8 research outputs found

    Exact analysis for requirements selection and optimisation

    Get PDF
    Requirements engineering is the prerequisite of software engineering, and plays a crit- ically strategic role in the success of software development. Insufficient management of uncertainty in the requirements engineering process has been recognised as a key reason for software project failure. The essence of uncertainty may arise from partially observable, stochastic environments, or ignorance. To ease the impact of uncertainty in the software development process, it is important to provide techniques that explicitly manage uncertainty in requirements selection and optimisation. This thesis presents a decision support framework to exactly address the uncertainty in requirements selection and optimisation. Three types of uncertainty are managed. They are requirements uncertainty, algorithmic uncertainty, and uncertainty of resource constraints. Firstly, a probabilistic robust optimisation model is introduced to enable the manageability of requirements uncertainty. Requirements uncertainty is probabilis- tically simulated by Monte-Carlo Simulation and then formulated as one of the opti- misation objectives. Secondly, a probabilistic uncertainty analysis and a quantitative analysis sub-framework METRO is designed to cater for requirements selection deci- sion support under uncertainty. An exact Non-dominated Sorting Conflict Graph based Dynamic Programming algorithm lies at the heart of METRO to guarantee the elim- ination of algorithmic uncertainty and the discovery of guaranteed optimal solutions. Consequently, any information loss due to algorithmic uncertainty can be completely avoided. Moreover, a data analytic approach is integrated in METRO to help the deci- sion maker to understand the remaining requirements uncertainty propagation through- out the requirements selection process, and to interpret the analysis results. Finally, a more generic exact multi-objective integrated release and schedule planning approach iRASPA is introduced to holistically manage the uncertainty of resource constraints for requirements selection and optimisation. Software release and schedule plans are inte- grated into a single activity and solved simultaneously. Accordingly, a more advanced globally optimal result can be produced by accommodating and managing the inherent additional uncertainty due to resource constraints as well as that due to requirements. To settle the algorithmic uncertainty problem and guarantee the exactness of results, an ε-constraint Quadratic Programming approach is used in iRASPA

    Dependency-Aware Software Requirements Selection using Fuzzy Graphs and Integer Programming

    Full text link
    Software requirements selection aims to find an optimal subset of the requirements with the highest value while respecting the project constraints. But the value of a requirement may depend on the presence or absence of other requirements in the optimal subset. Such Value Dependencies, however, are imprecise and hard to capture. In this paper, we propose a method based on integer programming and fuzzy graphs to account for value dependencies and their imprecision in software requirements selection. The proposed method, referred to as Dependency-Aware Software Requirements Selection (DARS), is comprised of three components: (i) an automated technique for the identification of value dependencies from user preferences, (ii) a modeling technique based on fuzzy graphs that allows for capturing the imprecision of value dependencies, and (iii) an Integer Linear Programming (ILP) model that takes into account user preferences and value dependencies identified from those preferences to reduce the risk of value loss in software projects. Our work is verified by studying a real-world software project. The results show that our proposed method reduces the value loss in software projects and is scalable to large requirement sets.Comment: arXiv admin note: text overlap with arXiv:2003.0480

    Requirements engineering: foundation for software quality

    Get PDF

    Factors Influencing Customer Satisfaction towards E-shopping in Malaysia

    Get PDF
    Online shopping or e-shopping has changed the world of business and quite a few people have decided to work with these features. What their primary concerns precisely and the responses from the globalisation are the competency of incorporation while doing their businesses. E-shopping has also increased substantially in Malaysia in recent years. The rapid increase in the e-commerce industry in Malaysia has created the demand to emphasize on how to increase customer satisfaction while operating in the e-retailing environment. It is very important that customers are satisfied with the website, or else, they would not return. Therefore, a crucial fact to look into is that companies must ensure that their customers are satisfied with their purchases that are really essential from the ecommerce’s point of view. With is in mind, this study aimed at investigating customer satisfaction towards e-shopping in Malaysia. A total of 400 questionnaires were distributed among students randomly selected from various public and private universities located within Klang valley area. Total 369 questionnaires were returned, out of which 341 questionnaires were found usable for further analysis. Finally, SEM was employed to test the hypotheses. This study found that customer satisfaction towards e-shopping in Malaysia is to a great extent influenced by ease of use, trust, design of the website, online security and e-service quality. Finally, recommendations and future study direction is provided. Keywords: E-shopping, Customer satisfaction, Trust, Online security, E-service quality, Malaysia

    13th International Conference on Modeling, Optimization and Simulation - MOSIM 2020

