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SUMMARY

Essential features of the world are often hidden and
must be inferred by constructing internal models
based on indirect evidence. Here, to study the mech-
anisms of inference, we establish a foraging task that
is naturalistic and easily learned yet can distinguish
inference from simpler strategies such as the direct
integration of sensory data. We show that both
mice and humans learn a strategy consistent with
optimal inference of a hidden state. However, hu-
mans acquire this strategy more than an order of
magnitude faster than mice. Using optogenetics in
mice, we show that orbitofrontal and anterior cingu-
late cortex inactivation impacts task performance,
but only orbitofrontal inactivation reverts mice from
an inference-based to a stimulus-bound decision
strategy. These results establish a cross-species
paradigm for studying the problem of inference-
based decision making and begins to dissect the
network of brain regions crucial for its performance.
INTRODUCTION

In natural foraging behaviors, animals must continually choose

between trying to exploit resources at their current location and

leaving to explore another, potentially superior one, at the

expense of a possibly costly travel period. Viewed from the

perspective of optimal decision-making, the crucial question

is when is it best to leave the current site for another one? Ac-

cording to the marginal value theorem, in order to maximize re-

turns, an optimal forager ought to leave its current site when
166 Neuron 106, 166–176, April 8, 2020 ª 2020 The Authors. Publish
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the immediate rate of reward drops below the average rate

(Charnov, 1976). However, this elegant solution to the foraging

problem only applies in deterministic environments (Kolling

et al., 2014), in which both immediate and average reward rates

are knowable to the agent. In a more realistic scenario—for

example, where rewards are encountered probabilistically—

the immediate reward rate is ill-defined and the marginal value

theorem does not apply.

One widely used and powerful approach to model decision

making in dynamic, stochastic environments is reinforcement

learning (RL) (Sutton and Barto, 2018). In RL, the values of

different actions (such as leaving a foraging site or staying on)

are continuously updated through trial and error, based on their

outcomes, allowing agents to adaptively modify their prefer-

ences as conditions change. In its simplest form, model-free

RL assigns each action with a value that is updated based on

its immediate outcome, with no regard to the causal, and often

hidden, structure that links actions to outcomes. Although

computationally efficient and consistent with a large body of

experimental data on both Pavlovian and operant tasks (Eshel

et al., 2016; Schultz et al., 1997), model-free RL is not the best

available strategy in many situations. Consider, for instance, a

lion that has just successfully captured prey. If the fact that in do-

ing this it hasmost likely scared away all other animals is ignored,

the lion may continue to hunt in the same region, wasting a

considerable amount of time searching for the now long-gone

prey. Conversely, things may turn out badly for a zebra if it

assumes that its current foraging ground was safe (that is, lion-

free) just because it had not seen a lion yet in its immediate sur-

roundings. What these examples illustrate is that relying solely

on recent outcomes, while ignoring causal structures in the

world, may have suboptimal (if not catastrophic) consequences.

Instead, in structure learning (Boyen et al., 1999; Braun et al.,

2010; Pearl, 1991), a form of inference-based RL, agents choose

actions based on their beliefs about the current state of the
ed by Elsevier Inc.
commons.org/licenses/by/4.0/).
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world, which is determined by both incoming sensory evidence

(such as outcomes) and knowledge of the underlying causal

structure of the environment. How humans and animals imple-

ment such strategies remains an important and poorly under-

stood question (Daw et al., 2011; Niv et al., 2015; Starkweather

et al., 2018). The study of the neural mechanisms underlying flex-

ible, integrative behavior has drawn special attention to the pre-

frontal cortex and the computational role of its different areas.

Although the mapping of the rodent prefrontal cortex has not

reached a consensus, here, we adopt the description of Uylings

and van Eden (1990), which defines as rat prefrontal cortex those

areas comparable to the primate prefrontal cortex in terms of

thalamic reciprocal connections, corticocortical connections,

and functional aspects, including the orbitofrontal cortex (OFC)

and the anterior cingulate cortex (ACC). It has been suggested

that the OFC is crucial for hidden state representation, and

hence for inference-based decisions. For example, in both rats

and primates, lesions or inhibition of OFC impairs subjects’ abil-

ity to adjust their behavior in reversal learning tasks, where the

depletion of a previously rewarding site (or the futility of a previ-

ously rewarding action) may be viewed as a change in the (hid-

den) state of the world (Wilson et al., 2014), even though this

result may be technique-dependent: Rudebeck et al. (2013)

found that aspiration lesions (that also damage passing fibers),

but not excitotoxic lesions, of monkey OFC impaired reversal

learning. The adjacent ACC, often considered part of the rodent

medial prefrontal cortex (Starkweather et al., 2018; Tervo et al.,

2014), has been implicated in monitoring value during foraging

(Hayden et al., 2011; Kolling et al., 2012) and could be respon-

sible for encoding the value of alternative options (Kolling

et al., 2016) and changing behavior based on the decreasing

value of the current option (Shima and Tanji, 1998; Williams

et al., 2004).

Here, we describe a foraging task in which subjects may

seek rewards at either one of two foraging sites. This task

has a special hidden structure: at any given moment, only

one of the sites can deliver rewards and the site of the rewards

switches with a certain probability after each foraging attempt.

Importantly, even when reward is available, it is not delivered

for every attempt, but rather with a probability less than 1.

This makes the task a partially observable Markov decision

process (POMDP): the true state of world (i.e., the identity of

the rewarding site) is hidden and subjects must infer it based

on noisy observations. A defining feature of this task, due to

the hidden structure, is the asymmetry of the evidence pro-

vided by rewards and failures (unrewarded attempts): a single

failure provides partial evidence in favor of a site switch,

whereas a single reward provides full certainty that the current

site is rewarding. A ‘‘stimulus-bound’’ agent, in the sense of

Wilson et al. (2014), would assign value to observable states

(being on the left or on the right or the other foraging site) by

linearly combining rewards and failures. Such a process does

not capture the essential asymmetry of the task. Ten rewards

are much better than one reward in terms of value, but under

optimal inference, one single reward is as informative as ten,

because it already gives absolute certainty that the current

site is active. Thus, leaving decisions under stimulus-bound

and inference-based strategies in this task will be qualitatively
different. A stimulus-bound agent will become more persistent

the more rewards it has received at a site, whereas an infer-

ence-based agent will not show such an effect. We found

that both mice and humans display hallmarks of inference in

the performance of a foraging task and are able to build a

non-trivial representation of task space. We further show that

optogenetic inhibition of the OFC in mice selectively disrupts

optimal inference behavior, biasing mice toward a sub-optimal

stimulus-bound strategy. Similar inhibition of the adjacent ACC

results in delayed leaving decisions but does not disrupt the

inference process itself, suggesting a specific role of OFC in

this important cognitive function.

RESULTS

A Probabilistic Foraging Task Can Dissociate Value or
Evidence Accumulation
We developed a self-paced probabilistic foraging task. Subjects

sought rewards by actively probing a foraging site. Each try at

the active site yielded reward with probability pRWD, and could

cause a switch with probability pSW (Figure 1A). After a state

switch, to obtain more rewards, subjects needed to travel to a

second site at some distance and therefore bear a travel cost.

