
University of London
University College London

Department of Computer Science

Exact Analysis for Requirements Selection
and Optimisation

Lingbo Li

Submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy in Computer Science of the University of

and
the Diploma of University College London, July 2017

Abstract

Requirements engineering is the prerequisite of software engineering, and plays a crit-

ically strategic role in the success of software development. Insufficient management

of uncertainty in the requirements engineering process has been recognised as a key

reason for software project failure. The essence of uncertainty may arise from partially

observable, stochastic environments, or ignorance. To ease the impact of uncertainty in

the software development process, it is important to provide techniques that explicitly

manage uncertainty in requirements selection and optimisation.

This thesis presents a decision support framework to exactly address the uncertainty

in requirements selection and optimisation. Three types of uncertainty are managed.

They are requirements uncertainty, algorithmic uncertainty, and uncertainty of resource

constraints. Firstly, a probabilistic robust optimisation model is introduced to enable

the manageability of requirements uncertainty. Requirements uncertainty is probabilis-

tically simulated by Monte-Carlo Simulation and then formulated as one of the opti-

misation objectives. Secondly, a probabilistic uncertainty analysis and a quantitative

analysis sub-framework METRO is designed to cater for requirements selection deci-

sion support under uncertainty. An exact Non-dominated Sorting Conflict Graph based

Dynamic Programming algorithm lies at the heart of METRO to guarantee the elim-

ination of algorithmic uncertainty and the discovery of guaranteed optimal solutions.

Consequently, any information loss due to algorithmic uncertainty can be completely

avoided. Moreover, a data analytic approach is integrated in METRO to help the deci-

sion maker to understand the remaining requirements uncertainty propagation through-

out the requirements selection process, and to interpret the analysis results. Finally, a

more generic exact multi-objective integrated release and schedule planning approach

iRASPA is introduced to holistically manage the uncertainty of resource constraints for

requirements selection and optimisation. Software release and schedule plans are inte-

grated into a single activity and solved simultaneously. Accordingly, a more advanced

globally optimal result can be produced by accommodating and managing the inherent

additional uncertainty due to resource constraints as well as that due to requirements.

To settle the algorithmic uncertainty problem and guarantee the exactness of results,

an ε-constraint Quadratic Programming approach is used in iRASPA.

i

Acknowledgements

I would like to thank all the those people who so generously helped to the work presented

in this thesis.

First and foremost, I would like to express my sincere gratitude to my primary super-

visor Prof. Mark Harman for the continuous support of my Ph.D study and related

research, for his patience, motivation, and immense knowledge. I would also like to

thank my secondary supervisor Dr. Emmanuel Letier for his support and comments

and my co-supervisor Dr. Yuanyuan Zhang for her guidance, insightful and helpful dis-

cussions, and valuable assistance. I am very grateful to Prof. Inmaculada Medina-Bulo

and Prof. Francisco Palomo-Lozano for the excellent collaboration we had and for the

assistance they provided.

My sincere thanks and appreciations also go to all my colleagues: 1) at the Centre for

Research in Evolution, Search and Testing for their general support and discussions, es-

pecially to Prof. William Langdon, Dr. Yue Jia, Dr. Ke Mao, Dr. Fan Wu, Dr. Federica

Sarro, and Mr. Zheng Gao; and 2) at Department of Computer Science for their encour-

agement and support: Mr. Leslie Kanthan and Mr. Michail Basios. I would also like to

thank the various anonymous referees for their comments on all my papers submitted

for publication; their comments and feedback have been extremely beneficial.

I gratefully acknowledge the China Scholarship Council, University College London

Doctoral school conference fund, EPSRC DAASE project fund, and Microsoft Azure for

Research grant schema for the financial and research support that they have provided.

Finally, I would like to dedicate my particular appreciation to my supportive family

for their constant encouragement, support and patience throughout all difficult times

in my Ph.D study.

ii

Dedication

I, Lingbo Li , confirm that the work presented in this thesis is my own. Where infor-

mation has been derived from other sources, I confirm that this has been indicated in

the work.

The work presented in this thesis is original work undertaken between September 2013

and April 2017 at University College London, University of London. Some of the work

presented in this thesis has previously been published in and submitted to the following

publications:

1. Lingbo Li, Mark Harman, Emmanuel Letier, and Yuanyuan Zhang. Robust next

release problem: Handling uncertainty during optimization. In Proceedings of the

2014 Annual Conference on Genetic and Evolutionary Computation, GECCO ’14,

pages 1247–1254. ACM, 2014

2. Lingbo Li. Exact analysis for next release problem. In 2016 IEEE 24th Interna-

tional Requirements Engineering Conference (RE), pages 438–443, Sept 2016

3. L. Li, M. Harman, F. Wu, and Y. Zhang. The value of exact analysis in require-

ments selection. IEEE Transactions on Software Engineering, 43(6):580–596, June

2017

4. Lingbo Li, Inmaculada Medina-Bulo, Francisco Palomo-Lozano, Mark Harman,

and Yuanyuan Zhang. iRASPA: An exact multi-objective integrated release and

schedule planning approach. Submitted to IEEE Transactions on Software Engi-

neering, 2017. Under review

Moreover, the following work has also been published or submitted during the pro-

gramme of study, but does not feature in this thesis itself. This work was conducted

by the student during the course of his Ph.D study in collaboration with others.

1. Haitao Dan, Mark Harman, Jens Krinke, Lingbo Li, Alexandru Marginean, and

Fan Wu. Pidgin Crasher: Searching for Minimised Crashing GUI Event Se-

iii

quences, chapter Search-Based Software Engineering: 6th International Sympo-

sium, SSBSE ’14, Fortaleza, Brazil, August 26-29, 2014. Proceedings, pages 253–

258. Springer International Publishing, Cham, 2014

2. Lingbo Li, Mark Harman, Fan Wu, and Yuanyuan Zhang. SBSelector: Search

Based Component Selection for Budget Hardware, chapter Search-Based Software

Engineering: 7th International Symposium, SSBSE ’15, Bergamo, Italy, Septem-

ber 5-7, 2015, Proceedings, pages 289–294. Springer International Publishing,

Cham, 2015

3. Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, Donald Lawrence, and Earl

Barr. Darwinian data structure selection. Submitted to IEEE Transactions on

Software Engineering, 2017. Under review

4. Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr. Opti-

mising Darwinian Data Structures on Google Guava, pages 161–167. Springer

International Publishing, Cham, 2017

iv

v

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Motivation of the Research . 2

1.2 Objectives of the Research . 7

1.3 Contributions . 9

1.4 Organisation of the PhD Thesis . 11

2 Literature Review 13

2.1 Overview of Requirements Engineering 13

2.1.1 Requirement . 13

2.1.2 Requirements Engineering . 16

2.2 Requirements Selection and Optimisation 22

2.2.1 Priority-based Requirements Optimisation 23

2.2.2 Heuristic Search-based Requirements Optimisation 26

2.2.3 Exact Requirements Optimisation 30

vi

CONTENTS vii

2.3 Uncertainty Handling . 32

2.3.1 Analysing Uncertainty in Requirements Optimisation 33

2.3.2 Robust Optimisation in Requirements Optimisation 34

2.4 Software Project Resource Allocation 36

3 Simulation based Robust Next Release Problem Model 39

3.1 Motivation . 39

3.2 Problem Formulation . 40

3.2.1 Robust MONRP formulation . 40

3.3 Optimisation Approach . 43

3.4 Experimental Set Up . 45

3.4.1 Data Sets . 45

3.4.2 Search Algorithmic Tuning . 46

3.4.3 Evaluation . 47

3.4.4 Research Questions . 48

3.5 Experimental Results and Analysis . 49

3.5.1 Experiment One (E1) . 50

3.5.2 Experiment Two (E2) . 52

3.5.3 Statistical Analysis . 53

3.6 Summary . 55

4 The Value of Exact Analysis in Next Release Problem 57

4.1 Motivation . 57

4.2 Background . 60

CONTENTS viii

4.2.1 Next Release Problem with Conflict Graphs 60

4.2.2 Nemhauser-Ullmann Algorithm 62

4.3 Simulation based NRP Decision Analysis Framework METRO 63

4.3.1 Requirements Interaction Pre-Processing 64

4.3.2 Exact NRP optimisation Solver 65

4.3.3 Results Analysis & visualisation 67

4.4 Applying our approach to the RALIC dataset 70

4.4.1 Experimental set up . 70

4.4.2 Research Questions . 72

4.4.3 Experiment Results . 74

4.5 Summary . 86

5 Exact Analysis in Integrated Release and Schedule Planning Problem 91

5.1 Motivation . 92

5.2 Problem Statement . 94

5.2.1 Software Release Planning . 95

5.2.2 Software Schedule Planning . 97

5.2.3 Integrated Release and Schedule Planning 99

5.3 The Solution Approach . 103

5.4 Empirical Study . 104

5.4.1 Datasets . 104

5.4.2 Experimental Setup . 106

5.4.3 Research Questions . 106

5.4.4 Analysis of Results . 108

5.5 Summary . 115

6 Conclusions and Future Work 117

6.1 Summary . 117

6.1.1 Simulation based Robust Next Release Problem Model 118

6.1.2 The Value of Exact Analysis in Next Release Problem 119

6.1.3 Exact Analysis in Integrated Release and Schedule Planning Prob-

lem . 120

6.2 Threats to Validity . 121

6.2.1 Construct validity . 121

6.2.2 Internal validity . 122

6.2.3 External validity . 124

6.3 Future Work . 125

Bibliography 126

ix

List of Tables

3.1 Illustrative fragment of S1 data . 46

3.2 The Robustness & Comparison of the MCNRP-US Approach and the

Traditional Approach . 53

3.3 The Robustness & Comparison of the MCNRP-R Approach and the

Traditional Approach . 53

3.4 The Correlation of Rankings of Requirements 54

3.5 The Correlation between the Attributes of Requirement and its Ranking 55

4.1 Requirement Interactions. The sets ξ, and ϕ present the interaction

types And, and XOR, respectively. The set ξ ∩ ϕ = ∅. 65

5.1 Requirements interactions. The corresponding relations are represented

by ξ, ϕ, χ ⊆ R2, which are pairwise disjoint sets. 96

5.2 Project information including the following characteristics: number of

requirements, dependencies, developers and skills, along with importance

and effort estimations. Effort measured in person-hours for industrial

projects and person-days for academia-industry cooperation projects. . 105

5.3 Kendall’s τ test for dependence between impact factors and execution

time at 99% confidence level. 115

x

List of Figures

2.1 The hierarchy of non-functional requirements types [9]. 16

3.1 The tolerance region of a MONRP solution [10]. 41

3.2 Overview of Monte Carlo Simulation approach [11] 44

3.3 Illustration of the triangle probability distribution and the classification

of sensitive and insensitive distributions [12]. c1 and c2 are the mode

value of probability distribution P1 and probability distribution P2, re-

spectively. a1 and b1 is the lowest value and highest of P1 respectively

while a2 and b2 is the lowest value and highest of P2. P1 is considered to

be more ‘stable’ (insensitive). 45

3.4 The Pareto-front of MCNRP-US and Original Approach 51

3.5 The Pareto-front of MCNRP-R and Original Approach 52

4.1 NRP Decision Analysis Framework: METRO 64

4.2 The illustration of the subdivision process of the NSGDP for an instance

with 7 requirements and 5 conflicting interactions. Figure 4.2a to Figure

4.2i are each generated sub-problem in the subdivision phase. Figure 4.2j

illustrates the generated sub-problems and the solution path of NSGDP

algorithm. 68

xi

LIST OF FIGURES xii

4.3 Answers RQ1.1 . These figures illustrate the differences between the

solutions found by NSGA-II and NSGDP . Figures 4.3a and 4.3b present

the differences, based on two quality indicators (number of optimal so-

lutions found and relative hypervolume). Figures 4.3c and 4.3d present

execution time differences. ‘# solution’ denotes the percentage of op-

timal solutions, and ‘HV’ stands for relative hypervolume. The names

of instance ‘O’, ‘P’, and ‘B’ stands for the highly Optimistic RALIC in-

stance, and highly Pessimistic RALIC instance, and ‘in-Between’ RALIC

instance, respectively. 75

4.4 Answers RQ1.2 . These box plots show the chance that NSGA-II

provide wrong requirements selection decision for each requirement in

RALIC instance without considering uncertainty. The grey box plot de-

picts the overall chance of getting wrong requirements decision. 78

4.5 Answers RQ1.2 . These box plots show the chance that NSGA-II

provide wrong requirements selection decision for each requirement in

RALIC instance with considering uncertainty. The grey box plot depicts

the overall chance of getting wrong requirements decision. 79

4.6 The box-plots show how much expected risk premium and reduction

of risk can achieve by taking account of requirements uncertainty. The

names of instance ‘O’, ‘P’, and ‘B’ represents the highly optimistic RALIC

instance, and highly pessimistic RALIC instance, and ‘in-between’ RALIC

instance, respectively. These figures answer RQ2 81

4.7 AnswersRQ3.1 . The difference of requirement inclusion between robust-

yet-suboptimal solutions and the corresponding optimal-yet-risky solu-

tions in terms of requirements selection probability. 85

4.8 Answers RQ3.2 . The clustered inclusion trends of requirements where

θ = 150% for pNRP . 87

4.9 Answers RQ3.2 . The clustered inclusion trends of requirements where

θ = 150% for sNRP . 88

5.1 The percentage of valid solutions found by the two-stage approach. . . 108

5.2 The percentage of optimal solutions found by the two-stage approach. . 109

5.3 The percentage of optimal solutions found by the two-stage approach vs.

iRASPA. 109

5.4 Comparison of execution times for computing the Pareto front of each

instance. Maximum times on top. 110

5.5 The impact of the project characteristics on the number of optimal so-

lutions. 112

5.6 The impact of the project characteristics on the execution time. 113

xiii

Chapter 1

Introduction

In software engineering, determining the set of requirements to implement in the release

is a critical foundation for the success of a project. Inappropriately including or ex-

cluding requirements may result in products that fail to satisfy stakeholders’ needs, and

might cause loss of revenue. However, uncertainty (characterised by incomplete under-

standing) is inevitable in the early phase of requirements engineering, and could lead to

unsound requirement decisions. To overcome uncertainty, the requirement engineering

decision support needs uncertainty management.

This thesis presents a decision support framework for managing and analysing the

uncertainty in requirements selection and optimisation. The uncertainties include un-

certainty about development resource availability, the impact of dynamic and frequent

changes at software runtime [13, 14], and the requirements ambiguity [15]. In this

thesis, three types of uncertainty are taken into consideration: Firstly, we introduce a

simulation-based requirements selection and optimisation model to manage the require-

ments uncertainty. Secondly, we design a Dynamic-Programming-based exact require-

ments selection solver to eliminate algorithmic uncertainty and a requirements uncer-

tainty analysis framework METRO to interpret the impact of requirements uncertainty.

Lastly, we take into account and address the uncertainty concerning allocation of re-

sources by introducing an integrated software release and schedule planning model with

1

1.1. Motivation of the Research 2

ε-constraint based Quadratic Programming.

In this chapter, we firstly provide the motivation for conducting this study. We then

lay out the objectives and primary contributions of this work. Finally, we provide an

overview of the structure of this thesis.

1.1 Motivation of the Research

The term software requirement is defined as “the property which must be exhibited

in order to solve some problem in the real world" [16]. Determining an appropriate

subset of requirements to be delivered in the following releases of a software system is a

critical aspect in software engineering, especially under limited resources. Essentially,

requirements selection can be regarded as a complex combinatorial decision problem in

which several stakeholders and restrictions have to be satisfied in different deployment

environments [17].

Therefore, the requirements selection and optimisation problem can be formulated as

a constrained optimisation problem. In 1996, Karlsson used the Analytical Hierarchy

Process for supporting software requirements selection and prioritisation [18]. In 2001,

Bagnall et al. [19] further formulated it as Next Release Problem (NRP) and used a

search-based approach to explore the search space in pursuit of requirements combina-

tions with maximal expected business value. In 2004, Greer and Ruhe [20] extended

this model to the software release planning problem to cater for several releases. In

their formulation, stakeholders’ objectives are modelled quantitatively, and optimisa-

tion techniques (i.e., meta-heuristic algorithms, dynamic programming) are employed to

explore and select a subset of requirements that is both feasible and well-suited to stake-

holders’ requirements. It is a non-trivial problem, known to be NP-hard [19, 21, 22].

The search space of this problem increases exponentially with the number of require-

ments.

Unfortunately, uncertainty is also an inherent characteristic of the software engineer-

1.1. Motivation of the Research 3

ing process [23]. The essence of uncertainty is the lack of complete knowledge at the

time a decision must be taken [24]. In requirements selection and optimisation, uncer-

tainty may arise from limited knowledge or ignorance in domain knowledge, technical

knowledge, and project management [25, 26].

The uncertainty in requirements selection and optimisation may be found from the

requirement itself. Requirements are often incomplete, vague and subject to change.

Requirement uncertainties include uncertainty about the development resource avail-

ability, the impact of dynamic and frequent changes in the whole software development

life cycle, and the accuracy of the software project estimation. The requirements of a

new system are uncertain if the users have not started to use it [27]. Besides, the un-

certainty in requirements selection and optimisation can also be found in the algorithm

used to tackle it. Non-deterministic approximate algorithm may introduce unnecessary

uncertainty into the analysis of the problem and thereby produce the wrong advice,

misleading the decision maker. This algorithmic uncertainty is especially undesirable

in those situations where the decision maker has also to struggle with the inherent data

uncertainty of the problem itself. Additionally, the uncertainty of project management

information, such as the uncertainty of resources used to allocate the requirements, is

also one source of uncertainty. Ignoring the resource constraints (i.e., the capacities

and expertise of developers) is likely to result in invalid software release plan. Decision

makers have to make decisions under such uncertainties. Underestimated or ignored

uncertainties may bring risks into software projects, and might even result in project

failure [27].

Over the last decade, various requirements selection and optimisation techniques have

been developed in a context where the input requirements’ attributes are concerned with

point-based estimations, which are estimated by human requirements engineers [19, 28,

29, 30]. In those studies, the attributes of requirements and stakeholders are quantified

as explicit values, and requirement uncertainty is either underestimated or completely

overlooked [31]. For example, given a set of quantified requirements, although those

point-based estimation approaches can provide optimal solutions in terms of expected

1.1. Motivation of the Research 4

cost and revenue, they fail to offer an assessment of the confidence placed in results.

Thus, they may mislead the decision making and amplify the consequences of risks.

According to Hubbard:

“Certainty about real-world quantities is usually beyond their reach. The

fact that some amount of error is unavoidable but can still be an improve-

ment on prior knowledge is central to how experiments, surveys, and other

scientific measurements are performed." [32]

the impact of uncertainty could be mitigated by performing mathematical measurement

methods and scientific uncertainty management methods.

On the basis of previous research work, in order to manage uncertainty in requirements

selection and optimisation, two approaches have been conducted:

The first approach is sensitivity analysis, which is an uncertainty-handling method. The

purpose of performing sensitivity analysis is to evaluate the robustness of the outputs

of a model in the presence of uncertainty, and to achieve uncertainty reduction through

identifying sensitive model inputs. The principal of sensitivity analysis is to study

how different sources of uncertainties in the input of a system will contribute to the

uncertainties in the output of the system [33, 34]. Usually, sensitivity analysis applies

changes in the input of the system, and studies what effect this produces on the output.

This enables engineers to understand the consequences and sources of uncertainties, on

account of building robust models.

In search-based requirements selection and optimisation, Harman et al. [22, 35] have

applied sensitivity analysis to NRP to look into the sensitivities of the attribute of re-

quirements. In their studies, they performed a local sensitivity analysis approach “One-

At-a-Time" [36], which perturbs input requirements variables upward or downward to

try out various ‘what-if’ scenarios. However, their one-at-a-time approach cannot scale

to the context of many input parameters and higher order analysis, where the number

of perturbed input parameters increases and the requirement interactions are taken

1.1. Motivation of the Research 5

into consideration. Harman et al. [35] used meta-heuristic algorithms as a modelling

approach in their work. This may invalidate the interpreted results by introducing un-

necessary uncertainty from the algorithm to the problem. Moreover, sensitivity analysis

can only provide information on the sensitivities of parameters. It does not generate

robust solutions, which can tolerate perturbations that might otherwise affect solutions

offered by non-robust approaches, thereby making such a more robust solution more

desirable.

Instead of making use of sensitivity analysis as a post-analysis for quantifying the sensi-

tivity characteristics of the associated input in the underlying problem, some researchers

have suggested the construction of a solution that is feasible for any realisation of the

uncertain values, using robust optimisation [37, 38]. Robust optimisation is distinctly

different from sensitivity analysis. Robust optimisation formulates the optimisation

problem as one in which solutions that have a priori ensured robustness are sought

against prescribed uncertainty [39]. Robust optimisation explores the solution space

and takes uncertainty into account simultaneously.

Paixão et al. introduced robust optimisation to NRP to cater for uncertainty in search-

based requirement optimisation [40]. In their proposed optimisation model, requirement

uncertainty was represented as deterministic variability in the value of the input param-

eters. They used worst case analysis, which implies that the uncertainty was formulated

as max-min bounds, to treat requirement uncertainty. Accordingly, their generated re-

lease plan, solutions were deterministically immune to realisations of the uncertainty,

but were overly conservative in order to ensure this immunity. The major drawback

of this non-probabilistic robust model is that the solutions it produces are conserva-

tively expensive. This non-probabilistic robust model is well-grounded only when the

uncertainty is not stochastic, or the distribution is unavailable [39].

Probabilistic robust optimisation has been proposed to take advantage of the principles

of statistics to relax uncertainty [37, 41]. The principal of this probabilistic model

is to quantify the uncertainty in the ‘expected’ value of the input of interest usage

1.1. Motivation of the Research 6

probability distribution function. These have been traditionally classified as stochastic

programming and stochastic optimisation models.

Compared to non-probabilistic robust optimisation techniques, probabilistic robust op-

timisation techniques provide a notion of a budget of uncertainty [39]. This allows

decision makers to choose the trade-off between robustness and performance, as well

as the corresponding level of probabilistic protection. More importantly, compared to

those solutions produced by non uncertainty-aware methods, probabilistic robust opti-

misation can produce solutions that sacrifice a little quality but reduce the uncertainty

by a considerable degree.

