graph whose
nodes are activation functions (identity, ReLU, upsampling and max-pooling).
Blue directed edges are convolutions and black directed edges are linear layers.
In a we show the starting connectivity, which is maximal with respect to the blue
edges which connect all admissible (i.e. same dimensionality) activation nodes.
During training, we prune those edges whose weights have sufficiently small Eu-
clidean norm. b Architecture after pruning during training on the MNIST dataset
(with accuracy ≈ 98.6%). c The learned convolutional architecture.

64

node, the outputs of its incoming edges are summed. During training, we
add to the loss function a cost proportional to the sum of the Euclidean
norms of the weights associated with each edge. In fig. 3.2a we show
this construction for a translation-equivariant architecture used to classify
the MNIST dataset [39], where we start with 10 nodes equipped with
activation functions compatible with an image analysis task, connected by
convolutional edges with a fixed number of channels. During training, we
prune edges whose associated weights have Euclidean norm smaller than a
fixed tolerance (10−6), see fig. 3.2b. This small tolerance value has minimal
impact on the accuracy of the model while reducing its computational cost.
In fig. 3.2c, we observe that the learned convolutional architecture has
non-trivial connectivity. The achieved accuracy on the MNIST test set (≈
98.6%) is below state of the art. However, this particular algorithm does
not require any manual fine-tuning, other than the choice of equivariance
and number and dimension of nodes, which could be chosen automatically
according to the computational power of the user’s machine.

Volterra machines

A natural generalization of neural ODEs in our framework is given by
Volterra machines. The nonlinear Volterra equation of the second kind is,
in its classical form:

u(t) = ψ(t) +

∫ t

t0

φ(t, s, u(s))ds, for all t ∈ [t0, T], (3.7)

where t0 < T ∈ R. This equation generalizes ordinary differential equa-
tions. Whenever φ only depends on the last two arguments, i.e. φ(t, s, v) =

φ(s, v), and ψ(t) = ψ(t0) for all t ∈ [t0, T], then the solution u of the
Volterra equation (if it exists) also solves the initial value problem:

du(t)

dt
= φ(t, u(t)) and u(t0) = ψ(t0).

65

We consider the vector-valued case, where the codomain of φ, ψ (and
consequently u) is the finite-dimensional Hilbert space Rn, equipped with
the standard scalar product. Let L2([t0, T], n) be the Hilbert space of
square-integrable functions from the interval [t0, T] to Rn. We deviate
slightly from the more standard set of assumptions (see [11]) to ensure
existence and uniqueness of solutions, as we do not ask that ψ is continuous:

1. ψ ∈ L2([t0, T], n).

2. φ(t, s, v) is continuous for t0 ≤ s ≤ t ≤ T .

3. φ(t, s, v) satisfies a uniform Lipschitz condition in v for t0 ≤ s ≤ t ≤
T . That is to say, there exists λ ∈ R such that, for all v, ṽ ∈ Rn,

‖φ(t, s, v)− φ(t, s, ṽ)‖ ≤ λ‖v − ṽ‖. (3.8)

Using the machine framework, we show existence and uniqueness of solu-
tions for square-integrable functions.

Definition 7. Let φ(t, s, v) be a continuous function on t0 ≤ s ≤ t ≤ T

and v ∈ Rn, with values in Rn. If φ(t, s, v) satisfies a uniform Lipschitz
condition in v for t0 ≤ s ≤ t ≤ T , we say that φ is a Volterra machine on
L2([t0, T], n).

A Volterra machine φ is a machine on L2([t0, T], n). Let

f ∈ EndTop(L2([t0, T], n))

be the nonlinear endofunction given by:

f(u) = t 7→
∫ t

t0

φ(t, s, u(s))ds.

66

Let λ be such that eq. (3.8) holds. Let us choose a positive integer N such
that

N > λ2(T − t0)2. (3.9)

For i ∈ {0, . . . , N}, let ti = t0 + i
N (T − t0). For i ∈ {1, . . . , N}, we can

define

fi(u) = t 7→
∫ t

t0

φ(t, s, u(s))1[ti−1,ti](s)ds.

Clearly f = f1+· · ·+fN . Furthermore, for i < j, fi does not depend on fj .
We need to show that fi is a contraction. Then, given u, ũ ∈ L2([t0, T], n),
we have:

‖fi(u)− fi(ũ)‖22 =

∫ T

t0

∥∥∥∥∫ t

t0

1[ti−1,ti](s)[φ(t, s, u(s))− φ(t, s, ũ(s)]ds

∥∥∥∥2
2

dt

≤
∫ T

t0

T − t0
N

∫ t

t0

‖φ(t, s, u(s))− φ(t, s, ũ(s))‖22 dsdt

≤
∫ T

t0

T − t0
N

∫ t

t0

λ2 ‖u(s)− ũ(s)‖22 dsdt

≤
∫ T

t0

λ2
T − t0
N

‖u− ũ‖22 dt

= λ2
(T − t0)2

N
‖u− ũ‖22

Therefore, by eq. (3.9), fi is a contraction. As f is a sum of machines
with an acyclic dependency graph, it is also a machine on L2([t0, T], n)

by corollary 1. In particular, given a sequence {ψn}n∈N → ψ∞ of square-
integrable functions that converges in norm L2 to ψ∞, for all n ∈ N ∪∞
there is a unique un such that

un(t) = ψn(t) +

∫ t

t0

φ(t, s, un(s))ds, for all t ∈ [t0, T],

and the sequence {un}n∈N converges in norm L2 to u∞.

67

Efficient Volterra machines

Nonlinear Volterra integral equations are in general harder to solve than
ordinary differential equations (see [11] for a review of possible methods).
This is particularly problematic here, as we wish to solve a Volterra equa-
tion in a time comparable with the forward pass of a neural ODE. Luckily,
some special cases of Volterra equations admit a simpler solution in terms
of a system of ODEs [21]. Let U, V,W be finite real vector spaces equipped
with a bilinear map B : U⊗V →W . Let φ1, . . . , φm be U -valued functions,
and c1, . . . , cm V -valued functions. We can consider:

φ(t, s, v) =
m∑
j=1

B(φj(s, v), cj(t)).

Analogously to a result presented in [21], we can solve the corresponding
Volterra equation as a system of ODEs.

Theorem 3. [21, Thm. 3] Let ψ ∈ L2([t0, T], n). Let

φ(t, s, v) =
m∑
j=1

B(φj(s, v), cj(t)).

Let {z1, . . . , zm} be the solution to the following system of ODEs:

dzj(t)

dt
= φj(t, u(t)) for all t ∈ [t0, T], with zj(t0) = 0, (3.10)

where

u(t) = ψ(t) +

m∑
j=1

B(zj(t), cj(t)).

Then, u, φ, ψ respect eq. (3.7).

68

Proof. Integrating eq. (3.10), we obtain

zj(t) =

∫ t

t0

φj(s, u(s))ds.

Therefore:

u(t) = ψ(t) +
m∑
j=1

B(zj(t), cj(t))

= ψ(t) +

m∑
j=1

∫ t

t0

B(φj(s, u(s)), cj(t))ds

= ψ(t) +

∫ t

t0

m∑
j=1

B(φj(s, u(s)), cj(t))ds

= ψ(t) +

∫ t

t0

φ(t, s, u(s))ds.

This can be seen as a continuous analog of neural architecture search.
Given a family of Neural ODEs {φ1, . . . , φm}, and functions {c1, . . . , cm},
we can compute a loss function with respect to the Volterra machine

m∑
j=1

B(φj(s, u(s)), cj(t)).

From this perspective, the relative strengths of cj(t) can be interpreted as
routing. We will give an application of Volterra machines in section 3.2.3,
in the context of kernel methods.

3.2.3 Kernel machines

We are interested in combining kernel methods [111] with the machine
framework. In their simplest form, kernel methods associate to an input

69

space X a Hilbert space H of real-valued functions defined on X. Here,
however, we are interested in studying Hilbert spaces of endofunctions of
X. To do so, we will need some notions from the theory of operator-valued
kernel methods [3, 64, 87].

Operator-valued kernels

Let X be a space, and Y a Hilbert space, with scalar product 〈 - , - 〉. We
are interested in studying functions X → Y . In the remainder, we will
denote the set of functions from a space X to another space Y by Y X . Let
L(Y) be the space of bounded linear endomorphisms of Y . It is a Banach
space, with norm given by the operator norm.

Definition 8. [64, Def. 3] Let Y be a Hilbert space. A map K : X×X →
L(Y) is an operator-valued kernel if the following conditions are satisfied.

1. For all x1, x2 ∈ X the operator K(x1, x2) : Y → Y is self-adjoint.

2. For all x1, . . . , xn ∈ X, c1, . . . , cn ∈ Y , the matrix

Mi,j = 〈ci,K(xi, xj)cj〉

is positive-semidefinite.

Remark 2. A scalar kernel on X can always be seen as an operator-valued
kernel K : X×X → L(Y), where for all x1, x2 ∈ X, K(x1, x2) is a multiple
of the identity.

An operator-valued kernel K : X × X → L(Y) will induce a feature
map X → H ⊆ Y X , where H is the Reproducing Kernel Hilbert Space
(RKHS [7]) associated to K. In particular, H is a space of Y -valued
functions on X. Every function in H can be written as a sum:

f(x) =

∞∑
j=1

K(x, xj)cj ,

70

where, for every j, xj ∈ X and cj ∈ Y . Even though the above sum has
infinite elements, this is never a problem in practice. Given a function
f ∈ H and a finite dataset {x1, . . . , xm}, one can always find {c1, . . . , cm}
such that, for all x ∈ {x1, . . . , xm},

f(x) =

m∑
j=1

K(x, xj)cj .

In general machine learning problems, the function
∑m

j=1K(- , xj)cj is
preferable to f as, even though they are indistinguishable on the training
dataset, we have ∥∥∥∥∥∥

m∑
j=1

K(- , xj)cj

∥∥∥∥∥∥
H

≤ ‖f‖H ,

and hence
∑m

j=1K(- , xj)cj tends to be smoother and better behaved.
As H is a space of functions from X to Y , we have a canonical map

H ×X → Y , given by function evaluation. In what follows, we will focus
on the case X = Y .

Definition 9. Let X be a Hilbert space. Let K : X × X → L(X) be
an operator-valued kernel, with RHKS H. K is a kernel machine if the
canonical map

H ×X → X

is a parametric machine.

Definition 9 implies that for all f ∈ H, the function f is a machine on
X. Furthermore, one can use standard techniques from kernel methods to
learn a function f ∈ H whose associated stable state optimizes some rele-
vant quantity. In the case of kernel machines, an analog of the representer
theorem [67] holds.

Theorem 4. Let us consider a finite set S = {s1, . . . , sm}, a map g : S →
X, and a function Λ: Xm×R→ R strictly increasing in the last variable.

71

Any solution to the optimization problem

min
f∈H

Λ(h(s1), . . . , h(sm), ‖f‖H), (3.11)

where h is the stable state of f with initial condition g, is of the form

f(x) =
m∑
j=1

K(x, h(sj))cj .

Proof. Let us consider one solution f . Let h be its stable state with initial
condition g, and let xj = h(sj), for j ∈ {1, . . . ,m}. Let f̃ be the projection
of f on the subspace:

{K(- , x1)c1 + · · ·+K(- , xm)cm | c1, . . . , cm ∈ X} .

We start by observing that, for each j ∈ {1, . . . ,m}, f̃(xj) = f(xj). h is
the stable state of f̃ with initial condition g, as, for every j ∈ {1, . . . ,m},

h(sj) = g(sj) + f(h(sj)) = g(sj) + f̃(h(sj)).

As a consequence, f̃ produces a value smaller or equal than f in eq. (3.11),
with equality if and only if they have the same norm, that is to say

f ∈ {K(- , x1)c1 + · · ·+K(- , xm)cm | c1, . . . , cm ∈ X} .

In the context of kernel machines and for very small datasets, theorem 4
can be applied directly, guaranteeing optimality. In practice, for medium
or large datasets, standard downsampling techniques, such as Nyström
sampling [40], could be applied to replace S = {s1, . . . , sm} with a smaller
subset of anchor points S̃ = {s̃1, . . . , s̃m̃}, with m̃ < m.

72

In the following section 3.2.3, we will give two classes of examples of
kernel machines, based on discrete and continuous filtrations of a Hilbert
space.

Finite depth kernel machines

We associate a kernel machine to an arbitrary Hilbert space equipped with
a finite filtration of closed subspaces.

Definition 10. Let X be a Hilbert space, equipped with a finite filtration
of closed subspaces

0 = X0 ⊆ X1 ⊆ X2 · · · ⊆ Xn ⊆ Xn+1 = X.

Let us consider a family of operator-valued kernels

Ki : Xi ×Xi → L(Xi+1 ∩X⊥i) for i ∈ {0, . . . , n}.

The sum kernel machine is given by

K =
n∑
i=0

Ki.

The decomposition K =
∑n

i=0Ki corresponds to a decomposition of
the RKHS H '

⊕n
i=0Hi, where, for every i, Hi is the RHKS of Ki. In

particular, given an endofunction f ∈ H, we have a unique decomposition
f = f0 + · · ·+ fn, where fi ∈ Hi for all i ∈ {0, . . . , n}.

Proposition 1. Let K be a sum kernel machine, and let H be the corre-
sponding RKHS. The application map

% : H ×X → X

(f, x) 7→ f(x)

73

(a) Fitting a 2D polynomial.
Ground truth

and training points
Kernel machine

324 params
Multilayer perceptron

625 params

(b) Performance over training.

10
-1

0 1000 2000 3000 4000 5000

10
-2

10
-3

10
-4

10
-5

MLP
KM

Test
Training

(c) Interpolating from noisy data.
KM
MLP (ReLU)
MLP (sigmoid)
Ground truth

0.1

0.2

0.3

0.4

0.5

0.6

0 1000 2000 3000
(d) Regularization and loss.

0.1
0.01
0.003
Ground
truth

0.1

0.2

0.3

0.4

0.5

0 4000 8000 12000

Figure 3.3: Performance of finite-depth kernel machines. We trained a
kernel network and a multilayer perceptron with the same number of trainable
parameters to fit a polynomial in two variables on a 6× 6 grid of points. While
both achieve good performance, the kernel machine shows better decoding a and a
smaller loss function on the validation set (dashed line) b. In c we test robustness
to noise of the kernel machine (514 parameters) in a noisy interpolation problem,
comparing it with a 2 layers perceptron (609 parameters) with ReLU and sigmoid
nonlinearities, respectively. In d we show how different regularization coefficients
affect the performance of the kernel machine.

74

is a parametric machine. As a consequence, each endofunction f ∈ H is a
machine.

Proof. Let us write:
% = %0 + · · ·+ %n,

where, for i ∈ {0, . . . , n}, %i is the application map corresponding to Ki.
It is straightforward to show that, for i1 ≤ i2, %i1 does not depend on
%i2 . In particular, each %i is square-zero, and thus a machine. Moreover,
the dependency graph of {%0, . . . , %n} is acyclic, as the source of each edge
always has a smaller index than the target. It follows from corollary 1
that %0 + · · · + %n is a machine, whose stable state can be computed via
eq. (3.6).

In classical terms, kernel machines in H correspond to a network with
n + 1 layers and all shortcut connections. While in classical deep neural
networks this would cause an explosion in the number of parameters, which
would grow quadratically with the number of layers, in the case of small
datasets and kernel machines this is not the case. A general kernel machine,
on a training set with m datapoints {s1, . . . , sm}, can be expressed as:

X 3 x 7→
n∑
i=0

m∑
j=1

Ki(x, h(sj))cj , (3.12)

where h is the stable state of the kernel machine (see theorem 4). Each cj is
a vector of dim(X) free parameters. Therefore the number of parameters,
m · dim(X), grows linearly, rather than quadratically, with the number of
layers.