Subjects were thus tasked with inferring a hidden state of the

current site through a sequence of observations of stochastic

events (rewards and failures). There are actually many ways of

integrating rewards and failures to form a decision. In a stim-

ulus-bound process, the relative value of the left site with respect

to the right site V = VLEFT � VRIGHT would increase gradually with

left rewards, decrease gradually with right rewards, and decay to

0 with failures (Figure 1B). In formulas, given a decay coefficient

g, a reward indicator rt, a site indicator st (1 for left, �1 for right),

and signed outcomes ot = rt 3 st:

Vt + 1 = ð1�gÞVt +got + 1: (Equation 1)

On the other hand, an agent that is aware of the structure of the

task—the fact that a hidden state determines which site is

rewarding at any time—could use rewards and failures differ-

ently, allowing it to better infer whether the current foraging

site is active or inactive. The relative value would then be:

Vt = pRWDðPðLef tActivejr1; s1; .; rt; stÞ

�PðRightActivejr1; s1;.; rt; stÞÞ; (Equation 2)

(see STAR Methods for a detailed treatment of the probability

computation). Unlike the stimulus-bound mechanism in Fig-

ure 1B, this process is able to track effectively the rapidly

evolving value of the foraging sites (Figure 1C). Both accumula-

tion processes can be used as generativemodels of the behavior

by defining the probability of staying on, e.g., the left site as a

sigmoidal function of the relative value:

PðNextLef tjV ; sÞ = sðbðV + s $TÞÞ; (Equation 3)

where b represents a softmax parameter (the higher it is, the

more deterministic the behavior), and T represents the staying

bias (when the value of the left and the right site are estimated
Neuron 106, 166–176, April 8, 2020 167
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Figure 1. A Probabilistic Foraging Task Can

Dissociate Stimulus-Bound from Inference-

Based Evidence Accumulation

(A) Formally, the task is a hiddenMarkov model with

LeftActive and RightActive states. It has two pa-

rameters: probability of reward given state and

probability of state transition.

(B and C) Estimated relative value (left minus right)

as a function of trial history (rewards in green,

failures in gray) in the stimulus-bound model (B)

and inference-based model (C), respectively.

Shaded patches indicate actual state.

(D) Effect of rewards on relative value in stimulus-

bound and inference-based models: the two

models are simulated in a trial with only rewards on

the same site. Relative value increases with reward

number in the stimulus-bound but not in the infer-

ence-based model.

(E) Consecutive failures before leaving (normalized

subtractively) as a function of reward number in a

simulated data of stimulus-bound and inference-

based models: reward number has an effect on

consecutive failures in the stimulus-bound but not in

the inference-based model.
as equal, the subject should still prefer to stay to avoid the

travel cost).

Both models predict that the probability of leaving increases

with the number of consecutive failures. However, the effect of

a reward is very different between them. In a stimulus-bound

model, the probability of leaving decreases with the number of

rewards, as each reward contributes to the accumulated value.

In the inference-based model, it does not, because a single

reward is sufficient to deduce with certainty that the current

site is active (Figure 1D). Thus, a simple test of whether subjects

are using inference is to check whether the number of failures

before leaving changes with the number of preceding rewards

(Figure 1E).

Mice Accumulate Evidence and Not Rewards
We first developed the hidden state foraging task as a rodent

behavioral task (Figure 2A) in which mice had to nose-poke at

one of two possible ports to obtain water rewards (2 mL each).

We trained 18 C57BL/6 wild-type mice of 2 months age for
168 Neuron 106, 166–176, April 8, 2020
12 days in a baseline protocol with

pRWD = 0.9 and pSW = 0.3 and observed

the effect of rewards on behavior during

learning.

Because our task was a foraging style

task, the mapping to choice and feed-

back are not present in a trial. Each trial

contains a number of pokes, each of

which contains feedback in the form of

water (or not), as illustrated in Figure 2B.

The choice of the mouse is whether to

continue to poke (exploit) at the current

site or whether to leave (explore), a

choice it makes after each poke. The

only incorrect choice is to leave to the
other site before the state has switched. When the mouse

switches site too early, no rewards will be emitted by the other

port; the mouse is obliged to return to the original port

and continue to poke. Mice made only �2.25% ± 0.47%

(n = 18 mice) errors on average. An example of the behavior

of a trained animal is shown in Figure 2C (see Figure S1 for

summary statistics of the durations of the various task

epochs).

Mice tended to alternate bouts of pokes at a given site (6.98 ±

0.14 pokes per bout, n = 18 mice) with trips to the opposite site,

producing a natural segmentation in trials (i.e., poke bouts on the

same site). This presumably reflects the clear asymmetry in time

cost between nose-poking again on the same site, a very cheap

action (Figure S1, inter-poke interval = 0.16 ± 0.025 s, unre-

warded poke duration = 0.33 ± 0.006 s, n = 18mice), and switch-

ing site, a much more expensive option (Figure S1, 3.15 ± 0.18 s,

n = 18 mice).

We found that the number of consecutive failures since the

last reward (ConsecutiveFailureIndex) was a better predictor
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(A) Schematic of rodent task. Mice shuttle back and forth between two reward sites to obtain water rewards.

(B) Example sequence of pokes. Pokes in the correct site can be rewarded or not, whereas pokes in the incorrect site are never rewarded. Following a state

switch, the animals need to travel to the other site to obtain more rewards.

(C) Example behavior: sequence of poke bouts (i.e., trials) with rewards in green and failures in gray.

(D) Consecutive failures before leaving as a function of reward number in early training (days 1 to 3, purple) compared with late training (days 10 to 12, black). Solid

line represents mean and sha.

(E) Slope coefficient in ConsecutiveFailures � 1+RewardNumber for early training and late training. Slope coefficient is higher in early trials, likelihood ratio test

on linear mixed-effect model ConsecutiveFailures � 1+RewardNumber +Early +RewardNumber&Early+ ð1jMouseIDÞ versus a null model with no interaction:

p < 1e�10, n = 18 mice (see STAR Methods for a description of the formula notation).

(F) Evolution of reward number coefficient across days. Solid line and shaded area represent mean and across animals. Solid line and shaded area represent

mean and SEM across animals.

(G) Probability of leaving as a function of number of rewards and consecutive failures in late training.

(H) Failures after reward as a function of failure before reward in trials with only one reward in a more difficult protocol. Solid line and shaded area represent mean

and across animals. Solid line and shaded area represent mean and SEM across animals.

See also Video S1.
of mouse choice than the time spent at the nose poke

(TimeSpentAtPort) (Lottem et al., 2018). We fitted two logistic

regression models with random effects. Here, and throughout

the text, we use Wilkinson notation (Wilkinson and Rogers,

1973) (see STAR Methods for a detailed explanation):

LeavingPort� 1+ConsecutiveFailureIndex + ð1jMouseIDÞ

and

LeavingPort� 1+TimeSpentAtPort + ð1jMouseIDÞ:

The ConsecutiveFailureIndex model was overwhelmingly better

(deviance =10,892) than the TimeSpentAtPortmodel (deviance =

14,771). As confirmation, we also tested a model that included

both predictors:

Leaving� 1+ConsecutiveFailureIndex +TimeSpentAtPort

+ ð1jMouseIDÞ;
and only the ConsecutiveFailureIndex had a positive coefficient

(0.78 ± 0.013) whereas the TimeSpentAtPort had a small nega-

tive coefficient (�0.046 ± 0.006).

