818 research outputs found

    Experimental Benchmarks and Initial Evaluation of the Performance of the PASM System Prototype

    Get PDF
    The work reported here represents experiences with the PASM parallel processing system prototype during its first operational year. Most of the experiments were performed by students in the Fall semester of 1987. The first programming, and the first timing measurements, were made during the summer of 1987 by Sam Fineberg. The goal of the collection of experiments presented here was to undertake an Application-driven Architecture Study of the PASM system as a paradigm for parallel architecture evaluation in general. PASM was an excellent vehicle for experimenting with this evaluation technique due to its unique architectural features. Among these are: 1. A reconfigurable, partitionable multistage circuit-switched network. 2. Support for both SIMD and MIMD programs. 3. Ability to execute hybrid SIMD/MIMD programs. 4. An instruction queue which allows overlap of control-flow and data manipulation between micro-control (MC) units and processing elements (PE). It had been hypothesized that superlinear speed-up over the number of PEs could be attained with this feature, and experimental results verified this. 5. Support for barrier synchronization of MIMD tasks. This feature was exploited in some non-standard ways to show the ability to decouple variant length SIMD instructions into multiple MIMD streams for an overall performance benefit. This type of study is expected to continue in the future on PASM and other parallel machines at Purdue. This report should serve as a guide for this future work as well

    Parallel Low-Storage Runge-Kutta Solvers for ODE Systems with Limited Access Distance

    Get PDF
    We consider the solution of initial value problems (IVPs) of large systems of ordinary differential equations (ODEs) for which memory space requirements determine the choice of the integration method. In particular, we discuss the space-efficient sequential and parallel implementation of embedded Runge—Kutta (RK) methods. Our focus is on the exploitation of a special structure of commonly appearing ODE systems, referred to as ‘‘limited access distance,’’ to improve scalability and memory usage. Such systems may arise, for example, from the semi-discretization of partial differential equations (PDEs). The storage space required by classical RK methods is directly proportional to the dimension n of the ODE system and the number of stages s of the method. We propose an implementation strategy based on a pipelined processing of the stages of the RK method and show how the memory usage of this computation scheme can be reduced to less than three storage registers by an overlapping of vectors without compromising the choice of method coefficients or the potential for efficient stepsize control. We analyze and compare the scalability of different parallel implementation strategies in detailed runtime experiments on different modern parallel architectures. </jats:p

    Analysis, classification and comparison of scheduling techniques for software transactional memories

    Get PDF
    Transactional Memory (TM) is a practical programming paradigm for developing concurrent applications. Performance is a critical factor for TM implementations, and various studies demonstrated that specialised transaction/thread scheduling support is essential for implementing performance-effective TM systems. After one decade of research, this article reviews the wide variety of scheduling techniques proposed for Software Transactional Memories. Based on peculiarities and differences of the adopted scheduling strategies, we propose a classification of the existing techniques, and we discuss the specific characteristics of each technique. Also, we analyse the results of previous evaluation and comparison studies, and we present the results of a new experimental study encompassing techniques based on different scheduling strategies. Finally, we identify potential strengths and weaknesses of the different techniques, as well as the issues that require to be further investigated

    A Parallel Mesh-Adaptive Framework for Hyperbolic Conservation Laws

    Full text link
    We report on the development of a computational framework for the parallel, mesh-adaptive solution of systems of hyperbolic conservation laws like the time-dependent Euler equations in compressible gas dynamics or Magneto-Hydrodynamics (MHD) and similar models in plasma physics. Local mesh refinement is realized by the recursive bisection of grid blocks along each spatial dimension, implemented numerical schemes include standard finite-differences as well as shock-capturing central schemes, both in connection with Runge-Kutta type integrators. Parallel execution is achieved through a configurable hybrid of POSIX-multi-threading and MPI-distribution with dynamic load balancing. One- two- and three-dimensional test computations for the Euler equations have been carried out and show good parallel scaling behavior. The Racoon framework is currently used to study the formation of singularities in plasmas and fluids.Comment: late submissio

    Solution of partial differential equations on vector and parallel computers

    Get PDF
    The present status of numerical methods for partial differential equations on vector and parallel computers was reviewed. The relevant aspects of these computers are discussed and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. Application areas utilizing these computers are briefly discussed

    Large-Scale Modeling of Epileptic Seizures: Scaling Properties of Two Parallel Neuronal Network Simulation Algorithms

    Get PDF
    Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determined the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers

    VME rollback hardware for time warp multiprocessor systems

    Get PDF
    The purpose of the research effort is to develop and demonstrate innovative hardware to implement specific rollback and timing functions required for efficient queue management and precision timekeeping in multiprocessor discrete event simulations. The previously completed phase 1 effort demonstrated the technical feasibility of building hardware modules which eliminate the state saving overhead of the Time Warp paradigm used in distributed simulations on multiprocessor systems. The current phase 2 effort will build multiple pre-production rollback hardware modules integrated with a network of Sun workstations, and the integrated system will be tested by executing a Time Warp simulation. The rollback hardware will be designed to interface with the greatest number of multiprocessor systems possible. The authors believe that the rollback hardware will provide for significant speedup of large scale discrete event simulation problems and allow multiprocessors using Time Warp to dramatically increase performance

    Study of fault-tolerant software technology

    Get PDF
    Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance

    Computational Spectrum of Agent Model Simulation

    Get PDF
    corecore