Finite-depth kernel machines on small datasets. Small datasets are
the natural testbed for finite-depth kernel machines given the architecture
described by eq. (3.12) and optimality guarantees obtained in theorem 4.

75

We implemented this architecture as a PyTorch module and chose to work
with radial basis function kernels of the form

K(u, v) = exp(−‖u− v‖2).

We first test the architecture on a surface-fitting task, with ground truth
p(x, y) = (2x − 1)2 + 2y + xy − 3. The training set consists of 36 points
obtained by evaluating p on a uniform 6× 6 grid in [0, 1]2. Test points are
randomly chosen in the same domain (see fig. 3.3a). We report the perfor-
mance of the kernel machine (324 parameters) in fig. 3.3b and compare it
with a two-layers perceptron (625 parameters). Although both architec-
tures are regularized, we can observe how the perceptron’s performance is
affected by overfitting, while the kernel machine reaches similar loss values
on the training and test set. We then test the same kernel machine on
the interpolation of noisy data, see fig. 3.3c. Again, we compare its per-
formance against 2-layer perceptrons with ReLU and sigmoid activation
functions, respectively. We train on 100 random points obtained by sam-
pling from a noisy sine. The kernel machine reaches the best performance
on both the training and the validation set. Finally, on the same task, we
test in fig. 3.3d the robustness of the kernel machine to variation of the
regularization cost.

Infinite depth kernel machines

To translate the discrete filtration kernel described in section 3.2.3 to the
continuous case, we replace the discrete filtration with a continuous one.
Let X be a Hilbert space, t0 < T ∈ R, and

0 = Xt0 ⊆ · · · ⊆ Xt ⊆ · · · ⊆ XT = X (3.13)

76

a filtration of closed subspaces of X. We need a technical assumption to
proceed in the continuous case.

Definition 11. Let X be a Hilbert space. Let {Xt}t∈[t0,T] be a filtration
on X, and let πt denote the orthogonal projection on Xt, for t ∈ [t0, T].
We say that {Xt}t∈[t0,T] is continuous if, for all x ∈ X, the function

[t0, T]→ X

t 7→ πt(x)

is continuous with respect to the norm on X.

Theorem 5. Let X be a Hilbert space, with a continuous filtration
{Xt}t∈[t0,T], and corresponding orthogonal projections {πt}t∈[t0,T]. Let
K : X × X → L(X) be an operator-valued kernel, and H be its RKHS.
Finally, let

% : H ×X → X

be the application map. Let us assume that

• the distance induced by K is bounded by a multiple of the norm-
induced distance on X,

• for all t ∈ [t0, T], for all x1, x2 ∈ X,

K(x1, x2)πt = πtK(x1, x2) = πtK(πtx1, πtx2).

Then % is a parametric machine, that is to say K is a kernel machine.

Proof. Let λ > 0 be such that, for all x1, x2 ∈ X,

‖K(x1, x1) +K(x2, x2)− 2K(x1, x2)‖L(X) ≤ λ2‖x1 − x2‖2X .

77

Let

H 3 ξ =

∞∑
j=1

K(- , xj)cj .

Let m be such that∥∥∥ξ − ξ̂∥∥∥ ≤ 1

4λ
, where ξ̂ :=

m∑
j=1

K(- , xj)cj .

As the filtration {Xt}t∈[t0,T] is continuous, for all c ∈ X, the map t 7→
πt(c) is continuous and, therefore, uniformly continuous. In addition, πt
commutes with K by hypothesis, therefore we can choose N such that,
given ti := t0 + i

N (T − t0), for i ∈ {1, . . . , N},

∥∥∥(πti − πti−1

)
ξ̂
∥∥∥ =

∥∥∥∥∥∥
m∑
j=1

K(- , xj)
(
πti − πti−1

)
cj

∥∥∥∥∥∥ ≤ 1

4λ
.

Let B
(
ξ, 1

4λ

)
be an open ball of radius 1

4λ around ξ. For each ξ̃ ∈ B
(
ξ, 1

4λ

)
,

and for all i ∈ {1, . . . , N},∥∥∥(πti − πti−1

)
ξ̃
∥∥∥ ≤ 3

4λ
.

78

For all i ∈ {1, . . . , N}, for all ξ̃ ∈ B
(
ξ, 1

4λ

)
, let ξ̃i =

(
πti − πti−1

)
ξ̃. Then,

for all x1, x2, c ∈ X,

〈ξ̃i(x1 − x2), c〉2X = 〈ξ̃i,K(- , x1)c−K(- , x2)c〉2H
≤ ‖ξ̃i‖2H · ‖K(- , x1)c−K(- , x2)c‖2H

≤
(

3

4λ

)2

· 〈c, (K(x1, x1) +K(x2, x2)− 2K(x1, x2)) c〉X

≤
(

3

4λ

)2

· ‖c‖2X‖K(x1, x1) +K(x2, x2)− 2K(x1, x2)‖L(X)

≤
(

3

4

)2

‖c‖2X‖x1 − x2‖2X .

By choosing c = ξ̃i(x1 − x2), it follows that

‖ξ̃i(x1 − x2)‖ ≤
3

4
‖x1 − x2‖,

hence ξ̃i is a contraction. For i1 < i2, ξ̃i1 does not depend on ξ̃i2 , therefore

ξ̃ = ξ̃1 + · · ·+ ξ̃N

is a machine, thanks to corollary 1. As the same computing procedure
can be applied to to all ξ̃ in a neighborhood of ξ, we have shown that
% : H ×X → X is a continuous parametric machine, hence K is a kernel
machine.

Computing continuous kernel machines efficiently

Let us consider a particular case of filtration on a Hilbert space. Let X =

L2([t0, T], n), and for all t ∈ [t0, T] letXt = L2([t0, t], n). Let k : Rn×Rn →
L(Rn) be a finite dimensional continuous operator-valued kernel. We can

79

(a) Performance on reduced MNIST varying the architecture

0 2 4 6 8 0 2 4 6 8

test0.25
0.20

0.15
0.10
0.05

0.5

0.4

0.3

0.2

2
5
10
20

Fourier
components

(b) cj histograms

0
1
2
3
4
5
6
7
8
9

Fourier
components

2 5 10 20

-0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1

(c) Performance on reduced MNIST, varying the cost

2.5
2.0
1.5
1.0
0.5
0

0 2 4 6 8

0.5

0.4

0.3

0.2
0 2 4 6 8

0
0.001
0.01
0.1
1

Cost

(d) cj histograms

0
1
2
3
4
5
6
7
8
9

Cost 0.001 0.01 0.1 1

-0.04 0 -0.050.04 0 0.05 -0.1 0 0.1 -0.1 0 0.1

Figure 3.4: Performance of infinite-depth kernel machines. We trained
an infinite-depth kernel machine on one random sample per class of the MNIST
dataset and tested it on the 10000 test samples. We approximated cj with a
truncated Fourier series. In fig. 3.4a we report the test loss and accuracy obtained
varying the number of Fourier components used to approximate cj and fixing the
regularization cost to 0.1. According to our expectation an increase in number
of Fourier components corresponds to an increase in performance (best ≈ 50%).
Figure 3.4b shows how cj evolves during training (epochs on the y-axis). Setting
the number of Fourier components to 20, the change in performance caused by
a variation of the regularization cost is reported in fig. 3.4c, and in fig. 3.4d the
corresponding cj histograms.

80

consider the following operator-valued kernel

(K(x1, x2)x) (t) =

∫ t

t0

k(x1(s), x2(s))x(t)ds,

where x1, x2, x ∈ X and t ∈ [t0, T]. Let H be the RKHS corresponding to
K. Let us further assume that the distance induced by k on Rn is bounded
by a multiple of the Euclidean distance. Then the distance induced by
K on X is bounded by a multiple of the L2 distance. By theorem 5,
H ×X → X is a parametric machine.

Let f =
∑m

j=1K(- , xj)cj be a machine in H. Let ψ ∈ L2([t0, T], n)

be an initial condition. The stable state is given by the solution to the
following Volterra equation:

u(t) = ψ(t) +

∫ t

t0

m∑
j=1

k(u(s), xj(s))cj(t)ds, for all t ∈ [t0, T], (3.14)

which can be computed efficiently using theorem 3.

Infinite-depth kernel machines on small datasets. Equation (3.14)
gives an efficient way to implement and compute infinite-depth kernel ma-
chines. This construction satisfies the optimality result obtained in theo-
rem 4. Thus, we implemented infinite-depth kernel machines as a PyTorch
module and tested them on small datasets. Intuitively, an infinite-depth
kernel machine is a continuous architecture adding to state-of-the-art im-
plementation, such as neural ODEs, all shortcut connections in time. Thus,
we test infinite-depth kernel machines on a reduced version of the MNIST
dataset [39] obtained considering one random sample per class (i.e. ten
training images). In the function space defined by the machine, the archi-
tecture is chosen by selecting an incomplete basis on which the parameters
of the machine are expressed. In our simulations, we consider radial basis
kernel functions and an incomplete Fourier basis. In fig. 3.4a, we report the

81

performance (loss and accuracy on the 10000 image MNIST test set) of the
kernel machine when varying the architecture, i.e. varying the number of
considered Fourier components. As expected, an increase in the number of
such components causes an increase in performance. An histogram of the
parameters cj (see eq. (3.14)) is shown in fig. 3.4b. Figures 3.4c and 3.4d
show the change in performance of the kernel machine while varying the
regularization cost.

3.3 Discussion

We provide a solid categorical foundation for the study of deep neural
networks. Borrowing ideas from functional analysis and category theory,
we define the abstract notion of machine, whose stable state generalizes
the computation of a feedforward neural network. It is a unified concept
that encompasses both manually designed neural network architectures, as
well as their continuous counterpart such as Neural ODEs [32].

We take as starting point a forgetful functor from a linear category
(Banach spaces) to a nonlinear one (topological spaces). This alternation
between linear and nonlinear components is one of the key ingredients of
the success of deep neural networks, as it allows one to obtain complex
functions as a composition of simpler ones. The notion of composition of
layers in neural networks is unfortunately somewhat ill-defined, especially
in the presence of shortcut connections and non-standard architectures.
In the proposed machine framework, the composition is replaced by the
sum. We describe independence conditions to ensure that the sum of
machines is again a machine, in which case we can compute its stable state
(forward pass) explicitly. This may seem counterintuitive, as the sum is
a commutative operation, whereas the composition is not. However, in
our framework, it is the dependency graph of a collection of machines that
determines the order of composition.

82

Basic combinations of simple machines—square-zero and contracting—
cover a lot of ground. In particular, using finite sums of square-zero ma-
chines (discrete architectures), we recover classical neural networks, includ-
ing architectures with shortcut connections. In this setting, we provide a
first simple application. Starting with a convolutional network with maxi-
mal connectivity, the architecture is automatically pruned during training
until a minimal architecture with robust performance is found. This algo-
rithm is available as a PyTorch module. Contracting, infinite-depth archi-
tectures generalize neural ODEs [32]. More generally, we prove that, under
some Lipschitz and continuity conditions, nonlinear integral Volterra equa-
tions of the second kind are machines. We provide an efficient procedure,
with corresponding PyTorch implementation, to solve such equations in a
special case.

Our approach meshes well with deep kernel learning [33, 74, 83, 84, 91],
an attempt to combine modern advances in deep learning with classical ker-
nel methods [58]. We believe this is particularly promising when working
with small datasets, a scenario where deep neural networks have tradi-
tionally been less successful. We introduce the notion of kernel machine,
a Hilbert space whose points are machines. There, given a specific loss
function, we can search for machines that minimize it and that have a
small norm. Even though the space is potentially infinite-dimensional,
we prove an analog of the representer theorem, which determines a finite-
dimensional subspace where optimal solutions can be found. This subspace
can be quite large in practice. However, the norm can be used to regularize
solutions.

We propose and implement in PyTorch two examples of kernel ma-
chines, with finite- and infinite-depth. First, using kernels on finite fil-
trations of Hilbert spaces, we build finite-depth kernel machines. They
correspond to neural networks with all shortcut connections. In our sim-
ulations, with a comparable number of trainable parameters, kernel ma-

83

chines outperform multilayer perceptrons in toy problems with no more
than 100 training datapoints. Second, using continuous filtrations on func-
tion spaces, we build infinite-depth kernel machines. While preserving the
advantages of a kernel-based approach (optimality guarantees), infinite-
depth kernel machines introduce the concept of shortcut connection in
neural ODEs. Indeed, given a kernel, the value of the stable state (out-
put) of the machine at time t is obtained considering a restriction of the
kernel to the interval [t0, t], i.e. all shortcuts up to time t.

The parameters to be optimized are functions in a Hilbert space. As
mentioned above, the infinite-dimensional function space represents a con-
tinuous architecture with all shortcut connections. As a consequence, a
key ingredient of this method is the choice of the incomplete (finite) ba-
sis used to approximate such functions, which corresponds to a choice of
architecture. For instance, discrete architectures can be recovered in this
infinite-depth framework, via an incomplete basis of piecewise constant
functions (grid-based approximation). Rather than limiting the depth of
our architecture by approximating its parameters on a grid, we choose a
low-frequency approximation, working with truncated Fourier series. This
is, to the best of our knowledge, a novel approach to Neural Architecture
Search [43], where different architectures can be chosen (and compared)
simply by selecting an incomplete basis of an infinite-dimensional function
space.

3.4 Materials and methods

The simulations in figs. 3.2 to 3.4 are based on custom PyTorch [96] code,
which has not yet been publicly released and is available upon request.

84

3.5 Author contributions

P.V., P.F and M.G.B devised the project. P.V. and M.G.B developed
the mathematical framework. P.V. and M.G.B. developed the software to
implement the framework. P.V. wrote the original draft. M.G.B. reviewed
and edited.

85

Chapter 4

Learning to represent signals
spike by spike

Summary

Networks based on coordinated spike coding can encode information with
high efficiency in the spike trains of individual neurons. These networks
exhibit single-neuron variability and tuning curves as typically observed
in cortex, but paradoxically coincide with a precise, non-redundant spike-
based population code. However, it has remained unclear whether the spe-
cific synaptic connectivities required in these networks can be learnt with
local learning rules. Here, we show how to learn the required architecture.
Use coding efficiency as an objective, we derive spike-timing-dependent
learning rules for a recurrent neural network, and we provide exact solu-
tions for the networks’ convergence to an optimal state. As a result, we
deduce an entire network from its input distribution and a firing cost. Af-
ter learning, basic biophysical quantities such as voltages, firing thresholds,
excitation, inhibition, or spikes acquire precise functional interpretations.

86

4.1 Introduction

Many neural systems encode information by distributing it across the ac-
tivities of large populations of spiking neurons. A lot of work has provided
pivotal insights into the nature of the resulting population codes [49, 119,
10, 147], and their generation through the internal dynamics of neural net-
works [4, 15, 41, 26]. However, it has been much harder to understand
how such population codes can emerge in spiking neural networks through
learning of synaptic connectivities [56].