In the early part of training, animals were unaware of

the structure of the task and exhibited hallmarks of a

stimulus-bound strategy: more failures were needed to leave

the foraging port in rich foraging bouts, with many rewards

before a state switch, compared to poor foraging bouts, with

as little as one reward before a state switch. After training,

however, the number of rewards had no effect on the

number of failures before leaving, consistent with an infer-

ence-based strategy (Figure 2D). To quantify this effect at

a single animal level, we fitted a linear regression model

that predicted the number of consecutive failures before

leaving as a function of the number of prior rewards in

the current trial (i.e., foraging bout at a given site):

ConsecutiveFailures � 1+RewardNumber (Figure 2E). The

data show that during the first days of training, there was a

strong positive correlation between these two quantities, but
Neuron 106, 166–176, April 8, 2020 169
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Is Tuned to Task Parameters

(A) Probability of being on the correct site after a

failure as a function of reward probability and tran-

sition probability.

(B) Probability of being on the correct site as a

function of trial history for three protocols

(Easy environment: pRWD = 0.9 and pSW = 0.9; Me-

dium environment: pRWD = 0.9 and pSW = 0.3; Hard

environment: pRWD = 0.3 and pSW = 0.3). Leaving

decisions can be modeled by setting a threshold on

this probability that changes as a function of the

travel cost (black lines).

(C) Consecutive failures before leaving as a function

of the environment statistics and barrier condition.

Error bars represent SEM across animals.

(D) Consecutive failures before leaving split by

subject and environment statistics, barrier versus

no barrier.
with continued training this correlation decayed to zero (Fig-

ure 2F). Therefore, experienced mice, unlike naive animals,

decide when to leave the foraging site in a manner consistent

with inferring a hidden state rather than directly integrating re-

wards and failures.

As another way of seeing this, a stimulus-bound integration

strategy would effectively weigh similarly each reward and failure

with opposite signs (see Equation 1). Correct inference instead,

given the structure of this task, requires that rewards are weighted

nonlinearly (the first counting a lot and subsequent nothing) and

differently from failures, which should add linearly. Indeed, in the

trained mice, the effect of rewards and failures in shaping the

behavior is qualitatively asymmetric in just this way, as can be

seen by visualizing the probability of leaving as a function of

both reward number and consecutive failures (Figure 2G).

Furthermore, stimulus-bound and inference-based models

predict different interactions of rewards with preceding failures.

Consider, for example, trials in which the animal receives a sin-

gle reward: the later the reward, the smaller the value of the cur-

rent site at the time of reward delivery. In the stimulus-bound

model, the received reward value is simply added to the current

value estimate, so the later in the train the reward arrives the

lower the current value of the port (given that we are assuming

only failures before this reward). Therefore, fewer subsequent

failures will be tolerated before the animal leaves. On the other

hand, in inference-based models a single reward resets the

count of accumulated failures up to that point, and therefore

the position of the reward (or equivalently the number of failures

prior to the reward) has no consequence on subsequent

behavior. To test these alternatives, we analyzed how the posi-

tion of that reward influenced the overall number of failures
170 Neuron 106, 166–176, April 8, 2020
before leaving in a protocol with lower

probability rewards (pRWD = 0.3 and

pSW = 0.3) and found that the number of

failures after the last reward did not

decrease when it was preceded by more

and more failures, on the contrary it

slightly increased (Figure 2H, slope =
0.2 ± 0.06, n = 20 mice), consistent with a resetting effect of

reward as predicted by the inference-based model.

Accumulation of Evidence Is Tuned to Task Parameters
Having found that the foraging behavior of mice is consistent

with the accumulation of evidence to infer a hidden world state,

we asked whether this inference process is appropriately tuned

to the statistics of the foraging environment, represented here by

two parameters: reward probability pRWD and state switch prob-

ability pSW. Intuitively, if pRWD is high, then a single failure is

strong evidence in favor of a state switch, leading to a faster

accumulation process. Similarly, if pSW is high, then a failure

also carries more evidence in favor of a state switch compared

to if it is low (Figure 3A; see STAR Methods for a formal justifica-

tion of this intuitive argument).

To test this, we trained a separate batch of mice on a set of

three different foraging site statistics (Easy environment:

pRWD = 0.9 and pSW = 0.9; Medium environment: pRWD = 0.9

and pSW = 0.3; Hard environment: pRWD = 0.3 and pSW = 0.3;

see Figure 3B). Because changing the foraging environment’s

statistics can affect average reward rates (i.e., average number

of rewards per trial), we adjusted the magnitude of individual re-

wards in order to equalize the amount of reward at a given site

before state switch across conditions. As predicted normatively,

mice increased the number of failed attempts they would tolerate

as the state switching probability and the reward probability

dropped (Figures 3C and 3D; difference in failed attempts

after last reward in Easy-Medium = �1.61 ± 0.03, difference

Hard-Medium = 1.77 ± 0.04, n = 20 mice, likelihood ratio test

on ConsecutiveFailures � 1 + Protocol + ð1jMouseIDÞversus
ConsecutiveFailures � 1 + ð1jMouseIDÞ: p < 1e�10).
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Figure 4. Humans PerformOptimal Inference

and Tune Behavior to Task Parameters

(A) The number of rewards has little effect on the

probability of leaving during both early (purple) and

late (black) training. Solid line and shaded area

represent mean and across animals. Solid line and

shaded area represent mean and SEM across ani-

mals.

(B) Number of consecutive failures as a function of

reward number for human in early versus late part

of training. Unlike mice, humans learn the statistics of

the environment extremely quickly: slope coefficient

is similar (and around 0) in both early and late trials:

likelihood ratio test on linear mixed-effect model

ConsecutiveFailurese1+RewardNumber +Early +

RewardNumber&Early+ ð1jSubjectIDÞ versus a null

model with no interaction: p = 0.45, n = 20 subjects.

(C) Consecutive failures before leaving as a function

of the environment statistics and barrier condition.

Error bars represent SEM across subjects.

(D)Consecutive failuresbefore leavingsplit by subject

and environment statistics, barrier versus no barrier.

See also Video S2.
An important additional prediction of optimal decision theory in

the context of a foraging task is that travel cost should modulate

the threshold to leave a given foraging site. To test this, we

increased the travel cost by placing a physical barrier between

the two locations (travel time without barrier = 1.86 ± 0.13 s, n =

20 mice; travel time with barrier = 2.69 ± 0.13 s). Once again, the

accumulation process was modulated consistently with the

normative prediction, longer travel times resulting in a longer accu-

mulationprocessanddelayed leaving (Figures3Cand3D, effectof

barrier in number of failed attempts after last reward = 0.42 ± 0.03,

n = 20 mice, likelihood ratio test on ConsecutiveFailures � 1+

Protocol+Barrier + ð1jMouseIDÞ versus Consecutive Failures �
1 + Protocol + ð1jMouseIDÞ: p < 1e�10).

Humans Perform Inference and Tune Behavior to Task
Parameters
To test whether our findingswere valid across species, we devel-

oped a translation of our behavioral assay for human subjects, in

the form of a video game, where players would drag a character

from one side of a touch screen to the other and tap to achieve

points. The statistics of the video game (pRWD and pSW) were

the same as those used in the rodent task.

In humans, we again observed hallmarks of inference-based

foraging: the number of rewards had little to no effect on the

behavior (Figures 4A and 4B), similar to the behavior of

the trained mice. Unlike mice, however, humans needed almost

no training to learn this strategy, displaying it from the first

session.