On the other hand, to deal with uncertainty, it is important to know that all uncertainty

derives from the problem itself and not from the algorithm used to tackle it. Neverthe-

less, the aforementioned previous works adopted non-deterministic approaches, such as

Genetic Algorithms (GAs) [42], and Evolution Strategies (ES) [43], in their frameworks.

Relying solely on approximate algorithms can only guarantee reasonable approximate

solutions. In other words, there is information loss in the solution, and additional

uncertainty from the algorithm is thereby introduced. While such information loss is

acceptable in general, for the specific problem of handling uncertainty we face here, it

is important to ensure that any uncertainty present in solutions offered, derives from

problem itself not from the algorithm used to find solutions. This motivates the us-

age of exact algorithms for uncertainty handling. However, previous exact algorithms

are problem-dependent and computationally expensive [44, 45]. Their execution time

may increase exponentially with respect to the number of input parameters and the

dimensions (number of objectives) of the problem.

In addition, apart from requirements uncertainty and algorithmic uncertainty, there is

another uncertainty which has not received widespread attention from the requirements

engineering community. Resource allocation during the software development process

is dealt independently with requirements selection and optimisation. Therefore, the un-

certainty of resource constraints is largely overlooked in the requirements selection and

1.2. Objectives of the Research 7

optimisation process, which may lead to the mismatch between requirements selection

and requirements allocation. Exact selection of requirements to satisfy the software de-

velopment in different deployment environments not only requires the management of

requirements and algorithmic uncertainty but also needs managers and project leaders

to address the problem of resource allocation.

Modelling resources typically involves a large number of variables related to budget

allocation, resource availability, staffing, developer skills and scheduling. This process

is mainly driven by human behaviour [46]. Basically, this problem has been modelled

either as a constraint satisfaction problem, in which only the resource constraints are

taken into account, or a constrained optimisation problem, in which different optimisa-

tion objectives are dealt with.

However, the existing requirements selection and optimisation problems and resource

allocation problems that have been solved iteratively to assist decision makers in find-

ing better subsets of requirements along with resource allocations aiming to on-time

delivery. In fact, the vast majority of the literature is concerned with managing both

problems independently, dealing with the resource allocation stage, only after the re-

quirements selection stage has been completed. This two-stage approach may produce

suboptimal results. Li et. al [47] identified this suboptimality and proposed an inte-

grated approach, as they found that resources are unlikely to be allocated in an optimal

way when the capacities and expertise of developers are taken into account only after

requirements have been fixed in the release plan.

1.2 Objectives of the Research

The principal goal of this research is to provide a framework to manage uncertainty

exactly and efficiently in requirements selection and optimisation. The detailed aims

and objectives of this thesis are as follows:

1.2. Objectives of the Research 8

1. Investigating the feasibility of applying probabilistic robust (simulation-based)

optimisation for managing requirements uncertainty in NRP.

Our technique uses Monte-Carlo Simulation (MCS) to probabilistically evaluate

the requirements, simulating various sources of requirements uncertainty that

affect their ‘true’ value, and calculating their statistical ‘expected true’ value and

associated uncertain consequences over the range of resultant outcomes. The

numeric uncertainty information produces is then taken as input or formulated as

an extra fitness function to requirements selection and optimisation.

2. Proposing an exact NRP optimisation technique that guarantees to find optimal

solutions in a finite amount of time.

To eliminate algorithmic uncertainty, our proposed approach is based on the

Nemhauser-Ullmann algorithm, an exact dynamic programming algorithm, as

the core NRP solver, and augmented by a novel Conflict Graph to deal with the

requirements interaction. The Conflict Graph converts the NRP to a search tree

data structure to distinguish the original problem into many sub-problems (at the

leaves) all of which have no requirement constraints and can thus be solved by

Nemhauser-Ullmann algorithm directly.

3. Providing a probabilistic uncertainty analysis and quantitative analysis framework

to help the decision makers to study requirements uncertainty propagation in the

requirements optimisation process, and interpret the produced results.

When solutions are found by our approach, one additional issue arises: notwith-

standing that the NRP approach significantly reduces the complexity of decision

making by lessening the solution space, it is still complex and laborious for deci-

sion makers who have to choose one from among them. Another objective is thus

to help decision makers to make better-informed decisions by explaining results,

based on novel quantitative analysis methods we adapt for this purpose.

4. Designing a more generic approach to holistically manage the uncertainty of re-

source constraints for requirements selection and optimisation.

1.3. Contributions 9

Ignoring the uncertainty of resource constraints in software release planning prob-

lems makes software projects prone to failure. We aim to design a more generic

and holistic software release planning approach to produce globally optimal re-

lease plans that would be able to accommodate both algorithmic uncertainty and

uncertainty of resource constraints.

1.3 Contributions

This thesis introduces a decision support framework for analysing uncertainty in the

requirement selection and optimisation process. The main contributions of the thesis

are the following:

1. A probabilistic robust (simulation-based) optimisation model (sNRP) is intro-

duced.

This model uses Monte-Carlo Simulation to probabilistically evaluate require-

ments uncertainty, and formulates the simulated requirements uncertainty as one

of the objectives for optimisation. This model enables a decision maker to anal-

yse and optimise requirements and takes uncertainty into account simultaneously.

Furthermore, the solutions produced by sNRP are very close to those produced

by non uncertainty-aware methods in terms of the cost and revenue of solutions.

The ranked proportion of requirements being selected in solutions on the Pareto-

front produced by sNRP is significantly correlated with those produced by non

uncertainty-aware models. According to our empirical study, the Kentall’s τB

coefficients (a non-parametric measure of association) are greater than 0.7, and

p-values (chance of Type I error) are very close to zero in all cases.

2. An exact NRP optimisation solver NSGDP is designed that can guarantee to find

the optimal solutions and eliminate algorithmic uncertainty.

By virtue of this exact approach, decision makers can ensure that the variations

between the fragile, but optimal, results and the conservative non-optimal results

1.3. Contributions 10

derive from the inherent uncertainties of the requirements, thus the stochastic

nature of the approximate algorithms can be excluded. Our experimental studies

reveal that, with the aid of NSGDP , the decision maker can avoid information loss

(without which he or she will lose up to 99.95% of the optimal solutions and will

make up to 36.48% inexact requirement selection decisions). Also, fortunately, as

distinct from other previous time-consuming exact algorithms [44, 45], NSGDP is

comparatively efficient. The execution time of NSGDP is better than NSGA-II.

On average, NSGDP takes 0.37s (without accounting for requirements uncer-

tainty), and 35.33s (when taking requirements uncertainty into consideration).

By contrast, NSGA-II takes more than 10 minutes, whether or not requirements

uncertainty is taken into account. We thus have introduced an algorithm that

removes uncertainty due to inexact algorithm, yet also improves performance.

3. A decision support framework, METRO, is provided that allows decision makers

to study requirements uncertainty propagation in the requirements optimisation

process probabilistically, and interpret the results produced.

METRO investigates the difference between the optimal-yet-risky solutions and

robust-yet-suboptimal solutions. Two indicators are used: expected risk premium

and risk reduction. Our experimental results show that, developing a software

project based on optimal-yet-risky release plan rather than robust-yet-suboptimal

release plan, may suffer up to 10% probability of overrunning more than 150%

budget but gaining less than 0.39 expected risk premium. A series of quantita-

tive techniques are provided for highlighting the characteristics of requirements

and solutions. The difference of requirement selection probability between two

NRP approaches is analysed and presented in a stacked bar plot. We found that

the risk-aware sNRP approach is more likely to include requirements with low

uncertainties than pNRP approach is (Kendall‘s τB is no smaller in magnitude

than −0.675). METRO clusters requirements according to design space proximity

rather than objective space proximity.

1.4. Organisation of the PhD Thesis 11

4. A generic exact multi-objective integrated release and schedule planning approach

iRASPA based on a Quadratic Programming model is provided to holistically

manage the uncertainty of resource constraints for requirements selection and

optimisation.

iRASPA not only provides a release plan that maximises the value of the delivered

software and minimises the variance of the workload, but also meets all the re-

source allocation constraints. We argue that iRASPA can effectively help decision

makers to avoid suboptimality and algorithmic uncertainty. iRASPA is evaluated

on seven real-world software projects, instantiated as 245 instances augmented

with synthetic data to cater for missing values. The experimental study shows

that iRASPA can effectively generate the guaranteed exact Pareto front, unlike

the current state-of-the-art, which misses 87.84% of the optimal solutions on av-

erage and up to 93.38% for some instances. In addition, it takes iRASPA 28.23%

less time on average to solve all the instances under study.

1.4 Organisation of the PhD Thesis

The structure of rest of the thesis is organised as follows:

Chapter 2 Literature Review: Briefly surveys state-of-the-art of related work in re-

quirements optimisation, uncertainty analysis, robust optimisation, and software

project resource allocation.

Chapter 3 Simulation based Robust Next Release Problem Model: Presents a

Monte-Carlo Simulation based Multi-Objective Next Release Problem framework.

Requirements uncertainty is simulated and the consequence of uncertainty is for-

mulated as an extra objective to optimise. Two experimental studies are carried

out to address the usefulness and efficiency of this NRP model.

Chapter 4 The Value of Exact Analysis in Next Release Problem: Introduces

1.4. Organisation of the PhD Thesis 12

a decision support framework METRO for the Next Release Problem to manage

algorithmic uncertainty and requirements uncertainty. A novel exact technique is

developed to guarantee the exactness of solutions to eliminate algorithmic uncer-

tainty. Some quantitative analysis approaches are presented to support decision

makers in their understanding of the impact of requirement uncertainty. The

aim is to inspire them to prioritise the requirements for further evaluation and

inclusion. The results and analysis of three experimental studies are provided.

Chapter 5 Exact Analysis in Integrated Release and Schedule Planning Problem:

Provides a holistic software release planning and schedule planning approach

iRASPA, which utilises ε-constraint based Quadratic Programming as the solver,

to solve requirement selection problem while taking uncertainty of resource con-

straints into account. The experimental study of evaluating iRASPA on 245

synthetic software project instances, derived from 7 real-world software projects,

is analysed and explained.

Chapter 6 Conclusions and Future Work: Concludes the thesis with a discussion

on the threats to validity and suggestions for potential future work directions.

Chapter 2

Literature Review

This chapter presents a literature review to establish a foundation for the research un-

dertaken in this thesis. The PhD thesis intersects with three main research fields: the

field of requirements engineering, uncertainty handling, and software project resource

allocation. First, this chapter briefly introduces concepts related to requirements en-

gineering. It then provides a detailed description about requirements selection and

optimisation problem, as well as the state-of-the-art optimisation techniques. Next,

uncertainty management, in general, and in requirements optimisation are described.

Finally, approaches to resource allocation in the software development process related

activities are explained.

2.1 Overview of Requirements Engineering

2.1.1 Requirement

Before building a software system, one must answer the question: “what is the goal one

wants to achieve?". Such objectives are expressed as a set of necessary services, capabil-

ities, constraints, and the quality of the requested system that should be offered to a set

of stakeholders. Requirements engineering determines what the functionalities the sys-

13

2.1. Overview of Requirements Engineering 14

tem should provide, how it exhibits these functionalities, and what are the qualities and

constraints that the system must satisfy. In software engineering, the term requirement

has been used to express these purposes [48]. In 1990, the Institute of Electrical and

Electronics Engineers Computer Society (IEEE) formally defines requirements as [49]:

1. A condition or capability needed by a user to solve a problem or achieve an objective.

2. A condition or capability that must be met or possessed by a system or system

component to satisfy a contract, standard, specification, or other formally imposed

document.

3. A documented representation of a condition or capability as in definition 1 or 2.

According to the definitions & specification of requirements and the group of require-

ment readers [9], the requirements can be categorised into two types: a) user require-

ments and b) system requirements.

User requirements state the expected services, capabilities, constraints, and the

quality of the requested system should be offered in a way that the system users

can understand without any professional technical knowledge background. User

requirements are the high-level statements of what the system should do. The po-

tential readers of user requirements are client managers, system end-users, client

engineers, contractor managers, and system architects.

System requirements are the structured and in-depth specification of user require-

ments. As distinguished from the user requirements, system requirements techni-

cally set out in-depth descriptions of the requested functionalities, services, and

operational constraints of the system. System requirements provide the solution

to answer user requirements. The system requirements are illustrated by the

system model and impose a degree of uniformity on the specification.

The requirements also can be classified into functional requirements, non-functional

requirements, and domain requirements [9].

2.1. Overview of Requirements Engineering 15

Functional requirements prescribe the functionalities and specific behaviours of a

software system. Functional requirements interpret what the software system is

supposed to do in particular situations, and form the inputs, procedures, and out-

puts of the system. A typical functional requirement example is :“The university

library system should display the books based on users’ queries".

Non-functional requirements specify the constraints on how the performance char-

acteristics should be provided by the software system. Non-functional require-

ments specify criteria for how well the system does, rather than requests what

should the system do. Hence, non-functional requirements are also regarded as

quality requirements. In software development: “In the university library system,

the books query should be retrieved within 1 second." The typical non-functional

requirements include but are not limited to : scalability, capacity, reliability, main-

tainability, security, and recoverability. Figure 2.1 illustrates the non-functional

requirement type.

Domain requirements reflect the fundamentals and characteristics of the application

domain of the system, and the environment in which the system operates. The

system will not work satisfactorily if the domain requirements fail to be satisfied.

Usually, a domain requirement is expressed in special domain terminology by

domain experts. It is possible that software engineers misunderstand the domain

requirement and implement requirement in the wrong way. For example, an

online academic library system requests that the H-index of each author should

be computed. To implement this domain requirement, software engineers have to

know some statistics knowledge about H-index.

Requirements are not only an essential input for system design, but also an absolutely

necessary element for system verification. In 1987, Brooks and Frederick indicated that

establishing the requirements is the hardest phase of software development life cycle:

“The hardest single part of building a software system is deciding pre-

2.1. Overview of Requirements Engineering 16

Figure 2.1: The hierarchy of non-functional requirements types [9].

cisely what to build. No other part of the conceptual work is as difficult

as establishing the detailed technical requirements . . . No other part of

the work so cripples the resulting system if done wrong. No other part is as

difficult to rectify later" [50]

In practice, the stakeholder of a software system tends to be a set of individuals who

have varied and inconsistent requirements of the system. They usually lack the ability to

technically and thoroughly present their requirements. Moreover, due to the complexity

of software systems and the fact that stakeholders may lack complete knowledge about

what they want, requirements are generally altered with time. This situation further

multiplies the difficulties of producing the high quality software requirement. As a

result, it is necessary to establish a structured procedure to investigate and process the

requirements.

2.1.2 Requirements Engineering

Requirements engineering is the process of developing the requirements through system-

atically analysing, documenting, and reviewing the understanding of the problem [51].

It identifies the purpose and properties of a software system and it is formed at the early

2.1. Overview of Requirements Engineering 17

phase in the software development life cycle (SDLC) [52]. The activities in this phase

have been recognised as the prerequisite and foundation of the entire SDLC process.

It was regarded as a crucially important role in the entire SDLC processes by industry

and academia [53] and was proposed as the term Requirements Engineering (RE) in

1976 [54]. The term Requirements Engineering was then formally defined by Dorfman

in IEEE Computer Society Tutorial in 1990 [55].

In the latest IEEE Standard, the term Requirements Engineering was defined as:

“Interdisciplinary function that mediates between the domains of the

acquitter and supplier to establish and maintain the requirements to be met

by the system, software, or service of interest." [56]

Hence, RE is a multi-disciplinary, human-centred process. The IEEE standard de-

fines requirements engineering as: “serial activities that concerned with stakeholder

requirements definition process, requirement analysis process, requirement formalising

& validating & documenting process, and requirement management [56]". It establishes

the bridges among different groups of stakeholders as well as connecting stakeholders

with engineering technologies and resources. According to this IEEE standard, a typical

taxonomy of the requirements engineering process is elicitation, analysis, specification,

validation & verification (acceptance), and management [57].

Requirements elicitation

Requirements elicitation is the process of identifying the stakeholder of the system, elic-

iting the stakeholder requirements, defining the constraints of the system, documenting

and analysing the completed elicited requirements, and maintaining the traceability of

stakeholder requirements. It is regarded as the first activity in the requirement engineer-

ing process. The requirements elicitation firstly captures the requirements, identifies the

stakeholder, and then gathers the requirements by interpreting, analysing, modelling

and validating to make requirements engineers feel confident about the next activity

2.1. Overview of Requirements Engineering 18

“requirements analysis". The outcomes of the successful implementation of require-

ments elicitation include the characteristics of the anticipated system, the constraints

on the system solution, the defined stakeholder requirements, and the validation for

stakeholder requirements.

Requirements modelling and analysis

The fundamental activity in Requirement Engineering is requirements modelling and

analysis [58]. Requirements modelling and analysis constructs the abstract elicited

requirements into an accurate presentation of the products of the RE process by utilis-

ing requirements analysis techniques. The purpose of the requirements modelling and

analysis is refining the user’s needs and constraints. According to Nuseibeh and East-

erbrook [57], there are four general categories of requirements modelling and analysis:

Enterprise Modelling, Domain Modelling, Behavioural Modelling, and Data Modelling.

Enterprise Modelling is high-level goal modelling. It is used to capture the need of

a system based on the organisational structure and business rules.

Domain Modelling sets up the gathered domain description which incorporates all

relevant domains under the developed software system. An explicit domain model

offers an abstract description of the proposed system.

Behavioural Modelling is the process which models the dynamic or functional be-

haviour of the stakeholder and systems. It converts the statement of system needs

into the systematical statement of requirements.

Data Modelling structures the semi-structured or unstructured data that would be

managed in the RE process with constraints or limitations. Data modelling aids

requirement engineers in understanding, manipulating, and managing the large

volume of information used in the proposed system by transferring this semi-

structured or unstructured information into a structured precise model.

2.1. Overview of Requirements Engineering 19

Requirements specification

Requirements specification is the process of documenting the user’s needs and con-

straints (functional and non-functional) clearly and precisely. Usually, requirements

specification is followed by the requirements elicitation and analysis process. The re-

quirements specification documents RE activity descriptions and the description of the

behaviour of a system to be developed. Namely, it describes the essential technical

requirements for system, and the criteria for determining whether those requirements

are met.

The requirements specification can be established and refined in natural language or

formal language. Natural language expresses the requirements in the natural form.

Since the requirements documents are written by semi-technical analysts in cooperation

with customers‘ experts and potential users and have to be signed-off by non-technical

business executives, the majority of informal requirement specifications are written in

natural languages [59]. The natural language used in requirement specification pro-

vides a widely accepted form of communication for most people and effectively gains

understanding and agreement by both customers and developers.

The latter, formal specification, is a mathematically based language whose purpose is

to support engineers to construct systems. The formal specification adopts precisely

defined vocabulary, and mathematical syntax to represent the system, and analyse its

behaviour [60]. Since it forces a detailed analysis of the requirement by precise and rig-

orous representation in the early phases of software development, formal specification

can reduce requirement error as well as discover and resolve the incompleteness and

inconsistencies [61, 62]. Moreover, the well structured and precisely described require-

ments formal specification offers the basis for agreement between the stakeholders on

the expectation of the system to be developed, and formats the rigorous assessment for

defining the condition or capability to which the system must conform [56]. Albert the

formal specification language has limited practical applicability [57], during the last 30

years it has reached maturity level. In 2009, Hierons et al. [62] pointed out that the

2.1. Overview of Requirements Engineering 20

formal specification language can bridge the gap between requirements engineering and

software testing.

Requirements validation and verification

Requirements validation and verification are independent procedures that take place

throughout the whole software development life cycle. They are used for checking and

ensuring that the specification is complete, consistent, modifiable and traceable, and

that the produced system meets the specifications and fulfils the intended requirements.

Although validation and verification are usually mentioned together in requirement

engineering literature, they are not the same. According to the latest IEEE project

management institute standard [63], the definitions and activities of validation and

verification are not the same (as shown below).

“Validation. The assurance that a product, service, or system meets

the needs of the customer and other identified stakeholders. It often in-

volves acceptance and suitability with external customers. Contrast with

verification."

“Verification. The evaluation of whether or not a product, service, or

system complies with a regulation, requirement, specification, or imposed

condition. It is often an internal process. Contrast with validation. "

In the light of the IEEE standard definitions, validation is intended to be processed to

establish the evidence to prove that the performed activities (service), and generated

output fulfil the defined design specifications and quality criteria. In layman’s terms,

validation can be expressed as the question “Are you building the right thing?". The

answer to this question is the degree of completeness and correctness of requirements.

Since requirement validation often involves end users and other product stakeholders

directly and closely, it is often an external process. There are a host of techniques to

2.1. Overview of Requirements Engineering 21

process the validation described in literature. The most popular ones are: review and

inspection, prototyping, traceability, and testing [64].

Verification is refereed to query “Are you building it right?". It is a process used to

assess whether the designed and built system are fully satisfied with the specifications.

Namely, it denotes checking that the specifications are correctly implemented by the

system. In most of the cases, a fruitful verification consists in carrying out various

inspections, tests, consistency management, and analyses throughout the whole software

development life cycle [64, 65].

Requirements management

The requirements management process is a crucial process which goes through all of the

software development life cycle. Requirements management is a process to establish a

common understanding among the stakeholder, and oversee the software system devel-

opment through to delivery and operation of the project processing to make sure that

the delivery of capability meets intended requirements in a timely and cost effective

manner [66, 67, 68]. Robust requirements management can help to lay foundation for

the system affordability, and mitigate (or even avoid) the unanticipated consequences

of changes through rigorous documentation.

The activities of requirements management involve requirements traceability manage-

ment, requirements quality assurance, impact analysis, and reuse of requirements. The

core task of requirements management is requirement traceability management. It doc-

uments changes and the rationale of these changes as well as maintaining bi-directional

traceability (both forwards and backwards) [69]. Requirement traceability management

enables tracking the progress of a project, assessing the impact of various changes by

documenting exhaustive information. One of the widely used requirement traceability

management techniques in industry is Requirements Traceability Matrix (RTM) [70].

All requirements in the specification, the system-wide effects of the requirements change

(including the decomposition of the requirements, the derivation of the requirements,

2.2. Requirements Selection and Optimisation 22

and the allocation history of the requirements), and the rationale for all entries and

requirements changes can be captured by RTM.