For sensory systems, the efficient coding hypothesis has provided a use-
ful guiding principle, which has been successfully applied to the problem
of unsupervised learning in feedforward networks [14, 95]. When transfer-
ring the insights gained in these simplified rate networks to more realistic,
biological networks, two key challenges have been encountered. The first
challenge are locality constraints. Indeed, synapses have usually only ac-
cess to pre- and postsynaptic information, but most unsupervised learning
rules derived in rate networks use omniscient synapses that can pool infor-
mation from across the network. In turn, the derivation of learning rules
under locality constraints has often relied on heuristics or approximations
[151, 110, 20, 27], although more recent work has shown progress in this
area [139, 99, 100]. We note that supervised learning in neural networks
faces similar problems, and recent work has sought to address these issues
[142, 52, 107, 1, 73]. We will here focus on unsupervised learning.

The second challenge are spikes. Indeed, spikes have often proved quite
a nuisance when moving insights from rate networks to spiking networks.
In order to maintain the functionality of a given rate network, for instance,
the equivalent spiking network usually sacrifices either efficiency or real-
ism. In mean-field approaches, each rate unit is effectively replaced by
tens or hundreds of (random) spiking neurons, so that the spiking network
becomes a bloated and inefficient approximation of its rate counterpart

87

[102]. In the ‘neural engineering framework’, this excessive enlargement
is avoided [41, 42]. However, the spike trains of individual neurons be-
come quite regular, in contrast to the random, almost Poissonian statistics
observed in most neural systems.

Some of these problems have recently been addressed in networks with
tightly balanced excitation and inhibition [38, 19, 12, 30]. These networks
can produce functionality with limited number of neurons and random
spiking statistics. One of the key insights of this literature has been that
each neuron’s voltage should measure a part of the network’s global objec-
tive, such as the efficiency of the emitted spike code.

However, it has largely remained unclear how networks of spiking neu-
rons could move into this globally optimal regime, given that they are
only equipped with local synaptic plasticity rules. We here show that the
membrane voltage holds the key to learning the right connectivity under
locality constraints. If we start with a randomly connected or unconnected
neural network, and simply assume that each neuron’s voltage represents
part of the global objective, then the locally available quantities such as
membrane voltages and excitatory and inhibitory inputs are sufficient to
solve the learning problem. Using these ideas, we derive learning rules
and prove their convergence to the optimal state. The resulting learning
rules are Hebbian and anti-Hebbian spike-timing and voltage-dependent
learning rules, and are guaranteed to generate highly efficient spike codes.

4.2 Results

We study a population of excitatory (E) neurons that are interconnected
with inhibitory (I) interneurons (fig. 4.1a1). The excitatory neurons receive
many input signals, xj(t), from other neurons within the brain, and we
will ask how the neurons can learn to encode these signals efficiently in
their spiking output. We will first develop a measure for the efficiency of

88

neural population codes, then show the connectivity structure of efficient
networks, and then show how the respective connectivity can be learnt. In
this work, we focus exclusively on the problem of encoding a set of signals,
and we defer the problem of how to compute with signals to the discussion.

For concreteness, we will study networks of leaky integrate-and-fire
neurons. Each neuron’s membrane potential is driven by feedforward input
signals, xj(t), which we will model as a leaky integral of input currents
cj(t), and by recurrent inputs, that feed the output spike trains, ok(t), back
into the network. For simplicity, we will ignore the inhibitory interneurons
for now and treat them as simple relays (fig. 4.1a2). As a consequence, we
allow the excitatory neurons to violate Dale’s law, a problem we will come
back to later. Formally, the membrane voltages of the excitatory neurons
obey the equation

dVi
dt

= −Vi +
M∑
j=1

Fijcj(t) +
N∑
k=1

Ωikok(t), (4.1)

where Fij are the feedforward weights, and Ωik contains the recurrent
synapses (for i 6= k) and the voltage resets (for i = k). A spike is fired
when the voltage surpasses a threshold, Ti. The voltage is then reset to
the value Vi = Ti + Ωii, and we assume that Ωii < 0. For simplicity, here
we consider instantaneous synaptic transmission: the impact of synaptic
delays on the network will be examined in fig. 4.7.

The first objective of the network will be to encode the input signals
into a spiking output such that a downstream observer can reconstruct the
input signal through a linear readout, i.e., a weighted sum of the neural
responses (fig. 4.1b). We define this linear readout as

x̂j(t) =

N∑
k=1

Djkrk(t) , (4.2)

89

where rk(t) is the postsynaptically filtered spike train of the k-th excitatory
neuron, and Djk is the decoding weight associated with the j-th signal.

The second objective of the network will be to find, among all possible
spiking outputs, and all possible decoders, the ones that are the most
efficient. We define the coding efficiency of the population as a trade-off
between the accuracy and the cost of the generated code,

E =
〈 M∑
j=1

(xj − x̂j)2 + C(r)
〉
, (4.3)

where the angular brackets denote averaging over time. The first term
measures the accuracy of the code, given by the mean-squared error be-
tween the input signals and the linear readout. The second term, C(r),
denotes the cost of the code, exemplified for instance by the number of
spikes fired. The smaller the loss, the higher the coding efficiency (see
Supplementary Text S1 for details).

4.2.1 Efficient spike coding requires balance of excitation
and inhibition

To find the most efficient spiking output, our network will need to modify
its synapses. Since a single synapse can only see its pre- and postsynaptic
partners and their relative spike trains, it cannot perceive the coding effi-
ciency of the whole network. Without that information, it is unclear how
the synapse should modify its weights in order to improve the coding effi-
ciency. This rift between locally available information and global objective
is the key conundrum of synaptic plasticity.

However, imagine we could intervene and simply set each neuron’s
recurrent synaptic weights such that they become equal to the feedforward
weights multiplied by the decoding weights of a downstream observer, i.e.,
Ωik = −

∑
j FijDjk. As shown in Supplementary Text S2 and S3, the

90

https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary

membrane potential of each neuron can then be rewritten as

Vi(t) =
N∑
j=1

Fij
(
xj(t)− x̂j(t)

)
. (4.4)

In other words, given this specific connectivity structure, each neuron’s
membrane potential suddenly reflects a component of the global coding
error, given by the difference between the input signals, xj(t), and the
linear readout of a hypothetical downstream area, x̂j(t). This peculiar
structure emerges even though the membrane potential is generated from
only feedforward and recurrent inputs (fig. 4.1a2,a3). Since synaptic plas-
ticity can sense postsynaptic voltages, synapses have gained unexpected
access to a component of the global coding error.

Moreover, each neuron will now bound its component of the error from
above. Each time the error component becomes too large, e.g., due to
an excitatory signal input, the membrane potential reaches threshold, and
the neuron fires. The spike changes the readout, and, the global coding
error decreases (under reasonable conditions on Fij and Djk, see Supple-
mentary Text S4). This decrease in error is then signaled throughout the
network. First, the firing neuron resets its own voltage after the spike,
thus signaling to itself that its error component has decreased. Second,
the firing neuron inhibits (or excites) all neurons with similar (or oppo-
site) feedforward inputs, thus signaling them the decrease in error. The
concurrent change in their respective membrane voltages is proportional
to the overlap in information and thereby reflects the required update of
the error components they are responsible for.

As a consequence, excitatory inputs that depolarize the membrane po-
tential signal growing coding errors. Vice versa, inhibitory inputs that
repolarize the membrane potential signal shrinking coding errors. In turn,
when coding errors are kept in check, each feedforward excitatory input
will be counterbalanced by a recurrent inhibitory input (and vice versa).

91

https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary

This latter reasoning links the precision of each neuron’s code to the known
condition of excitatory and inhibitory (EI) balance [38, 138, 6, 116, 103].
Indeed, if excitatory and inhibitory inputs are balanced optimally, the vari-
ance of the membrane potential, and thus, a neuron’s error component, is
minimized.

Figure 4.1: (legend on next page)

4.2.2 Recurrent synapses learn to balance a neuron’s in-
puts

How can a network of neurons learn to move into this very specific regime?
Several learning rules for EI balance have been successfully proposed before
[123, 140], and spike-timing-dependent plasticity (STDP) can even balance

92

Figure 4.1: Learning to represent analog signals efficiently with spikes.
(a1) Recurrent neural network with input x (purple) and signal estimates x̂
(green), reconstructed from the spike trains of the excitatory population (see
panel b). (a2) Simplified network without separate excitatory and inhibitory
populations. (F=matrix of feedforward weights, D=matrix of decoding weights,
Ω=matrix of recurrent weights). A network that has learnt to represent its input
signals efficiently should have connectivity Ω = −FD. (a3) Same as (a2), but
unfolded to illustrate the effect of the recurrent connections. These connections
act to subtract the reconstructed signal estimate from the incoming signal. As
a consequence, the net input into each neuron is (a projection of) the recon-
struction or coding error x − x̂. (b) Linear readout of an analog signal from a
population of spike trains. The spike train of each neuron is first filtered with a
postsynaptic potential (left). The filtered spike trains are then linearly combined
via decoding weights D to yield a signal estimate (right, green traces). (c) Learn-
ing of recurrent connections based on balancing the EI currents into each neuron
spike by spike. Shown are the neuron’s membrane voltage (black), which reflects
the coding error, spikes from three inhibitory neurons (vertical lines, color-coded
by connection), and the signal (purple), and signal estimate (green). (c1) Ideal
case with EI balance. Each inhibitory spike perfectly counter-balances the prior
excitatory drive. (c2) One inhibitory synapse too weak. The excitatory drive
is not perfectly cancelled, resulting in an aberrant, early spike. (c3) One in-
hibitory synapse too strong. The excitatory drive is over-compensated, resulting
in a prolonged hyperpolarization and a delay in subsequent spiking. (d) Learning
of recurrent connections based on minimizing voltage fluctuations. Shown are
the voltages and spikes of a pre- and a postsynaptic neuron over a longer time
window (top) and the postsynaptic voltage fluctuations aligned at the timing of
spikes from the presynaptic neuron (bottom, grey lines), as well as their average
(bottom, black line). (d1) Ideal case with EI balance. Here, the average effect of
the presynaptic spike is to turn a depolarized voltage into an equivalent hyper-
polarized voltage (bottom panel, black line). (d2) If the inhibitory synapse is too
weak, the average membrane voltage remains depolarized. (d3) If the inhibitory
synapse is too strong, the average membrane voltage becomes overly hyperpo-
larized. (Inset: effect of the derived recurrent plasticity rule when tested with a
paired-pulse protocol)

93

EI currents on a short time scale [140]. We will show that learning to
balance excitatory and inhibitory inputs does indeed lead to the right
type of connectivity (fig. 4.1a2-3), as long as EI currents are balanced as
precisely as possible. Learning to balance avoids the pitfalls of a direct
optimization of the coding efficiency with respect to the decoder weights,
which is mathematically possible, but biophysically implausible for the
synapses we consider here (see Supplementary Text S5). We developed
two ways of reaching the balanced regime (see Supplementary Text S6 for
a high-level, technical overview). The first scheme balances excitatory and
inhibitory currents on a fine time scale (see Supplementary Text S7 and S8
for details), while the second scheme minimizes the voltage flucutations
(see Supplementary Text S9–S12 for details). We here briefly explain the
current-based scheme, but then focus on the voltage-based scheme for the
rest of the text.

The first scheme directly targets the balance of excitatory and in-
hibitory currents. In fig. 4.1c, we show a neuron that receives excita-
tory feedforward inputs and inhibitory recurrent inputs. In the interval
between two inhibitory spikes, the neuron integrates its excitatory feed-
forward input currents, which leads to a transfer of electric charges across
the membrane (fig. 4.1c1, gray area). When the next inhibitory spike
arrives (fig. 4.1c1, blue), electric charges are transfered in the opposite
direction. Precise EI balance is given when these two charge transfers can-
cel exactly. When the second inhibitory spike overshoots (undershoots)
its target, then the respective synaptic weight was too strong (weak), see
fig. 4.1c2-3. To reach precise EI balance, this weight therefore needs to be
weakened (strengthened). This learning scheme keeps the neuron’s volt-
age (and thereby its component of the coding error) perfectly in check (see
Supplementary Text S7 and S8 for details). We note that the membrane
potential shown in fig. 4.1c is an illustrative toy example, for a network
representing only one input signal with four neurons. In larger networks

94

https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary

that represent several input signals, the membrane potentials become more
complex, and the inhibitory inputs due to recurrent connections become
weaker than the voltage reset after a spike (see also below).

The precise accounting of charge balances across the membrane may
seem unfeasible for real neurons. Our second scheme minimizes charge
imbalances by confining deviations from a neuron’s resting potential. If a
recurrent weight is set such that each presynaptic spike, on average, resets
a voltage depolarization to an equivalent hyperpolarization (or vice versa),
then the membrane voltage is maximally confined (see fig. 4.1d). To move
a recurrent synapse into this state, its weight should be updated each time
a spike from presynaptic neuron k arrives, so that

dΩik

dt
∝ pre× post

= −ok (2Vi + Ωik) . (4.5)

where ok is the presynaptic spike train and Vi is the postsynaptic mem-
brane potential before the arrival of the presynaptic spike. According to
this rule, the recurrent connections are updated only at the time of a
presynaptic spike, and its weights are increased and decreased depending
on the resulting postsynaptic voltage. While this rule was derived from
first principles, we note that its multiplication of presynaptic spikes and
postsynaptic voltages is exactly what was proposed as a canonical plastic-
ity rule for STDP from a biophysical perspective [34]. A minor difference
to this biophysically realistic, ‘bottom-up’ rule, is that our rule treats LTP
and LTD under a single umbrella. Furthermore, our rule does not impose
a threshold on learning.

Once a synapse has been learnt with this voltage-based learning rule,
it will tightly confine all voltage fluctuations as much as possible. This
average confinement is illustrated in fig. 4.1d. We note that the membrane

95

potentials look more realistic here simply because the illustration is based
on the simulation of a larger network with multiple input signals.

The learning rule drives the recurrent weights to the desired connec-
tivity, given by the multiplication of the feedforward weights, Fij , with an
(a priori unknown) decoder matrix, Djk, see fig. 4.1a2-3. To gain some
intuition as to why that is the case, we will show that this connectivity
structure is a stationary point of the learning rule. At this stationary
point, the recurrent weights are no longer updated and become propor-
tional to the average postsynaptic voltage of neuron i, Ωik = −2〈Vi〉k,
where the average, denoted by the angular brackets, is taken over all time
points directly before the arrival of a spike from the presynaptic neuron
k (see fig. 4.1d1). Since, whenever Ωik = −

∑
j FijDjk, the connectivity

structure dictates that the voltage becomes a function of the global cod-
ing error, as stated in eq. (4.4), the stationary point can be rewritten as
Ωik = −2

∑
j Fij〈xj − x̂j〉k. If we now simply define the decoder matrix

as Djk = 2〈xj − x̂j〉k, then Ωik = −
∑

j FijDjk. Accordingly, the pecu-
liar multiplicative form of the recurrent weights, which transformed the
voltage into a component of the coding error, is a stationary point of the
learning rule (see Supplementary Text S9 for details and an additional
convergence proof).

Depending on the precise cost terms, C(r), required by the loss func-
tion, the learning rules undergo slight modifications. The effect of these
cost terms is to penalize both the total number of spikes fired by the net-
work, as well as high firing rates in individual cells. The learning rules
used in all simulations are of the form

dΩik

dt
∝ −ok

(
β(Vi + µri) + Ωik + µδik

)
. (4.6)

96

https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary

with β and µ positive constants, and with δik the Kronecker delta (see
Supplementary Text S9–S13 for a detailed explanation of these modifica-
tions and their relation to the cost).