Analogously to their rodent counterparts, human subjects

modulated their behavior according to reward statistics as well

as travel time (here affected by a manipulation in the character’s
velocity) consistent with the normative pre-

dictions (Figures 4C and 4D, difference in

failed attempts after last reward in Easy-
Medium = �1.39 ± 0.03, difference Hard-Medium = 1.48 ± 0.03,

n = 20 subjects, likelihood ratio test on ConsecutiveFailures �
1+Protocol + ð1jSubjectIDÞ versus ConsecutiveFailures � 1 +

ð1jSubjectIDÞ: p < 1e�10, effect of barrier in number of failed

attempts after last reward = 0.59 ± 0.02, n = 20 subjects,

likelihood ratio test on ConsecutiveFailures � 1+Protocol+

Barrier + ð1jSubjectIDÞ versus Consecutive Failures � 1 +

Protocol + ð1jSubjectIDÞ: p < 1e�10).

OFC, but Not ACC, Is Necessary for the Correct
Inference Process
Finally, to study the brain mechanisms of inference in this task,

we tested the involvement of different regions of prefrontal

cortex by silencing them using optogenetic stimulation of inhib-

itory GABAergic interneurons in VGAT-ChR2 mice (mice ex-

pressing the excitatory opsin channelrhodopsin-2 in inhibitory

GABAergic neurons). We examined 19 mice. Nine were bilater-

ally implanted with optic fibers (Table S1) in the ACC (Figures

5A and S2A), six of these mice were ChR2-expressing (HET)

and three were control wild-type littermates (WT) implanted

and stimulated in the same manner. Ten (six HET and four WT)

were bilaterally implanted in the OFC (Figures 5A and S2B). Tran-

sient inactivation of ACC (3 mW power per fiber, 10 ms pulses at

75 Hz, during poking; triggered by the first poke in 50% of trials

and maintained for 500 ms after each poke in the trial; Figure 5B)

significantly increased the average number of consecutive fail-

ures before leaving (Figure 5C, effect of stimulation on consecu-

tive failures after last reward = 0.48 ± 0.05, n = 6 mice, likelihood

ratio test on ConsecutiveFailures � 1+Protocol +Stimulation+

ð1jMouseIDÞ versus ConsecutiveFailures � 1 + Protocol +

ð1jMouseIDÞ: p < 1e�10). The same protocol applied to control
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mice had no effect (Figure 5E, effect of stimulation = 0.003 ±

0.07, n = 7mice, likelihood ratio test: p = 0.96). More specifically,

we found that ACC inactivation multiplicatively increased the

number of consecutive failures before leaving, consistently

across protocols and animals (Figure 5F, protocol and

Stimulation interact when predicting ConsecutiveFailures,

likelihood ratio test: p = 1.46e�6, but not when predicting renor-

malized ConsecutiveFailures, likelihood ratio test: p = 0.15, n =

6 mice).

Transient inactivation of OFC also increased the average num-

ber of consecutive failuresbefore leaving (Figure5D; effectof stim-

ulation on consecutive failures after last reward = 0.41 ± 0.08,

n = 6 mice, likelihood ratio test on Consecutive

Failures � 1+Protocol+Stimulation+ ð1jMouseIDÞ versus

ConsecutiveFailures � 1 + Protocol + ð1jMouseIDÞ: p =

5.38e�7). However, unlike the case for ACC inactivation, it

did so in a manner that was dependent on the statistics of

the environment. That is, the direction of effect for OFC inacti-

vation actually reversed between easy and difficult protocols

(effect of stimulation in hard protocol = 1.52 ± 0.24, effect of

stimulation in easy protocol = �0.19 ± 0.05, n = 6 mice). This

suggests that these two brain areas are differentially involved

in the task.

To further investigate the involvement of these prefrontal

areas in the inference process and task space representation,

we considered a key difference in prediction between the infer-

ence model and the simpler stimulus-bound model: the effect

of rewards on behavior. As noted above, under normal condi-

tions, rewards fully reset the accumulation process, so that

leaving times are not affected by the number of previous re-

wards (Figure 1E). Strikingly, we found that OFC, but not

ACC inactivation, disrupted this pattern: in OFC-inactivated tri-

als, animals became sensitive to the number of rewards: the

more rewards gained, the more delayed leaving decisions

became (Figures 5I and 5J; for ACC, interaction effect of stim-

ulation and reward number = �0.038 ± 0.07, n = 6 mice, likeli-

hood ratio test on

ConsecutiveFailures � 1+Protocol +Stimulation

+Stimulation&Protocol

+RewardNumber

+Stimulation&RewardNumber

+ 1jMouseIDð Þ
Figure 5. OFC, but Not ACC, Is Necessary for Optimal Inference

(A) Scheme of the optic fiber placement.

(B) Bilateral photostimulation at 3 mW happened during nose-poking: it was trigge

the trial.

(C–E) Consecutive failures before leaving split by environment statistics, barrie

heterozygotes (C), OFC implanted heterozygotes (D), and wild-types (E), respect

(F–H) Ratio of consecutive failures before leaving split in the same way as (C)–(E

wild-types (H), respectively. When predicting renormalized consecutive failures, S

n = 6 mice) but not for ACC implanted heterozygotes (p = 0.15, n = 6 mice) or w

(I–K) An animal by animal quantification: the coefficient of the interactio

number&Stimulation for ACC implanted heterozygotes (I), OFC implanted hetero

(L–N) Number of consecutive failures as a function of reward number in the 30-

erozygotes (M), and wild-types (N). Solid lines and shaded areas represent mean

See also Figure S2 and Table S1.
versus

ConsecutiveFailures � 1+Protocol +Stimulation

+Stimulation&Protocol

+RewardNumber + 1jMouseIDð Þ

p = 0.58; for OFC, interaction effect of stimulation and reward

number = 0.36 ± 0.1, n = 6 mice, likelihood ratio test: p =

0.0003; triple interaction term of stimulation, reward number,

and fiber location = 0.47 ± 0.11, likelihood ratio test: p =

3.44e�5). This pattern of behavior (illustrated in Figures 5L and

5M) is similar to the one observed in naive mice first introduced

to this task (Figures 2D and 2E) and is indicative of a less effective

stimulus-bound strategy. Thus, the OFC is crucial for behavioral

strategies in foraging environments in which states are hidden

and require inference based on noisy observations.

DISCUSSION

In this study, we developed a task in which subjects had to alter-

nate between two foraging sites, only one of which was active at

any givenmoment. The task embodied an important form of non-

sensory uncertainty because the active port only delivered re-

wards with a certain probability. The task thus required subjects

to infer whether each omitted reward was simply a stochastic

failure or was instead an actual switch of state, offering us a

way to directly test whether they have the ability to perform state

inference. To solve this task optimally, subjects were essentially

required to infer a hidden state of the world (i.e., which site is

active) rather than directly assigning a value to each foraging

site, as would be optimal, for example, in a matching task (Herrn-

stein, 1961; Sugrue et al., 2004). We found that both mice

and humans displayed hallmarks of optimal, inference-based

behavior, reaching very similar solutions.

Our analysis of the behavioral data, particularly the number of

consecutive non-rewarded tries before leaving, revealed that

leaving decisions agreed with normative predictions of an infer-

ence-based foraging strategy in four important ways: (1) the

number of consecutive failures was positively correlated with

the propensity to leave; (2) rewards had a resetting effect on

the leaving decision process; (3) subjects were sensitive to

quantitative changes in the statistics of the foraging site; and

(4) subjects were sensitive to the travel cost. However, mice

and humans differed in an important way: while it took around
red by the first poke in 50% of trials and lasted for 500 ms after the last poke in

r condition, and subject inactivation versus control trials, for ACC implanted

ively.