2.2 Requirements Selection and Optimisation

Requirements may have different values to stakeholders, and require different effort

to implement. In an ideal world, all requirements would be simply selected to be

implemented in one release, thereby yielding maximal functionality and value to stake-

holders. However, in practice, resource constraints need to be taken into consideration.

Given limited budgetary resources, it is impossible to implement all requirements in

one release. Requirement engineers have to make decisions to determine the priority

of requirements and decide whether a requirement should be implemented in the next

release of the system or not, meanwhile the outcome of the software system in the next

release can be maximised [16].

In 1990, Yeh and Ng found that implementing the ranked requirements in sequence can

bring benefits to the software development project [71]. The benefits include, but are

not limited to:

1 Providing decision support for resolving trade-offs in subsequent development.

2 Helping project managers to predict the expected customer satisfaction and market

performance of the software system.

Requirements selection and prioritisation activity is concerned with selecting a subset of

requirements to implement to meet the demands of stakeholders and maximise the value

of delivered software product, at the same time, scale to ensure that there are sufficient

resources to undertake the development [17]. Such a requirements optimisation problem

is recognised as a complex combinatorial problem.

2.2. Requirements Selection and Optimisation 23

In the literature, various techniques have been developed to address requirements opti-

misation problem. Technically, the requirements optimisation techniques can be cate-

gorised into priority-based requirements optimisation, search-based requirements opti-

misation, and exact requirements optimisation [72].

2.2.1 Priority-based Requirements Optimisation

Priority-based requirements optimisation is an intuitive approach in which the require-

ments are sorted from ‘best’ to ‘worst’ based on their characteristics or the interests

of the stakeholders. The ranking of requirements implicitly indicates the priority of

requirements. The developers can choose the requirements with the highest priority to

implement, accordingly, achieving the earliest satisfaction.

In 1996, Karlsson [18] proposed two approaches to prioritise requirements. The first

approach is Analytical Hierarchy Process (AHP), which is a pair-wise comparison math-

ematical prioritisation methodology [73]. It requires decision makers to manually esti-

mate the relative importance of each requirements by pair-wise comparison. The second

approach is numeral assignment technique, which is concerned with Quality Function

Deployment (QFD) [74]. The numeral assignment technique uses a symbol to represent

the requirement’s perceived importance. The requirement’s priority is indicated by an

ordinal scale (ranging from 0 to 5). The drawback of these two approaches is obvious:

Neither of them can handle requirements dependency. Besides, the scalability of both

approaches is barely satisfactory: For a software project with n candidate requirements,

the numeral assignment technique requires n requirement’s priority assignment, while

the AHP approach needs n× (n− 1)/2 pair-wise comparisons.

Karlsson and Ryan developed a cost-value approach, which is built upon AHP re-

quirements prioritisation approach, to estimate requirement’s relative cost and value in

1997 [75]. Comparing with AHP requirements prioritisation approach, the improved

cost-value method can better interpret the potential cost-value contribution of a can-

didate requirement to stakeholder satisfaction with the resulting system.

2.2. Requirements Selection and Optimisation 24

To systematically investigate the state-of-the-practice requirements prioritisation meth-

ods in requirements engineering, Karlsson et al. [76] evaluated and compared six require-

ments optimisation techniques, which are AHP, hierarchy AHP, spanning tree matrix,

bubble sort, binary search tree and priority groups.

Hierarchy AHP is extended from aforementioned AHP method. It possesses similar

characteristics to AHP. It structures requirements in a hierarchy of interrelated re-

quirements, and placed the requirements from top to bottom based on generality. As

prioritisation, hierarchy AHP compares all outlined pairs of requirements at the same

hierarchy level by AHP for each level. The requirements’ priorities are then propagated

down the hierarchy. Due to the amount of redundancy, hierarchy AHP is more sensitive

than AHP, even though it can reduce the required number of pair-wise comparison.

The principle of minimal spanning tree [77] is constructing a directed graph in which

there is at the minimum one path between the requirements rather than pair-wise

compared, thus n − 1 unique pairs of requirements can be determined. According to

the constructed minimal spanning tree, decision makers can assess the requirement’s

importance by taking the geometric mean of connected requirements which have already

been assessed. The reduced number of pair-wise comparisons dramatically improves the

speed of prioritisation, but makes this approach more sensitive to judgemental errors.

Bubble sort is a basic sorting method [78], and it is closely related to AHP. It requires

n × (n − 1)/2 pair-wise requirement comparisons, in the meantime, the extent is not

required.

The idea of applying binary search tree [79, 80] to requirements prioritisation is similar

to minimal spanning tree approach. It prioritises n candidate requirements by con-

structing a binary search tree consisting of n nodes. Consequently, the construction

takes, on average, O(n log n) comparisons, and the requirements are prioritised on an

ordinal scale.

The priority groups method proposes to reduce the required prioritisation effort by

2.2. Requirements Selection and Optimisation 25

not to compare the requirements in distinct sets. Firstly, it divides the candidate

requirements into separate groups based on a rough prioritisation (high, medium, and

low). In the following prioritisation session, one of the aforementioned prioritisation

approach is applied to further prioritise the requirements in sub-groups.

The investigation results revealed that AHP is the most promising requirements priori-

tisation method, although it is labour-intensive and may be problematic to scale-up.

Moreover, none of them can offer the ability to support for requirement dependency.

To account for the large scale distributed software project development and reduce the

cognition load for stakeholders, Regnell et al. [81] introduced a distributed requirements

prioritisation framework. The sequence of prioritisation process is: firstly, all candidate

requirements are divided into two abstract levels (high-level and low-level); secondly,

the high-level requirements are assigned to all stakeholders for parallel prioritisation;

and then, stakeholders communicate to each other and the Product Strategy Team ag-

gregates the individual priorities; lastly, the results on high-level requirements priorities

are then used as a guidance when prioritising low-level requirements.

In 2011, Lim et al. [82] proposed StakeSource2.0, a web-based requirements prioritisa-

tion tool that uses ‘crowdsourcing’ approach to identify and prioritise stakeholders and

their requirements in large scale software projects. Social network analysis and col-

laborative filtering techniques are used to automatically collect requirements and their

ratings from each stakeholder. Each stakeholder is asked to provide private judgements

about requirement importance and requirement influence. The requirement priority is

then aggregated by its importance and weighted influence. However, these two frame-

works are restricted by the prerequisite that stakeholders should be familiar with at

least one of the prioritisation methods, and the required effort is most likely to be

overwhelming.

2.2. Requirements Selection and Optimisation 26

2.2.2 Heuristic Search-based Requirements Optimisation

According to Search-based Software Engineering (SBSE), which was coined by Harman

and Jones in 2001 [21], complex, multi-objective, and highly constrained software en-

gineering problems can be formulated as search-based optimisation problems that can

be tackled with heuristic search algorithms. To convert a software engineering problem

into a computational search problem, a fitness function is needed to measure the qual-

ity of candidate software engineering problem solutions. Naturally, the requirements

optimisation problem is a requirements combination problem, and can be viewed as an

application area for SBSE [19, 29, 83].

Bagnall et al. [19] proposed the term Next Release Problem (NRP), and attempt to

formulate requirements selection and optimisation as a combination-based requirements

release planning problem. The NRP model assumes that there is a set of stakeholders

and their features in the next release of a software system. The set of stakeholders is

denoted by Eq.2.1 and the set of possible requirements is denoted by Eq.2.2.

C = {c1, · · · , cm} (2.1)

R = {r1, · · · , rn} (2.2)

where m is the number of stakeholders, and n is the number of features.

In this thesis, all requirements are independent of each other. During the software

development, some resources (e.g., human resources and facility resources) need to be

allocated to satisfy each requirement. NRP uses cost to measure the amount of resource

needed to fulfil the requirement as given by Eq.2.3.

Cost = {cost1, · · · , costn} (2.3)

2.2. Requirements Selection and Optimisation 27

There is a weight vector which reflects the degree of importance of each stakeholder for

the company. The relative weight vector related to each stakeholder c (1 ≤ j ≤ m) is

denoted as Eq.2.4:

Weight = {w1, · · · , wm} (2.4)

subject to: wj ∈ [0, 1], and
∑m

j=1wj = 1.

The authors assumed that the importance of each requirement for each stakeholder is

different. Given a stakeholder, the level of satisfaction of this stakeholder is based on

the requirements that are satisfied in the evolved suggestion for the next release of the

software system. Based on this assumption, each requirement ri (1 ≤ i ≤ n) is assigned

a value (ri, cj) by each stakeholder cj (1 ≤ j ≤ m). The overall revenue of a given

requirement ri (1 ≤ i ≤ n) for the company is denoted by Eq.2.5.

Revenuei =
m∑
j=1

(wj · value(ri, cj)) (2.5)

In NRP, the requirements selection and optimisation solution is presented as a decision

vector ~x = {x1, · · · , xn} ∈ {0, 1} to determine the requirements that are to be selected

in the next release. In this vector, xi is 1 if requirement i is selected and 0 otherwise.

In 2002, Feather and Menzies [84] first proposed a multiple objectives NRP model.

They formulated two objectives together (risk and cost) into a weighting-based single

objective, and then applied Simulated Annealing [85, 86] to produce Pareto-front via

iteratively adjusting the weight. Greer and Ruhe [29, 87] proposed a single objective

genetic-algorithm-based framework EVOLVE to extended the NRP model to support

incremental software release planning model (agile model). This framework takes the

trade-off relationship among different releases into account, and provides the ability to

2.2. Requirements Selection and Optimisation 28

optimally allocate requirements to increment releases by assessing and optimising the

quality of candidate release plans while satisfying requirements dependency constraints

as well as resource constraints. The authors argued that, offering a small set of solutions

could provide decision maker with some additional flexibility. So, instead of offering

just one solution, EVOLVE picks the L-best (L > 1) solutions, which achieve at least 95

percent of the maximum objective function value, to decision makers. The efficiency of

EVOLVE framework was further improved by integrating Integer Linear Programming

(ILP), a mathematical optimisation algorithm, with genetic algorithm to reduce the

search space [88, 89].

In 2006, Harman et al. [90, 91] and Baker et al. [92] formulated the selection of candidate

software components as a series of feature selection problems. Two meta-heuristic

algorithms, Simulated Annealing and Greedy Algorithm, were used for solving this

selection problem.

To deal with multiple criteria, the aforementioned approaches used a weighting-based

approach to combine various objectives into a single objective. The underlying as-

sumption of weighting-based approach is that decision makers have a fair idea of their

subjective preferences on criteria. This assumption is unrealistic because the weighting-

based approach introduces additional parameters into the problem, as well as decision

makers’ bias. Determining the proper weights when decision makers do not have enough

knowledge about the problem is difficult. More specifically, because of the inappropriate

weights, the concave portions of true Pareto-front curve may be missed in the presence

of non-convex search spaces [93, 94, 95].

In order to resolve this problem, Zhang et al. [30] conducted a multi-objective for-

mulations of the problem. They suggested to consider each criterion as a separate

objective, and optimise all objectives simultaneously, rather than converting some of

criteria as constraints or aggregating them together as one single objective. This model

was termed the “Multi-Objective Next Release Problem (MONRP)". In this thesis, re-

quirement value and requirement cost were considered as two separate objectives, and

2.2. Requirements Selection and Optimisation 29

the problem was solved by Non-Dominated Sorting Genetic Algorithm II (NSGA-II), a

multi-objectives evolutionary algorithm [96].

Finkelstein et al. [28, 97] investigated the trade-offs and conflicts in three notions of

fairness among multiple stakeholders using a formulation of MONRP. Each notion of

fairness forms an objective for multiple objective optimisation. Zhang et al. [98] formu-

lated the conflicts between two release periods (today and tomorrow) based on MONRP

model. Additionally, Zhang and Harman [99] introduced and evaluated the influences

of five basic requirement dependencies among the requirements within MONRP opti-

misation. The five requirement dependencies are And, XOR, Precedence, Value-related,

Cost-related. The results revealed that requirements dependencies could have a very

strong impact on the MONRP optimisation process.

Durillo et al. [100] and Zhang et al. [101] studied the performance of some state-of-the-

art multi-objective meta-heuristics for solving MONRP. In the former research, NSGA-

II and MOCell [102] were studied. They found that NSGA-II can find better solutions

in large instances than MOCell, while covering narrower range of solutions. The latter

research compared the performance of NSGA-II with Two-Archive algorithm [103] for

the analysis of multi-stakeholder trade-offs in MONRP. The results of their research

showed that Two-Archive algorithm outperforms NSGA-II on the many objective prob-

lem. The performance of NSGA-II deteriorates significantly as the number of objectives

increases.

Zhang et al. [104] comprehensive studied the different meta- and hyper-heuristic search

algorithms for MONRP. Hill Climbing [105], Simulated Annealing [86] and NSGA-II

were investigated together with hyper-heuristic [106] versions of each of these three

meta-heuristics, which were denoted as HHC, HSA and HGA. Their work showed that

hyper-heuristics more effective than meta-heuristics in terms of both solution quality

and execution time. Furthermore, hyper-heuristics were considered scalable with re-

spect to the number of requirements.

Though such heuristic search-based approaches might provide an approximate solution

2.2. Requirements Selection and Optimisation 30

in a reasonable time and scale well, in special cases, decision makers need exact approach

to guarantee the exactness of the results. In this thesis, using approximate approach

to analyse and manage the uncertainty in NRP might introduce uncertainty from the

nature of the algorithms used to optimise. Therefore, our approach is focusing on exact

optimisation approach.

2.2.3 Exact Requirements Optimisation

Exact optimisation method is the optimisation method that can guarantee finding all

optimal solutions. In principle, the optimality of generated solution can be mathe-

matically demonstrated. Therefore, exact optimisation is also termed as mathematical

optimisation. However, exact optimisation approach is impractical usually. The effort

of solving an optimisation problem by exact optimisation grows exponentially with the

problem size in general. For example, to solve a problem by a brute force approach, the

execution time increases exponentially respect to the dimensions of the problem. Even

so, there remain demands for seeking exact optimal solutions in requirements selection

and optimisation.

The idea of applying exact optimisation approach to requirements selection and op-

timisation is similar with heuristic search-based requirements optimisation. The only

difference is that, instead of using heuristic search-based optimisation algorithm, the

search-based requirements selection and optimisation problem is tracked with exact

search-based optimisation algorithm.

In 1998, Jung [107] introduced linear programming techniques to prioritise independent

requirements. In his approach, the only objective is maximising the sum of selected

requirements’ value with the implementation budget constraint. Ignoring requirements

independences is overly simplistic in practice. Carlshamre [108] designed and imple-

mented a linear programming tool to handle requirements release planning while taking

requirements independences into account.

2.2. Requirements Selection and Optimisation 31

Akker et al. [109, 110, 111] extended the work of Jung by introducing release plan-

ning into resource management. They sketched the context for the integrated problem

mathematically, and developed an Integer Linear Programming (ILP) algorithm [112]

based tool to solve it. They assumed that the optimal solution to the problem was the

one offered maximal revenue against budgetary constraints in a given time period.

Moreover, Li [113, 114] described two integer linear programming models to further

study the integrated software release planning and resource management problem.

Given resource and precedence constraints, their first model advanced a schedule that

the duration of development was minimised. On the other hand, the second model

converted project duration as a constraint and maximised project revenues.

Harman et al. [22] proposed to use dynamic programming as an exact optimisation

approach to attack the Next Release Problem. In order to manage the scalability of the

approach and deal with multiple objective simultaneously, they introduced a variant of

the Nemhauser-Ullmann’s algorithm [115] as a solver for NRP. Nemhauser-Ullmann’s

algorithm treats each of the objectives as a separate objective function. This enables

decision makers to obtain the Pareto front of non-dominated solutions. In addition,

notwithstanding dealing with multiple objective, the execution time of this approach is

still fast. The primary drawback of this exact optimisation approach is that Nemhauser-

Ullmann’s algorithm fails to take care of requirements interdependencies.

Leiter et al. [116] aimed to obtain the optimal set of requirements by a brute force

approach. Although the exhaustive search will always find the optimal solution, it is

inherently expensive and may not scale sufficiently to be more generally applicable. For

a NRP model which consists of n requirements, there are 2n solutions in the objective

space.

Veerapen et al. [117] investigated the feasibility of solving single-objective and bi-

objective NRP by Integer Linear Programming. In their approach, the requirements de-

pendencies were formulated as constraints mathematically. To address the bi-objective

problem, the epsilon-constraint (ε−constraint) method [118] was considered to be inte-

2.3. Uncertainty Handling 32

grated into single-objective Integer Linear Programming approach. The authors com-

pared the performance of the techniques against NSGA-II. The findings revealed that,

1) for the single-objective NRP, ILP could exactly solve large instances very quickly;

2) and for the bi-objective NRP, ε−constraint ILP could guarantee obtaining exact

Pareto-fronts but inefficiently compared to heuristic search-based algorithm.

2.3 Uncertainty Handling

Uncertainty is ubiquitous and accompanies all events in the real world. It covers all

fields of scientific studies, and is inevitable in many aspects of decision making [119].

According to the US National Research Council:

“uncertainty is a general concept that reflects our lack of sureness about

something or someone, ranging from just short of complete sureness to an

almost complete lack of conviction about an outcome" [120]

The essence of uncertainty is the lack of complete knowledge at the time a decision

must be made [24]. Uncertainty arises from different sources in various forms, and

complicates and affects decision making [119]. It is worth mentioning that when the

potential outcome of uncertainty as well as the odds of this outcome are known in

advance, the uncertainty should be defined as risk [121].

Though it is hardly likely that uncertainty could be eliminated completely, it is worth-

while to identify and handle uncertainty to avoid unfavourable hazards [122]. To pro-

vide a confident final decision, there are two straightforward approaches to cope with

uncertainty so far proposed in literature [123, 124]. One approach is to analyse un-

certainty as a post-analysis method [24, 125]. Another one is robust optimisation, an

approach that includes modelling and optimising the systems while taking uncertainty

into account [37, 126].

2.3. Uncertainty Handling 33

2.3.1 Analysing Uncertainty in Requirements Optimisation

Conceptually, in order to analyse the impact of uncertainty in a decision-making or

modelling process and provide an evaluation of the confidence in the model, two inter-

related approaches to analyse uncertainty are found in the literature and practice [127,

128, 129]. These are sensitivity analysis, and uncertainty analysis.

Sensitivity analysis is performed in order to identify variations in results obtained from

original and perturbed model input values [34, 127, 130]. It is the study of how the

individual uncertainty of model input contributes to the overall uncertainty of a model

output. This offers the knowledge about which one of the inputs drives the majority

of the variance in the output. Meanwhile, uncertainty analysis attempts to explain

the possible outcomes, together with their associated probability of occurrence [128].

Uncertainty analysis thus measures the overall uncertainty of the conclusions of the

model [11, 128]. Compared to sensitivity analysis, uncertainty analysis concentrates on

uncertainty quantification and propagation of uncertainty.

In the context of requirements optimisation, analysing uncertainty can help decision

makers to identify the sensitive requirements, evaluate the robustness of the release

plan in the presence of uncertainty, and thus better inform the decision making pro-

cess. To study the uncertainty in the area of requirements optimisation, Harman et

al. [35] used a local sensitivity analysis approach “One-At-a-Time" [36] to analyse the

requirements sensitivity in NRP and MONRP. The requirements sensitivity was mea-

sured by perturbing one variable upward or downward at a time and keep all other

variables fixed to baseline values to try out various ‘what-if’ scenarios.

However, their approach cannot fully explore the input space, since the probability of

change, the extent of change, the interactions between requirements, as well as the si-

multaneous variation of requirements are not taken into account. In 2010, Al-Emran et

al. [131, 132] performed probabilistic sensitivity analysis to evaluate the impact of re-

quirements uncertainties in operational release planning and product release planning.

2.3. Uncertainty Handling 34

The uncertainties of properties were explained by probability distributions. Monte-

Carlo Simulation-based analysis was then applied to pro-actively investigate the im-

pact of uncertainty in estimates of requirement implementation effort and developers’

productivity together with their Probability Density Function (PDF).

Although approximate approaches were scale well for requirements optimisation prob-

lems [100, 101, 104], these approaches do not guarantee that they find globally optimal

solutions. This means that the additional uncertainty may be introduced due to the

non-deterministic nature of the approximation algorithm. To avoid such information

loss, in 2014, Harman et al. [22] applied a naive exact algorithm, a variant of the

Nemhauser-Ullmann’s algorithm [133], to study precise sensitivity analysis of NRP

without considering requirements interaction.

2.3.2 Robust Optimisation in Requirements Optimisation

Though analysing uncertainty can evaluate how sensitive solutions are to possible esti-

mation uncertainties, it cannot offer robust solutions by itself, based on a decision mak-

ers’ degree of risk aversion. Hans-Georg and Bernhard [37, 134, 135] suggest to inves-

tigate uncertainties during the process of optimisation rather than using post-analysis.

The term of robust optimisation was investigated by Soyster [136]. Robust optimisa-

tion is regarded as the approach that searching and optimising the solutions that are

immune on production tolerances, parameter drifts, and model sensitivities [137].

Based on the optimisation approach, there are two main classes of robust optimisa-

tions [37]. One is robust optimisation using mathematical programming, while the

other is robust optimisation using heuristic algorithms. The mathematical approach

means adopting exact algorithms to solve convex constrained optimisation, such as lin-

ear programming and quadratic optimisation [138, 139, 140]. The main shortcoming

of this approach is that it relies on formulating the optimised problem into a linear or

quadratic model. With increases in the number of variables, it is a non-trivial task to

construct an approximate mathematical model. Nevertheless, in the case that the value

2.3. Uncertainty Handling 35

of uncertainty cannot be formulated into a mathematical expression and can only be

obtained by simulation, the mathematical methodology is not applicable.

Heuristic robust optimisation measures uncertainty by 1) numerical techniques [141]

or 2) simulation techniques [142]. Subsequently, the value of uncertainty is treated as

one of the objectives for optimising. The former approach, which was referred as the

deterministic approach to robust optimisation, has the same limitations with mathe-

matical type robust optimisation since it still relies on strong mathematical assumption

to measure the uncertainty. Additionally, the deterministic approach furnishes the

“worst-case” robust solution which looks “too conservative”. Li [10] introduced a novel

metric of uncertainty to simplify the mathematical complexity, and used it to guide

multi-objective optimisation problems. In his work, the uncertainty of a parameter’s

true value was represented as an interval, while solution uncertainty was represented as

tolerance region (uncertainty size).