Figure 4.2 illustrates the effect of the voltage-based learning rule in a
network with 20 neurons receiving two random, uncorrelated feedforward
inputs (see Supplementary Text S14 for details on the simulations). Since
each neuron receives two input signals, each neuron has two feedforward
weights. The initial setting of these weights was lopsided, as shown in
fig. 4.2b1 (left panel), so that no neuron received a positive contribution of
the first input signal. The recurrent weights were initially set equal to zero
(fig. 4.2b1, right panel; the diagonal elements correspond to the self-resets
of the neurons).

While the network receives the random input signals, the recurrent
synapses change according to the learning rule, eq. (4.6), and each neuron
thereby learns to balance its input currents. Once learnt, the recurrent
connectivity reaches the desired structure, and the voltages of the neurons
become proportional to a component of the coding error. As a result of the
EI balance, the voltage fluctuations of individual neurons are much better
bounded around the resting potential (compare fig. 4.2e1 with fig. 4.2e2),
the global coding error decreases (fig. 4.2a), and the network experiences
a large drop in the overall firing rates (fig. 4.2a,d1-2). The network’s
coding improvement is best illustrated in fig. 4.2c1-2, where we test the
network with two input signals, a sine and cosine, and illustrate both the
input signals and their reconstructions, as retrieved from the spike trains
in fig. 4.2d1-2 using an optimal decoder. Note that this improvement
occurred despite a drastic drop in overall firing rates (fig. 4.2d1-2).

97

https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary

30

85

140

Ra
te

 (H
z)

-180 0 180
Angle

100 ms

M
em

br
an

e
Po

te
nt

ia
ls

 (t
ria

l 1
)

M
em

br
an

e
Po

te
nt

ia
ls

 (t
ria

l 2
)

-180 0 180
Angle

-180 0 180
Angle

Sp
ik

e
tra

in
s

x,
 x

neuron id

Ra
te

 (H
z)

100 102 104
0

0,5

1

5

10

15

20

Er
ro

r [
a.

u.
]

simulation time

-1 0 1
-1

0

1

1 10 20

1

10

20
-1 0 1

-1

0

1

1 10 20

1

10

20
-1 0 1

-1

0

1

1 10 20

1

10

20

neuron id neuron id

0

1

10

20

-180 0

-0.5

0

0.5

naive network after learning of
recurrent synapses

after learning of
feedforward synapses

A

B

C

D

E

F

G

(i) (ii) (iii)

FF weight FF weight FF weight

Figure 4.2: (legend on next page)

98

Figure 4.2: A 20-neuron network that learns to encode two randomly
varying signals. (a) Evolution of coding error (blue), defined as the mean-
square error between input signal and signal estimate, and mean population firing
rate (orange) over learning. (b) Feedforward and recurrent connectivity at three
stages of learning. In each column, the left panel shows the two feedforward
weigths of each neuron as a dot in a two-dimensional space, and the right panel
shows the matrix of recurrent weights. Here, off-diagonal elements correspond to
synaptic weights (initially set to zero), and diagonal elements correspond to the
neurons’ self-resets after a spike (initially set to -0.5). (c) Time-varying test input
signals (purple) and signal estimates (green). The test signals are a sine wave
and a cosine wave. Signal estimates in the naive network are constructed using
an optimal linear decoder. Arrows indicate parts of the signal space that remain
poorly represented, even after learning of the recurrent weights. (d) Spike rasters
from the network. (e) Voltages and spike times of three exemplary neurons (see
thick dots in panel b). Dashed lines illustrate the resting potential. Over the
course of learning, voltage traces become confined around the resting potential.
(f) As in (e), but for a different trial. (g) Tuning curves (firing rates as a function
of the angle of an input signal with constant radius in polar coordinates for all
neurons in the network. Angles from −90◦ to 90◦ correspond to positive values
of x1 which are initially not represented (panel b).

99

4.2.3 Feedforward weights change to strengthen postsy-
naptic firing

Despite the performance increase, however, the network still fails to rep-
resent part of the input, even after the recurrent connections have been
learnt (fig. 4.2c2, arrow). Indeed, in the example provided, positive val-
ues of the first signal cannot be represented, because there are no neurons
with positive feedforward weights for the first signal (fig. 4.2b1-2). These
missing neurons can be easily spotted when plotting the tuning curves of
all neurons (fig. 4.2g1-2). Here, directions of the input signal associated
with positive values of the first signal are not properly covered, even after
the recurrent weights have been learnt (fig. 4.2g2, arrow).

Consequently, the feedforward connections need to change as well, so
that all parts of the input space are dealt with. We can again obtain
a crucial insight by considering the final, ‘learnt’ state, in which case
the feedforward connections are directly related to the optimal decod-
ing weights. For example, if the input signals are mutually uncorrelated,
i.e., 〈xi(t)xj(t)〉 = 0 for zero-mean inputs and i 6= j, then the optimal
feed-forward and decoding weights are equal, i.e., Fik = Dki (see Supple-
mentary Text S4). In section 4.2.3a, we illustrate the problem with five
neurons that seek to represent two input signals. We assume a constant in-
put signal, which we represent by a point in a signal space (section 4.2.3a1,
purple dot). In turn, a neuron’s spiking shifts the signal estimate in a di-
rection given by its respective decoding weights, which we can illustrate
through vectors (section 4.2.3a1, colored arrows). Accordingly, the input
signal can be represented by a linear combination of the decoding vec-
tors. For a biased distribution of decoding vectors, some input signals will
require the combined effort of many neurons (section 4.2.3a1). For uncor-
related input signals, however, the best representation is achieved when
the decoding vectors (and thereby the feedforward weights) are evenly dis-
tributed (section 4.2.3a2).

100

https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary

The feedforward weights of the i-th neuron can learn to optimally cover
the input space if they change each time neuron i fires a spike,

dFij
dt
∝ (xj − αFij) oi, (4.7)

where xj is the feed-forward input signal, α is a positive constant whose
value depends on the enforced cost (see Supplementary Text S11), and
oi is the neuron’s spike train. Note that the feedforward weights remain
unchanged if neuron i does not spike.

The intuition for this rule is shown in section 4.2.3b. In an unconnected
network, a neuron fires the most when its feedforward input drive is maxi-
mal. Under a power constraint on the input signal, the drive is maximized
when the vector of input signals aligns with the vector of feedforward
weights. In a network connected through recurrent inhibition, however,
neurons start competing with each other, and a neuron’s maximum firing
(section 4.2.3b1; dashed lines) can shift away from the maximum input
drive (section 4.2.3b1, colored arrows) towards stimuli that face less com-
petition. If competition is well-balanced, on the other hand, then a neu-
ron’s maximum firing will align with the maximum input drive, despite
the presence of recurrent connections (section 4.2.3b2, compare colored
arrows and dashed lines). The above learning rule moves the network into
this regime by shifting the feedforward weights towards input signals that
elicit the most postsynaptic spikes (section 4.2.3b2, gray arrows). Learning
converges when all tuning curve maxima are aligned with the respective
feedforward weights (section 4.2.3b2; dashed lines and arrows). Eventu-
ally, the input space is thereby evenly covered (see Supplementary Text
S10 for mathematical details).

From the perspective of standard frequency-modulated plasticity, the
learning rule is Hebbian: whenever neuron i fires a spike, the resulting
change in its synaptic weight Fij is proportional to the j-th presynaptic

101

https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary

input, xj , received at that time. The more neuron i spikes, and the higher
the input xj , the stronger the change in weight. Accordingly, connections
are reinforced for co-occurring high pre- and postsynaptic activity. In the
case of correlated input signals, the term “Fij” is replaced by the covari-
ance of the j-th presynaptic input signal with the total postsynaptic input
current (see Supplementary Text S12). In this case, the decoding weights
provide optimal coverage by favoring more frequent input signal directions
(see section 4.2.3c,d).

The effect of the feedforward plasticity rule is shown in fig. 4.2a3–g3.
The feedforward weights change slowly until the input space is spanned
more uniformly (fig. 4.2b3). While these changes are occurring, the re-
current weights remain plastic on a faster time scale and thereby keep
the system in a balanced state. At the end of learning, the neuron’s tun-
ing curves are uniformly distributed (fig. 4.2g3), and the quality of the
representation becomes optimal for all input signals (fig. 4.2a3,c3). More
specifically, the feedforward weights have become identical to the decod-
ing weights, Fik = Dki, and the latter minimize the objective function,
eq. (4.3).

Importantly, the final population code represents the input signals spike
by spike, with a precision that approaches the discretization limit imposed
by the spikes, i.e., the unavoidable steps in the signal estimate caused by
the firing of individual spikes. Initially, when the neurons were uncon-
nected (fig. 4.2b1), their voltages reflected the smooth, time-varying input
(fig. 4.2e1). Moreover, neurons fired their spikes at roughly the same time
from trial to trial (compare fig. 4.2e1 with fig. 4.2e2). After learning, the
membrane potentials are correlated, reflecting their shared inputs, yet the
individual spikes are far more susceptible to random fluctuations (compare
fig. 4.2e3 with fig. 4.2f3). Indeed, whichever neuron happens to fire first
immediately inhibits (resets) the others, so that a small initial difference
in the membrane potentials is sufficient to change the firing order com-

102

https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary

angle of input angle of input

angle of input angle of input

angle of FF weights
(i) suboptimal (i) suboptimal

(ii) optimal (ii) optimal

re
sp

on
se

re
sp

on
se

re
sp

on
se

re
sp

on
se

(i)

(ii)

(i)

(ii)

x1

x2

x1

x2

x1

x2

x1

x2

Figure 4.3: Learning rules for the feedforward weights, depicted for a
network. (a) Arrangement of decoding weights influences coding efficiency. The
purple dot represents the input signals, and each vector represents the jump in
the signal estimates caused by the firing of one neuron. The gray circle represents
the distribution of input signals; here, they are centered and uncorrelated. (a1)
A biased arrangement of the decoding weights is suboptimal for uncorrelated
signals. Many spikes are required to represent the purple input. (a2) Evenly
spaced decoding weights are optimal for uncorrelated signals. Here, the purple
input can be reached with a single spike. (b) Tuning curves of the five neurons
before and after training. Shown are the firing rates of the neurons as a function
of the angle of the input signal. Colored arrows above represent the feedforward
weights (or the input signals that drive the neurons maximally in the absence
of recurrent connections). (b1) In the untrained network, maximum input drive
and maximum firing are not aligned. The learning rule shifts the feedforward
weights towards the maximum of the firing rates (gray arrows, top). In turn, the
firing rate maxima shift in the opposite direction (gray arrows, bottom). (b2)
After learning, the maximum input drive (and thereby the feedforward weights)
are aligned with the maximum firing rate. (c) Similar to (a), but for correlated
input signals. (d) Similar to (c), but for correlated input signals. In the optimal
scenario, the neurons’ feedforward and decoding weights are attracted towards
more frequent stimuli.

pletely. Here, the random nature of spike timing is simply a consequence
of a mechanism that prevents any redundant (or synchronous) spikes. More
generally, any source of noise or dependency on previous spike history will

103

change the firing order, but without a significant impact on the precision
of the code. Thus, variable spike trains co-exist with a highly reproducible
and precise population code.

4.2.4 Networks with separate excitatory and inhibitory
populations

1
75

150
225
300
375

0 180 360

200
400

200

400

25
50

100 101 102 103
0

0.4

0.8

0

5

(i)
 E

rro
r [

a.
u.

]

F.
 ra

te
 (H

z)

E-
I i

np
ut

N

eu
ro

n
in

de
x

A

B

C
i

ii

iii

ii

i

E

I

Angle Time (s) Angle

(ii
i)

FF
, C

V

D
200 ms

x,
 x

(i) Before learning (ii) After learning

(i) Before learning (ii) After learning

ii

iii

i

50
100

0 180 360

0

50

100

(ii
) R

at
e

(H
z)

Figure 4.4: (legend on next page)

We have so far ignored Dale’s law so that individual neurons could
both excite and inhibit other neurons. Fortunately, all of our results so
far can also be obtained in networks with separate excitatory (E) and
inhibitory (I) populations (fig. 4.1a1), governed by eq. (4.1). In this more
realistic case, the inhibitory population must simply learn to represent

104

Figure 4.4: Large network (300 excitatory and 75 inhibitory neurons).
(a) The EI network as in fig. 4.1a1 and the learning rules (a1, feedforward rule;
a2 and a3, recurrent rule). The insets show cartoon illustrations of the learn-
ing rules, stemming from STDP-like protocols between pairs of neurons, with
the x-axis representing the relative timing between pre- and postsynaptic spikes
(∆t = tpre − tpost), and the y-axis the change in (absolute) weight. Note that
increases (decreases) in synaptic weights in the learning rules map onto increases
(decreases) for excitatory weights and decreases (increases) for inhibitory weights.
This sign flip explains why the STDP-like protocol for EE connections yields a
mirrored curve. (b) Evolution of the network during learning. (b1) Coding error
for excitatory and inhibitory populations. The coding error is here computed
as the mean square error between the input signals and the signal estimates, as
reconstructed from the spike trains of either the excitatory or the inhibitory pop-
ulation. (b2) Mean firing rate of excitatory and inhibitory populations. (b3) Av-
eraged coefficient of variation (CV, gray) and Fano factor (FF, black) of the spike
trains. (c) Network input and output before (c1) and after (c2) learning. (Top)
Raster plots of spike trains from excitatory and inhibitory populations. (Cen-
ter) Excitatory and inhibitory currents into one example neuron. After learning,
inhibitory currents tightly balance excitatory currents (inset). (Bottom) One of
the three input signals (purple) and the corresponding signal estimate (green)
from the excitatory population. (d) Tuning curves (firing rates as a function of
the angle for two of the input signals, with the third signal clamped to zero) of
the most active excitatory and inhibitory neurons.

105

the population response of the excitatory population, after which it can
balance the excitatory population in turn. This can be achieved if we
train the EI connections using the feedforward rule (eq. (4.7)) while the
II, EE, and IE connections are trained using the recurrent rule (eq. (4.6);
see Supplementary Text S13 for details).

Figure 4.4 illustrates how the key results obtained in fig. 4.2 hold in
the full EI network. The network converges to the optimal balanced state
(fig. 4.4b), and the precision of the representation improves substantially
and approaches the discretization limit (fig. 4.4b1, c2), despite the over-
all decrease in output firing rates (fig. 4.4b2, c2). Initially regular and
reproducible spike trains (fig. 4.4b3) become asynchronous, irregular, and
comparable to independent Poisson processes (fig. 4.4b3, pairwise corre-
lations are smaller than 0.001). Crucially, both the inhibitory and exci-
tatory populations provide an accurate representation of their respective
input signals, as shown by their small coding errors (fig. 4.4b1). Further-
more, we observe that the neurons’ tuning curves, when measured along
the first two signal directions, are bell-shaped just as in the previous ex-
ample (fig. 4.4d2). Note that the inhibitory neurons fire more and have
broader tuning than the excitatory neurons. This result is simply owed to
their smaller number: since less neurons are available to span the signal
space with their feedforward weights, they generally face less competition,
and consequently have broader tuning.

4.2.5 Learning for correlated inputs

We have so far considered input signals that are mutually uncorrelated.
For correlated input signals, the network learns to align its feedforward
weights to the more frequent signal directions (section 4.2.3c). As a result,
the tuning curves of the learnt network reflect the distribution of inputs
experienced by the network (section 4.2.3d). In particular, tuning curves

106

https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary

0.1

0.6

Fr
eq

ue
nc

y
(k

H
z,

 lo
g-

sc
al

e)

1

50

100

Sp
ik

e
tra

in
s

-3

0

3

-20

0

20

-20

0

20

4

-20

0

20

Sample from natural stimuli

Naive network

Trained Network

Sample from artificial stimulus

Trained Network

Retrained Network

C
ur

re
nt

s
 (a

.u
.)