) for ACC implanted heterozygotes (F), OFC implanted heterozygotes (G), and

timulation and Protocol interact for OFC implanted heterozygotes (p < 1e�10,

ild-types (p = 0.77, n = 7 mice).

n term in ConsecutiveFailures � 1+Stimulation+Reward number +Reward

zygotes (J), and wild-types (K).

30 barrier protocol for ACC implanted heterozygotes (L), OFC implanted het-

and SEM across animals.
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6 days for rodents to understand the environment statistics and

integrate trial history correctly, humans started displaying hall-

marks of the optimal behavior already during the first session.

This difference may be due to faster learning but could also

reflect the ability to generalize prior structural knowledge rele-

vant to the task.

The accumulation of evidence is considered a primary cogni-

tive computation. Similarly to sensory-guided tasks, in which

integration of sensory evidence over time is needed to ‘‘average

out’’ stimulus noise (Brunton et al., 2013; Gold and Shadlen,

2007; Shadlen and Newsome, 2001), here too, repeated

sampling is needed to determine which of two sites is currently

rewarding. Specifically, each failure conveys ambiguous infor-

mation, as it may be due to either an unlucky attempt at the

rewarding site, or a guaranteed failure in the non-active site,

and it is only by counting (integrating) the number of consecutive

failures that a more accurate state estimation can be made. Our

analysis of the leaving probability revealed that, much like in sen-

sory-based tasks, subjects do integrate this information when

deciding whether to stay or leave.Moreover, by changing reward

and transition probabilities, we were able to precisely control the

amount of information associated with each failure, and

observed that subjects readily adapted their leaving decisions

to these changing conditions, such that the lower the information

content of each sample was, the more such samples were

needed before leaving.

In the framework of reinforcement learning under uncertainty,

given the entire task history—i.e., the sequence of rewards and

failures at each port since the beginning of the task—the optimal

agent needs to compute a low-dimensional state representation

(Niv, 2019) that is most informative of future events. For a formal

definition, see Sect. 17.3 in Sutton and Barto (2018). We consid-

ered two distinct algorithms for doing this. In the ‘‘inference-

based’’ algorithm, we hypothesize that animals recover a

meaningful state representation that allows them to take most

advantage of the task structure. The current state is represented

by the posterior probability of being at the active site given the

task history, which in practice is a function of the number of

consecutive failures since the last reward. In this algorithm, the

final learned solution is optimal and independent of the learning

rate used during training. Alternatively, in the ‘‘stimulus-bound’’

algorithm, the animal only uses observable states based on

currently available perceptual information (Wilson et al., 2014).

The entire task history is summarized by the current location of

the animal (left or right site). In the hidden state task, this repre-

sentation only allows for suboptimal stable solutions, i.e.,

policies that depend on the site, but not on the reward history.

The primary distinction between sub-optimal, stimulus-bound

and optimal, inference-based strategies lies in the impact

consecutive rewards have on leaving decisions. In a stimulus-

bound behavior, which assigns values directly to the foraging

site, the more consecutive rewards are gained at a given site,

the higher the value of staying becomes, and consequently, leav-

ing decisions tend to be delayed. In contrast, optimal inference in

this task requires ignoring the number of consecutive rewards,

because the delivery of a single reward is sufficient to know for

certain which site is currently rewarding. As shown in Figure 2,

we found that, although initial behavior appeared to be sensory
174 Neuron 106, 166–176, April 8, 2020
bound, after learning, subjects’ leaving decisions became inde-

pendent of the number of rewards, consistent with an inference-

based approach to leaving decisions. We presume that the

change in behavior (between stimulus-bound and inference-

based decisions) over the course of training reflects learning,

but not that the change in performance necessarily reflects a

change in learning rate. What we posit is that two different

behavioral controllers, one stimulus-bound and one inference-

based, exist, which might correspond to a striatal system and

a prefrontal system respectively. Over the course of training,

the inference-based controller learns the structure of the

task—the correct state representation—through a slow process.

In parallel, the inference-based controller’s contribution to

behavioral choices is increased over training. This scheme is

similar to what was proposed by Daw et al. (2005). Alternatively,

the change in behavior over time could be accomplished by

meta-learning of hyper-parameters: a more complex stimulus-

bound agent could keep track of two different learning rates,

one for reward and one for failures.With training, the agent would

learn that the optimal reward learning rate is one (complete reset)

whereas the failure learning rate is adjusted over time to account

for different protocols. Even though this algorithm is distinct, it

still requires the ability to adjust a failure learning rate in such a

way that it is big for informative failures (in easy protocols) and

small for uninformative ones (in harder protocols). Consequently,

it results in a computation analogous to the inference model.

Recent accounts (Niv, 2019; Schuck et al., 2016; Stalnaker

et al., 2015; Wilson et al., 2014) proposed that the OFC is crucial

for accurate state representations, particularly when states are

hidden (that is, not explicitly given by the presence of a sensory

cue, for example) and have to be inferred from fuzzy evidence.

Our findings mesh well with this theory, because we found that

OFC, but not ACC, inhibition disrupted inference-based

behavior. Unlike under control conditions, in which the number

of failures before leaving was independent of the number of pre-

viously gained rewards, inhibiting the OFC resulted in mice per-

forming more failures when experiencing large amounts of

reward. This latter pattern is consistent with a stimulus-bound

strategy, and suggests the possibility that the stimulus-bound

strategy serves as a default behavioral approach, and is sup-

pressed by the OFC when inference-based behavior is required.

The observation that naive mice behave very similarly to OFC-in-

activated mice supports this idea. Several specific computa-

tional roles of OFC could account for this effect. OFC could be

encoding the representation directly or be necessary to access

or update such representation. Alternatively, the representation

could be still available, even when the OFC is inactivated, but

the region would be responsible for computing the posterior of

the hidden states given the representation.

The ACC has been implicated, in Pavlovian and operant tasks,

as a potential candidate for the implementation of integration-to-

threshold models. In Kawai et al. (2015), the authors observe

neurons in the primate ACC whose firing rate scales with the

number of consecutive negative outcomes in a Pavlovian task.

In the setting of an operant task, Sarafyazd and Jazayeri (2019)

showed that such negative outcome accumulation is modulated

by the error type (the more surprising the error, the stronger the

response) and that microstimulation of ACC accelerates the



detection of a context switch. From the foraging perspective,

Hayden et al. (2011) reported cells in the ACC encoding the value

of a depleting option. However, ACC inactivation in our task, un-

like OFC inactivation, had only a modulatory effect on behavior:

we did not observe qualitative changes in the strategy of the an-

imals, but only an overall tendency to stay longer at the current

port, which interacted multiplicatively both with the task statis-

tics and with increased travel times. The potential activation of

neurons in regions immediately adjacent to ACC (e.g., prelimbic

cortex or secondarymotor cortex) is possible (Figure S2C). How-

ever, the areas targeted in the two experiments (ACC and OFC)

are considerably further apart (Figure S2C). Because we

observed a double-dissociation of effects it is unlikely that the

fields of neurons activated across these two experiments were

substantially overlapping. Although caution is required in

comparing primate and rodent ACC, given the reported anatom-

ical (Uylings and van Eden, 1990) and functional differences

(Narayanan et al., 2013; Seamans et al., 2008), our results

seem most compatible with the idea that the ACC encodes the

value of alternative options, as proposed in Kolling et al.

(2016), while not having a primary role in the computations

required for the state inference process.