The latter approach, which was referred as simulation optimisation, does not need to

model explicit complex mathematical information, but only the simulated uncertainty

value use to compute the probability-based quality and robustness of the search point.

The simulation optimisation usually uses the expected value, variance measure, and the

probability of achieving the objectives to assess the robustness of a solution [143, 144,

145]. This approach offers a probabilistic guarantee, which allows the decision maker

to flexibly choose a balanced trade-off between robustness and performance. Moreover,

the simulation optimisation provides alternatives for decision maker, so that they can

choose the corresponding level of probabilistic protection.

The applications and studies of robust optimisation can be found in other non-software-

engineering research literature [10, 143, 144, 146, 147] but are seldom found in the

requirements engineering literature. In requirements engineering, there are only three

studies that apply robust optimisation to the requirements optimisation area:

In 2011, Heaven and Letier first proposed a search-based optimisation framework, which

integrated with stochastic simulation, for guiding the choice of system design solutions

2.4. Software Project Resource Allocation 36

on high level goals in quantitative Goal Models [148]. The simulated possible feature-

response-time satisfaction rate was formalised as a fitness function.

Paixão and Souza were the first authors to introduce a robust optimisation framework

for the NRP problem in 2013 [40]. They used the interval to model the uncertainties

of requirements implementation cost, and defined a small population of scenarios to

represent the uncertainty of requirement value. Thus, the uncertainty of a requirement’s

value is represented as a discrete variable. Each scenario is assigned a probability of

occurrence. The desired level of robustness of decision makers is determined by a control

parameter. Their robust NRP model tries to maximise the overall release solution value

for all possible scenarios, while minimising the implementation cost of release solutions

for worst case. Thereby, the outcome of their approach is a conservative and robust

solution, which can avoid the impact of uncertainty in the worst case scenario.

In 2014, Leiter et al. applied statistical decision theory to illustrate the expected in-

formation value of model parameters [148] to offer further decision suggestions on re-

quirements selection [116]. To overcome the limitations of approximate meta-heuristic

algorithms, exhaustive search was adapted to explore the full solution space. The statis-

tical expected information value was computed to explain the ‘robustness’ of a solution,

and then treated as an/the objective for maximising.

2.4 Software Project Resource Allocation

A good upfront software planning is the foundation of a successful software develop-

ment project [149]. It consists of determining the required activities, resources and goals

as well as their proper management for completing the project. The state-of-the-art

software release planning, which merely relies on requirements selection and optimi-

sation model, provides overall direction for the software project and helps to define

the deliverables (selected requirements), while the resource allocation is only addressed

afterwards separately and sequentially [150, 151, 152, 153]. A survey of empirical litera-

2.4. Software Project Resource Allocation 37

ture on software project failures concluded that unrealistic deadlines, budgets overrun,

poorly defined objectives, and a lack of project scheduling plan are the main reasons of

project failures [154].

The software project resource allocation problem, which is also defined as software

schedule planning, is the process of assigning available employees to software tasks for

achieving the desired objectives, under certain constraints [155]. Modelling resource

allocation is hard, it typically involves a large number of variables related to budget

allocation, resource availability, staffing, developer skills and scheduling. There are also

many constraints among these variables that increase problem complexity. For instance,

available employees may not master all skills required for a given task.

Software project resource allocation is mainly driven by human behaviour [46, 156]. Dif-

ferent engineer backgrounds, trainings, and experiences of employees as well as project

managers make the software project resource allocation unlikely to be optimal.

This problem has been studied for several decades [157, 158, 159, 160]. It has been

modelled either as a constraint satisfaction problem, in which only the resource con-

straints are taken into account, or a constrained optimisation problem, in which different

optimisation objectives are dealt with.

Several researchers [161, 162, 163] used AHP to tackle the software resource alloca-

tion problem. The matching degree between the task and the developers are assessed

and prioritised by several stakeholders and developers. The main disadvantage of this

method is that it is laborious to manage many variables and constraints simultaneously.

In 2001, Chang et al. [164] were the first to formulate the software project resource

allocation problem as project scheduling problem and used a meta-heuristic approach to

automate the software project management problem. They proposed a Software Project

Management Net (SPMNet) approach for project scheduling and resource allocation.

In their research, the project span is minimised, but constraints like the productivity

and skills of developers are not considered. Duggan et al. [165] extended this problem

2.4. Software Project Resource Allocation 38

to a multi-objective optimisation model, and modelled the competencies of developers

by using a categorical variable with five levels; the level of competency expects as input

productivities per day and numbers of defects. Acuna and Juristo [166] then connected

labour psychology and software production by taking the behavioural competencies of

the developers into account.

Ngo-The and Ruhe formulated the resource allocation problem as a constrained prob-

lem [150]. The overall goal of their model is, first, to maximise the utility value of

releases with respect to a set of constraints over requirements and, second, to allocate

the resources to the release plan obtained while meeting the resource constraints. In

2013, Ferrucci et al. [151] proposed to use different objectives, such as the project over-

run risk. The idea is to manage the overtime risk and achieve project stability while

focusing on project schedule minimisation.

Chapter 3

Simulation based Robust Next Release

Problem Model

This chapter will introduce a Simulation based robust NRP model to mitigate the im-

pact of requirements uncertainty. Requirements uncertainty is inevitable in software

requirement engineering, especially in NRP. In order to deliver a quality software prod-

uct respect to both robustness and performance, the decision makers have to balance

the trade-offs among many aspects. Previous work applied post-analysis method to

evaluate requirements uncertainty after optimisation. By contrast, our approach for-

mulates requirements uncertainty as an objective to optimise, based on Monte Carlo

Simulation. This offers decision makers an option to balance the trade-off between

probabilistic robustness and performance.

3.1 Motivation

This chapter is the first work on Search-Based Software Engineering (SBSE) [21] to

introduce simulation optimisation which utilises MCS to simulate the uncertainties of

NRP as one of the objectives to guide the search to explore the moderately conserva-

tive robust Pareto-optimal front. In this chapter, we adopt a search-based optimisation

39

3.2. Problem Formulation 40

technique with Monte-Carlo Simulation (MCS) to address requirements uncertainty and

risk in the early stages of the software engineering development process. Our approach

makes explicit the trade-off between requirements uncertainty/risk and traditional at-

tributes of cost & revenue. It is assumed that the Probability Density Function (PDF)

of features (in terms of cost and revenue) has been determined by a prior risk analy-

sis [167].

The chapter builds novel formulations of requirements uncertainty to guide the NRP

and presents robust Pareto-optimal solutions to decision makers. There are two notions

of requirements uncertainty measurement introduced: size of uncertainty region [10]

and the failure probability: the probability that actual cost exceeds a threshold. There

are two definitions of robust solution considered in the chapter: 1) the solution’s pay-

off (in terms of cost and revenue) has narrow fluctuation range, 2) the actual cost of

solution has low probability to exceed the threshold. Each is ‘robust’ in the sense that it

minimises the risk associated with a requirement choice. We compute the uncertainties

of variables as probability distributions, and simulate them by MCS. We measure the

two kinds of robustness, and explore the Pareto-front by using multi-objective evolution

algorithm. Our approach can provide the solutions that balance the trade-off among

revenue, cost, and robustness in a software project.

3.2 Problem Formulation

In this section, we describe the definition of the NRP and the metrics that capture

requirements uncertainty in our approach.

3.2.1 Robust MONRP formulation

This chapter considers two types of robustness in MONRP. These two definitions of

robust solution are “reduction of the uncertainty size”, and “reduction of the probability

3.2. Problem Formulation 41

Figure 3.1: The tolerance region of a MONRP solution [10].

that actual cost exceeds a threshold” (named “failure risk reduction”).

Uncertainty Size Reduction (MCNRP-US)

Uncertainty size is used to measure the tolerance region of the solutions of multi-

objective optimisation problem in d dimensions (d is the number of the objectives).

For example, in NRP, ∆costi is an acceptable fluctuation range of the cost of the

ith requirement. The tolerance region consists of the confidence levels of each fitness

value. The confidence level indicates the most likely fluctuation range of fitness values.

Figure 3.1 illustrates a tolerance region for a NRP solution with cost and revenue

objective functions. The shaded area is the tolerance region of the given solution. In

Li’s work [10], the standard deviation of each fitness value is used as confidence level.

Hence, the tolerance region is composed of the standard deviation of each fitness value.

The size of tolerance region is presented by its normalised hyper-perimeter (Eq.3.1) and

hyper-volume (Eq.3.2). To normalise the metric of each fitness value, we need to define

fitness value referent with respect to each objective function.

3.2. Problem Formulation 42

perimeter(~x) =
d∑

k=1

2 ·∆fitnessk(~x)

referent_fitnessk
(3.1)

volume(~x) =
d∏

k=1

2 ·∆fitnessk(~x)

referent_fitnessk
(3.2)

where d is the number of objective functions. Therefore, all our fitness values lie in

a normalised unit space. This facilitates comparison of Pareto-front using Euclidean

Distance.

Besides, the weighted sum of these two metrics is defined as the uncertainty size and

shown in Eq.3.3

Size(~x) = α · volume(~x) + β · perimeter(~x) (3.3)

Where α + β = 1. In this work, we defined α = 0.5 and β = 0.5.

We named this model as MCNRP-US (MCS for NRP-Uncertainty Size). The MCNRP-

US consisting of the objective functions can be presented as follows (Eq.3.4, Eq.3.5,

and Eq.3.6):

Maximisef1(~x) =
n∑

i=1

(xi · Expected_Revenuei) (3.4)

Minimisef2(~x) =
n∑

i=1

(xi · Expected_Costi) (3.5)

Minimisef3(~x) = Size(~x) (3.6)

3.3. Optimisation Approach 43

Failure Risk Reduction (MCNRP-R)

In our approach, the risk of a given solution is measured by the probability that the

actual cost exceeds a threshold determined by the decision maker. In order to reduce

the risk of budget overrun, our second approach minimises the probability that actual

cost exceeds the budget (Eq.3.7).

Risk(~x) = P(actual_cost(~x) > θ · Expected_Cost(~x)) (3.7)

Where θ is the percentage assigned by the decision maker (in our experimental study,

we set θ = 150%), and P means Probability.

This model namedMCNRP-R (MCS for NRP-Risk). The objective functions ofMCNPR-

R are shown as Eq.3.4, Eq.3.5, and Eq.3.8:

Minimisef3(~x) = Risk(~x) (3.8)

3.3 Optimisation Approach

Our approach contains two procedures: MCS and multi-objective optimisation. MCS

enables us to simulate and evaluate a large number of scenarios effectively. The output

of MCS process is used by the multi-objective optimisation process. The multi-objective

optimisation is used to optimise multiple and possibly conflicting objectives simultane-

ously. In this chapter, we adopt the NSGA-II algorithm for optimisation.

Monte Carlo Simulation (MCS) [168] is a computerised mathematical technique to

explore the range of possible outcomes of the model and the probability that these

3.3. Optimisation Approach 44

Figure 3.2: Overview of Monte Carlo Simulation approach [11]

outcomes will occur. The principle of MCS is to sample a large number of scenarios

generated by substituting the probability distributions of model parameter values. It

then calculates the results of model for all scenarios.

MCS generates a “scenarios database”: an s × n matrix, Simulations, where s is the

number of scenarios and n is the number of requirements. The element Simulations [i, j]

denotes the value of requirement j in ith scenario. The value includes the simulated

revenue and the simulated cost of a given requirement. The number of scenarios was

set to 10, 000, which means 10, 000 runs per fitness function evaluation. An overview

of MCS approach showed in Fig3.2:

The well-known Non-dominated Sorting Genetic Algorithm-II (NSGA-II) was intro-

duced by Deb et al.[96]. We use NSGA-II to provide a Pareto-front that captures the

trade-off between cost & revenue and risk (assessed using MCS).

3.4. Experimental Set Up 45

Figure 3.3: Illustration of the triangle probability distribution and the classification of
sensitive and insensitive distributions [12]. c1 and c2 are the mode value of probability
distribution P1 and probability distribution P2, respectively. a1 and b1 is the lowest
value and highest of P1 respectively while a2 and b2 is the lowest value and highest of
P2. P1 is considered to be more ‘stable’ (insensitive).

3.4 Experimental Set Up

3.4.1 Data Sets

There are four synthetic data sets used in our experiments. The four data sets are syn-

thetically constructed from one real project data set from Motorola [92]. The Motorola

data set concerns a set of 35 requirements for hand held communication devices. Each

requirement has the estimated implementation cost and expected revenue level. There

is no uncertainty information for the cost and revenue of requirements. Our approaches

can accept most kinds of probability distributions, such as uniform distribution, normal

distribution, and discrete distribution. In this work, we simulated these uncertainties

according to the “triangle probability distribution” illustrated in Figure 3.3.

Our four synthetic data sets represent four general scenarios (S1 - S4), according to

the degree of uncertainty about requirements’ cost.

S1 Requirements for low cost have low probability to change (insensitive), while re-

quirements for high cost have high probability to change (sensitive).

3.4. Experimental Set Up 46

Table 3.1: Illustrative fragment of S1 data

Cost Revenue

NAME Mode Min Max Sensitivity Mode Min Max
REQ 1 100.00 79.42 127.91 insensitive 3.00 0.65 3.32
REQ 2 50.00 15.08 53.51 insensitive 3.00 1.30 3.95
REQ 3 300.00 270.74 1154.15 sensitive 3.00 0.32 4.76
REQ 4 80.00 52.73 105.30 insensitive 3.00 1.31 5.50
REQ 5 70.00 42.00 78.77 insensitive 3.00 1.66 4.62
REQ 6 100.00 87.34 133.04 insensitive 3.00 1.01 4.19
REQ 7 1000.00 620.75 3671.35 sensitive 3.00 0.77 5.68

S2 Requirements for low cost have high probability to change (sensitive), while re-

quirements for high cost have low probability to change (insensitive).

S3 Requirements for low cost have low probability to change (insensitive), while re-

quirements for high cost have low probability to change (insensitive).

S4 Requirements for low cost have high probability to change (sensitive), while re-

quirements for high cost have high probability to change (sensitive).

The ith requirement would be classified as low cost requirement if costi <
∑n

j=1 costj

n
,

otherwise high cost requirement, where n is the number of requirements. We define

low probability as the possible change range is within 100%, while for high probability

it is within 250%. The uncertainty of each cost is stochastically generated based on

the above definitions. The uncertainty of revenue is randomly generated to have low

probability (insensitive). A partial data of S1 reported in Table 3.1.

3.4.2 Search Algorithmic Tuning

We base our algorithmic parameter and tuning on those used in previous work on

MONRP [30]. We used binary encoding to represent the decision vector. The initial

population size was set to 500. The algorithm was run for a maximum of 50, 000

function evaluations. The genetic operators used in our approaches are tournament

selection (with tournament size of 5), single-point crossover (with crossover probability

3.4. Experimental Set Up 47

0.8) and bitwise mutation (with the mutation probability 1/n where n is the number

of requirements). The algorithm was executed 30 times for each data set, to cater for

the stochastic nature of the algorithm.

3.4.3 Evaluation

Price of Robustness

In order to measure such loss between the proposed robust Pareto-front and original

Pareto-front with regard to cost and revenue objectives, we utilised the “reduction

factor” [169] to measure the “Price of Robustness”. This factor measures the distance

between two fronts [35]. To compute such distance, we defined (A1, · · · , Ap) as the

fronta which contains p solutions, while (B1, · · · , Bq) denotes the q solutions in frontb,

where p and q are the number of solutions in fronta and frontb respectively.

The distance from solution A to solution B is computed by the normalised objective

values and Euclidean Distance. In the case of “Price of Robustness", the distance

between solution A and B is defined as:

Dis(A,B) = ±

√√√√ d∑
i=1

(A_fiti −B_fiti)2 (3.9)

Where d is the number of objectives. A_fiti and B_fiti are the normalised ith objec-

tives value of A and B, respectively.

The distance from solution A to geometrically closest solution B on frontb is presented

as the distance from solution A to frontb (Eq.3.10).

Dis(A, frontb) = Dis(A,B) (3.10)

3.4. Experimental Set Up 48

Therefore, the distance from fronta to frontb is the mean value of the distance from

every solution on fronta to frontb.

Dis(fronta, frontb) =

∑p
i=1Dis(Ai, frontb)

p
(3.11)

Probabilistic Sensitivity Analysis

To measure the amount of robustness improvement achieved by our robust optimisation

approach, we performed a probabilistic sensitivity analysis. Firstly, we used the same

sampling technique to simulate the uncertainties of data. After that, we adopted robust-

ness formulations defined in this chapter to calculate the robustness of Pareto-optimal

solutions generated by traditional approach.

3.4.4 Research Questions

In order to evaluate the effectiveness and usefulness of the approaches, we carried out

two experimental studies to assess the efficiency of the approaches and four scenarios to

evaluate its usefulness. In the experiments, we compared the results obtained from our

approaches with the ones obtained from MONRP, and formalised one research question.

The question is whether the proposed approaches can provide more robust solutions to

decision makers with less sacrifice? This question formulated into three more detailed

sub-questions (RQ1 , RQ2 , and RQ3).

Additionally, to aid the decision making support before preforming such professional

tools, this chapter also investigated the correlations between attributes of a requirement

and its inclusion in solutions on the Pareto-front. This is formulated into the fourth

question RQ4 .

RQ1 Do the proposed two kinds of robust optimisation improve robustness? This

3.5. Experimental Results and Analysis 49

question will be answered by analysing and comparing the robustness of solutions

which were generated by our approaches and the original MONRP.

RQ2 How much “Price of Robustness" would be paid for the proposed robust opti-

misation approaches? We will answer this question by calculating the distance

between the Pareto-front obtained from our approaches and those obtained from

the original MONRP. The distance was used to measure the loss in pay-off.

RQ3 How similar are the Pareto-fronts produced by our new approaches and the

one produced by traditional MONRP? We computed and ranked the proportion

of requirements being selected in solutions on the Pareto-front. Then we used

Kendall’s τB correlation coefficient to statistically investigate the degree of similar-

ity between the rankings of requirements included in solutions on the Pareto-front

to answer this question.

RQ4 Which attributes of a requirement are correlated with inclusion in solutions on

the Pareto-front?

We performed an intuitive analysis to answer the RQ1 and RQ2 , while more statistical

analysis to answer the RQ3 and RQ4 .

3.5 Experimental Results and Analysis

This section presents two different robust models and the results of applying these two

models on four synthetic problem instances. Two experiments were conducted and the

illustrations of results are presented in Figures 3.4 and 3.5 (Figures 3.4a, 3.4b, 3.4c, 3.4d,

and Figures 3.5a, 3.5b, 3.5c, 3.5d), for E1 & E2 respectively. The two experiments, E1

& E2, are described below:

E1 The first experiment aims at evaluating the MCNRP-US approach and the “Price

of Robustness” of this approach, when the decision maker expects to obtain robust

solutions within a defined fluctuation range.

3.5. Experimental Results and Analysis 50

E2 The second experiment evaluates theMCNRP-R approach and its “Price of Robust-

ness” for the situation in which the decision maker would like to acquire robust

solutions which have a low risk of budget overrun.

In order to compare our proposed approach to the traditional MONRP approach, the

Pareto-fronts of proposed approach are presented by dark black patterns and traditional

ones by grey (red when viewed in colour) patterns. This selection quantitatively analysis

and answer the RQ3 and RQ4 as well.

3.5.1 Experiment One (E1)

In E1, the uncertainty size of a solution is taken into account. The results of E1 are

shown in Figures 3.4a, 3.4b, 3.4c, and 3.4d corresponding to scenarios S1, S2, S3, and

S4, respectively. The figures illustrate the three-dimensional Pareto surface. Each bar

represents a solution on the Pareto-front. The location of each bar in the cost-revenue

plane presents the cost and revenue of the solution respectively. The height of the bar

shows the uncertainty size for each solution.

From the results of E1 for S1, S2, S3, and S4, we observe that, as the overall fulfilled

cost increases, the uncertainty size of solution also increases. We also observe that there

are minor differences between the Pareto-fronts of MCNRP-US and the traditional ap-

proach in S1 and S4 (Figures 3.4a and 3.4d), while there are larger differences between

S2 and S3 (Figures 3.4b and 3.4c). High cost requirements naturally have more impact

on solution sensitivity than low cost requirements [35]. Requirements with high cost

are stable in S2 and S3, and the proposed first approach tends to select the “stable”

solution rather than the solutions just have good economic performance but “unstable”.

Table 3.2 presents the results of probabilistic sensitivity analysis for E1, the “Price of

Robustness” for “MCNRP-US ” approach, and how much robustness with regarded to

uncertainty size improved by applying this approach.

3.5. Experimental Results and Analysis 51

(a) The results of E1 in S1 (b) The results of E1 in S2

(c) The results of E1 in S3 (d) The results of E1 in S4

Figure 3.4: The Pareto-front of MCNRP-US and Original Approach

Based on the results in this table we answer RQ1 and RQ2 (for MCNRP-US) as

follows: On average, the MCNRP-US generates more robust solutions with respect

to uncertainty size. The overall improvement is not large: after normalizing cost and

revenue, the magnitude of standard deviation of cost and revenue is small, so the

magnitude of uncertainty size is small. Even so, it is interesting that the robustness

improvements for S1 and S4 (22.78% and 14.65% respectively) are better than the

improvements for S2 and S3 (2.54% and 7.19% respectively).

Although the improvement of MCNRP-US is not dramatic, it pays a little as the “Price

of Robustness”. Therefore, we conclude that applying our MCNRP-US approach, the

decision maker pays a small price to obtain a more robust Pareto-front, whose solutions

have smaller uncertainty size.

3.5. Experimental Results and Analysis 52

(a) The results of E2 in S1 (b) The results of E2 in S2

(c) The results of E2 in S3 (d) The results of E2 in S4

Figure 3.5: The Pareto-front of MCNRP-R and Original Approach

3.5.2 Experiment Two (E2)

The results of E2 are plotted in Figures 3.5a, 3.5b, 3.5c, and 3.5d. In E2, the risk was

considered as a third objective.