Time (ms) Time (ms)

A

B

C

D

E

F
Time (ms)

Natural Stimuli Novel, artificial Stimulus

Fr
eq

ue
nc

y
(k

H
z,

 lo
g-

sc
al

e)
Fr

eq
ue

nc
y

(k
H

z,
 lo

g-
sc

al
e)

C
ur

re
nt

s
 (a

.u
.)

0 350

Time (ms)0 350

Time (ms)0 350

0 800

0 800

Time (ms)0 800

1

50

100

Sp
ik

e
tra

in
s

EI E-I

0.1

0.6

4

0.1

0.6

4

0 50dB SP

0

100

dB
 S

P

Figure 4.5: (legend on next page)

107

Figure 4.5: Network (100 neurons) that encodes a high-dimensional,
structured natural input (speech sounds). (a) Spectrogram of a speech
sound. (b) “Naive” network with random feedforward and recurrent weights.
(Top) Optimal linear estimator applied to output spike trains reconstructs the
stimulus poorly. (Center) Spike raster from all neurons, showing synchronous
firing. (Bottom panel) Excitatory (orange) and inhibitory (blue) current into an
example neuron are poorly balanced, causing large fluctuations in the total cur-
rent (black). (c) Same as (b), after learning. The signal estimate tracks the signal
closely (top), spike trains are asynchronous and irregular (center), and EI cur-
rents are tightly balanced (bottom). (d) Spectrogram of artificial, “non-speech”
sound. (e) Response of the trained network trained to a non-speech sound, sim-
ilar format as (b), (c). The new sound is improperly reconstructed (top), and
EI currents of individual neurons are poorly balanced (bottom). Grey lines show
the total (E+I) currents for the individual neurons, orange and blue lines show
the mean excitatory and inhibitory currents, averaged over the population. (f)
Same as (e), after re-training the network with a mixture of speech sounds and
the new sound. The new sound is now represented precisely (top) with fewer
spikes (center), and EI balance is improved (bottom).

are denser and sharper for signal directions that are a-priori more probable.
This result is reminiscent of the predictions for efficient rate-based popu-
lation codes with independent Poisson noise [48]. Note, however, that our
networks learn a spike-per-spike code far more precise and efficient than
such rate-based population codes.

To further demonstrate the power of the learning rules, using learn-
ing rules developed in Supplementary Text S12, we trained a network
to represent speech signals, filtered through 25 frequency channels, in its
spiking output (fig. 4.5a). Despite consisting of 100 neurons that fire at
only ∼ 4 Hz, the network learns to represent the signals with high precision
(fig. 4.5b,c). This feat would be impossible if the network had not learnt
the strong correlations in speech. After training with the speech signals,
the feedforward and decoding weights adopt a structure reflecting the nat-
ural statistics of speech. The feedforward weights typically have excitatory
subfields covering a limited range of frequencies, as well as inhibitory sub-

108

https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary

xedni larue
N

xedni larue
N

Freq Freq

A

B

Freq

F, trained ΔF, retrained(i) (iii)(ii)F, naive

D, trained ΔD, retrained(i) (iii)(ii)D, naive

Figure 4.6: Feedforward and recurrent connection structure before and
after (a1) Feedforward weights of neurons before learning, sorted according to
maximal frequency. These weights correspond to the spectral receptive fields
(SRF) of the neurons, since they weight the different frequency bands. Bluish
colors correspond to negative values, reddish colors to positive values. (a2) Same
as (a1), after learning. The SRFs now have an excitatory subfield, and one or
two inhibitory subfields, compatible with SRFs observed in primary auditory
cortex [86]. (a3) Change in SRFs after re-training with a new stimulus (see
fig. 4.5d). The SRFs change selectively (positively and negatively) at the position
of the trained frequencies. The frequency-selective change in SRFs is in line with
fast plastic changes of SRFs observed following behavioral training [149]. There is
also a small decrease in gain at other frequencies, due to the competition with the
new stimulus. (b) Same as in (a), but for the decoding weights. (b1) Decoding
weights of neurons (sorted as in a1) before learning appear random. (b2) After
learning, the decoding weights are more structured and broader than the SRFs in
(a2), compatible to the decoding filter of speech measured in auditory cortex [86].
Same sorting of neurons as in (a2). (b3) After re-training to the new stimulus, a
small number of decoding filter (neurons) “specialize” to the new stimulus, while
the decoding weights of the others change only mildly. The network thereby
minimizes its firing rate response to the new stimulus, while still providing an
accurate representation of it.

109

fields (fig. 4.6a1-2). Decoding weights are wider and more complex, thus
exploiting the high correlations between frequency channels (fig. 4.6b1-2).
These model predictions are broadly compatible with observations in the
mammalian auditory pathway, and notably the representation of speech
signals in A1 [86].

As a drawback, the network has become specialized, and a new “non-
speech” stimulus results in poor EI balance, high firing rates, and poor
coding (fig. 4.5d,e). After experiencing the new sound several times, how-
ever, the network represents the “non-speech” sound as precisely and par-
simoniously as the previously experienced speech sounds (fig. 4.5f). After
retraining to the new stimulus, feed-forward weights are modified specif-
ically at the frequencies of the new stimulus (fig. 4.6a3). However, these
changes are not massive. In particular, only a handful of neurons (two
in this example) have become truly specialized to the new stimulus, as
reflected by their decoding weights (fig. 4.6b3).

4.2.6 Robustness of Learning against perturbations

A crucial final question is whether these learning rules continue to work
under more realistic conditions, such as noise in various components of the
circuit, delays in the synaptic transmission, or constraints on the ability of
arbitrary neurons to form synaptic connections in the first place. To answer
these questions, we first note that the learning rules work independent of
the initial state of the network. As long as the initial network dynamics are
sufficiently stable, the learning rules converge globally (see Supplementary
Text S9 and S10 for a proof). We furthermore note that the networks
perform better and become more robust as the number of neurons increases
(fig. 4.7a, see also [12]).

We first studied how the learning rules perform when not all neurons
can form (potential) synaptic connections. As shown in fig. 4.7b, eliminat-

110

https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary

E

I

A B C D

Er
ro

r [
a.

u.
]

Er
ro

r [
a.

u.
]

Missing Connections [%]
0 100

Network size Synaptic noise [Hz] time

Er
ro

r [
a.

u.
]

20 Neurons
50 Neurons

50 Neurons
(Poisson)

20 Neurons
(Poisson)

no delay
0.5ms delay
1ms delay
2ms delay
Poisson

time

IP
SP

EP
SP

Figure 4.7: Robustness of the learning rules to missing connections,
noise, and synaptic delays. Simulations are based on EI networks
receiving two-dimensional, random input signals. Network size is given
as number of inhibitory neurons. The pool of excitatory neurons is
twice as large. (a) Performance (mean-square error between input signal and
signal estimate) of the learnt network as a function of (inhibitory) network size.
Trained network (blue) and equivalent Poisson rate network (black), given by
neurons whose firing follows Poisson processes with identical average rates. (b)
Performance of the learnt network as a function of connection sparsity. Here, we
randomly deleted some percentage of the connections in the network, and then
trained the remaining connections with the same learning rule as before. We
adjusted the variance of the input signals to achieve the same mean firing rate
in each neuron (r = 5 Hz in excitatory, r = 10 Hz in inhibitory neurons). Black
lines denote the performance of an equivalent (and unconnected) population of
Poisson-spiking neurons. (c) Network performance as a function of synaptic noise
and synaptic delay. Here, we injected random white-noise currents into each
neuron. The size of the noise was defined as the standard deviation of the injected
currents, divided by the time constant and firing threshold. Roughly, this measure
corresponds to the firing rate cause by the synaptic noise alone, in the absence
of connections or input signals. As in B, the input variance was scaled to get
the same mean firing rate in each neuron (r = 5 Hz in excitatory, r = 10 Hz
in inhibitory neurons). Different colors show curves for different synaptic delays
(see panel d). (d) Temporal profile of EPSCs and IPSCs (injected currents each
time a spike is received) in the delayed networks, plotted as a function of the
synaptic delay d. We rescaled the time axis to get the different delays used in
panel c.

111

ing potential synapses only affects the performance of the learnt network
when drastic limits are imposed (less than 20% of connections available
for a network with N = 50 inhibitory neurons). Smaller networks are gen-
erally more sensitive (fig. 4.7b, dashed blue line), whereas larger networks
are less sensitive.

To study the resistance of the learning rules against noise, we intro-
duced random currents into the neurons, which can be viewed as a sim-
ulation of stochastic fluctuations in ion channels or background synaptic
activity. For reasonable levels of noise, this modification had an essentially
negligible effect on network performance. fig. 4.7c shows the error made by
the networks after learning as a function of the strength of the introduced
noise.

A final concern could be to what extent the learning rules rely on
overtly simplistic synaptic dynamics—each spike causes a jump in the
postsynaptic voltage followed by an exponential decay. To address this
question, we also simulated the network assuming more realistic synap-
tic dynamics (fig. 4.7d). We measures the effective delay of transmission
as the time-to-peak for a postsynaptic potential. Within the range of
mono-synaptic transmission delays observed in cortical microcircuits, the
networks still learns to encode their input signals efficiently, see fig. 4.7b.
As transmission delays grow larger, a degradation in performance is in-
curred due to limited synchrony between similarly tuned neurons, which
is unavoidable in the presence of delayed inhibition. Indeed, by keeping
excitatory and inhibitory currents as balanced as possible, the network au-
tomatically finds an optimal regime of weak synchronization, removing the
need for fine tuning of the network parameters. Such weak synchronization
causes weak oscillations in the network activity whose time scales may be
related to gamma rhythms [30].

Thus, we found that under a wide range of perturbations, the network
learnt to achieve a performance near the discretization limit, outperform-

112

ing conventional spiking networks or population coding models based on
Poisson spike trains. This robustness is inherited from the generality of the
relationship between EI balance and the error-correcting coding strategy
in the network [12, 19].

4.2.7 Manipulating plasticity

One of the key consequences of our derivations is that feedforward and re-
current plasticity serve different goals. Whereas recurrent plasticity works
to balance the network, keeping all voltages (and thereby the respective
coding errors) in check, feedforward plasticity works to unbalance each
neuron, driving up excitation as much as possible. Since the recurrent
plasticity rules are faster, they win this competition, and the network re-
mains in a balanced state.

These considerations lead to some fundamental, yet experimentally
testable predictions that are illustrated in fig. 4.8. In this simulated exper-
iment, a number of neurons with similar tuning curves to angular stimuli
(such as oriented gratings) are suddenly killed (fig. 4.8a, dashed arrows).
In principle, this should severely impair the representation of stimuli in
this direction. However, three mechanisms are recruited to compensate for
the degradation of the representation. In a first step, the EI imbalance
introduced by the lesion is immediately corrected by the network. This
occurs instantaneously, before any plasticity mechanisms can be involved.
As a result, the tuning curves of some neurons shift, widen, and increase
in amplitude in an effort to cover the “hole” made in the representation
(Figure 8B). This compensation is a result of instantaneous des-inhibition
in the lesioned network, not plasticity [12]. While this re-balancing lim-
its coding errors, it still leads to an inefficient representation due to the
large firing rates required from compensating neurons. In a second step,
the recurrent learning rules kick in, and the network adapts its recurrent
connections so that each neuron is again balanced on a spike-by-spike time

113

A
T

ra
in

ed
n

et
w

o
rk

B

A
m

p
u

ta
te

d
 n

et
w

o
rk

C

R
et

ra
in

ed
 n

et
w

o
rk

D

R
et

ra
in

ed
 w

/
o

fe
ed

fo
rw

ar
d

 p
la

st
ic

it
y

E

R
et

ra
in

ed
 w

/
o

re
cu

rr
en

t
p

la
st

ic
it

y

decoding weights

D
feedforward weights

F

DF

DF

DF

DF

Figure 4.8: (legend on next page)

114

Figure 4.8: Manipulating recurrent and feedforward plasticity. (a) EI
network with 80 excitatory neurons and 40 inhibitory neurons, trained with two
uncorrelated time-varying inputs. Left panels: learnt feedforward weights of ex-
citatory population. Central panels: Optimal decoding weights of excitatory
population. Right panels: Tuning curves of excitatory neurons (red) and in-
hibitory neurons (blue). Neurons encoding/decodings weights and tuning curves
are shaded according to their preferred direction (direction of their decoding
weight vector) in 2D input space. The color code is maintained in all subsequent
figures (even if their preferred direction changed after lesion and/or retraining).
(b) Same network after deletion of leftward-coding excitatory neurons (see dashed
lines in panel a). Note that no new training of the weights has yet taken place.
Changes in tuning curves and decoding weights are due to internal network dy-
namics. We observe a large increase in firing rates and a widening and shifting
of tuning curves towards the lesion, a signature that the network can still encode
leftward moving stimuli, but does it in an inefficient way. (c) Retrained network.
The lesioned network in (b) was subjected to 1000s re-training of the connec-
tion. Consequently, the “hole” induced by the lesion has been filled by the new
feedforward/decoding weights, all tuning curves once again covering the input
space uniformly. (d) Network with retrained recurrent connections (feedforward
weights are the same as in panel b). Even without feedforward plasticity, the
lesioned network is able to recover its efficiency to a large extent. (e) Network
with retrained feedforward weights only (recurrent connections are the same as
in panel b). While feedforward weights once again cover the input space, ab-
sence of recurrent plasticity results in a massive increase in firing rates and a
concomitant decrease in coding precision (not shown). Consequently, training
only feedforward weights after a lesion actually worsens the representation.

115

scale. In a third step, the network also re-learns the feedforward weights
through the slower feedforward learning rules. As a consequence, the final,
adapted network again covers the input space uniformly, just with fewer
neurons (fig. 4.8c).

Importantly, and as already shown in fig. 4.2, plasticity of the recurrent
EI loop (including E to I connections) is more important for this process
than plasticity on the feedforward weights. This observation leads to the
following prediction: even in the absence of feedforward plasticity, the net-
work recovers most of its efficiency (fig. 4.8d). While the tuning curves
never achieve the perfect re-arrangement of the network with intact plas-
ticity (fig. 4.8c), the responses of overactive cells are suppressed and shifted
further towards the impaired direction. In contrast, if we were to block
recurrent plasticity (fig. 4.8e), the network would become unbalanced and
thereby inefficient due to the remaining action of the feedforward weights.
While selectively blocking plasticity mechanisms at different synapses may
seem a bit outlandish at first, the modern molecular biology toolbox does
put it within reach [89]. By combining such techniques with focal lesions
and awake recordings (e.g. calcium imaging) in local neural populations,
these predictions are now within the range of the testable.

A second important prediction arises from the differential time course
of feedforward and recurrent plasticity. Since recurrent plasticity should be
much faster than feedforward plasticity, we predict that a partial recovery
of the network efficiency will occur relatively fast (in minutes to hours of
exposure to the stimuli with orientations matching the knocked-out cells).
This will be performed mainly through a re-equalization of the population
responses, but without major changes in the preferred tuning of the cells
(compare fig. 4.8b and fig. 4.8d). It will eventually be followed by a slower
recovery of the tuning curve shapes and uniform density (but at a much
slower time scale, e.g. over days or weeks of exposure).