By developing a human video game and a rodent task

requiring the same underlying computation to be solved, we

could compare computational and cognitive processes across

species. From a theoretical standpoint, this strengthens the gen-

erality of those results that held true for the two species, such as

the ability to infer the hidden structure of the environment and to

tune behavior to environmental statistics. From a practical

standpoint, the hidden state foraging task makes it possible to

use rodent experimentation to more closely guide human clinical

research into the mechanisms of manipulations (e.g., drugs) or

conditions (e.g., depression) that may affect processes such

as state inference.
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Further information and requests for reagents may be directed to, and will be fulfilled by the Lead Contact, Zachary Mainen
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Fifty-seven adult male C57BL/6 mice were used in this study. For the inference-based versus stimulus-bound behavior experiment

(Figure 2) 18 C57BL/6NCrl wild-type mice of two months age were used. For the protocols manipulation experiment (Figure 3), 20

wild-type animal from different genetic backgrounds (8 Dat-Cre ; 5 Gad2-Cre; 5 Sert-Cre; 1 VGAT-ChR2; 1 F512-Cre) of 6-8 months

age were used, in order to reduce animal usage. For inactivation of anterior cingulate or orbitofrontal cortices (Figure 5), 12 VGAT-

ChR2 and 7 wild-type littermates were used. Mice genotypes were determined based on PCR and further verified using histological

inspection of YFP expression which led to the exclusion of a single ACC implanted animal from further analysis (see Figure S2d, e).

The C57BL/6NCrl line was obtained from the Charles river laboratories, breeders were ordered and bred in-house for amaximum of 4

generations or 2 years (strain code: 027). The Dat-Cre mouse line was obtained from the Jackson laboratory (stock number: 006660).

The Gad2-Cre was obtained from the Jackson laboratory (stock number: 010802). The Sert-Cre mouse line 61 was obtained from the

MutantMouse Regional Resource Centers (stock number: 017260-UCD). The VGAT-ChR2mouse line 8was obtained from the Jack-

son laboratory (stock number: 014548). The FI12-Cre mouse line was obtained from the Mutant Mouse Regional Resource Centers

(stock number: 017262-UCD). All experimental procedures were approved and performed in accordance with the Champalimaud

Centre for the Unknown Ethics Committee guidelines and by the Portuguese Veterinary General Board(Direcao-Geral de Veterinaria,

approval 0421/000/000/2016). The mice were kept under a normal 12 h light/dark cycle, and training, as well as testing, occurred

during the light period. Before testing or after surgeries, for the inactivation experiments, mice were single-housed. During training

and testing themice were water deprived, andwater was available to them only during task performance. Foodwas freely accessible

to the mice in their home cages. Extra water was provided if needed to ensure that mice maintain no less than 80% of their original

weight. For the protocols manipulation experiment behavioral training lasted 12 sessions, once per day, followed by 2 days of rest at
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the end of which we commenced testing. During training mice were exposed to the 3 different protocols (Easy: pRWD = 0:9 and pSW =

0:9;Medium: pRWD = 0:9 and pSW = 0:3; Hard: pRWD = 0:3 and pSW = 0:3) for 4 consecutive days (1 day of adaptation and 3 of testing)

before transitioning to the next environment. During testing, mice performed 1 session per day, 6 or 7 days a week. In protocols

manipulation experiments, the sequence of protocols was counterbalanced across 2 groups of 10 mice (Group A: Hard, Medium,

Easy; GroupB: Easy, Medium, Hard). In our analyses we considered 50 poke bouts per session after the first 10 during testing

days and excluded poke bouts with no rewards.

Human participants
20 right handed healthy adults of Portuguese nationality (10 female and 10 male; 22 to 31 years of age), with no history of psychiatric

diagnosis or prescribed drugs in the last 6 months, participated in this study. All participants gave written informed consent, and the

study was conducted in accordance with the guidelines of the local ethics committee. The task consisted of 2 sessions of 1 hour,

performed in different days with 2 to 10 days in between sessions. Each session consisted of 4 blocks with different protocols,

and 10 minutes break after the second block. The sequence of protocols consisted of a block (Medium environment) followed by

a short break (2 minutes), then a second block (Easy or Hard environment) followed by a long break (10 minutes), then a third block

(Medium environment) followed by a short break (2 minutes) and a final block (Hard or Easy environment). The sequence of environ-

ments during testing was counterbalanced across 2 groups as described in mice experiments. In our analyses we considered all tap-

ping bouts after the first 10 and excluded bouts with no rewards.

METHOD DETAILS

Mice behavioral apparatus
The behavioral apparatus for the taskwas adapted from the design developed by Zachary F.Mainen andMatt Recchia (Islandmotion

corporation, Nesconset, NY), originally developed for rat behavior. The behavioral box (153 123 18 cm, model 003102.0001, Island

motion corporation), contained 3 front walls (135-degree angle between the center and the side walls) with 2 nose-poke ports

attached to the left and right front walls. For the inference-based versus stimulus-bound behavior experiment (Figure 2), we used

a custom-made acrylic replicate of the box (15 3 16 3 20 cm). Each port was equipped with infrared emitter/sensor pairs to report

the times of port entry and exit (model 007120.0002, Island motion corporation). A nose-poke was considered valid if the infrared

beam was broken for at least 100 ms. Water valves (LHDA1233115H, The Lee Company, Westbrook, CT) were calibrated to deliver

a drop of 6 ml water for rewarded pokes in Easy and Hard environments and 2 ml of water inMedium environment: the reward size was

adjusted to keep the reward amount per correct trial constant. The average number of rewarded attempts per correct trial is

pRWD=pSW , that is to say 1 in the easy and hard protocol (reward magnitude = 6 ml, amount of water per correct trial = 6 ml) and 3

in the medium protocol (reward magnitude = 2 ml, amount of water per correct trial = 6 ml). In optogenetic experiments, all protocols

had an average of one reward per trial, but the reward size was kept at 4 ml to increase the trial number. In optogenetic experiments,

blue LEDs were placed in the box ceiling and in all the ports to deliver a masking light. All signals from sensors were processed by

Arduino Mega 2560 microcontroller board (Arduino, Somerville, US) and output from the Arduino Mega 2560 microcontroller board

was implemented to control water and light delivery. Arduino Mega 2560 microcontroller was connected to the sensors and control-

lers through an Arduino Mega 2560 adaptor board developed by the Champalimaud Foundation Scientific Hardware Platform. An

example behavioral video is available in the supplemental information.

Human video game task
Human subjects played a video game on a touchscreen device, with analogous features to the rodent behavioral assay. In the game,

subjects receive verbal instructions on how to control a character - a ‘‘witch’’ - on its quest to find and defeat an enemy that hides

behind a castle. The witch must walk along the wall of a castle, shooting either the left or the right edge of this wall in search of the

enemy that hides, at any given moment, in one of these two edges. The game obeys the same statistics as the rodent task: hitting the

enemy is analogous to a water reward, the current location of the enemy corresponds to the active site, and every shot at the active

site hits the enemy with probability pRWD. Moving between the two sides of the wall has an associated cost (travel cost) that can also

be manipulated with the appearance of rougher terrain (analogous to the physical barrier) that diminishes the traveling speed. As in

the mouse case, reward size was manipulated to keep the average reward per correct bout constant (3 points). The game ended

either when subjects collected 280 points or when a time limit of 20 minutes was exceeded.

Different environments had minor changes in the background images between them - for the medium protocol since it was expe-

rienced twice per session, two different backgrounds were used. After the player transitioned to a different site, the enemy was dis-

played to cue whether the transition had been correct or if instead, the player had to return to the previous site.