From the results of E2 in S1, S2, S3, and S4, a general trend is observed: the degree of

risk increases as overall cost increases. However, there is an interesting observation in

Figure 3.5b. The risk is inversely proportional to cost. The reason for this phenomenon

is that the risk is directly proportional to the stability of the probability distribution

of cost. The more stable the probability distribution is, the lower risk there will be. In

E2, there are some other interesting observations: According to the results, we observe

that the obtained “robust” Pareto-fronts are quite close to those obtained from original

3.5. Experimental Results and Analysis 53

Table 3.2: The Robustness & Comparison of the MCNRP-US Approach and the Tra-
ditional Approach

S1 S2 S3 S4

MCNRP-US 0.1531 0.1558 0.1850 0.1290
Original Approach 0.1983 0.1599 0.1993 0.1511
Price of Robustness 0.0110 0.0201 0.0154 0.0102

Robustness Improvement 22.78% 2.54% 7.19% 14.65%

Table 3.3: The Robustness & Comparison of the MCNRP-R Approach and the Tradi-
tional Approach

S1 S2 S3 S4

MCNRP-R 0.0396 0.0404 0.0109 0.0591
Original Approach 0.0500 0.0755 0.0132 0.0888
Price of Robustness 0.0036 0.0253 0.0003 0.0285

Robustness Improvement 20.82% 46.49% 17.70% 33.37%

MONRP in S1 and S3, while there are a big gap in S2 and S4. This is because the

probability distribution of high cost is unstable in S2 and S4.

Table 3.3 shows that the robustness with regards to risk can be noticeably improved

by the MCNRP-R approach compared to traditional approach. Moreover, the payment

(Price of Robustness) is low.

As an overall answer RQ1 and RQ2 (for MONRP-R) we find that we can achieve

an improvement of at least 18% in robustness with only a little change in 2D cost-

revenue Pareto-front (maximum 0.0285 in a unit space). That is, the penalization

due to robustness is very small for all scenarios, which qualifies the effectiveness of

MCNRP-R approach.

3.5.3 Statistical Analysis

To answer the RQ3 and RQ4 statistically, Kendall’s τB correlation coefficient τB is

used to quantitatively analyse the correlation between and within the approaches. Table

3.4 shows Kendall’s τB correlation coefficient and corresponding p-value calculated for

the relation between the paired approach (MONRP and MONRP-R, MONRP and

3.5. Experimental Results and Analysis 54

Table 3.4: The Correlation of Rankings of Requirements

MONRP&R MONRP&US US&R

S1 τB 0.9361 0.7345 0.7311
p-value < 0.000 < 0.000 < 0.000

S2 τB 0.8646 0.7872 0.8756
p-value < 0.000 < 0.000 < 0.000

S3 τB 0.9655 0.7233 0.7311
p-value < 0.000 < 0.000 < 0.000

S4 τB 0.8646 0.8713 0.8387
p-value < 0.000 < 0.000 < 0.000

In this table, R means MONRP-R, and US means MONRP-US.

MONRP-US, and MONRP-R and MONRP-US) with regard to each scenario. If all

solutions in Pareto-front agree on a requirement to be selected, the requirement is said

to be “closed” [116]. Here, we generalise this notion of “closed” decision to investigate

correlations between degrees of “closedness”.

The Table 3.4 reveals that there are existing strong correlations between the rankings

of requirements produced by each approach on each scenario. All τB coefficients are

greater than 0.7, and p-values are very close to zero. This confirms that the rankings

of requirements produced by each approach are similar to each other.

Hence, the Pareto-fronts on Cost-Revenue dimension generated by each approach are

similar to each other. We further observe that the correlation is stronger between

MONRP and MONRP-R than MONRP and MONRP-US. This answers RQ3 .

In order to answer RQ4 , Table 3.5 uses Kendall’s τ correlation analysis to statistically

describe the correlation between the attributes of requirements and the rankings of

requirements. The results reveal that, in general, the requirement’s Revenue-to-Cost

ratio and Cost have strong monotonic correlation with its likelihood of inclusion, while

its Revenue is uncorrelated. The requirement’s Revenue-to-Cost ratio is the most

strongly correlated.

3.6. Summary 55

Table 3.5: The Correlation between the Attributes of Requirement and its Ranking

Cost Revenue R/C

MONRP τB p−Value τB p−Value τB p−Value
S1 -0.7748 < 0.000 0.0723 0.55358 0.9597 < 0.000
S2 -0.7569 < 0.000 0.1413 0.23846 0.9521 < 0.000
S3 -0.7771 < 0.000 0.074 0.54138 0.9521 < 0.000
S4 -0.7704 < 0.000 0.1346 0.26185 0.9554 < 0.000

MONRP-US τB p−Value τB p−Value τB p−Value

S1 -0.5899 < 0.000 0.0824 0.49827 0.721 < 0.000
S2 -0.6034 < 0.000 0.2336 0.049495 0.7714 < 0.000
S3 -0.5832 < 0.000 0.0924 0.44599 0.7008 < 0.000
S4 -0.6807 < 0.000 0.1765 0.14052 0.8521 < 0.000

MONRP-R τB p−Value τB p−Value τB p−Value

S1 -0.7244 < 0.000 0.1092 0.3661 0.8958 < 0.000
S2 -0.6807 < 0.000 0.1966 0.09972 0.8555 < 0.000
S3 -0.758 < 0.000 0.0924 0.44599 0.9294 < 0.000
S4 -0.674 < 0.000 0.1899 0.11213 0.8521 < 0.000

In this table, Cost is the Expected Cost, Revenue is the Expected Revenue, and R/C
is the Expected Revenue-to-Cost Ratio.

3.6 Summary

In this chapter, we introduced an MCS-based robust optimisation approach for require-

ment analysis and optimisation.

We introduced two notions of requirement uncertainty measurements for NRP. Ac-

cording to the experiments upon which this chapter reports, the proposed two robust

MONRP approaches (MCNRP-US and MCNRP-R) overcome the limitation of the

traditional MONRP approach which underestimates (or even hides) requirements un-

certainty. These allow the decision maker to choose different approaches for controlling

different types of requirements uncertainty and different levels of probabilistic guarantee

for robustness, while retaining the performance of traditional solutions. The MCNRP-

US offers decision makers a way to control the fluctuation range of payoff for solutions.

The MCNRP-R model helps decision makers to explore solutions with lower risk of

budget overrun.

3.6. Summary 56

We found that MONRP-R decisions are more closely correlated to traditional MONRP

decisions regarding requirement choice, than MONRP-US. We also find that, while cost

is closely correlated to inclusion of a requirement in the Pareto-front, revenue is not.

However, our approach in this chapter has relied upon meta-heuristic algorithms with

the notable drawback that the algorithm itself, being a randomised algorithm, con-

tributes to the overall uncertainty. This is a problem we address in the next chapters

by using an exact algorithm.

Chapter 4

The Value of Exact Analysis in Next

Release Problem

As described in Chapters 2 and 3, previous uncertainty management for NRP relied

solely upon (non-deterministic) randomised meta-heuristic algorithms. In this chapter,

we propose a decision support framework METRO for the Next Release Problem to

manage algorithmic uncertainty and requirements uncertainty. An exact NRP solver

(NSGDP) is at the heart of the METRO to eliminate interference caused by existing

approximate NRP solvers. Furthermore, METRO takes account of risk in the decisions

suggested, rather than simply report upon its possible pernicious effects. This explicitly

helps decision makers to understand and make the trade-off between uncertainty/risk

and conventional objectives of cost & revenue based on information so far.

4.1 Motivation

To address uncertainty in Next Release Problem, previous work by Heaven et al. [148],

Paixão et al. [40], and Li et al. [1] relied solely upon (non-deterministic) randomised

meta-heuristic algorithms. These previously proposed meta-heuristic algorithms can

only find reasonable approximate solutions, and lead to information loss. While this

57

4.1. Motivation 58

is acceptable in general, for the specific problem of handling risk we face here, it is

important for the decision maker to know that all uncertainty derives from the problem

itself and not from the algorithm used to tackle it. Moreover, they reported robust

NRP solutions, but yet they did not guide decision makers to select the solutions from

thousands of candidates.

In order to aid decision support in the early stage of software engineering over sim-

ply reporting the results explored, we develop a decision support framework for Next

Release Problem (called METRO), which utilises both a simulation-based robust opti-

misation approach and a point-based optimisation approach. Our approach adopts an

exact algorithm combined with a Monte-Carlo Simulation (MCS) to deal with algorithm

non-determinism and capture requirements uncertainty. In this manner, our approach

eliminates the algorithmic uncertainty, and explicitly helps decision makers to under-

stand and make the trade-off between uncertainty/risk and conventional objectives of

cost & revenue based on information so far.

To handle the requirements uncertainty, METRO takes into account the quantified

cost and revenue of requirements as well as the Probability Density Function (PDF) of

uncertainties associated with these requirement attributes (cost and revenue). With the

aid of PDF of uncertainties, METRO utilises MCS to simulate uncertainties in terms

of their impact on specific objectives, and then a set of solutions will be picked by exact

optimisation approach. METRO quantitatively analyses the outcomes of optimisation,

and interprets the findings through a set of visualisations. These visualisations depict

the tension between two different objectives regarding the objective space, and illustrate

the characteristics of requirements regarding the design space. This information allows

decision makers to understand the impact of requirements uncertainty and determine

the requirement priority.

The chapter’s primary contribution is to introduce exact multi-objective dependence-

respecting NRP solver to deal with algorithmic uncertainty and requirements uncer-

tainty. More specifically, the following contributions are made:

4.1. Motivation 59

1. The first contribution is about eliminating algorithmic uncertainty. We develop

an exact NRP optimisation solver NSGDP in our framework METRO. Our ex-

perimental studies reveal that, with the aid of NSGDP , the decision maker can

avoid information loss (without which he or she will lose up to 99.95% of optimal

solutions and will make up to 36.48% inexact requirement selection decisions).

Furthermore, the execution time of NSGDP is better than NSGA-II: On aver-

age, NSGDP takes 0.37s (without accounting for requirements uncertainty), and

35.33s (when taking requirements uncertainty into consideration). By contrast,

NSGA-II takes more than 10 minutes, whether or not requirements uncertainty

is taken into account.

2. The second contribution is our introduction of an approach to cater for require-

ments uncertainty. METRO investigates the difference between the optimal-yet-

risky solutions and robust-yet-suboptimal solutions. Two indicators are used:

expected risk premium and risk reduction. Our experimental results show that,

developing software project based on optimal-yet-risky release plan rather than

robust-yet-suboptimal release plan, may suffer up to 10.09% probability of over-

running more than 150% budget but gaining less than 0.39 expected risk premium.

3. The third contribution is that the proposed framework can better support de-

cision makers in understanding the requirements selection. A series of quanti-

tative techniques is provided for highlighting the characteristics of requirements

and solutions. The difference of requirement selection probability between two

NRP approaches is analysed and presented in a stacked bar plot. We found that

risk-aware sNRP approach is more likely to include the requirement with low

uncertainty than pNRP approach does (Kendall‘s τB up to −0.675). METRO

clusters requirements according to design space proximity rather than objective

space proximity.

4.2. Background 60

4.2 Background

This section describes the techniques used in this chapter. Firstly, a RIM model: Con-

flict Graph is presented to show how to construct requirement dependencies, and then

Nemhauser-Ullmann Algorithm, which is the exact NRP solver used in our framework,

is introduced.

4.2.1 Next Release Problem with Conflict Graphs

In practice, there may be different constraints between the requirements in NRP. These

constraints describe the relationships between the various requirements [170]. Mutual

exclusion is a typical constraint, which denotes at most one of the two mutually exclusive

requirements can be selected simultaneously. In graph theory, conflict graphs are usually

used to construct such logical relations between objects. More precisely, a conflict graph

G contains a set of vertices and edges between two vertices (Eq. 4.1):

G =(V,E)

V ={vi}

E ={(vi, vj)|The vi and vj is mutually exclusive}

(4.1)

where V is the vertex set, in which each vertex represents a distinct object, and E is

the edge set, in which each edge means two connected vertices exclude each other (thus

cannot be selected at the same time). The isolated vertices denote that those vertices

can be selected with every other isolated vertex at the same time.

Conflict graphs have been successfully applied to Knapsack-like Problems with Con-

flicts [171, 172, 173], which are strongly NP-hard in general. Moreover, in 2009,

Pferschy and Schauer [174] proved that forming Knapsack-like Problem with Conflict

Graph (KCG) in the search tree can carry forward fully polynomial time approximation

4.2. Background 61

schemes (FPTAS). Accordingly, it is promising to model NRP in the form of the con-

flict graph, and then reconstruct it to search tree. We would interpret how to construct

NRP with conflict graph to the search tree exemplified by the general knapsack-like

problem.

To reconstruct a knapsack-like problem from a conflict graph data structure to a search

tree data structure, the first step is processing G in depth-first-search. Then picking a

constrained vertex vi (conflicting with vertex vj) to distinguish the problem into two

sub-problems from top-down:

• Necessarily including vi in the sub-problem, and excluding vj

• Always excluding vi in the sub-problem, and keeping the decision concerning vj

open.

Mathematically, the process of constructing problem tree is presented as follows.

Definition 1 G \ v means subtracting a vertex v ∈ V from graph G: G \ v = (V ′, E ′),

where V ′ = V − {v} and E ′ = {(vi, vj) | (vi, vj) ∈ E, vi ∈ V ′, vj ∈ V ′}.

Definition 2 For graph G = (V,E) and a vertex v ∈ V , C(v) represents a set of objects

including v and those have constraints with v: C(v) = {u ∈ V | u = v or (u, v) ∈ E}.

When all leaves of the root problem tree have no edge at all (|E| = 0), the problem

is solved bottom up. The procedure of solving KCG is described in Algorithm 1. In

Algorithm 1, if G has no constraints at all (|E| = 0), then solve the problem using

dynamic programming, otherwise the problem G is divided into two sub-problems G\v

and G \ C(v) with respect to a chosen constraint v. The former one assumes v is not

selected in all of the solutions and the latter one assumes v selected, thus all the objects

that conflict with it cannot be selected in the final solutions and are removed from the

problem as well (C(v) contains the objects that have connections with v). After these

4.2. Background 62

two sub-problems are solved recursively, the algorithm sets xv = 1 in all of the Pareto

solutions for the second sub-problem, since v is assumed to be selected in the second

sub-problem. At last the algorithm merges these two sets of non-dominated solutions

together and removes those being dominated to form the Pareto solution set for the

problem G.

Algorithm 1 Solve KCG S = Solve(G)

Require: conflict graph G = (V,E)
if E = ∅ then
return KnapsackProblemSolver(G)

end if
Pick v ∈ V that has an edge in E
S0 = Solve(G \ v)
S1 = Solve(G \ C(v))
for all ~s ∈ S1 do

set v selected: sv = 1
end for
return S = Merge(S0, S1)

4.2.2 Nemhauser-Ullmann Algorithm

To solve NRP exactly, we build an exact NRP solver NSGDP using the Nemhauser-

Ullmann algorithm to solve specific instances in a decision tree solution space. The

Nemhauser-Ullmann algorithm is a dynamic programming algorithm proposed by Nemhauser

and Ullmann in 1969 [115]. It is a non-dominated sorting based multi-objective exact

optimisation algorithm to enumerate the Pareto set of knapsack-like problems [175].

However, it has an obvious drawback. It cannot deal with knapsack-like problems with

constraints. Harman et al. [22] employed it to materialise an exact NRP solver that

focuses on NRP with the independent requirement.

For a given NRP problem with n requirements, the Nemhauser-Ullmann algorithm

starts with considering 0 requirements, and then iteratively inserts the next requirement

i into every solution in the Pareto-front P (i − 1), where P (i − 1) denotes the Pareto-

front of first i − 1 requirements. After merging two solutions to set P ′(i) = P (i −

1)∪ (P (i− 1) + i), the Nemhauser-Ullmann algorithm uses non-dominated sorting (the

4.3. Simulation based NRP Decision Analysis Framework METRO 63

so-called staircase function) [96] to compute the Pareto-front of first i requirements

P (i) = Non-dominated-Sorting(P ′(i)). P (i− 1) + i denotes the set of solutions that is

obtained by setting the ith requirement to be selected for all solutions from P (i − 1).

Following these steps, the final result P (n) is computed inductively. Summarising, the

Nemhauser-Ullmann algorithm is formalised by Algorithm 2:

Algorithm 2 Nemhauser-Ullmann algorithm for NRP
Require: A set of n requirements
for i = 1, .., n do
P ′(i) = P (i− 1) ∪ (P (i− 1) + i)
P (i) = Non-dominated-Sorting(P ′(i))

end for
return P (n)

4.3 Simulation based NRP Decision Analysis Frame-

work METRO

Multi-Objective NRP approaches produce a Pareto-front which may contain a large

number of solutions. It is laborious for engineers to understand and identify one solu-

tion from thousands of candidate solutions, especially taking uncertainty into account.

To aid decision makers to tackle the latent information within optimal solutions, this

chapter proposes a simulation NRP decision analysis framework, METRO. Instead of

merely generating the optimal solutions themselves, METRO statistically analyses the

optimal solutions, mines information from them, and provides the insight of these so-

lutions. The main processes of METRO (Figure 4.1) are:

1. Pre-processing the requirements dependencies.

2. Adopting sNRP and pNRP to model the requirements optimisation problem sep-

arately, and then using exact optimisation solver to produce the optimal solutions.

3. Statistically analysing results of two solutions, and visualising the refined infor-

mation as well as the implicit requirement pattern for decision processes.

4.3. Simulation based NRP Decision Analysis Framework METRO 64

Figure 4.1: NRP Decision Analysis Framework: METRO

4. Performing this analysis in the next iteration.

4.3.1 Requirements Interaction Pre-Processing

Requirements may depend on each other [176]. Some requirements may interact with

other requirements due to the constraints or limitations that come from techniques,

or business related issues. Requirement implementations may be mutually exclusive,

or should be fulfilled together on the basis of their interactions. Failure to consider

requirement interactions, may yield infeasible decisions.

Requirements Interaction Management (RIM) has been proposed to analyse and man-

age the dependences among requirements [170, 177]. In NRP, RIM involves at least two

types of interactions (And, and XOR). The And dependence between two requirements

means the selections of requirements have to be in the same release. On the other

hand, the selection of two requirements which have XOR dependence are “repelling”

each other because these two requirements are mutually exclusive. Table 5.1 presents

the mathematical expressions of these interaction.

Although the original RIM defines the dependencies between requirements, RIM can be

4.3. Simulation based NRP Decision Analysis Framework METRO 65

Table 4.1: Requirement Interactions. The sets ξ, and ϕ present the interaction types
And, and XOR, respectively. The set ξ ∩ ϕ = ∅.

And ∀(i, j) ∈ ξ, xi = xj

XOR ∀(i, j) ∈ ϕ, xi ∧ xj = 0

simplified to enable fast execution and better convergence. In our proposed approach,

the And dependence satisfies ∀(i, j) ∈ ξ, xi = xj. By transitivity, if (i, j) ∈ ξ and

(j, k) ∈ ξ, then xi = xj = xk. Therefore, a super-requirement Reqi,j,k can be used

to represent requirement i, j, and k in a single decision variable. This simplification,

reduces the computational cost for requirements constraint handling and the search

space within which we seek solutions.

4.3.2 Exact NRP optimisation Solver

After requirement data pre-processing, decision makers have to decide which require-

ments are critical and should be included in the next release of system under budget

constraints. For this step, the objectives and formulations should be clearly defined.

The conventional criteria for NRP is maximising the expected revenue and minimising

the expected release cost. Decision makers can also define other criteria, such as the

satisfaction degree of customers, the fairness level among different stakeholders [28],

and the utility of release.

Taking uncertainty into account, project risk could be an extra objective to optimise.

In a software project, the project risk is related to future events that may have unde-

sired consequences for the project [178]. Project risk could include budget overrun, the

number of requirements becoming inflated, departure of a key person, and productivity

failing to meet expected estimates [179, 180]. There are existing risk analysis methods

that identify and elicit these software project uncertainties quantitatively and use prob-

ability distributions to represent the uncertainty [181]. After these uncertainties have

been elicited, our framework formulates the fitness function to optimise project risk.

4.3. Simulation based NRP Decision Analysis Framework METRO 66

In NRP, such multi-objective decision support problems can be investigated using a

multi-objective optimisation algorithm. In order to ensure that the variations in results

do not come from the stochastic nature of the algorithm, we design an exact NRP opti-

misation solver: Non-dominated Sorting ConflictGraph basedDynamic Programming

algorithm (NSGDP). The NSGDP uses the Nemhauser-Ullmann algorithm, an exact

dynamic programming algorithm, as the core NRP solver, and augmented by Conflict

Graph to deal with the requirements interaction. Firstly, the NRP problem with con-

straints is modelled into Conflict Graph. Then, the root problem is broken down into

sub-problems according to Algorithm 1 until there is no constraint in sub-problems.

Lastly, Algorithm 2 is used to solve NRP without constraint directly. It is worth men-

tioning that, our algorithm is applicable to, not only the case we study in this chapter,

but also any kind of knapsack-like problems with exclusive conditions.

To further improve the performance of our algorithm, we introduce an array to store

the processing order. This is because, when a graph G is divided to two graphs G \ v =

(V0, E0) and G\C(v) = (V1, E1), G\C(v) is a sub-graph of G\v (V0 ⊃ V1 and E0 ⊃ E1).

If further divided, the ‘offspring’(s) of G \ v may be exactly the same as G \C(v), thus

does not need to be solved multiple times.

There is no strict rule of which v should be chosen as long as it has at least one constraint

on it. In our algorithm, we always choose the vertex v with the biggest degree (has the

biggest number of edges connecting it), thus the number of edges in G1 is minimised to

have a minimal depth of subsequent dividing.

Figure 4.2 illustrates the breakdown process of our NSGDP algorithm with a sim-

ple problem instance (Figure 4.2a). There are 7 requirements and 5 conflicting in-

teractions in this instance. The edge connects two requirements means these two re-

quirements are conflicting with each other. So the expressions of this instance are

V = {r1, r2, r3, r4, r5, r6, r7} and E = {(r2, r3), (r2, r4), (r2, r5), (r5, r6), (r3, r7)}. For this

instance, the problem is divided based on requirement r2 firstly. The reason is that r2

conflicts with most requirements (r3, r4, and r5), so its degree is the biggest (degree 3).