116

4.3 Discussion

In summary, we have shown how populations of excitatory and inhibitory
neurons can learn to efficiently represent a set of signals spike by spike.
We have measured efficiency with an objective function that combines the
mean-square reconstruction error with various cost terms. While mathe-
matically simpler than mutual-information-based approaches, our objec-
tive function includes both principal and overcomplete independent com-
ponent analysis as special cases [76, 61]. This type of unsupervised learning
has previously been studied extensively in rate networks [94, 78, 14, 5, 79,
139, 98, 99, 63]. Implementations that seek to mimic biology by assuming
spiking neurons, recurrent network architectures, and local learning rules,
have always faced difficulties, and have therefore been largely limited to
heuristic or approximate approaches, [110, 34, 151, 68, 27]. Using a rigor-
ous, spike-based, and top-down approach, we have here derived biologically
plausible learning rules that are guaranteed to converge to a specific con-
nectivity and achieve a maximally efficient spike code. Importantly, single
spikes are not to be considered as random samples from a rate, but are
rather an integral part of a metabolically efficient brain.

We have limited our study on learning here to the encoding of time-
varying signals into spikes. Several questions seem natural at this point.
First, beyond peripheral sensory systems, most neurons receive spikes as
inputs, not analog signals, which seems to violate one of our core premises.
Second, neural systems perform computations with the signals they receive,
rather than encoding them into spikes, only to be read out again at a later
stage, which may seem a rather pointless exercise. Third, our learning
rules have been derived in an unsupervised scenario, and one may wonder
whether the core ideas underlying these rules can be extended beyond that.

Concerning spiking inputs, we note that nothing prevents us from re-
placing the analog input signals with spike trains. While we have chosen to

117

explain these learning rules using analog inputs, our derivations were not
dependent on this restriction. In fact, we have already used spike trains
rather than analog input signals in the simulation of the EI-network in
fig. 4.4—here the inhibitory neurons received spike trains from the exci-
tatory neurons as ‘feedforward’ inputs, and we applied exactly the same
feedforward learning rules as for the continuous-valued input signals (see
also Supplementary Text S13).

Concerning computations, we note that the solution to the encoding
problem provides a necessary starting point for introducing more complex
computations. For example, we showed previously that a second set of
slower connections can implement arbitrary linear dynamics in optimally
designed networks [19]. Non-linear computations can be introduced as
well, but require that these non-linearities are implemented in synapses or
dendrites [132]. The separation between coding and computation in these
approaches is very similar to the separation used in the neural engineering
framework [41].

Concerning learning, we note that there has been quite a lot of progress
in recent years in developing local learning rules in supervised scenarios,
both in feedforward [52, 142, 107] and recurrent networks [50, 2]. We
believe that the framework presented here provides crucial intuitions for
supervised learning in spiking networks, since it shows how to represent
global errors in local quantities such as voltages. In the future, these ideas
may be combined with explicit singe-neuron models [135] to turn local
learning rules into global functions [37, 2, 107].

Apart from the theoretical advances in studying learning in spiking
networks, many of the critical features that are hallmarks of cortical dy-
namics follow naturally from our framework, even though they were not
included in the original objective. We list four of the most important fea-
tures. First, the predicted spike trains are highly irregular and variable,
which has indeed been widely reported in cortical neurons [134, 147]. Im-

118

https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary

portantly, this variability is a signature of the network’s coding efficiency,
rather than detrimental [116] or purposeful noise [46, 25]. Second, despite
this spike train variability, the membrane potentials of similarly tuned
neurons are strongly correlated (due to shared inputs), as has indeed been
found in various sensory areas [101, 150]. Third, local and recurrent inhi-
bition in our network serves to balance the excitatory feedforward inputs
on a very fast time scale. Such EI balance, in which inhibitory currents
track excitatory currents on a millisecond time scale has been found in
various systems and under various conditions [62, 148]. Fourth, we have
derived learning rules whose polarity depends on the relative timing of
pre-and postsynaptic spikes (see insets in fig. 4.4a). In fact, the respective
sign switches simply reflect the immediate sign reversal of the coding error
(and thus of the membrane potential) after each new spike. As a result,
even though our proposed learning rules are not defined in terms of rela-
tive timing of pre- and postsynaptic spikes, most connections display some
features of the classic STDP rules, e.g., LTP for pre-post pairing, and LTD
for post-pre pairing [28, 45]. The only exception are E-E connections that
exhibit “reverse STDP”, i.e. potentiation for post-pre pairing (fig. 4.4a).
Despite their simplicity, these rules are not only spike-time dependent but
also weight and voltage-dependent, as observed experimentally [34].

Our framework thereby bridges from the essential biophysical quanti-
ties, such as the membrane voltages of the neurons, to the resulting pop-
ulation code, while providing crucial new insights on learning and coding
in spiking neural networks.

4.4 Materials and methods

Detailed mathematical derivations of the learning rules are explained in
the supplementary materials, available online at the following URL:

119

https://journals.plos.org/ploscompbiol/article/file?id=10.

1371/journal.pcbi.1007692.s001&type=supplementary.
In addition, MATLAB code for the key simulations of the article is avail-
able at https://github.com/machenslab/spikes.

4.5 Author contributions

R.B. and S.D. derived and implemented biologically plausible learning
rules, whereas W.B., P.V., and C.K.M. derived and implemented optimal
learning rules. C.K.M. and S.D. drafted the main text, W.B. and P.V.
drafted the Supplementary Materials. All authors reviewed and edited the
paper.

120

https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007692.s001&type=supplementary
https://github.com/machenslab/spikes

Chapter 5

General discussion

This research aimed to tackle the computational problem of inferring rel-
evant variables that are not directly observable. We proceeded with a
multi-pronged approach.

5.1 Decision-making under uncertainty

The inference of latent variables is a pervasive computational problem in
naturalistic animal behavior. Therefore, we reasoned, both simpler and
more complex organisms must have developed mechanisms to tackle it.

By means of a carefully designed cross-species task, we tested, so
to speak, “nature’s solution” to this problem. We discovered that mice
can learn the hidden structure of the environment, on reasonably fast
timescales. As the task design allows us to quantitatively disambiguate
optimal inference-based strategies from suboptimal value-based heuristics,
we could monitor the “inference performance” of mice, and saw that it
plateaued to an optimum after a few sessions. Moreover, mice were able to
adjust their behavior to task parameters, whether explicit (travel cost) or
implicit (probability values), consistently with the behavior of an optimal
agent.

121

As an added advantage of our computationally-oriented approach, we
were able to translate verbatim the rodent behavioral task into a video
game for humans. There, the same normative predictions that held true
for mice were again verified, with a notable difference. Whereas mice took
several sessions to learn the structure of the task, humans could do so in
only a few trials. This result, however, is potentially confounded by any
preconceived notion that human subjects could have about the task, as
well as by the instructions they received.

Having established that mice and humans perform similar computa-
tions in analogous tasks, we took advantage of modern genetic tools in
rodents to determine the underlying mechanisms. We inactivated optoge-
netically two prefrontal cortical regions—Anterior Cingulate Cortex (ACC)
and Orbito-Frontal Cortex (OFC)—in an interleaved fashion while mice
were performing the task.

Using optogenetics, we showed that ACC and OFC contribute differ-
entially to this computational process. In particular, whereas ACC inac-
tivation corresponded to an increase in patience, but did not affect the
inference process, OFC inactivation disrupted the optimal inference pro-
cess and caused mice to revert to a simpler value-based strategy.

5.2 Intelligible artificial intelligence

We addressed the latent variable decoding problem from a normative per-
spective, using contemporary tools from machine learning. There, we
aimed for generality. Even though specific tasks used in neuroscience labs
often admit explicit optimal solutions, real-world problems often do not:
as the problem complexity increases, optimal solutions become intractable.
The core of the computation consists in finding an expressive, differentiable
parameterization of the solution space. An “optimal” solution (technically,

122

a local minimum of the loss function) can then be found with standard
gradient-based optimization algorithms.

In the parametric machine framework, we were able to show that such
efficient parameterizations can be characterized in terms of the existence
and uniqueness of the solution of a simple equation. We explored three
different families of parametric machines, based on hypergraph, integral
equations, and kernels.

We formalized the notion of feedforward neural network in terms of hy-
pergraph representations and showed that the global transformation (i.e.,
the sum of all layers) of a feedforward neural network respects the machine
property. This represented our prototypical discrete architecture. Dissatis-
fied with the manual choice of a hypergraph to encode the architecture, we
borrowed ideas from kernel methods and showed that, in the case of small
datasets, there is no need to select an architecture manually. Instead, all
connections can be allowed, without incurring an uncontrolled increase in
the number of parameters. This is a classical trick in the framework or
kernel Ridge regression, but to our knowledge, it had not yet been used to
define multilayer architectures with shortcut connections.

We implemented hypergraph-based and kernel machines in Py-
Torch [96]. Using automatic differentiation software, we computed their
derivatives with respect to a differentiable loss function. We trained kernel
machines alongside deep neural networks with a comparable number of
parameters and showed that the kernel machine reaches higher accuracies
and interpolates more smoothly on small datasets.

A new line of research in machine learning [32] argues that some
neural networks can be reframed in terms of ordinary differential equa-
tions (ODEs). Indeed, computing the forward pass of a residual net-
work [55] is equivalent to solving a discretized ODE using the Euler
method. It could, therefore, be more efficient to drop the discretization
and adopt adaptive algorithms. This novel approach goes under the name

123

of Neural ODE: it only requires learning a single function φ(u, t) that
encodes a derivative, and decouples the definition of the problem (the
function φ) from its computation (the choice of an ODE solver). Intrigued
by the conceptual simplicity of Neural ODEs, we investigated whether
such continuous architectures were also a particular case of the machine
framework. Again, we found a positive answer: an ODE can be framed as
a nonlinear Volterra integral equation of the second kind, which satisfies
the machine characterization.

Combining kernel machines and known results on efficient methods to
solve Volterra equations of a specific type, we were able to define infinite-
depth kernel machines. We implemented infinite-depth kernel machines in
PyTorch, and tested their performance on an image classification task with
a tiny training dataset (one example per class).

5.3 Biologically plausible learning

Massively distributed computing systems, consisting of many intercon-
nected simple units, were put forward as a model of cognition several
decades ago [121]. Arguably, modern neural networks, and more generally
parametric machines, respect the fundamental hypotheses of the connec-
tionist credo. In recent years, this is in no small part due to technical rather
than conceptual reasons: connectionist architectures, due to their parallel
nature, are particularly well-suited for Graphics Processing Units [59].

Nonetheless, from a neuroscientific perspective, it remains interesting
to verify whether neural tissue is a suitable computing device for con-
nectionist architectures. While the elementary computations of artificial
neurons—linear combinations and pointwise nonlinearities—are certainly
within the capabilities of biological neurons and synapses, the situation
is more delicate in the case of learning. Even if the network is sparsely
connected, the optimal learning rate, derived mathematically from an ob-

124

jective function, will depend on global quantities that are not available
locally to each synapse.

Here, we focused on a specific computation—encoding and decoding
efficiently and robustly a low-dimensional analog signal. We devised sim-
ple plasticity rules for feedforward and recurrent synapses, based on post-
synaptic voltages and currents at the time of a presynaptic spike. The
recurrent rules aimed to tighten the excitation/inhibition balance of the
network on a very fast timescale, on the order of a single population inter-
spike interval.

In general, the projections of the input signal onto the cells of an en-
coding population have no reason to be equal to the decoding weights, yet
we showed that this is optimal in the case of whitened input, and devised
feedforward rules to achieve this. Furthermore, we discussed how to mod-
ify the learning rules, preserving the locality constraints, in the case of
non-white input.

Even though the computation we studied—encoding and decoding a
signal—may seem trivial, we find that it can be beneficial for several rea-
sons. On the one hand, in the presence of regularization costs, our net-
work can compute sparse, overcomplete bases [76]. We showed that the
network can learn correlation in the structure of speech signals, in order
to represent them with high precision. On the other hand, by encoding a
low-dimensional signal in a large network, it is possible to gain robustness.
In particular, it has been shown that our network architecture is resilient
to neural death: as soon as a cell fails, remaining neurons with over-
lapping receptive fields compensate for it instantaneously and optimally.
Indeed, we tested robustness to a variety of issues—missing connections,
noise, and synaptic delays—and showed that the network’s performance
degraded gracefully.

Finally, to bring our theoretical network closer to experimental data,
we modified it to include two separate populations of excitatory and in-

125

hibitory cells. In this scenario, we tested how our plasticity rules would
respond to experimental protocols designed to probe synaptic potentiation
and depotentiation mechanisms.

5.4 Future directions

This thesis discussed the general problem of decoding relevant latent vari-
ables from several perspectives: behavioral neuroscience, artificial intelli-
gence, and theoretical neuroscience. While these three approaches were so
far pursued separately, it is interesting to speculate on how they could be
combined.

Artificial versus biological agents in video games. In chapter 2,
we prioritized simplicity in designing our task, both in its rodent and hu-
man versions. Yet, especially in the case of the human video game, it is
natural to imagine a more complex, engaging version. For instance, in
classical Atari games, artificial agents were only recently able to achieve
performance comparable with humans [88]. The key to the excellent per-
formance of human experts may not be dexterity, but rather the ability
to infer and predict future events. Experienced players could for example
learn the statistical structure of the enemies’ attacks, and make use of this
knowledge in their strategy. In the future, I plan to design a simple, but
engaging, bullet hell video game (see fig. 5.1 for a preview), and make it
available online to collect a large sample of playing data. Hopefully, such a
dataset will make it possible to uncover the inference processes underlying
the players’ decisions. Qualitative and quantitative comparisons with such
a dataset could be a useful benchmark for artificial agents (e.g., parametric
machines) in Reinforcement Learning. In particular, it will be interesting
to correlate the dimensionality of the hidden space of the video game—

126

how many hidden variables are sufficient statistics of the game—with the
performance of both human and artificial agents.

Figure 5.1: A prototype of an engaging inference-based video game.

Efficient relevant coding. Both the parametric machines and the spik-
ing neural network models of efficient coding, developed in chapters 3 and 4
respectively, are unfortunately not optimized for Reinforcement Learning.
This is not an intrinsic limitation of the models, but rather a consequence
of the choice of the loss function. The artificial agents aim to encode all
information they receive, whether it is relevant to solve a given task or not.
This is particularly problematic, as recurrent neural networks tend to have
limited memory, especially in the case of high-dimensional inputs. In the
future, I plan to investigate how classical loss functions can be modified to
take into account the relevance of information in the context of a task.

Biologically plausible machines. The biologically plausible learning
rules discussed in chapter 4 are limited to specific computations—encoding

127

and decoding. The network structure can be extended with slow recurrent
connections to track arbitrary dynamical systems, as shown in [19]. This
more complex architecture can be learned with local learning rules [2].
However, it will be interesting to explore whether this approach generalizes
to deeper architectures. In particular, I speculate that a biological imple-
mentation of finite- and infinite-depth parametric machines may require in
general feedback connections, to mimic the backward pass of reverse-mode
differentiation [125]. The error signal, received in the final stages of the
computation, needs to be backpropagated to the early processing steps,
in order to optimize those. It will be interesting to investigate to what
extent the microcircuitry of feedback connections in the neocortex can be
understood under the light of reverse-mode differentiation.

128

Bibliography

[1] M. Akrout, C. Wilson, P. Humphreys, T. Lillicrap, and D. B. Tweed.
Deep learning without weight transport. In Advances in Neural In-
formation Processing Systems, pages 974–982, 2019.

[2] A. Alemi, C. K. Machens, S. Deneve, and J.-J. Slotine. Learning
nonlinear dynamics in efficient, balanced spiking networks using local
plasticity rules. In Thirty-Second AAAI Conference on Artificial
Intelligence, pages 588–595, 2018.