    Get PDF
    Comité d’organisation: Université Internationale d’Agadir – Agadir (Maroc) Laboratoire Conception Fabrication Commande – Metz (France)Session RS-1 “Simulation et Optimisation” / “Simulation and Optimization” Session RS-2 “Planification des Besoins Matières Pilotée par la Demande” / ”Demand-Driven Material Requirements Planning” Session RS-3 “Ingénierie de Systèmes Basées sur les Modèles” / “Model-Based System Engineering” Session RS-4 “Recherche Opérationnelle en Gestion de Production” / "Operations Research in Production Management" Session RS-5 "Planification des Matières et des Ressources / Planification de la Production” / “Material and Resource Planning / Production Planning" Session RS-6 “Maintenance Industrielle” / “Industrial Maintenance” Session RS-7 "Etudes de Cas Industriels” / “Industrial Case Studies" Session RS-8 "Données de Masse / Analyse de Données” / “Big Data / Data Analytics" Session RS-9 "Gestion des Systèmes de Transport” / “Transportation System Management" Session RS-10 "Economie Circulaire / Développement Durable" / "Circular Economie / Sustainable Development" Session RS-11 "Conception et Gestion des Chaînes Logistiques” / “Supply Chain Design and Management" Session SP-1 “Intelligence Artificielle & Analyse de Données pour la Production 4.0” / “Artificial Intelligence & Data Analytics in Manufacturing 4.0” Session SP-2 “Gestion des Risques en Logistique” / “Risk Management in Logistics” Session SP-3 “Gestion des Risques et Evaluation de Performance” / “Risk Management and Performance Assessment” Session SP-4 "Indicateurs Clés de Performance 4.0 et Dynamique de Prise de Décision” / ”4.0 Key Performance Indicators and Decision-Making Dynamics" Session SP-5 "Logistique Maritime” / “Marine Logistics" Session SP-6 “Territoire et Logistique : Un Système Complexe” / “Territory and Logistics: A Complex System” Session SP-7 "Nouvelles Avancées et Applications de la Logique Floue en Production Durable et en Logistique” / “Recent Advances and Fuzzy-Logic Applications in Sustainable Manufacturing and Logistics" Session SP-8 “Gestion des Soins de Santé” / ”Health Care Management” Session SP-9 “Ingénierie Organisationnelle et Gestion de la Continuité de Service des Systèmes de Santé dans l’Ere de la Transformation Numérique de la Société” / “Organizational Engineering and Management of Business Continuity of Healthcare Systems in the Era of Numerical Society Transformation” Session SP-10 “Planification et Commande de la Production pour l’Industrie 4.0” / “Production Planning and Control for Industry 4.0” Session SP-11 “Optimisation des Systèmes de Production dans le Contexte 4.0 Utilisant l’Amélioration Continue” / “Production System Optimization in 4.0 Context Using Continuous Improvement” Session SP-12 “Défis pour la Conception des Systèmes de Production Cyber-Physiques” / “Challenges for the Design of Cyber Physical Production Systems” Session SP-13 “Production Avisée et Développement Durable” / “Smart Manufacturing and Sustainable Development” Session SP-14 “L’Humain dans l’Usine du Futur” / “Human in the Factory of the Future” Session SP-15 “Ordonnancement et Prévision de Chaînes Logistiques Résilientes” / “Scheduling and Forecasting for Resilient Supply Chains

    The University of Iowa 2020-21 General Catalog

    Get PDF

    Planning, Nature and Ecosystem Services

    Get PDF
    This book collects the papers presented at INPUT aCAdemy 2019, a special edition of the INPUT Conference hosted by the Department of Civil and Environmental Engineering, and Architecture (DICAAR) of the University of Cagliari. INPUT aCAdemy Conference will focus on contemporary planning issues with particular attention to ecosystem services, green and blue infrastructure and governance and management of Natura 2000 sites and coastal marine areas. INPUT aCAdemy 2019 is organized within the GIREPAM Project (Integrated Management of Ecological Networks through Parks and Marine Areas), co-funded by the European Regional Development Fund (ERDF) in relation to the 2014-2020 Interreg Italy – France (Maritime) Programme. INPUT aCAdemy 2019 is supported by Società Italiana degli Urbanisti (SIU, the Italian Society of Spatial Planners), Istituto Nazionale di Urbanistica (INU, the Italian National Institute of Urban Planning), UrbIng Ricerca Scientifica (the Association of Spatial Planning Scholars of the Italian Schools of Engineering) and Ordine degli Ingegneri di Cagliari (OIC, Professional Association of Engineers of Cagliari).illustratorThis book collects the papers presented at INPUT aCAdemy 2019, a special edition of the INPUT Conference hosted by the Department of Civil and Environmental Engineering, and Architecture (DICAAR) of the University of Cagliari. INPUT aCAdemy Conference will focus on contemporary planning issues with particular attention to ecosystem services, green and blue infrastructure and governance and management of Natura 2000 sites and coastal marine areas. INPUT aCAdemy 2019 is organized within the GIREPAM Project (Integrated Management of Ecological Networks through Parks and Marine Areas), co-funded by the European Regional Development Fund (ERDF) in relation to the 2014-2020 Interreg Italy – France (Maritime) Programme. INPUT aCAdemy 2019 is supported by Società Italiana degli Urbanisti (SIU, the Italian Society of Spatial Planners), Istituto Nazionale di Urbanistica (INU, the Italian National Institute of Urban Planning), UrbIng Ricerca Scientifica (the Association of Spatial Planning Scholars of the Italian Schools of Engineering) and Ordine degli Ingegneri di Cagliari (OIC, Professional Association of Engineers of Cagliari)
    corecore