4.3. Simulation based NRP Decision Analysis Framework METRO 67

Then the problem is broken down into two sub-problem. The r2 is not selected in the

first sub-problem Gb = Ga \ r2 (Figure 4.2b), so r2 and the edges connected to r2 are

removed. In the second sub-problem Gc = Ga \ Ext(r2) (Figure 4.2c), req2 is selected.

Accordingly, the requirements have connection with r2 are removed. The dashed line

in Figure 4.2c denotes that, in order to solve the problem Gc = Ga \ Ext(r2), NSGDP

firstly solves the right part, and then computes the optimal frontier of whole problem

Gc by merging the consideration of left part requirements.

Subsequently, NSGDP further divides these two generated sub-problems. Because there

is no edge in Gc (Figure 4.2c), no further breakdown would be performed on Gc. Since

there are two conflicts in Gb (E1 = {(r3, r7), (r5, r6)}), and each conflicted requirement

has same degree (degree 1), NSGDP picks r3 by requirement id order. Thus, sub-

problem Gb is divided into sub-problems Gd = Gb \ r3 (Figure 4.2d) and Ge = Gb \

Ext(r3) (Figure 4.2e). NSGDP continues to breakdown the problem until there is no

further conflict that can be subdivided. In this instance, there are 5 leaf node sub-

problems generated.

After the breakdown process is terminated, the NSGDP solves the problem from the

bottom up. Figure 4.2j illustrates the procedure by a dashed line. According to the

composition of problems Gi, Gh, and Gg, the algorithm solves the Gi first. Then the

results of Gi can be used for solving the other two leaf nodes sub-problem Gh and Gg.

Thus, the re-computation can be avoided by storing previous steps’ results.

4.3.3 Results Analysis & visualisation

The last step of METRO is to analyse the solutions on two Pareto-fronts, one of which

is produced by pNRP, and the other by sNRP. The shape of generated Pareto-frontier

exposes the possible trade-off among all conflicting objectives.

The shape of Pareto-front helps decision makers to understand the possible trade-off

among all conflicting objectives, yet it does not provide other intelligible information

4.3. Simulation based NRP Decision Analysis Framework METRO 68

(a) Ga=G (b) Gb=Ga\r2 (c) Gc=Ga\C(r2)+r2

(d) Gd=Gb\r3 (e) Ge=Gb\C(r3) + r3 (f) Gf =Gd\r5

(g) Gg=Gd\C(r5)+r5 (h) Gh=Ge\r5 (i) Gi=Ge\C(r5)+r5

(j) The breakdown procedure (solid line) generated by
NSGDP algorithm, and the solving procedure (dashed
line) for problem Ga

Figure 4.2: The illustration of the subdivision process of the NSGDP for an instance
with 7 requirements and 5 conflicting interactions. Figure 4.2a to Figure 4.2i are each
generated sub-problem in the subdivision phase. Figure 4.2j illustrates the generated
sub-problems and the solution path of NSGDP algorithm.

4.3. Simulation based NRP Decision Analysis Framework METRO 69

to interpret the variations among the solutions as well as the characteristics of require-

ments. In particular, the number of solutions on Pareto-front maybe large, thereby

requiring further analysis support to help the decision maker understand the impli-

cation for requirement release decisions. By contrast, METRO performs a series of

posterior analysis procedures to help decision makers to concentrate on the impacts of

requirements uncertainty, most interesting solutions, and most urgent and worthwhile

requirements.

In order to assess the impact of requirements uncertainty, we introduced the concept of

the expected risk premium, which is a variant of the risk premium [182]. This measures

the difference between robust-yet-suboptimal solutions and optimal-yet-risky solutions.

The robust-yet-suboptimal solution is simply that which has the lowest uncertainty

variance in the distribution of possible values. Suppose we use the point based method

to find a particular optimal-yet-risky solution (a set of requirements), ~a, with given cost,

cost(~a) and value, value(~a). We can find the robust-yet-suboptimal solution, ~r with cost

cost(~r) closest to cost(~a) that does not exceed cost(~a). This is the greatest lower bound,

on robust-yet-suboptimal solutions, bounded by the cost of ~a. Because the robust-yet-

suboptimal solution takes account of uncertainty, it has a range of possible values, of

which the expected value, value(~r), is simply the most probable. The expected risk

premium is simply the difference between (value(~a)− cost(~a)) and (value(~r)− cost(~r)),

where the value and cost are all normalised. It is an ‘expected’ assessment of the return

that will be lost by maximally reducing uncertainty. It is thus a way of understanding

the penalty that is paid for reducing uncertainty in terms of reduced expected return.

To compute the expected risk premium, a solution compare pair which contains an

optimal-yet-risky solution and a robust-yet-suboptimal solution should be determined

first. For each robust-yet-suboptimal solution ~r, each optimal-yet-risky solution from

pNRP, which has the closest cost to ~r and the cost is not lower than the cost of ~r,

is chosen as the paired solution ~a. Thus, the solution compare pair is expressed

as Pair(~a, ~r). The procedure to generate solution compare pair is illustrated in

Algorithm 3.

4.4. Applying our approach to the RALIC dataset 70

Algorithm 3 Generate solution compare pairs
Require: sNRP solution set S1, and pNRP S2.
set Pairs = ∅
for all ~s1 ∈ S1 do
~s = S2[0]
for all ~s2 ∈ S2 ∧ Cost(~s2) ≥ Cost(~s1) do
if Cost(~s2) < Cost(~s) then
~s = ~s2

end if
end for
Pairs = Pairs ∪ Pair(~s1, ~s)

end for
return Pairs

4.4 Applying our approach to the RALIC dataset

In this section, we illustrate the insights that can be obtained by applying the proposed

framework on a large real-world example: the RALIC dataset.

4.4.1 Experimental set up

The detail of dataset, and the targeted objectives of the experimental study are pre-

sented as follows.

Dataset

The RALIC project is an access control system developed at University College London,

UK. This project was established in 2009 and deployed in 2011. The requirement

data was collected by using the StakeNet stakeholder analysis method and StakeRare

requirement elicitation method [183]. The implementation cost of each requirement was

derived from the RALIC posterior implementation report. The cost is represented as

the total man-hours spent on the requirement during the whole project development

life cycle. The detail information of RALIC data is publicly published at http://

soolinglim.wordpress.com/datasets/.

http://soolinglim.wordpress.com/datasets/
http://soolinglim.wordpress.com/datasets/

4.4. Applying our approach to the RALIC dataset 71

Because there is no uncertainty information about the attributes of requirements in

RALIC dataset, we synthetically simulated these uncertainties following guidelines from

the literature [116] which advocate a triangle probability distribution. In the early

requirements engineering phase, due to the lack of definition or understanding of the

requirements to be done, the level of software cost estimation accuracy ranged from 25%

to 400% [167, 184, 185]. According to Jørgensen and Moløkken-Østvold’s review [185],

the Standish Group CHAOS Report [186] indicates that 52.7% of software projects

will overrun the 89% of their original budget estimation. Therefore, in our study, we

define the range of uncertainty for requirement cost as [25%, 400%]. There have also

been studies on the accuracy of the software profit estimation or the satisfaction of

stakeholders. Michael Bloch et al. study large-scale IT projects and report that the

average benefit shortfall of IT projects is 56%, but no range is reported. As Fogelstrom

et al. [187] pointed out in 2009, business risk-related uncertainty has received little

attention, which means that we have little guidance as to the likely bounds we should

place on uncertainty. Therefore, we have allowed for potential boundary scenarios in

choosing our uncertainty bounds. That is, the range of uncertainty for satisfaction of

stakeholder is defined as [10%, 300%]. We believe that the true uncertainty value for

any realistic project is likely to lie within this extreme range.

There are two versions of RALIC datasets: ‘PointP’ and ‘RankP’. In this chapter, we

empirically studied our framework on the ‘PointP’ dataset, which consists of 143 re-

quirements, 86 And dependencies, and 23 XOR dependencies. To generalise the study,

three NRP instances are derived. There are two boundary scenarios, in which the un-

certainty of a requirement is estimated, either highly optimistically or pessimistically,

and one ‘in-between’ scenario. In highly optimistic scenarios, the requirements uncer-

tainty is totally underestimated (mode value equals to the lowest value). By contrast,

the requirements uncertainty is overestimated in highly pessimist scenarios (mode value

equals to the highest value). After the pre-processing described in Section 4.3.1, there

are 57 refined requirements, and 4 XOR dependencies.

4.4. Applying our approach to the RALIC dataset 72

NRP Objective Formulation

In our experiment, three attributes of software release planning were considered as the

optimisation objectives: cost, satisfaction level, and the probability of budget overrun.

The objective cost and satisfaction level were viewed as the utility of software release

attainment and expressed as normalisation functions. We assumed that these two ob-

jectives were aggregatable. Thus, the expressions of the objective cost and satisfaction

can be defined as follows (Eq. 4.2 and 4.3):

U(~x, cost) =

∑n
i=1(xi · Costi)∑n

i=1 Costi
(4.2)

U(~x, satisfaction) =

∑n
i=1(xi · Satisfactioni)∑n

i=1 Satisfactioni

(4.3)

The quality of the solution is measured as the utility score of the solution (Eq. 4.4):

Quality(~x) = U(~x, satisfaction)− U(~x, cost) (4.4)

The expression of the probability of budget overrun remains the same (Eq. 3.7). The

extent θ is set as 150%. To reduce the simulations errors introduced by Monte-Carlo

Simulation, in our experimental study, the number of simulations is set as 10, 000.

4.4.2 Research Questions

To evaluate the METRO framework, we carried out an experimental study to assess

the ability of this approach to manage the algorithmic uncertainty and capture the

impact of requirements uncertainties. In the experiment, we demonstrate why the

requirements optimisation community should take care with algorithmic uncertainty,

and how to employ METRO as a tool to assist decision makers to comprehend the

results, thus raising three main research questions:

4.4. Applying our approach to the RALIC dataset 73

RQ1: What is the effectiveness of our exact NRP solver NSGDP for eliminating algo-

rithmic uncertainty?

We investigate how much difference can be observed between the solutions found by

NSGA-II and NSGDP . This research question is a foundation for applying NSGDP .

We compare the solutions found by NSGA-II with the benchmarks which are found by

NSGDP . The differences between NSGA-II solutions and benchmarks reveal additional

(unnecessary & unhelpful) uncertainty introduced by NSGA-II.

RQ1.1: How close are the solutions found by NSGA-II to the ones found by NSGDP

in objective space?

RQ1.2: Comparing the solutions provided by NSGDP and NSGA-II, how much dif-

ference can be observed in design space?

The remaining research questions are more concerned with scrutinising the impact of

uncertainty that came from requirement itself.

RQ2: What is the impact of the requirements uncertainty?

This question can be expressed in a quantified manner as to how much expected risk

premium can be obtained when a decision moves from an optimal-yet-risky solution to

a robust-yet-suboptimal one under the same budget.

RQ3: Is there any pattern between the requirements characteristics and requirements

inclusions? If so, what kind of pattern can be observed?

The third research question investigates the possible insight of the requirement charac-

teristics, which may help decision makers to concentrate on the most interesting prop-

erty of requirements. This question is composed of two more detailed sub-questions

(RQ3.1 , and RQ3.2):

4.4. Applying our approach to the RALIC dataset 74

RQ3.1: Which requirements are the most sensitive, so require closest attention from

the decision makers?

RQ3.2: Which requirements have the same inclusion behaviours, and can thus be

clustered together?

4.4.3 Experiment Results

In this sub-section, we present the results of experimental study, and provide a decision

analysis guidance for decision makers by interpreting the research questions sequentially

and separately.

RQ1: What is the effectiveness of our exact NRP solver NSGDP for elimi-

nating algorithmic uncertainty?

RQ1.1 How close are the solutions found by NSGA-II to the ones found by NSGDP

in objective space?

We answer this question by comparing the quality of solutions found by NSGA-II and

NSGDP . Three quality indicators are used; the percentage of optimal solutions found,

the relative hypervolume of the solution set, and the execution time. Figure 4.3a and

4.3b present two quality indicators of the solutions generated by NSGA-II in objective

space. The execution times of NSGA-II and NSGDP are reported in Figure 4.3c and

4.3d. We study the effectiveness of NSGA-II and NSGDP on three synthetic NRP

instances. We execute NSGA-II on each instance over 30 runs. In order to intuitively

observe the differences, in Figure 4.3a and 4.3b, we report only the proportion of optimal

solutions, and relative hypervolume of Pareto-front found by NSGA-II.

RQ1.1 can be answered with Figure 4.3. In all cases, there are thousands of

solutions on the true Pareto-fronts. In all three RALIC instances, the relative hyper-

volume of solutions found by NAGA-II ranges from 98.68% to 99.96% – fairly close to

4.4. Applying our approach to the RALIC dataset 75

solutons
'O' Instance

solutons
'P' Instance

solutons
'B' Instance

HV
'O' Instance

HV
'P' Instance

HV
'B' Instance

20
40

60
80

10
0

P
er

ce
nt

ag
e

(%
)

(a) # solution and HV of the results found by pNRP

solutons
'O' Instance

solutons
'P' Instance

solutons
'B' Instance

HV
'O' Instance

HV
'P' Instance

HV
'B' Instance

20
40

60
80

10
0

P
er

ce
nt

ag
e

(%
)

(b) # solution and HV of the results found by sNRP

NSGDP
'O' Instance

NSGDP
'P' Instance

NSGDP
'B' Instance

NSGA−II
'O' Instance

NSGA−II
'P' Instance

NSGA−II
'B' Instance

0
20

0
40

0
60

0

E
xe

cu
tio

n
tim

e
(s

)

(c) The time for executing each approach (pNRP)

NSGDP
'O' Instance

NSGDP
'P' Instance

NSGDP
'B' Instance

NSGA−II
'O' Instance

NSGA−II
'P' Instance

NSGA−II
'B' Instance

0
20

0
40

0
60

0

E
xe

cu
tio

n
tim

e
(s

)

(d) The time for executing each approach (sNRP)

Figure 4.3: Answers RQ1.1 . These figures illustrate the differences between the so-
lutions found by NSGA-II and NSGDP . Figures 4.3a and 4.3b present the differences,
based on two quality indicators (number of optimal solutions found and relative hyper-
volume). Figures 4.3c and 4.3d present execution time differences. ‘# solution’ denotes
the percentage of optimal solutions, and ‘HV’ stands for relative hypervolume. The
names of instance ‘O’, ‘P’, and ‘B’ stands for the highly Optimistic RALIC instance,
and highly Pessimistic RALIC instance, and ‘in-Between’ RALIC instance, respectively.

4.4. Applying our approach to the RALIC dataset 76

the optimal solutions. It denotes that, in our study, NSGA-II is able to find the solu-

tions with a good convergence near the true Pareto-optimal front. This is because we

allowed NSGA-II to use sufficient computation resources with 1000 population and 1000

generations. However, with respect to the number of optimal solutions found, NSGA-II

may fail to find at least 73.03% of the optimal solutions. The percentage of missed

optimal solutions can be yet up to 99.95% when considering uncertainty as an extra

optimisation objective. Therefore, despite the fact that the convergence of NSGA-II is

close to true Pareto-front for NRP, the randomness of NSGA-II makes it difficult to

find complete optimal solutions. It reveals that additional uncertainty is introduced to

solutions by the algorithm itself. Additionally, according to Figure 4.3c, when decision

makers do not consider requirements uncertainty, they can get response from NSGDP

immediately (0.37s on average), and wait for up to 616.93s to get results from NSGA-II.

If decision makers take requirements uncertainty into consideration, NSGDP is (35.33s

on average) still faster than NSGA-II (675.26s on average) in general (Figure 4.3d).

RQ1.2 Comparing the decisions provided by NSGDP and NSGA-II, how much differ-

ence can be observed in design space?

According to the answer of RQ1.1, we can see that, even through NSGA-II converges

to the true Pareto-front in objective space, it can find only a small proportion of optimal

solutions. However, it is possible that such a small difference in objective space is caused

by prominent difference in design space. In order to investigate the hypothesis, we

intend to inspect the requirements selection probability, which we define as the chance of

requirement being included in the entire generated solution set. Therefore, we compare

the overall requirements selection probability provided by NSGA-II and NSGDP , and

analyse how much chance that the requirements decision is wrong when applying NSGA-

II instead of exact approach. The probability of getting wrong requirements decision

is measured by the difference of the requirements selection between NSGA-II solutions

and benchmarks regarding to each requirement. Figure 4.4 and 4.5 picture the chance

that NSGA-II gives wrong requirements decision with respect to each requirement and

the overall probability. The figures depict the essential impact raised from using an

4.4. Applying our approach to the RALIC dataset 77

approximate algorithm.

In RALIC experimental study, due to the effects of randomness from an approximate

algorithm, in different runs, the requirements selections are volatile. According to

Figure 4.4 and 4.5, requirements uncertainty would aggravate the impact of inexactness

of NSGA-II in general. In all instances, the probability of receiving a wrong decision

in sNRP is almost double than that of pNRP. Therefore, in the present algorithmic

uncertainty, requirements uncertainty places decision makers at more serious risk of

getting wrong requirements decision. We can see that, in an ‘in-between’ scenario,

the upper bound of the chance of getting wrong requirements decision could rise from

16.25% to 36.48%, and the median overall chance rises from 2.01% to 10.94%). Even

if it were possible that in a particular run or particular scenario NSGA-II can offer

a minor wrong decision, the non-determinism makes it produce a different answer in

a different run. The erratic result may result in providing completely disorganised

decisions. It emphasises that decision makers definitely should raise concerns about

the impact of stochastic algorithm on requirements selection. It is noteworthy that

such impact implies some patterns. We found that the chance of getting a wrong

decision is negatively correlated with the implementation cost of requirement (Spearman

ρ up to 0.72 and p � 0.0001). That is, the larger the requirement implementation

cost, the less the chance that making wrong decision in requirements selection. There

are only three exceptions (Requirement 7, 23, and 38). NSGA-II has nearly perfect

match agreement on these three requirements over three NRP instances. The reason

for this exception may be due to the inherit exclusive-or dependencies between these

requirements (discussed in Section 4.4.3). (This answers RQ1.2).

In summary, to account for uncertainty in NRP, it is important for decision makers

to understand the source of uncertainty in solution. Although NSGA-II can generate

approximate solutions with good convergence with respect to objective space, the re-

sults of NSGA-II are still incomplete and suboptimal. However, the solution quality

information is not meaningful for decision makers when they have to make decisions

for each requirement. Even for the solutions which are very close to true Pareto-front,

4.4. Applying our approach to the RALIC dataset 78

1
2

3
4

5
6

7
8

9
10

12
14

16
18

20
22

24
26

28
30

32
34

36
38

40
42

44
46

48
50

52
54

56
ov

er
al

l

051015

R
eq

ui
re

m
en

t

Percentage (%)

(a
)

W
it

ho
ut

co
ns

id
er

in
g

un
ce

rt
ai

nt
y

(p
N

R
P

-
hi

gh
ly

op
ti

m
is

ti
c

sc
en

ar
io

)

1
2

3
4

5
6

7
8

9
10

12
14

16
18

20
22

24
26

28
30

32
34

36
38

40
42

44
46

48
50

52
54

56
ov

er
al

l

02468

R
eq

ui
re

m
en

t

Percentage (%)

(b
)

W
it

ho
ut

co
ns

id
er

in
g

un
ce

rt
ai

nt
y

(p
N

R
P

-
hi

gh
ly

pe
ss

im
is

ti
c

sc
en

ar
io

)

1
2

3
4

5
6

7
8

9
10

12
14

16
18

20
22

24
26

28
30

32
34

36
38

40
42

44
46

48
50

52
54

56
ov

er
al

l

0246812

R
eq

ui
re

m
en

t

Percentage (%)

(c
)

W
it

ho
ut

co
ns

id
er

in
g

un
ce

rt
ai

nt
y

(p
N

R
P

-
‘in

-b
et

w
ee

n’
sc

en
ar

io
)

F
ig
ur
e
4.
4:

A
n
sw

er
s

R
Q

1.
2
.
T
he
se

bo
x
pl
ot
s
sh
ow

th
e
ch
an

ce
th
at

N
SG

A
-I
I
pr
ov
id
e
w
ro
ng

re
qu

ir
em

en
ts

se
le
ct
io
n
de
ci
si
on

fo
r
ea
ch

re
qu

ir
em

en
ti
n
R
A
LI
C
in
st
an

ce
w
it
ho

ut
co
ns
id
er
in
g
un

ce
rt
ai
nt
y.

T
he

gr
ey

bo
x
pl
ot

de
pi
ct
st

he
ov
er
al
lc
ha

nc
e
of

ge
tt
in
g
w
ro
ng

re
qu

ir
em

en
ts

de
ci
si
on

.

4.4. Applying our approach to the RALIC dataset 79

1
2

3
4

5
6

7
8

9
10

12
14

16
18

20
22

24
26

28
30

32
34

36
38

40
42

44
46

48
50

52
54

56
ov

er
al

l

051525

R
eq

ui
re

m
en

t

Percentage (%)

(a
)

T
ak

in
g

ac
co

un
t

of
un

ce
rt

ai
nt

y
(s

N
R

P
-

hi
gh

ly
op

ti
m

is
ti
c

sc
en

ar
io

)

1
2

3
4

5
6

7
8

9
10

12
14

16
18

20
22

24
26

28
30

32
34

36
38

40
42

44
46

48
50

52
54

56
ov

er
al

l

051015

R
eq

ui
re

m
en

t

Percentage (%)

(b
)

T
ak

in
g

ac
co

un
t

of
un

ce
rt

ai
nt

y
(s

N
R

P
-

hi
gh

ly
pe

ss
im

is
ti
c

sc
en

ar
io

)

1
2

3
4

5
6

7
8

9
10

12
14

16
18

20
22

24
26

28
30

32
34

36
38

40
42

44
46

48
50

52
54

56
ov

er
al

l

0102030

R
eq

ui
re

m
en

t

Percentage (%)

(c
)

T
ak

in
g

ac
co

un
t

of
un

ce
rt

ai
nt

y
(s

N
R

P
-

‘in
-b

et
w
ee

n’
sc

en
ar

io
)

F
ig
ur
e
4.
5:

A
n
sw

er
s

R
Q

1.
2
.
T
he
se

bo
x
pl
ot
s
sh
ow

th
e
ch
an

ce
th
at

N
SG

A
-I
I
pr
ov
id
e
w
ro
ng

re
qu

ir
em

en
ts

se
le
ct
io
n
de
ci
si
on

fo
r
ea
ch

re
qu

ir
em

en
t
in

R
A
LI
C

in
st
an

ce
w
it
h
co
ns
id
er
in
g
un

ce
rt
ai
nt
y.