[3] M. A. Álvarez, L. Rosasco, and N. D. Lawrence. Kernels for Vector-
Valued Functions: A Review. Foundations and Trends® in Machine
Learning, 4(3):195–266, June 2012.

[4] S.-i. Amari. Dynamics of pattern formation in lateral-inhibition type
neural fields. Biological cybernetics, 27(2):77–87, 1977.

[5] S.-i. Amari, A. Cichocki, and H. H. Yang. A new learning algo-
rithm for blind signal separation. In Advances in neural information
processing systems, pages 757–763, 1996.

[6] D. J. Amit and N. Brunel. Model of global spontaneous activity and
local structured activity during delay periods in the cerebral cortex.
Cerebral cortex, 7(3):237–252, 1997.

[7] N. Aronszajn. Theory of Reproducing Kernels. Transactions of the
American Mathematical Society, 68(3):337–404, 1950.

[8] K. J. Astrom. Optimal control of markov decision processes with
incomplete state estimation. J. Math. Anal. Applic., 10:174–205,
1965.

129

[9] H. Attias. Planning by probabilistic inference. In AISTATS. Citeseer,
2003.

[10] B. B. Averbeck, P. E. Latham, and A. Pouget. Neural correlations,
population coding and computation. Nature Reviews Neuroscience,
7(5):358–366, 2006.

[11] C. T. H. Baker. A perspective on the numerical treatment of Volterra
equations. Journal of Computational and Applied Mathematics,
125(1):217–249, Dec. 2000.

[12] D. T. Barrett, S. Denève, and C. K. Machens. Optimal compensation
for neuron loss. eLife, 5:e12454, 2016.

[13] D. Bates, José Bayoán Santiago Calderón, D. Kleinschmidt, T. Kel-
man, S. Babayan, P. K. Mogensen, M. Piibeleht, M. Bouchet-
Valat, M. Hatherly, E. Saba, A. Baldassari, and A. Noack. Dm-
bates/MixedModels.jl: Avoid fallback to generic_matmul, Mar.
2019.

[14] A. J. Bell and T. J. Sejnowski. An information-maximization ap-
proach to blind separation and blind deconvolution. Neural compu-
tation, 7(6):1129–1159, 1995.

[15] R. Ben-Yishai, R. L. Bar-Or, and H. Sompolinsky. Theory of orien-
tation tuning in visual cortex. Proceedings of the National Academy
of Sciences, 92(9):3844–3848, 1995.

[16] M. G. Bergomi, P. Frosini, D. Giorgi, and N. Quercioli. Towards
a topological–geometrical theory of group equivariant non-expansive
operators for data analysis and machine learning. Nature Machine
Intelligence, pages 1–11, Sept. 2019.

[17] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A
Fresh Approach to Numerical Computing. SIAM Review, 59(1):65–
98, Jan. 2017.

[18] C. M. Bishop and P. o. N. C. C. M. Bishop. Neural Networks for
Pattern Recognition. Clarendon Press, Nov. 1995.

130

[19] M. Boerlin, C. K. Machens, and S. Denève. Predictive coding of dy-
namical variables in balanced spiking networks. Plos Computiational
Biology, 9(11):e1003258, 2013.

[20] R. Bourdoukan, D. Barrett, C. K. Machens, and S. Deneve. Learning
optimal spike-based representations. In Advances in neural informa-
tion processing systems, pages 2285–2293, 2012.

[21] J. M. Bownds. Theory and performance of a subroutine for solving
Volterra Integral Equations. Computing, 28(4):317–332, Dec. 1982.

[22] X. Boyen, N. Friedman, and D. Koller. Discovering the Hidden
Structure of Complex Dynamic Systems. In Proceedings of the Fif-
teenth Conference on Uncertainty in Artificial Intelligence, UAI’99,
pages 91–100, Stockholm, Sweden, 1999. Morgan Kaufmann Pub-
lishers Inc.

[23] D. A. Braun, C. Mehring, and D. M. Wolpert. Structure learning in
action. Behavioural Brain Research, 206(2):157–165, Jan. 2010.

[24] B. W. Brunton, M. M. Botvinick, and C. D. Brody. Rats and Humans
Can Optimally Accumulate Evidence for Decision-Making. Science,
340(6128):95–98, Apr. 2013.

[25] L. Buesing, J. Bill, B. Nessler, and W. Maass. Neural dynamics as
sampling: a model for stochastic computation in recurrent networks
of spiking neurons. PLoS Comput Biol, 7(11):e1002211, 2011.

[26] Y. Burak and I. R. Fiete. Fundamental limits on persistent activity
in networks of noisy neurons. Proceedings of the National Academy
of Sciences, 109(43):17645–17650, 2012.

[27] K. S. Burbank. Mirrored stdp implements autoencoder learning
in a network of spiking neurons. PLoS computational biology,
11(12):e1004566, 2015.

[28] N. Caporale and Y. Dan. Spike timing-dependent plasticity: a heb-
bian learning rule. Annu. Rev. Neurosci., 31:25–46, 2008.

131

[29] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting op-
timally in partially observable stochastic domains. In AAAI, vol-
ume 94, pages 1023–1028, 1994.

[30] M. Chalk, B. Gutkin, and S. Deneve. Neural oscillations as a signa-
ture of efficient coding in the presence of synaptic delays. Elife, 5,
2016.

[31] E. L. Charnov. Optimal foraging, the marginal value theorem. The-
oretical Population Biology, 9(2):129–136, Apr. 1976.

[32] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud.
Neural Ordinary Differential Equations. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems 31, pages
6571–6583. Curran Associates, Inc., 2018.

[33] Y. Cho and L. K. Saul. Kernel Methods for Deep Learning. In
Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and
A. Culotta, editors, Advances in Neural Information Processing Sys-
tems 22, pages 342–350. Curran Associates, Inc., 2009.

[34] C. Clopath, L. Büsing, E. Vasilaki, and W. Gerstner. Connectiv-
ity reflects coding: a model of voltage-based stdp with homeostasis.
Nature neuroscience, 13(3):344–352, 2010.

[35] N. D. Daw, S. J. Gershman, B. Seymour, P. Dayan, and R. J. Dolan.
Model-based influences on humans’ choices and striatal prediction
errors. Neuron, 69(6):1204–1215, Mar. 2011.

[36] N. D. Daw, Y. Niv, and P. Dayan. Uncertainty-based competition
between prefrontal and dorsolateral striatal systems for behavioral
control. Nature Neuroscience, 8(12):1704–1711, Dec. 2005.

[37] S. Denève, A. Alemi, and R. Bourdoukan. The brain as an efficient
and robust adaptive learner. Neuron, 94(5):969–977, 2017.

[38] S. Denève and C. K. Machens. Efficient codes and balanced networks.
Nature neuroscience, 19(3):375–382, 2016.

132

[39] L. Deng. The mnist database of handwritten digit images for ma-
chine learning research [best of the web]. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

[40] P. Drineas and M. W. Mahoney. On the Nyström Method for Ap-
proximating a Gram Matrix for Improved Kernel-Based Learning.
Journal of Machine Learning Research, 6(Dec):2153–2175, 2005.

[41] C. Eliasmith. A unified approach to building and controlling spiking
attractor networks. Neural computation, 17(6):1276–1314, 2005.

[42] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf,
Y. Tang, and D. Rasmussen. A large-scale model of the functioning
brain. science, 338(6111):1202–1205, 2012.

[43] T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search:
A survey. arXiv preprint arXiv:1808.05377, 2018.

[44] N. Eshel, J. Tian, M. Bukwich, and N. Uchida. Dopamine neurons
share common response function for reward prediction error. Nature
Neuroscience, 19(3):479–486, Mar. 2016.

[45] D. E. Feldman. The spike-timing dependence of plasticity. Neuron,
75(4):556–571, 2012.

[46] J. Fiser, P. Berkes, G. Orbán, and M. Lengyel. Statistically optimal
perception and learning: from behavior to neural representations.
Trends in cognitive sciences, 14(3):119–130, 2010.

[47] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hyper-
graphs and applications. Discrete Applied Mathematics, 42(2):177–
201, Apr. 1993.

[48] D. Ganguli and E. Simoncelli. Efficient sensory encoding and
bayesian inference with heterogeneous neural populations. Neural
Computation, 26(10):2103–34, 2014.

[49] A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner. Neuronal
population coding of movement direction. Science, 233(4771):1416–
1419, 1986.

133

[50] A. Gilra and W. Gerstner. Predicting non-linear dynamics by stable
local learning in a recurrent spiking neural network. Elife, 6:e28295,
2017.

[51] J. I. Gold and M. N. Shadlen. The Neural Basis of Decision Making.
Annual Review of Neuroscience, 30(1):535–574, 2007.

[52] J. Guerguiev, T. P. Lillicrap, and B. A. Richards. Towards deep
learning with segregated dendrites. ELife, 6:e22901, 2017.

[53] M. Hausknecht and P. Stone. Deep recurrent q-learning for partially
observable mdps. In 2015 AAAI Fall Symposium Series, 2015.

[54] B. Y. Hayden, J. M. Pearson, and M. L. Platt. Neuronal basis
of sequential foraging decisions in a patchy environment. Nature
Neuroscience, 14(7):933–939, July 2011.

[55] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for
Image Recognition. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 770–778, 2016.

[56] G. Hennequin, E. J. Agnes, and T. P. Vogels. Inhibitory plasticity:
balance, control, and codependence. Annual Review of Neuroscience,
40:557–579, 2017.

[57] R. J. Herrnstein. Relative and Absolute Strength of Response as a
Function of Frequency of Reinforcement1,2. Journal of the Experi-
mental Analysis of Behavior, 4(3):267–272, 1961.

[58] T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel Methods in
Machine Learning. The Annals of Statistics, 36(3):1171–1220, 2008.

[59] S. Hong and H. Kim. An analytical model for a gpu architecture
with memory-level and thread-level parallelism awareness. In Pro-
ceedings of the 36th annual international symposium on Computer
architecture, pages 152–163, 2009.

[60] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. The Journal
of physiology, 160(1):106–154, 1962.

134

[61] A. Hyvärinen, J. Karhunen, and E. Oja. Independent component
analysis, volume 46. John Wiley & Sons, 2004.

[62] J. S. Isaacson and M. Scanziani. How inhibition shapes cortical
activity. Neuron, 72(2):231–243, 2011.

[63] T. Isomura and T. Toyoizumi. A local learning rule for independent
component analysis. Scientific reports, 6:28073, 2016.

[64] H. Kadri, E. Duflos, P. Preux, S. Canu, A. Rakotomamonjy, and
J. Audiffren. Operator-valued kernels for learning from functional re-
sponse data. The Journal of Machine Learning Research, 17(1):613–
666, 2016.

[65] L. V. Kantorovich and G. P. Akilov. Functional Analysis. Pergamon
Press, Oxford ; New York, 2d ed edition, 1982.

[66] T. Kawai, H. Yamada, N. Sato, M. Takada, and M. Matsumoto.
Roles of the Lateral Habenula and Anterior Cingulate Cortex in Neg-
ative Outcome Monitoring and Behavioral Adjustment in Nonhuman
Primates. Neuron, 88(4):792–804, Nov. 2015.

[67] G. Kimeldorf and G. Wahba. Some results on tchebycheffian
spline functions. Journal of mathematical analysis and applications,
33(1):82–95, 1971.

[68] P. D. King, J. Zylberberg, and M. R. DeWeese. Inhibitory interneu-
rons decorrelate excitatory cells to drive sparse code formation in a
spiking model of v1. The Journal of Neuroscience, 33(13):5475–5485,
2013.

[69] N. Kolling, T. E. J. Behrens, R. B. Mars, and M. F. S. Rushworth.
Neural Mechanisms of Foraging. Science, 336(6077):95–98, Apr.
2012.

[70] N. Kolling, M. Wittmann, and M. F. S. Rushworth. Multiple Neu-
ral Mechanisms of Decision Making and Their Competition under
Changing Risk Pressure. Neuron, 81(5):1190–1202, Mar. 2014.

135

[71] N. Kolling, M. K. Wittmann, T. E. J. Behrens, E. D. Boorman,
R. B. Mars, and M. F. S. Rushworth. Value, search, persistence and
model updating in anterior cingulate cortex. Nature Neuroscience,
19(10):1280–1285, Oct. 2016.

[72] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classifica-
tion with deep convolutional neural networks. Communications of
the ACM, 60(6):84–90, May 2017.

[73] B. J. Lansdell, P. Prakash, and K. P. Kording. Learning to solve the
credit assignment problem. arXiv preprint arXiv:1906.00889, 2019.

[74] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and
J. Sohl-Dickstein. Deep Neural Networks as Gaussian Processes.
arXiv:1711.00165 [cs, stat], Oct. 2017.

[75] E. S. Lein, M. J. Hawrylycz, N. Ao, M. Ayres, A. Bensinger,
A. Bernard, A. F. Boe, M. S. Boguski, K. S. Brockway, E. J. Byrnes,
L. Chen, L. Chen, T.-M. Chen, M. Chi Chin, J. Chong, B. E. Crook,
A. Czaplinska, C. N. Dang, S. Datta, N. R. Dee, A. L. Desaki,
T. Desta, E. Diep, T. A. Dolbeare, M. J. Donelan, H.-W. Dong,
J. G. Dougherty, B. J. Duncan, A. J. Ebbert, G. Eichele, L. K.
Estin, C. Faber, B. A. Facer, R. Fields, S. R. Fischer, T. P. Fliss,
C. Frensley, S. N. Gates, K. J. Glattfelder, K. R. Halverson, M. R.
Hart, J. G. Hohmann, M. P. Howell, D. P. Jeung, R. A. Johnson,
P. T. Karr, R. Kawal, J. M. Kidney, R. H. Knapik, C. L. Kuan,
J. H. Lake, A. R. Laramee, K. D. Larsen, C. Lau, T. A. Lemon,
A. J. Liang, Y. Liu, L. T. Luong, J. Michaels, J. J. Morgan, R. J.
Morgan, M. T. Mortrud, N. F. Mosqueda, L. L. Ng, R. Ng, G. J.
Orta, C. C. Overly, T. H. Pak, S. E. Parry, S. D. Pathak, O. C.
Pearson, R. B. Puchalski, Z. L. Riley, H. R. Rockett, S. A. Rowland,
J. J. Royall, M. J. Ruiz, N. R. Sarno, K. Schaffnit, N. V. Shapo-
valova, T. Sivisay, C. R. Slaughterbeck, S. C. Smith, K. A. Smith,
B. I. Smith, A. J. Sodt, N. N. Stewart, K.-R. Stumpf, S. M. Sunkin,
M. Sutram, A. Tam, C. D. Teemer, C. Thaller, C. L. Thompson,
L. R. Varnam, A. Visel, R. M. Whitlock, P. E. Wohnoutka, C. K.
Wolkey, V. Y. Wong, M. Wood, M. B. Yaylaoglu, R. C. Young, B. L.
Youngstrom, X. Feng Yuan, B. Zhang, T. A. Zwingman, and A. R.

136

Jones. Genome-wide atlas of gene expression in the adult mouse
brain. Nature, 445(7124):168–176, Jan. 2007.

[76] M. S. Lewicki and T. J. Sejnowski. Learning overcomplete represen-
tations. Neural computation, 12(2):337–365, 2000.

[77] X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, and P.-A. Heng. H-
DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor
Segmentation From CT Volumes. IEEE Transactions on Medical
Imaging, 37(12):2663–2674, Dec. 2018.