The human task wasmade using custom software developed using the game engine Construct2 (Scirra Ltd., Studio 117, The Light

Bulb 1 Filament Walk Wandsworth, London, UK). Graphics were made by Shira Lottem and Tiago Quendera using Inkscape: Open

Source Scalable Vector Graphics Editor. Audio assets were made by Tiago Quendera using Audacity(R) except for the Wilhelm

Scream (Wikimedia Commons).

An example video (not from an experimental subject) showing the different environments is provided in the supplemental material.

The task, open-source code and all assets are available at https://github.com/quendera/human-foraging.
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Optogenetic stimulation
In order to optically stimulate ChR2 expressing VGAT-expressing GABAergic interneurons we used blue light from a 473 nm laser

(LRS-0473-PFF-00800-03, Laserglow Technologies, Toronto, CA or DHOM-M-473-200, UltraLasers, Inc., Newmarket, CA) that

was controlled by an acousto-optical modulator (AOM;MTS110-A1-VIS orMTS110-A3- VIS, AA optoelectronic, Orsay, FR) to deliver

light 10ms pulses of light at 75 Hz, connected to ArduinoMega 2560microcontroller board (Arduino, Somerville, US). Light exiting the

AOMwas focused into an optical fiber patch cord (200 mm, 0.22 NA, Doric lenses Inc, 357 rue Franquet, Quebec, Quebec, CA), con-

nected to a second fiber patch cord through a rotary joint (FRJ 1x1, Doric lenses), which was then connected to the chronically im-

planted optic fiber cannula (MFC_200/230-0.48_3mm_ZF1.25(G)_FLT; Doric lenses Inc, 357 rue Franquet, Quebec, Quebec, CA).

We estimated an average 15% loss of light power between the patch cord tip and the optic fiber cannula before surgery. In order

to deliver light at 3 mW power, previously to each experiment day, the laser power at the tip of the patch cord was adjusted to

3.6 mW, to account for the estimated power loss. To test each protocol, we habituated animals to the new protocol for two days,

then stimulated during six consecutive days. Stimulation was delivered on 50% of trials and started with the first valid nose-poke

(that is to say after the infrared beam was broken for at least 100 ms). Stimulation ended if the animal did not nose-poke for

500 ms but would restart in case of another valid nose-poke on the same site.

Surgical procedures
Animals were anesthetized with isoflurane (4% induction and 0.5 - 1% for maintenance) and placed in a motorized computer-

controlled Stoelting stereotaxic instrument with mouse brain atlas integration and real-time visualization of the surgery probe in

the atlas space (Neurostar, Sindelfingen, Germany;https://www.neurostar.de). Antibiotic (Enrofloxacin, 2.5-5 mg/Kg, S.C.) and

pain killer (Buprenorphine,0.1mg/Kg, S.C.) and local anesthesia over the scalp (0.2ml, 2%Lidocaine, S.C.) were administered before

incising the scalp. Target coordinates were 1.9 mm A.P., ± 0.5 mm M.L., 1.75 mm D.V. for ACC and 2.9 mm A.P., ± 1.25 mm M.L.,

1.8 mm D.V. for OFC. Two craniotomies were performed above the target’s coordinates for OFC implants. For ACC implants fiber

were implanted over the target with an angle of ± 16◦ on the ML axis to avoid damage to the superior sagittal sinus, and two crani-

otomies were performed at coordinates 1.9 mm A.P., ± 1 mmM.L. An optical fiber (200 mmcore diameter, 0.48 NA, 510 mm) housed

inside a connectorized implant (M3, Doric lenses, Quebec, Canada) was lowered into the brain (0 degree angle for OFC and 11 degree

angle for ACC), through the craniotomy as the viral injection, and positioned10 mmabove the target. The implant was cemented to the

skull using Super Bond C&B (Morita, Kyoto, Japan) and once dried covered with black dental cement acrylic (Pi-Ku-Plast HP 36,

Bredent, Senden, Germany). The skin was stitched at the front and rear of the implant. Gentamicin(48760, Sigma-Aldrich, St. Louis,

MO) was topically applied around the implant. Mice were monitored until recovery from the surgery and returned to their home cage

where they were housed individually. Gentamicin (48760, Sigma-Aldrich, St. Louis, MO) was topically applied around the implant.

Behavioral testing started at least 1 week after surgery to allow for recovery.

Histology and microscopy
For histological analysis mice were perfused transcardially with 4%paraformaldehyde (PFA) in phosphate buffer solution (PBS). After

removing the brain they were left for 24 hours in 4% PFA solution in PBS, then transferred in 0.1% sodium azide solution in PBS.

Brains were sliced in 50 um coronal sections on a vibratome (Leica VT 1000 S), collected in wells maintaining the anterior-posterior

order, and finally mounted on microscope slides (Thermo scientific, superfrost plus), with mowiol.

Fluorescent images were acquired with an automated slide scanner (AxioScan Z1) equipped with a 10x, 0.45 NA PlanApochromat

objective and a Hamamatsu OrcaFlash camera. Use of the appropriate filter combination allowed for DAPI and EYFP acquisition

(Beam Splitter: 395, excitation: 330-375, emission: 430-470, and Beam splitter: 498, excitation: 453-485, emission: 507-546

respectively).

Optic cannula placement was determined using coronal sections of the prefrontal cortex through which the fiber tract was visible.

We determined the position by locating the section with the broadest base of the cannula tract and comparing the DAPI staining with

the Allen Mouse Brain Atlas (Lein et al., 2007) (Figure S2; Table S1).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
The statistical analysis, which can be found in the Results section and figure legends, was performed using mixed effect models

(McLean et al., 1991), in particular the Julia (Bezanson et al., 2017) implementation MixedModels.jl (Bates et al., 2019). For each

mixed model, we report the maximum likelihood estimate of the coefficient of interest ± the standard error of the estimate. Our N

is the number of subjects: as different experiments had a potentially different number of subjects, we report it after every statistical

test. We fitted models with a random intercept (depending on subject identity) and compared nested models using a likelihood ratio

test: in particular we used a chi-square test on the difference of the deviance of the two nested models, using as many degrees of
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freedom as the difference between the number of degrees of freedom of the two nested models (Wilks, 1938). That is to say, given

two models m and n where n is a special case of m:

p = 1� cdf
�
c2
dof ðmÞ�dof ðnÞ;devianceðnÞ�devianceðmÞ

�
When the p value is too small, we do not report the value but simply write p < 1e-10, which is floating point notation for p < 10�10. To

describe mixed models we will use Wilkinson notation (Wilkinson and Rogers, 1973), with | denoting random effects and & denoting

interaction terms. For example the formula:

ConsecutiveFailures� 1+Protocol +Stimulation+ ð1jMouseIDÞ
uses as predictor for the number of consecutive failures after last reward a constant intercept, a coefficient for each protocol different

than the medium protocol (which we consider as baseline), a coefficient for stimulation and a random intercept across mice. The

formula

ConsecutiveFailures� 1+Protocol +Stimulation+Protocol &Stimulation+ ð1jMouseIDÞ
would also allow for an interaction term between protocol and stimulation.

We did not test whether the data met the assumptions of the statistical methods used.

Task design
We designed a probabilistic foraging task for parallel use in mice and humans. Subjects sought rewards (water or points, respec-

tively), by actively probing a foraging site (nose-poking or screen-tapping, respectively). Each site could be in one of two states, active

or inactive. Each try in the active state yielded reward with probability pRWD, and could cause the site to switch to the inactive state

with probability pSW . This required the subjects to travel to a second, fresh, site at some distance and bear a travel cost. Subjects

were therefore tasked with inferring a hidden state (active or inactive) through a stochastic sequence of observations (rewards

and failures).