T
he

gr
ey

bo
x
pl
ot

de
pi
ct
s
th
e
ov
er
al
lc

ha
nc
e
of

ge
tt
in
g
w
ro
ng

re
qu

ir
em

en
ts

de
ci
si
on

.

4.4. Applying our approach to the RALIC dataset 80

the decisions of selecting requirements are surprisingly distinguishable. In other words,

relying on the requirements selections generated by NSGA-II would result in mislead-

ing the requirement decision. Consequently, the wrong decision would further cause

the failure of a software project. Last but not least, NSGDP not only can guarantee

the exactness of result but also outperform NSGA-II by offering a faster response to

decision makers. This enables decision makers to receive feedback from our framework

instantaneously. All of the above results emphasise the value of NSGDP , thus, answer-

ing why the requirement optimisation community should consider exact approach, and

promote the motivation of our research.

RQ2: What is the impact of the requirements uncertainty?

After ruling out the algorithmic uncertainty, we would like to evaluate the impact of

the requirements uncertainty. The results of the analysis are depicted in Figures 4.6.

Figure 4.6 statistically explains the impact of requirements uncertainties on RALIC

NRP instance (with 150% budget overrun). There are 9, 868, 1, 149, and 31, 417 op-

timal solutions found when considering requirements uncertainty (sNPR) in a highly

optimistic scenario, a highly pessimistic scenario, and an ‘in-between’ scenario, respec-

tively. And there are 221, 0, and 1, 045 outliers in Figure 4.6b, and 572, 0, and 967

outliers in Figure 4.6a. The percentage of outliers is lower than 5.79%. It could be ob-

served that, overlooking requirements uncertainty can contribute to suffer up to 10.09%

risk that overrun more than 150% budget, and get at most 0.39 utility in return.

The impact of requirements uncertainty is negligible in a highly pessimistic scenario.

This is because the worst case requirements uncertainty has been taken into account in

requirements estimation. Taking account of uncertainty during requirements selection

does not matter much for decision makers.

On the other hand, the impact of requirements uncertainty in a highly optimistic sce-

nario is slightly less than in an ‘in-between’ scenario. This circumstance probably is

4.4. Applying our approach to the RALIC dataset 81

'O' instance 'P' instance 'B' instance

0.
0

0.
1

0.
2

0.
3

0.
4

E
xp

ec
te

d
R

is
k

pr
em

iu
m

(a) Expected risk premium

'O' instance 'P' instance 'B' instance

0
2

4
6

8
10

12

R
is

k
R

ed
uc

tio
n

(%
)

(b) Reduction of risk

Figure 4.6: The box-plots show how much expected risk premium and reduction of risk
can achieve by taking account of requirements uncertainty. The names of instance ‘O’,
‘P’, and ‘B’ represents the highly optimistic RALIC instance, and highly pessimistic
RALIC instance, and ‘in-between’ RALIC instance, respectively. These figures an-
swer RQ2 .

4.4. Applying our approach to the RALIC dataset 82

the consequence of involving extremely large uncertainty in requirements estimation. In

general, the principal of sNRP, which provides robust-yet-suboptimal solutions, is re-

placing uncertain requirement with appropriate ‘less uncertain’ requirement(s). Mean-

while, all requirements in a highly optimistic scenario are extremely uncertain. There

is a few relatively ‘less uncertain’ requirements can be chosen. Accordingly, our frame-

work cannot reduce too much impact of requirements uncertainty in a highly optimistic

scenario. In spite of sacrificing a little extra utility to reduce the risk by a small degree,

this still offers decision makers more options than point-based estimation approach.

For a decision maker, who is risk-averse, this risk reduction is more valuable than the

gained utility for him or her. So the decision maker will not choose optimal-yet-risky so-

lutions, and would accept the guaranteed robust-yet-suboptimal solutions. Otherwise,

optimal-yet-risky solutions would be more attractive for risk-loving decision makers.

(This answers RQ2).

In summary, requirements uncertainty would result in uncertainty for the overall soft-

ware release plan. In order to minimise this risk, some loss of perceived utility must

be accepted. The ‘loss’ involved is only a ‘perceived’ loss, in any case, because it is a

calculation of loss based on the point-based estimate, which is unrealistic.

RQ3: Is there any pattern between the requirements characteristics and

requirements inclusions?

The previous answer to research question RQ2 offers a ‘macroscopic’ suggestion to a

decision maker, helping them to understand the trade-off among different objectives.

However, the result cannot provide more details about the nature of requirements, which

may inspire decision makers to prioritise the requirements for further evaluation and

inclusion. To aid this problem, RQ3 promotes a detailed ‘microscopic’ investigation of

requirements analysis for RALIC dataset.

RQ3.1 Which requirements are the most sensitive, so require closest attention from

decision makers?

4.4. Applying our approach to the RALIC dataset 83

As distinct from conventional sensitivity analysis, here we take an algorithmic view of

the problem. Figure 4.7 describes the difference in the paired candidate solutions in

terms of the requirements selection probability.

The difference in the paired candidate solutions is defined as follows. For a particular

requirement req, set A denotes the paired solutions that contain req in sNRP solu-

tions, and set B denotes the paired solutions that contain req in pNRP solutions. The

intersection of these sets indicates the number of pairs that contain req in both parts

(set A ∩ B). The height of bar in Figure 4.7 is the symmetric difference of A and

B (A4 B). More precisely, A \ B is denoted by the height of the red (light grey in

black and white) bar, while the size of B \ A is denoted by the height of the blue

(dark grey in black and white) bar. If the height of bar is 0, it means the selection

of this requirement in all paired candidate solutions is identical. In this situation, the

result reveals that, although it is unrealistic in general, in this specific instance the

point-based estimate can be relied upon (even in the presence of the extreme range of

risks we model (10% − 300%), and two boundary NRP instances). From Figure 4.7

we observe that 3 of the 57 requirements have this common property in all instances.

For these 3 requirements, our analysis has thus revealed that we could simply revert

to considering the point-based estimate as sufficiently robust, even in the presence of

extreme risk. However, for the remaining 54 requirements, our analysis demonstrates

the importance of modelling risk. Another interesting finding is, in a highly pessimistic

scenario, there is no difference between sNRP and pNRP methods, and the difference

is minor in highly optimistic scenario. The reason has been discussed in Section 4.4.3.

We take Kendall’s τB correlation coefficient to statistically analyse the correlation

between the difference of requirements selection probability (P (selected_sNRP) −

P (selected_pNRP)) and its own risk in the highly optimistic and ‘in-between’ sce-

narios experiments (P measures probability). The analysis result shows that there is

a negative correlation between these two attributes (p � 0.001 and τB up to −0.675).

Namely, the requirement with lower uncertainty has more chance to be selected by

a risk-aware approach. Therefore, decision makers can observe the sensitivity of each

4.4. Applying our approach to the RALIC dataset 84

requirement from the perspective of algorithm. In RALIC experimental study, Require-

ments 3 is the most sensitive requirement with respect to 150% budget overrun in both

highly optimistic and ‘in-between’ NRP scenarios. By contrast, Requirements 25, 26,

28, 37, and 46 are more insensitive. This recommends a risk-averse decision maker to

be deeply concerned with Requirement 3, and assign high priority to Requirements 25,

26, 28, 37, and 46 (answer RQ3.1).

RQ3.2 Which requirements have the same inclusion behaviours, and can thus be clus-

tered together?

With increasing numbers of requirements, it will be tedious and time consuming to

analyse each requirement manually. Identifying inclusion behaviours, the tendency of

including a requirement in the solutions on the Pareto-front as the budget increases,

and analysing the differences between them may allow us to cluster requirements to

reduce cognitive overload. METRO uses a heat-map (Figures 4.8 and 4.9) to visualise

the inclusion of requirements in the solutions on the Pareto-front with respect to the

results generated by pNRP and sNRP. Moreover, in order to measure and highlight the

similarities and differences, we cluster related requirements by computing the complete

Euclidean distance among requirements’ inclusion percentage and present the results of

the corresponding Hierarchical Clustering. This approach is exemplified by the results

of ‘in-between’ NRP instance. From Figures 4.8 and 4.9, we can observe that there are

4 major clusters identified in the result of both pNRP and sNRP, which can help the

decision maker to inspect at a much smaller number of groups of related requirements.

Additionally, instead of prioritising all requirements, decision makers can first prioritise

the requirements groups before prioritising the requirements within each cluster.

The answer of RQ3.2 is that, in ‘in-between’ RALIC instance, Requirement 12

is treated similarly with Requirement 13, 14, 19, 36 and prioritised as the most crit-

ical requirements group by pNRP approach, while Requirement 12 is grouped with

13, 14, 21, 28, 46, and 55 which are all formalised as the most critical requirements by

sNRP approach. Therefore, in order to gain higher profit performance while minimis-

4.4. Applying our approach to the RALIC dataset 85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

Selected by sNRP, but not by pNRP
Selected by pNRP, but not by sNRP

Requirement Selected & Non−Selected Percentage

P
er

ce
nt

ag
e

0

20

40

60

80

100

(a) highly optimistic scenario

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

Selected by sNRP, but not by pNRP
Selected by pNRP, but not by sNRP

Requirement Selected & Non−Selected Percentage

P
er

ce
nt

ag
e

0

20

40

60

80

100

(b) highly pessimistic scenario

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

Selected by sNRP, but not by pNRP
Selected by pNRP, but not by sNRP

Requirement Selected & Non−Selected Percentage

P
er

ce
nt

ag
e

0

20

40

60

80

100

(c) ‘in-between’ scenario

Figure 4.7: Answers RQ3.1 . The difference of requirement inclusion between robust-
yet-suboptimal solutions and the corresponding optimal-yet-risky solutions in terms of
requirements selection probability.

4.5. Summary 86

ing budget overrun risk, Requirements 12, 13, 14, 21, 28, 46, and 55 should be prioritised

as the highest priority requirements group. Strikingly, some requirements could never

be selected in any solution with any budget by the point-based approach. By look-

ing at these requirements, we find that some of them (Requirements 3, 7, 23, and 41)

participate in XOR dependencies. These 4 requirements are strongly dominated by cor-

responding mutually exclusive requirements in terms of optimisation goals. However,

there is a nuance in the results offered by simulation-based approach. The risk-aware

sNRP approach does select Requirement 47 in some circumstances. The possible reason

is that, by taking uncertainty into account, Requirement 47 is more robust than Re-

quirement 41. Therefore, Requirement 47 can attract considerable attention when there

is abundant budget (i.e., 50% of total budget) to neutralise its unrewarding traditional

optimisation goals (i.e., revenue and cost).

To sum up, requirement characteristics play an important role in their inclusion in

the solutions on Pareto-front. METRO can provide support to help decision mak-

ers identify relations between the different solutions by looking at the details of each

individual solution. With respect to independent requirements, intrinsic uncertainty

negatively correlates with inclusion when minimising solution risk. For mutually ex-

clusive requirements, the inclusion of one requirement relies on the dominance of these

requirements’ fitness value. Therefore, the dominated requirements are seldom selected,

compared with their conflicted twin.

4.5 Summary

In this chapter, we introduced a decision analysis framework METRO. METRO utilises

an exact optimisation approach, incorporating a simulation optimisation technique, to

address both algorithmic uncertainty and requirements uncertainty. A novel require-

ments interaction pre-processing approach is presented to enable fast execution and

better convergence during the optimisation. A systematically analysis is offered at the

4.5. Summary 87

(a) pNRP

Figure 4.8: Answers RQ3.2 . The clustered inclusion trends of requirements where
θ = 150% for pNRP

4.5. Summary 88

(a) sNRP

Figure 4.9: Answers RQ3.2 . The clustered inclusion trends of requirements where
θ = 150% for sNRP

4.5. Summary 89

end of optimisation to aid the decision support in the presence of uncertainty.

We applied METRO on three NRP instances, derived from a real world NRP instance,

RALIC. There are two boundary scenarios, in which the uncertainty of a requirement is

estimated, either highly optimistically or pessimistically, and one ‘in-between’ scenario.

We carried out three empirical studies to evaluate the effectiveness and efficiency of

METRO.

In the first study, NSGA-II, a widely-used approximate technique, is used to compare

with our exact NRP solver, NSGDP , to investigate the value of exact approach. The

results of this empirical study illustrated that NSGDP outperforms NSGA-II in terms

of execution time, meanwhile, and guarantee the exactness of result.

We looked over the impact of uncertainty that came from requirement itself in the

second study. We proposed two metrics to measure the impact, that is, the risk re-

duction and the ‘expected risk premium’ which are designed to measure the differences

between robust-yet-suboptimal solutions and optimal-yet-risky solutions. The results

illustrate that, in order to minimise the probability of project budget overrun, some

loss of perceived utility is inevitable.

In the last study, we statistically analysed the relationships between the requirements

characteristics and the requirements selection decisions. The results indicate that re-

quirement characteristics play a vitally important role in their inclusion in the solutions

on Pareto-front. With respect to independent requirements, the requirement with lower

uncertainty has more chance to be selected by a risk-aware approach, and vice versa.

For mutually exclusive requirements, the requirements, which are dominated by their

conflicted twin in terms of their fitness value, are seldom selected. We believed that

this statistical analysis information can offer a detailed ‘microscopic’ investigation of

requirements analysis to a decision maker, helping them to further evaluate and under-

stand the nature of requirements.

To sum up, with the support of METRO, requirement engineers can ensure the results’

4.5. Summary 90

correctness, and systematically analyse the impacts of requirements’ intrinsic uncer-

tainty. The information interpreted by METRO allows requirement engineers to judge

and weigh the trade-off between relatively robust-yet-suboptimal solutions and optimal-

yet-risky solutions, and capture elaborate requirement priorities to further reduce the

cognitive load.

However, the requirements selection problem addressed in this chapter does not take into

account the resource allocation. The primary limitation of this approach is that solving

separately the requirements selection problem and the resource allocation problem may

produce suboptimal software project planning results. Ignoring the constraints and

interactions between those two problems may generate a software project plan that is

prone to failures. In the next chapter, we propose a holistic and systematic approach

to manage this limitation.

Chapter 5

Exact Analysis in Integrated Release

and Schedule Planning Problem

Planning the releases of software is essential for requirements engineers to determine

which requirements to implement in the next release. Meanwhile, allocating all the

necessary resources to implement the requirements is a well-known complex process in

software project management. Although extensive research has been conducted in those

areas, they are generally handled in isolation and solved using heuristic search-based

techniques. This raises another concern about the uncertainty of resource constraints

for requirements selection and optimisation. Ignoring the uncertainty of resource con-

straints may lead to information loss and suboptimality in the plans produced.

In this chapter, we introduce an exact multi-objective integrated release and schedule

planning approach, iRASPA, to address both algorithmic uncertainty and uncertainty

of resource constraints. iRASPA not only provides a release plan that maximises the

value of the delivered software and minimises the variance of the workload, but also

meets all the resource allocation constraints. We argue that the proposed approach can

effectively help decision makers to avoid suboptimality and algorithmic uncertainty.

91

5.1. Motivation 92

5.1 Motivation

Incremental software development is both an effective way to deliver the business value

of software earlier and an enabler of swifter market feedback [150]. Every release planned

through an incremental software development process includes a collection of require-

ments that are bound to be implemented and delivered by a fixed release deadline.

In order to manage software development incrementally, there are two major prob-

lems faced by the requirements engineering and software project management research

communities. The first problem is determining which subset of a large set of candi-

date requirements should be assigned to which release of the software product [20].

The second is how to allocate the corresponding resources while satisfying the resource

constraints.

Solving both problems requires taking several variables into consideration simultane-

ously. A defective solution might trigger that some pivotal requirements are not pro-

vided at the right time or coerce software developers to overwork. This might further

lead to overwhelming project delays and additional spending, quality degradation and

even health risks for employees. Overall, dissatisfied stakeholders and diminished mar-

ket competitiveness would easily arise [188] and could jeopardise the whole project.

There exist release planning and schedule planning approaches that can straightfor-

wardly prioritise the requirements and assign the resources to implement the require-

ments, separately and sequentially [150, 151, 152, 153]. However, those approaches

suffer from two key limitations:

1. Uncertainty of resource constraints is ignored. Release planning gets mismatched

with schedule planning [47]. Release planning usually works with requirements

and time [104], while schedule planning simultaneously takes into account require-

ments, resources and time [189, 190]. When dealing with both problems separately

the solutions obtained generally reflect local optima [47] that may yield cost over-

runs, diminished revenues, underused resources and release date delays.

5.1. Motivation 93

2. Algorithmic uncertainty arises [22]. Research on release planning and schedule

planning have been primarily concerned with Search-Based Software Engineer-

ing (SBSE), which has been successful in addressing a broad range of software

engineering problems by using algorithmic search techniques [95, 191]. Algorithms

used in SBSE are usually heuristic and stochastic. Thus, exactness and repeatabil-

ity are sacrificed for the sake of speed and flexibility, which is not just convenient,

but fine in most situations. However, it is still crucial for mission critical projects

to base decisions on exact results. Li et al. [3] have shown that, when solving the

Next Release Problem, which is a special case of release planning, the exact ap-

proach can avoid information loss and wrong requirement selection due to nature

of the approximation algorithm.

Both issues have the potential to cause the failure of a software project [192]. In or-

der to address them, we propose iRASPA, an exact multi-objective integrated Release

And Schedule P lanning Approach to support better complex decision making in soft-

ware release and schedule planning. Our approach joins the ε-constraint method [193]

with Quadratic Programming (QP) to produce exact Pareto fronts and guarantee that,

subject to the planning constraints, the results are optimal and cannot be improved.

Instead of scheduling the resources after selecting the requirements, iRASPA follows a

holistic process, integrating software release planning and schedule planning and solving

both problems at the same time, thus avoiding the loss of global optimality incurred by

other approaches, where those problems are solved sequentially, i.e. in two stages [47].

The primary contributions of the chapter follows:

1. Resolving the uncertainty of resource constraints in software release planning

process. A holistic planning process, integrating software release planning and

software schedule planning in a single activity and producing globally optimal

results. We formalise a multi-objective integrated software release and schedule

planning problem combining both processes. The resultant mathematical model

5.2. Problem Statement 94

is able to accommodate the value vs. workload balance trade-off, while meeting

both resource and time constraints. Our experiments reveal that a state-of-the-

art implementation of the traditional two-stage approach can miss up to 93.38%

of the optimal solutions, unlike iRASPA. Besides, it takes iRASPA 28.23% less

time on average to solve all the instances under consideration.

2. Settling the algorithmic uncertainty problem and guaranteeing the exactness of

results. We introduce an ε-constraint Quadratic Programming (QP) approach

and present an empirical study on seven real-world software projects. Our experi-

ments show the applicability of iRASPA, which can be used to solve the integrated

planning problem and can generate the guaranteed optimal Pareto front. More-

over, no scalability issues have been found for variants of the same size that the

real-world projects. The average execution time on the projects under study is

6.37 minutes with mainstream cloud-computing infrastructure, at a cost of £ 0.8

per hour, and all the variants could be solved.

3. An empirical study in which the proposed approach is tested. Our results illus-

trate the effect of different impact factors: dependency density, developer exper-

tise and value-to-cost ratio. The study clearly reveals that these three factors

impact iRASPA outcomes. Our study reveals that dependency density is nega-

tively correlated with the number of solutions found, while developer expertise and

value-to-cost ratio are positively correlated with the number of solutions found.

The execution time of iRASPA on the instances studied is highly positively corre-

lated with all of the aforementioned impact factors. Statistical tests find Kendall’s

τ correlation coefficients greater than 0.60 and p-values much lower than 0.001.

5.2 Problem Statement

This section briefly depicts the statements corresponding to the software release plan-

ning and software schedule planning problems, regarded as independent problems.

5.2. Problem Statement 95

Then, the integrated model is introduced. All these problems are well-known NP-hard

problems. See, for example [194].

5.2.1 Software Release Planning

Deciding which requirements should be included in the next release of a product is

critical for the success of a software project and a basic problem in requirements engi-

neering [30, 75, 107]. The Next Release Problem was introduced by Bagnall et al. [19],

who formulate the requirements selection and prioritisation problems as SBSE prob-

lems [21]. In order to make those well-established problems fit for an incremental

software development life cycle, a related problem, software release planning, has been

advocated by several authors [152, 195]. Software release planning is, roughly speaking,

a next release problem generalised to several releases.

In order to define the software release planning problem, let us consider a set R =

{r1, . . . , rn} of n candidate requirements in a software project. Implementing each

requirement implies a certain cost and is expected to bring a benefit to the stakeholders.

In the context of cost/value-based requirements engineering, human effort is one of the

metrics used to measure the cost, C = {c1, . . . , cn}, needed to fulfil each requirement.

Besides, a utility function can be employed to attach a value, V = {v1, . . . , vn}, to

each requirement, e.g., measuring the satisfaction, importance, expected revenue or

any combination thereof, representing the business value delivered by the product to

the market. Therefore, each requirement rk can be assigned a cost ck and a value vk

for each k ∈ [1, n].

It is assumed that software should be delivered in a sequence of s releases. The time

span of each release is usually fixed and equal. Commonly, decision makers just look

at the next immediate release and a next release problem arises (s = 1). However, it is

also important to see the potential effect of long-term planning (s > 1).

A solution to this problem can be represented as a decision vector x = [x1, . . . , xn] ∈

5.2. Problem Statement 96

Table 5.1: Requirements interactions. The corresponding relations are represented by
ξ, ϕ, χ ⊆ R2, which are pairwise disjoint sets.

Interaction Predicate

Combination ri ξ rj ≡ xi = xj
Exclusion ri ϕ rj ≡ xi = 0 ∨ xj = 0
Precedence ri χ rj ≡ xj = 0 ∨ 0 < xi ≤ xj

[0, s]n encoding the requirements planned in the next s releases. In this vector, decision

variable xk is 0 if requirement rk is not to be implemented in a horizon of s releases.

Otherwise, xk ∈ [1, s] indicates in which release rk will be delivered.