[78] R. Linsker. Self-organization in a perceptual network. Computer,
21(3):105–117, 1988.

[79] R. Linsker. A local learning rule that enables information max-
imization for arbitrary input distributions. Neural Computation,
9(8):1661–1665, 1997.

[80] M. L. Littman. The witness algorithm: Solving partially observable
markov decision processes. Brown University, Providence, RI, 1994.

[81] E. Lottem, D. Banerjee, P. Vertechi, D. Sarra, M. oude Lohuis, and
Z. F. Mainen. Activation of serotonin neurons promotes active per-
sistence in a probabilistic foraging task. Nature Communications,
9(1), Dec. 2018.

[82] S. MacLane. Categories for the Working Mathematician. Springer
Science & Business Media, Apr. 2013.

[83] J. Mairal. End-to-End Kernel Learning with Supervised Convolu-
tional Kernel Networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 1399–1407. Curran Associates, Inc.,
2016.

[84] J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid. Convolutional
Kernel Networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems 27, pages 2627–2635. Curran Associates,
Inc., 2014.

137

[85] R. A. McLean, W. L. Sanders, and W. W. Stroup. A Unified
Approach to Mixed Linear Models. The American Statistician,
45(1):54–64, 1991.

[86] N. Mesgarani, S. David, J. Fritz, and S. Shamma. Mechanisms of
noise robust representation of speech in primary auditory cortex.
Proc Natl Acad Sci, 111(18):6792–7, 2014.

[87] C. A. Micchelli and M. Pontil. On learning vector-valued functions.
Neural computation, 17(1):177–204, 2005.

[88] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. Human-level control through deep reinforcement learning. Na-
ture, 518(7540):529–533, 2015.

[89] H. Murakoshi, M. E. Shin, P. Parra-Bueno, E. M. Szatmari, A. C.
Shibata, and R. Yasuda. Kinetics of endogenous camkii required for
synaptic plasticity revealed by optogenetic kinase inhibitor. Neuron,
94(1):37–47, 2017.

[90] N. S. Narayanan, J. F. Cavanagh, M. J. Frank, and M. Laubach.
Common medial frontal mechanisms of adaptive control in humans
and rodents. Nature Neuroscience, 16(12):1888–1895, Dec. 2013.

[91] R. M. Neal. Priors for Infinite Networks. In R. M. Neal, editor,
Bayesian Learning for Neural Networks, Lecture Notes in Statistics,
pages 29–53. Springer New York, New York, NY, 1996.

[92] Y. Niv. Learning task-state representations. Nature Neuroscience,
22(10):1544–1553, Oct. 2019.

[93] Y. Niv, R. Daniel, A. Geana, S. J. Gershman, Y. C. Leong, A. Rad-
ulescu, and R. C. Wilson. Reinforcement Learning in Multidimen-
sional Environments Relies on Attention Mechanisms. Journal of
Neuroscience, 35(21):8145–8157, May 2015.

[94] E. Oja. Simplified neuron model as a principal component analyzer.
Journal of mathematical biology, 15(3):267–273, 1982.

138

[95] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive
field properties by learning a sparse code for natural images. Nature,
381(6583):607, 1996.

[96] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Automatic differen-
tiation in PyTorch. Oct. 2017.

[97] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Journal of Philosophy, 88(8):434–437, 1991.

[98] C. Pehlevan and D. Chklovskii. A normative theory of adaptive
dimensionality reduction in neural networks. In Advances in Neural
Information Processing Systems, pages 2269–2277, 2015.

[99] C. Pehlevan, T. Hu, and D. B. Chklovskii. A hebbian/anti-hebbian
neural network for linear subspace learning: A derivation from
multidimensional scaling of streaming data. Neural computation,
27(7):1461–1495, 2015.

[100] C. Pehlevan, A. M. Sengupta, and D. B. Chklovskii. Why do sim-
ilarity matching objectives lead to hebbian/anti-hebbian networks?
Neural computation, 30(1):84–124, 2018.

[101] J. F. Poulet and C. C. Petersen. Internal brain state regulates mem-
brane potential synchrony in barrel cortex of behaving mice. Nature,
454(7206):881–885, 2008.

[102] A. Renart, N. Brunel, and X.-J. Wang. Mean-field theory of irregu-
larly spiking neuronal populations and working memory in recurrent
cortical networks. Computational neuroscience: A comprehensive
approach, pages 431–490, 2004.

[103] A. Renart, J. De La Rocha, P. Bartho, L. Hollender, N. Parga,
A. Reyes, and K. D. Harris. The asynchronous state in cortical
circuits. science, 327(5965):587–590, 2010.

[104] R. A. Rescorla, A. R. Wagner, et al. A theory of pavlovian condi-
tioning: Variations in the effectiveness of reinforcement and nonre-
inforcement. Classical conditioning II: Current research and theory,
2:64–99, 1972.

139

[105] B. D. Ripley and N. L. Hjort. Pattern Recognition and Neural Net-
works. Cambridge University Press, Jan. 1996.

[106] P. H. Rudebeck, R. C. Saunders, A. T. Prescott, L. S. Chau,
and E. A. Murray. Prefrontal mechanisms of behavioral flexibil-
ity, emotion regulation and value updating. Nature Neuroscience,
16(8):1140–1145, Aug. 2013.

[107] J. Sacramento, R. P. Costa, Y. Bengio, and W. Senn. Dendritic
cortical microcircuits approximate the backpropagation algorithm.
In Advances in Neural Information Processing Systems, pages 8721–
8732, 2018.

[108] A. Saez, M. Rigotti, S. Ostojic, S. Fusi, and C. D. Salzman. Abstract
Context Representations in Primate Amygdala and Prefrontal Cor-
tex. Neuron, 87(4):869–881, Aug. 2015.

[109] M. Sarafyazd and M. Jazayeri. Hierarchical reasoning by neural cir-
cuits in the frontal cortex. Science, 364(6441):eaav8911, May 2019.

[110] C. Savin, P. Joshi, and J. Triesch. Independent component analysis
in spiking neurons. PLoS Comput Biol, 6(4):e1000757, 2010.

[111] B. Schölkopf, A. J. Smola, M. D. o. t. M. P. I. f. B. C. i. T. G.
P. B. Scholkopf, and F. Bach. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press,
2002.

[112] N. W. Schuck, M. B. Cai, R. C. Wilson, and Y. Niv. Human Or-
bitofrontal Cortex Represents a Cognitive Map of State Space. Neu-
ron, 91(6):1402–1412, Sept. 2016.

[113] W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of
prediction and reward. Science, 275(5306):1593–1599, 1997.

[114] W. Schultz, P. Dayan, and P. R. Montague. A Neural Substrate of
Prediction and Reward. Science, 275(5306):1593–1599, Mar. 1997.

[115] J. K. Seamans, C. C. Lapish, and D. Durstewitz. Comparing the pre-
frontal cortex of rats and primates: Insights from electrophysiology.
Neurotoxicity Research, 14(2):249–262, June 2008.

140

[116] M. N. Shadlen and W. T. Newsome. The variable discharge of cor-
tical neurons: implications for connectivity, computation, and in-
formation coding. The Journal of neuroscience, 18(10):3870–3896,
1998.

[117] M. N. Shadlen and W. T. Newsome. Neural Basis of a Perceptual
Decision in the Parietal Cortex (Area LIP) of the Rhesus Monkey.
Journal of Neurophysiology, 86(4):1916–1936, Oct. 2001.

[118] K. Shima and J. Tanji. Role for Cingulate Motor Area Cells
in Voluntary Movement Selection Based on Reward. Science,
282(5392):1335–1338, Nov. 1998.

[119] E. P. Simoncelli and B. A. Olshausen. Natural image statistics and
neural representation. Annual review of neuroscience, 24(1):1193–
1216, 2001.

[120] B. F. Skinner. The Behavior of Organisms: An Experimental
Analysis. The Behavior of Organisms: An Experimental Analysis.
Appleton-Century, Oxford, England, 1938. Pages: 457.

[121] P. Smolensky. On the proper treatment of connectionism. Behavioral
and brain sciences, 11(1):1–23, 1988.

[122] E. J. Sondik. The optimal control of partially observable markov
processes. Technical report, Stanford Univ Calif Stanford Electronics
Labs, 1971.

[123] S. Song, K. D. Miller, and L. F. Abbott. Competitive hebbian learn-
ing through spike-timing-dependent synaptic plasticity. Nature neu-
roscience, 3(9):919–926, 2000.

[124] M. T. Spaan and N. Vlassis. Perseus: Randomized Point-based Value
Iteration for POMDPs. Journal of Artificial Intelligence Research,
24:195–220, Aug. 2005.

[125] B. Speelpenning. Compiling fast partial derivatives of functions given
by algorithms. Technical report, Illinois Univ., Urbana (USA). Dept.
of Computer Science, 1980.

141

[126] T. A. Stalnaker, N. K. Cooch, and G. Schoenbaum. What the or-
bitofrontal cortex does not do. Nature Neuroscience, 18(5):620–627,
May 2015.

[127] C. K. Starkweather, S. J. Gershman, and N. Uchida. The Medial
Prefrontal Cortex Shapes Dopamine Reward Prediction Errors under
State Uncertainty. Neuron, 98(3):616–629.e6, May 2018.

[128] K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual Under-
standing of Hierarchical System Structures. IEEE Transactions on
Systems, Man, and Cybernetics, 11(2):109–125, Feb. 1981.

[129] L. P. Sugrue. Matching Behavior and the Representation of Value
in the Parietal Cortex. Science, 304(5678):1782–1787, June 2004.

[130] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Intro-
duction. A Bradford Book, USA, 2018.

[131] D. G. R. Tervo, M. Proskurin, M. Manakov, M. Kabra, A. Vollmer,
K. Branson, and A. Y. Karpova. Behavioral Variability through
Stochastic Choice and Its Gating by Anterior Cingulate Cortex. Cell,
159(1):21–32, Sept. 2014.

[132] D. Thalmeier, M. Uhlmann, H. J. Kappen, and R.-M.
Memmesheimer. Learning universal computations with spikes. PLoS
computational biology, 12(6):e1004895, 2016.

[133] E. Todorov. General duality between optimal control and estimation.
In 2008 47th IEEE Conference on Decision and Control, pages 4286–
4292. IEEE, 2008.

[134] D. J. Tolhurst, J. A. Movshon, and A. Dean. The statistical relia-
bility of signals in single neurons in cat and monkey visual cortex.
Vision research, 23(8):775–785, 1983.

[135] R. Urbanczik and W. Senn. Learning by the dendritic prediction of
somatic spiking. Neuron, 81(3):521–528, 2014.

[136] T. Uustalu and V. Vene. Comonadic notions of computation. Elec-
tronic Notes in Theoretical Computer Science, 203(5):263–284, 2008.

142

[137] H. B. M. Uylings and C. G. van Eden. Chapter 3 Qualitative and
quantitative comparison of the prefrontal cortex in rat and in pri-
mates, including humans. In H. B. M. Uylings, C. G. Van Eden,
J. P. C. De Bruin, M. A. Corner, and M. G. P. Feenstra, editors,
Progress in Brain Research, volume 85 of The Prefrontal Its Struc-
ture, Function and Cortex Pathology, pages 31–62. Elsevier, Jan.
1991.

[138] C. van Vreeswijk and H. Sompolinsky. Chaos in neuronal net-
works with balanced excitatory and inhibitory activity. Science,
274(5293):1724, 1996.

[139] P. Vertechi, W. Brendel, and C. K. Machens. Unsupervised learning
of an efficient short-term memory network. In Advances in Neural
Information Processing Systems, pages 3653–3661, 2014.

[140] T. Vogels, H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner. In-
hibitory plasticity balances excitation and inhibition in sensory path-
ways and memory networks. Science, 334(6062):1569–1573, 2011.

[141] D. S. Weld and G. Bansal. The challenge of crafting intelligible
intelligence. Communications of the ACM, 62(6):70–79, 2019.

[142] J. C. Whittington and R. Bogacz. An approximation of the error
backpropagation algorithm in a predictive coding network with local
hebbian synaptic plasticity. Neural computation, 29(5):1229–1262,
2017.

[143] G. N. Wilkinson and C. E. Rogers. Symbolic description of factorial
models for analysis of variance. Applied statistics, 1973.

[144] S. S. Wilks. The Large-Sample Distribution of the Likelihood Ra-
tio for Testing Composite Hypotheses. The Annals of Mathematical
Statistics, 9(1):60–62, Mar. 1938.

[145] Z. M. Williams, G. Bush, S. L. Rauch, G. R. Cosgrove, and E. N.
Eskandar. Human anterior cingulate neurons and the integration
of monetary reward with motor responses. Nature Neuroscience,
7(12):1370–1375, Dec. 2004.

143

[146] R. C. Wilson, Y. K. Takahashi, G. Schoenbaum, and Y. Niv. Or-
bitofrontal Cortex as a Cognitive Map of Task Space. Neuron,
81(2):267–279, Jan. 2014.

[147] A. Wohrer, M. D. Humphries, and C. K. Machens. Population-wide
distributions of neural activity during perceptual decision-making.
Progress in neurobiology, 103:156–193, 2013.

[148] M. Xue, B. V. Atallah, and M. Scanziani. Equalizing
excitation-inhibition ratios across visual cortical neurons. Nature,
511(7511):596–600, 2014.

[149] P. Yin, J. Fritz, and S. Shamma. Rapid spectrotemporal plasticity in
primary auditory cortex during behavior. J Neurosci, 34(12):4396–
408, 2014.

[150] J. Yu and D. Ferster. Membrane potential synchrony in primary
visual cortex during sensory stimulation. Neuron, 68(6):1187–1201,
2010.

[151] J. Zylberberg, J. T. Murphy, and M. R. DeWeese. A sparse coding
model with synaptically local plasticity and spiking neurons can ac-
count for the diverse shapes of v1 simple cell receptive fields. PLoS
Comput Biol, 7(10):e1002250, 2011.

144

Apoio financeiro da FCT e do FSE no
âmbito do Quadro Comunitário de Apoio,
Bolsa n. PD/BD/105944/2014.

	Acknowledgments
	Abstract
	Título e Resumo
	Author Contributions and Financial Support
	Contents
	Introduction
	Decision-making under uncertainty
	Intelligible artificial intelligence
	Biologically plausible learning
	Overview

	Inference based decisions in a hidden state foraging task
	Introduction
	Results
	A probabilistic foraging task
	Mice accumulate evidence and not rewards
	Accumulation of evidence is tuned to task parameters
	Humans perform inference and tune behavior to task parameters
	OFC, but not ACC, is necessary for the correct inference process

	Discussion
	Materials and methods
	Key resources table
	Lead contact and materials availability
	Experimental model and subject details
	Method details
	Quantification and statistical analysis
	Data and code availability

	Author contributions

	Parametric machines
	Introduction
	Results
	Machines
	Finite and infinite depth
	Kernel machines

	Discussion
	Materials and methods
	Author contributions

	Learning to represent signals spike by spike
	Introduction
	Results
	Efficient spike coding requires balance of excitation and inhibition
	Recurrent synapses learn to balance a neuron's inputs
	Feedforward weights change to strengthen postsynaptic firing
	Networks with separate excitatory and inhibitory populations
	Learning for correlated inputs
	Robustness of Learning against perturbations
	Manipulating plasticity

	Discussion
	Materials and methods
	Author contributions

	General discussion
	Decision-making under uncertainty
	Intelligible artificial intelligence
	Biologically plausible learning
	Future directions

	Bibliography