Relevant statistics in the task
After a rewarded attempt, the subject could be sure to be in the correct location: ambiguity comes from failures, as it was possible

that the target was correct but the subject was being unlucky. The more unsuccessful attempts, the higher the probability of a tran-

sition having occurred. Accumulated evidence in favor of a switch is a monotonically increasing function of the task parameters pRWD

and pSW : the higher the reward probability, the more informative a failure is. Trivially, the higher the switch probability, the more likely

the switch.

Possible task space representations
When analyzing our task, we consider two possible state representations. One is simpler and analogous to traditional approaches to

modeling n-armed bandit tasks: the state corresponds to the current location of the subject (i.e., one of the two reward sites). The

value of the two sites changes over time, yet the animals may be able to track this change with fast model-free learning. A second,

more principled but more abstract approach, postulates that the subjects tries to infer the optimal state representation, i.e., the prob-

ability that their current location is rewarding. In this model, there is no longer any need for fast online learning as the task represen-

tation is stable. The computation happening in real time is the inference process to compute this probability. To account for variability

in the behavior, we allow both decision noise, distributed according to the soft-max rule, as well as inference noise (the inference

process may be suboptimal). We will refer to these two learning paradigms as stimulus-bound learning and inference-based learning

respectively. It is important to note that, given the richer state representation, inference-based learning is the optimal way to solve the

task and clearly outperforms simpler heuristics such as stimulus-bound learning.

Stimulus-bound learning
In stimulus-bound learning, we first define the relative value V as the difference of the value of the leftport and the value of the

right port:

V = VLEFT � VRIGHT (S1)

We defined two auxiliary variables: a reward variable r indicating the outcome of each reward attempts, i.e., 1 for a reward and 0 for a

failure, and a site variable s, indicating the current site, 1 for left and �1 for right.

We can define a signed outcome o of each reward attempt, which is:

o = r$s (S2)

that is to say, 1 for a reward on the left, �1 for a reward on the right and 0 for an omission.

For any attempt, we can then update the relative value using the signed outcome and some discount parameter g

Vt + 1 = ð1�gÞVt +got + 1 (S3)
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Which admits an explicit solution:

Vt = ð1� gÞt$V0 +g$
Xt

i =1

ð1� gÞt�i$oi (S4)

The probability of staying is a monotonically increasing function of the value of staying, so that rewards should make the animal more

likely to stay and omissions more likely to leave, in a symmetric way.

Inference-based learning
We first derive recursive formulas to compute the probability that the current site is not rewarding as a function of the sequence of

successful and failed reward attempts performed by the subject. In this model, the subject would compute the relative value as a

function of the probability of the left (or right) site being active given the task history (r1; .; rt represent the outcomes of the various

attempts and s1; .; st the site of each attempt):

Vt = pRWDðPðLef tActivejr1; s1; .; rt; stÞ�PðRightActivejr1; s1; .; rt; stÞÞ (S5)

From value to decision
We have now defined to different ways to compute the relative value of left versus right, one directly based on reward accumulation,

and one based on evidence accumulation. To define a behavior from this relative value, we need to consider two more parameters.

First of all we need a bias term,: as the two foraging sites are far apart, subjects should prefer to repeat site rather than alternate, to

avoid the travel cost. Then we need a ‘‘inverse temperature’’ parameter b to describe how deterministic the animal is (with a very high

b the animal would almost always choose the option with greater value, whereas with b = 0 the animal would choose randomly). We

can then use the soft-max rule to generate behavior:

PðNextLef t j V ; sÞ = sðbðV + s $TÞÞ (S6)

where s represents the current site (1 for left and �1 for right).

In the simulations we will use the same softmax rule to simulate behavior: the difference between stimulus-bound and inference-

based learning derives from the different procedures used to compute the relative value.

Computing the likelihood ratio
In inference-based learning we defined the relative value as a function of the relative difference:

PðLef tActivej r1; s1; .; rt; stÞ�PðRightActive j r1; s1; .; rt; stÞ (S7)

This quantity can be computed recursively. To do so we will need an auxiliary variable. We define Rt as the probability ratio that the

current site is active or inactive given task history:

Rt =
PðInactivejr1; s1; .; rt; stÞ
PðInactivejr1; s1; .; rt; stÞ (S8)

From Rt we can compute Vt as follows:

Vt = pRWD$

�
1� 2

R�st
t + 1

�
(S9)

Rather than computing Vt recursively directly, we notice that Rt respects a simple recursive equation (likelihood ratio update

equation):

Rt + 1 =

�
Rt +pSW

1� pSW

�stst + 1

$
Pðrt + 1jInactiveÞ
Pðrt +1jActiveÞj (S10)

where pSW represents the probability of switching from active to inactive state.

The term ðRt +pSW =1�pSWÞ is the ratio between the following two equations:

PðNextInactiveÞ = PðInactiveÞ+pSWPðActiveÞ (S11)
PðNextActiveÞ = ð1�pSWÞ$PðActiveÞ
The exponent stst +1 simply means that the probability ratio ðPðInactiveÞ =PðActiveÞÞ inverts when the subject changes site. Finally the

term ðPðrt + 1jInactiveÞ =Pðrt + 1jActiveÞÞ represents the new evidence acquired with the outcome of attempt t + 1.
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In the case of a reward, Pðrt +1jInactiveÞ = 0, so:

Rt + 1 = 0 (S12)

If rt +1 is a failure, then Pðrt + 1jInactiveÞ= 1 whereas Pðrt +1jActiveÞ = 1� pRWD, so the likelihood ratio update equation simplifies to:

Rt + 1 =

�
Rt +pSW

1� pSW

�stst + 1

$
1

1� pRWD

(S13)

Having established that Rt resets to 0 with a reward, we can analyze the most interesting case for a probability computation: a

sequence of attempts on the same site (let us say s1; . st = 1) where the first attempt is rewarded (thus resetting the probability)

and the following are not.

As the first attempt is rewarded,R1 = 0. Furthermore, if we assume that all attempts are on the same site, the likelihood ratio grows

following the recursive equation:

Rt +1 =
Rt +pSW

ð1� pSWÞð1� pRWDÞ>Rt (S14)

We can define the auxiliary quantity

r =
1

ð1� pSWÞð1� pRWDÞ> 1: (S15)

Our recursive equation becomes:

Rt + 1 = r$ðRt + pSWÞ (S16)

This is a standard linear recursion that we can solve with linear transformation

St = Rt +
pSW

r� 1
(S17)

The recursion of St is:

S1 =
pSW

r� 1
(S18)
St + 1 = r$St

whose solution is

St = pSW

rt�1

r� 1
; (S19)

therefore:

Rt = pSW

rt�1 � 1

r� 1
(S20)

That is to say Rt grows exponentially with rate logðrÞ = �logð1�pRWDÞ � logð1�pSWÞ: increasing either pRWD or pSW would increase

the growth rate of R.

DATA AND CODE AVAILABILITY

All analysis was performed using custom code written in Julia (Bezanson et al., 2017). The code used to simulate value or inference

models is available on GitHub, under the MIT license, at https://github.com/piever/ValueInferenceTools.jl. The data is published on

Zenodo with DOI 10.5281/zenodo.3607558 and can be found at https://zenodo.org/record/3607558.
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