Now, we can formalise the single-objective software release planning problem as max-

imising

Value(x) =
∑

1≤k≤n

vkψ(xk) subject to Cost(x) =
∑

1≤k≤n

ckψ(xk) ≤ b

where b is the project budget, which cannot be exceeded, and ψ(x) = 0 if x = 0,

ψ(x) = 1 otherwise. Henceforth, vectors as c = [c1, . . . , cn] and v = [v1, . . . , vn], and the

dot product “·”, will be used as a convenient means to simplify notation.

However, software release planning may have to fulfil further constraints: requirements

interactions, resource constraints, etc. The precise type and formulation of the con-

straints to be considered may vary depending on the particular project at hand, some-

thing to be assessed by requirements engineers. In this chapter, we will focus on re-

quirements interactions, in particular, on structural dependencies among requirements.

Requirements interactions are extensively detailed in a survey by Robinson et al. [177].

Table 5.1 contains precise definitions for the three types of requirements dependencies

considered in the current work for the software release planning problem: combination

(and), exclusion (XOR) and precedence. Those requirements interactions have been

used for the next release problem by Zhang et al. [99, 170].

Formally, the mathematical optimisation model corresponding to the above software

5.2. Problem Statement 97

release planning problem can be expressed as follows:

max Value(x) = v · ψ(x)

subject to

Cost(x) = c · ψ(x) ≤ b

x ∈ [0, s]n

xi = xj for all ri ξ rj

xi = 0 ∨ xj = 0 for all ri ϕ rj

xj = 0 ∨ 0 < xi ≤ xj for all ri χ rj

where

ψ(x) =


0 if x = 0

1 otherwise

(5.1)

The exclusion and precedence constraints are not linear but they can be transformed

into linear constraints by using standard tricks. Thus, instances of this problem can be

solved using Integer Linear Programming (ILP).

5.2.2 Software Schedule Planning

Software schedule planning addresses the resource allocation problem and has been

listed as one of the crucial processes in software project management [196]. The goal is

allocating employees and other resources to requirements or tasks, so that the desired

objectives can be achieved under certain constraints [151, 197]. It has been widely

studied and formulated as an optimisation problem, e.g., in [150, 190, 198].

Typically, this problem deals with situations in which employees must be allocated to

different requirements to be fulfilled. It schedules employees based on their availability

and skills, while meeting additional constraints like number of developers per require-

ment constraints or maximum workload constraints. Meanwhile, some measures such

5.2. Problem Statement 98

as the project overrun risk or the fairness among the employees are used as objectives

for optimisation.

Let E = {e1, . . . , em} be a team of m employees who are intended to develop the re-

quirements. Each employee is qualified by a set of skills, which she or he masters.

Analogously, each requirement involves a set of skills for its implementation. Let S(ei)

and S(rj) be the sets of skills corresponding to employee ei and requirement rj, respec-

tively. Employee ei can be allocated to requirement rj only if she masters all the skills

required, i.e. S(rj) ⊆ S(ei).

A solution to this problem can be represented by a binary decision matrix Y = [yij]m×n

encoding the allocation of employees to requirements in such a way that yij = 1 when

ei is allocated to rj and yij = 0 otherwise.

Henceforth, let Yi∗ be the row vector [yi1, . . . , yin] and Y∗j the column vector [y1j, . . . , ymj]
T.

Yi∗ encodes which requirements are assigned to employee ei, while Y∗j encodes which

employees are allocated to requirement rj.

We consider here two additional sets of constraints to satisfy: the uniqueness constraints

and the workload constraints. Although one employee can be allocated to different

tasks, each task can only be assigned to a unique employee. Thus, if all the requirements

must be fulfilled,
∑
Y∗j = 1 for every requirement rj. Moreover, from the perspective

of human resource management, employees ought not to be assigned overwhelming

workloads. The workload of employee ei can be calculated as W (ei) = c · Yi∗. A

maximum workload TE is fixed for all the employees. Therefore, W (ei) ≤ TE for any

employee ei.

In order to strive for fairness regarding the workloads of the employees and try to avoid

peaks and troughs of workload as much as possible, we are interested in minimising the

variance of workloads. Formally, the mathematical optimisation model corresponding

5.2. Problem Statement 99

to the above software scheduling planning problem can be expressed as follows:

min Var(Y) =
1

m

∑
1≤i≤m

(W (ei)− µ)2

where

µ =
1

m

∑
1≤i≤m

W (ei)

subject to

yij = 1→ S(rj) ⊆ S(ei) for all ei ∈ E, rj ∈ R

yij ∈ {0, 1} for all ei ∈ E, rj ∈ R∑
Y∗j = 1 for all rj ∈ R

max
ei∈E

W (ei) ≤ TE

(5.2)

This is not an ILP any more, as the objective function is quadratic. However, instances

of this problem can be solved using Quadratic Programming (QP).

5.2.3 Integrated Release and Schedule Planning

Today, it is still common practice to handle software release plans and software schedule

plans in isolation, addressing the latter after the former in a well-defined sequence of

two stages. As a result, the software schedule plans produced in the second stage may

not be able to properly allocate resources to the release plan produced in the first stage.

One reason for this limitation is that, by doing so, software release planning is obliv-

ious of the constraints existing among resources, while software schedule planning is

addressed too late to fix the problem. Goals in both processes can be conflicting and

optimisation is a complex problem on its own. Managing processes in stages gives more

latitude to the first stage and makes the work in the second stage harder. This favours

less than optimal plans and, if care is not taken, even inconsistent plans. In the best

case, several iterations may be needed to obtain reasonable plans, which is far from

5.2. Problem Statement 100

effective and can be prone to error.

Aiming to overcome this limitation, Li et al. [47] suggested that both processes should

be coordinated or, even better, integrated in one software planning process. This in-

tegrated planning was addressed as a single-objective optimisation problem. However,

this approach has its own limitation: that requirement engineers have to make the

decision to combine different objectives into a single objective. The usual approach,

assigning weights to each objective function and combining them into a weighted sum,

has been nowadays recognised to have major drawbacks and this approach seems to

have been abandoned in recent research.

Next, we formally introduce iRASPA, which effectively addresses those limitations and

is able to properly integrate the models presented in Subsections 5.2.1 and 5.2.2 into

an integrated software release and schedule planning model. Moreover, iRASPA is not

just a model, but it is accompanied by an exact multi-objective optimisation approach,

which is presented in Section 5.3.

Let S be the set of releases and s = |S| the number of releases to plan or planning

horizon. A solution to the integrated software planning problem can be represented by

an integer decision matrix Z = [zij]m×n such that zij ∈ [0, s]. Z encodes the releases in

which employees are allocated to requirements: zij = 0 if ei is not allocated to rj and

zij = k > 0 if ei is allocated to rj in release k.

The following map reports whether employees have been allocated to requirements,

whichever the release:

f(Z) = [yij]m×n where yij =


0 if zij = 0

1 otherwise
(5.3)

Besides, the following map reports whether employees have been allocated to require-

5.2. Problem Statement 101

ments for a certain release k:

g(Z, k) = [tij]m×n where tij =


1 if zij = k

0 otherwise
(5.4)

Henceforth, let Zi∗ be the row vector [zi1, . . . , zin] and Z∗j the column vector [z1j, . . . , zmj]
T.

Zi∗ encodes which requirements are assigned to employee ei and their planned release,

while Z∗j encodes which employees are allocated to requirement rj and in which release.

The above maps can be applied to Zi∗ and Z∗j too.

Regarding the interaction constraints, uniqueness constraints and workload constraints,

we relax the uniqueness constraint to allow for optional requirements: it is not always

mandatory that all the requirements are fulfilled. This provides more flexibility. Con-

sequently, although one employee can be allocated to different tasks, each task will

only be assigned to at most one employee. Therefore,
∑
f(Z∗j) =

∑
Y∗j ≤ 1 for every

requirement rj.

As for the workload constraints, the workload W (ei) of employee ei, the accumulated

workload W (E) of all the employees, which is the workload of the whole project, and

the workload W (sk) of release sk can be expressed as follows:

W (ei) = c · f(Zi∗) (5.5)

W (E) =
∑

1≤i≤m

W (ei) (5.6)

W (sk) =
∑

1≤i≤m

c · g(Zi∗, k) (5.7)

Our goal is maximising the overall importance or business value of all the planned

releases of the product, Value(Z), while minimising the variance of workloads, Var(Z).

Formally, iRASPA, which is the mathematical optimisation model corresponding to the

5.2. Problem Statement 102

above integrated software release and planning problem, can be expressed as follows:

max Value(Z) =
∑

1≤i≤m

v · f(Zi∗)

min Var(Z) =
1

m

∑
1≤i≤m

(W (ei)− µ)2

where

µ =
W (E)

m

subject to

W (E) ≤ TP

W (ei) ≤ TE for all ei ∈ E

W (si) ≤ TS for all si ∈ S

zij > 0→ S(rj) ⊆ S(ei) for all ei ∈ E, rj ∈ R

zij ∈ [0, s] for all ei ∈ E, rj ∈ R∑
f(Z∗j) ≤ 1 for all rj ∈ R

xi = xj for all ri ξ rj

xi = 0 ∨ xj = 0 for all ri ϕ rj

xj = 0 ∨ 0 < xi ≤ xj for all ri χ rj

(5.8)

In the iRASPA model, parameters TP , TE and TS represent the maximum workload

for the whole project, per employee and per release, respectively. Besides, xk =
∑
Z∗k

indicates the release in which requirement rk is included.

Again, this is not an ILP, as the second objective function is quadratic. However,

instances of iRASPA can be solved using Quadratic Programming (QP).

5.3. The Solution Approach 103

5.3 The Solution Approach

Since software release planning and schedule planning are both characterised by the

presence of multiple complex and conflicting objectives, simply optimising one of the

objectives or combining them with different weights to enable a single-objective optimi-

sation approach is not realistic and results in suboptimal plans. Furthermore, Li et al. [3]

have shown that relying exclusively upon approximation meta-heuristic algorithms can

bring algorithmic uncertainty into the outcomes, which may cause information loss and

lead to wrong decisions. A different approach is then needed.

We propose using exact multi-objective optimisation to find the true Pareto front of

the iRASPA model, i.e. to compute the Pareto optimal set of solutions for any instance

of the model. In our proposal, the ε-constraint technique is combined with an exact

single-objective solver to produce the Pareto front. There are two essential advantages

when this approach is applied. First, different objectives can be taken into account

simultaneously. This enables the decision makers to understand the trade-offs between

conflicting objectives and make better decisions. Second, being exact, algorithmic un-

certainty can be eliminated from the results.

The ε-constraint technique is not new [199]. The underlying idea is optimising one

of the objectives while transforming the rest in constraints bounded by ε. Then, ε is

varied to progressively restrict the search space and the Pareto front is produced as the

transformed problems are solved.

In the iRASPAmodel there are two objectives: minimising the variance of the workload,

Var(Z), and maximising the value of the solution, Value(Z). The former can be kept

as an optimisation objective while the search space is reduced by the latter, as this

objective is replaced with the bounding constraint Value(Z) ≥ ε. An exact Pareto

front is produced by solving the resulting single-objective instance while the boundary

ε is increased. This process is illustrated by Algorithm 4, where v is the maximum

of Value(Z) and pε is the optimal solution produced by the single-objective QP solver

5.4. Empirical Study 104

Algorithm 4 iRASPA algorithm with ε-constraint and QP
Input: iRASPA model, M
Input: Maximum value, v
Output: Pareto front, P
P ← ∅
for ε← 0 to v do
pε ← QP-Solver(M, ε)
P ← P ∪ {pε}

end for
return P

under the transformed constraint Value(Z) ≥ ε.

5.4 Empirical Study

An experimental study is conducted on seven real-world software projects. Two ap-

proaches are compared: iRASPA and a state-of-the-art two-stage approach. Hence-

forth, we will refer to the second approach as “the two-stage approach”, which consists

in solving the software release planning problem with an exact ILP solver, as explained

in Subsection 5.2.1, and then tackling the software scheduling problem on the release

plan produced in the first stage, this time with an exact QP solver, as described in

Subsection 5.2.2.

5.4.1 Datasets

Seven projects, each from a different organisation, have been used to collect the data

used for the experiments. They consists of five industrial projects [151] and two

academia-industry cooperation projects. The latter were developed between October

2015 and May 2016 by students from University College London and engineers from a

large public international IT company. Information on companies and people involved,

as well as project descriptions, are protected by a Non-Disclosure Agreement (NDA).

Raw data for the academia-industry cooperation projects was exported from Microsoft

5.4. Empirical Study 105

Table 5.2: Project information including the following characteristics: number of re-
quirements, dependencies, developers and skills, along with importance and effort es-
timations. Effort measured in person-hours for industrial projects and person-days for
academia-industry cooperation projects.

Project ID Reqs. Deps. Devs. Skills Import. Effort

SoftChoice 245 247 N/A 22 N/A 6664
QuoteToOrder 60 64 N/A 9 N/A 547
DatabaseUpgrade 106 105 N/A 7 N/A 5390
SmartPrice 72 71 N/A 14 N/A 1570
CutOver 95 68 N/A 0 N/A 2356

Cooperation 1 98 279 7 33 189 417
Cooperation 2 46 37 5 20 119 135

Visual Studio Team Services.1 Table 5.2 summarises key information concerning each

project that can be disclosed without breaching the NDA.

Since neither information on the importance attached to each requirement nor the profile

of developers is available for any of the industrial projects, we produce this information

synthetically to simulate real data and cover as many real-world scenarios as possible,

as described next.

First, the number of developers for each industrial project is set to 10. The expertise

level of a developer for a project is measured as the percentage of the required skills

mastered by the developer. Expertise levels ranging from 10% to 100% with a step of

10% are used to assess developer expertise. Developers mastering all the skills required

by a project are able to work on the implementation of any of its requirements and

receive an expertise level of 100%.

Second, the importance of a requirement is based on its correlation with the provided

estimation of the requirement effort. In essence, this produces a value-to-cost ratio for

each requirement. Pearson’s correlation is used, following Harman et al. [22]. Correla-

tion factors of 50%, 75%, 85%, 95% and 100% are considered.

Third, several studies report that the number of requirements dependencies in relation

to the total number of requirements, can have a strong effect on requirements selec-
1Formerly, Microsoft Visual Studio Online.

5.4. Empirical Study 106

tion [176, 177]. Dependency relations are generated with 20 different densities ranging

from 5% to 100% with a step of 5% to study its impact in our approach.

Therefore, we have considered three independent dimensions, producing (5+10+20)·7 =

245 different configurations. Each configuration is an instance of a real project where

we have basically filled the gaps of missing information with reasonable values covering

a wide range of the possible values. Two full releases are planned in all instances.

5.4.2 Experimental Setup

Experiments were performed using the IBM CPLEX 12.6.2 Java API. A Java program

builds each instance from our model and calls the solver as needed with the default

CPLEX configuration. Ubuntu 14.04.4 LTS and Oracle JDK 1.8.0 have been used for

development and the experiments have been run in a Microsoft Azure D4S-v2 virtual

machine with one Intel E5-2673 CPU featuring 8 cores and 28GB of RAM, at a cost of

£ 0.8 per hour. Since the results produced by iRASPA are exact and deterministic, it

only needs running each problem instance once, saving valuable experimentation time.

5.4.3 Research Questions

In order to evaluate iRASPA we compare it to a state-of-the-art implementation of the

two-stage approach and assess the results on different impact factors. This motivates

two research questions:

RQ1 How does iRASPA perform in comparison to the two-stage approach?

RQ2 What is the impact on iRASPA of different software project characteristics?

The first research question is a foundational question prior to adopting the iRASPA

approach. We want to investigate how effective is iRASPA with respect to the two-stage

approach as well as its efficiency in terms of execution time. As iRASPA guarantees

5.4. Empirical Study 107

the global optimality of the solutions, major differences between the solutions offered

by both approaches could reveal information loss and suboptimality introduced by the

two-stage approach.

The second research question is more concerned with scrutinising the impact of soft-

ware project characteristics. It is possible that different project characteristics have a

different impact on iRASPA. But, which are the relevant dimensions?

The effect of requirement dependencies is the first concern raised in our experiments,

since several authors [170, 200] have consistently shown that they play a major role in

the requirements selection process. In particular, we will investigate what is the impact

of the density of the requirement dependencies.

The impact of the expertise of the developers is our second concern. On one hand, in

traditional software development processes, e.g, CMMI and Waterfall, developers do

specialise: each developer is charged with specific responsibilities. The skills needed to

address those responsibilities are a subset of the skills required by the entire project.

Allocating the developer to a task for which he is not skilled may result in project

delays or even a defective product. On the other hand, in agile projects, each developer

should be able to face any task and she is expected to become proficient in every skill

required by the project. Therefore, we will investigate the impact of this factor, what

could be of great help to project managers.

Last, but not least, the value-to-cost ratio of requirements have been shown to pro-

duce a strong impact in requirements selection for the next release problem [22]. It

is important to know if this extends to the integrated release and scheduling software

planning problem. We will use estimated efforts as a measure of cost and the perceived

importance as a measure of value.

5.4. Empirical Study 108

●
●
●
●●

●●

●

●

●

●
●

●

●

●

●

●●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Cooperation 1

Cooperation 2
CutOver

DatabaseUpgrade

QuoteToOrder
SmartPrice

SoftChoice

Project

P
er

ce
nt

ag
e

of
 v

al
id

 s
ol

ut
io

ns

Figure 5.1: The percentage of valid solutions found by the two-stage approach.

5.4.4 Analysis of Results

We present the results of the experiments for all the instances of each project, the

analysis of the results and the answers to the research questions.

RQ1: How does iRASPA perform in comparison to the two-stage approach?

This research question is answered by comparing the quality of the solutions found by

the two-stage approach and iRASPA. We measure quality by analysing the solutions in

the resulting Pareto fronts with four indicators: first, the percentage of valid solutions

found by the two-stage approach; second, the percentage of optimal solutions found by

the two-stage approach; third, the percentage of optimal solutions found by the two-

stage approach in comparison with iRASPA; and, finally, the percentage of execution

time needed to compute the Pareto fronts for the two-stage approach and iRASPA.

For each project, the maximum execution time yielded by both approaches is used to

normalise their percentages of execution time. Figures 5.1–5.4 exhibit the results of

this study and summarise the relevant data to answer RQ1.

According to Figure 5.1, it is clear that the release plans generated by the two-stage

approach are likely to be invalid when resources are going to be allocated, right at

the beginning of the second stage. The two-stage approach may then fail to allocate

5.4. Empirical Study 109

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●

●

●●● ●

●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Cooperation 1

Cooperation 2
CutOver

DatabaseUpgrade

QuoteToOrder
SmartPrice

SoftChoice

Project

P
er

ce
nt

ag
e

of
 o

pt
im

al
 s

ol
ut

io
ns

Figure 5.2: The percentage of optimal solutions found by the two-stage approach.

●

●●●●

●
●

●

●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Cooperation 1

Cooperation 2
CutOver

DatabaseUpgrade

QuoteToOrder
SmartPrice

SoftChoice

Project

P
er

ce
nt

ag
e

of
 o

pt
im

al
 s

ol
ut

io
ns

Figure 5.3: The percentage of optimal solutions found by the two-stage approach vs.
iRASPA.

resources and we have found that this happens up to 99.34% of the time for some

instances. This can lead to a situation where there are no developers who are able to

effectively undertake the tasks planned and decision makers have to face project delays

or defects in the product.

The two-stage approach may not only produce invalid solutions, but incomplete solu-

tions too, missing most of the optimal solutions in the exact Pareto front, as shown in

Figure 5.2. We have found that regarding the number of optimal solutions found by

the two-stage approach, only an average of 12.16% are optimal. In addition, despite

the two-stage approach can sometimes offer the right plans and, less frequently, even

optimal plans, its incompleteness makes it difficult to explore the entire optimal solu-

5.4. Empirical Study 110

●
●

●

●

●

● ●

●●

●●

●

 40.32min 1.90min 4266.63min 5.29min 53.03min 11.19min 52.49min

●
●

●

●

●

● ●

●●

●●

●

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Cooperation 1

Cooperation 2
CutOver

DatabaseUpgrade

QuoteToOrder
SmartPrice

SoftChoice

Project

P
er

ce
nt

ag
e

of
 ti

m
e

sp
en

t

iRASPA Two−stage approach

Figure 5.4: Comparison of execution times for computing the Pareto front of each
instance. Maximum times on top.

tion set, as Figure 5.3 exposes. We have found that the two-stage approach can miss up

to 93.38% of the optimal solutions when compared to iRASPA, which produces 100%

of them. Even if the percentage of missing optimal solutions could be acceptable in

practice for some instances, as it happens with project QuoteToOrder, it still makes

the two-stage approach to provide incomplete information for decision making.

Additionally, as shown in Figure 5.4, the two-stage approach takes often much longer

than iRASPA, save for project CutOver. On average, iRASPA only consumes 71.77%

of the execution time spent by the two-stage approach and gets every optimal solutions.

On average, iRASPA saves 90.42 minutes when computing the Pareto fronts for every

instance. As for project CutOver, iRASPA is still competitive, being only 6.02 min-

utes slower on average.

In summary, relying on the traditional two-stage approach cannot help software plan-

ning effectively as previously assumed by some researchers, even if a state-of-the-art

implementation is provided. The above results increase our confidence in iRASPA as

an effective and efficient approach to software release and schedule planning and pro-

vides a precise answer to RQ1.

5.4. Empirical Study 111

RQ2: What is the impact on iRASPA of different software project charac-

teristics?

Outperforming the state-of-the-art two-stage approach seems promising, but it is nec-

essary to assess the impact of project characteristics which could have the potential

to impact the results obtained for iRASPA. Two metrics, number of optimal solutions

and execution time, are used to quantify the impact of three different project charac-

teristics: dependency density, developer expertise and value-to-cost ratio. Figures 5.5

and 5.6 present the results of the impact factors under consideration with respect to

both metrics, the number of optimal solutions and the execution time, respectively, and

provide the relevant data for RQ2.

Regarding the dependency density, the higher the density, the lower the number of

solutions that iRASPA can produce. This is not a defect in iRASPA, as it always

produce all the existing solutions. It is just that the number of existing solutions

decreases as the number of interactions grows and more constraints are imposed on

requirements.

According to Figure 5.5a, it is clear that dependency density has a negative impact on

the number of optimal solutions for most of the projects, with two exceptions: projects

CutOver and Cooperation 2. We have found that the number of optimal solutions

found is reduced up to 61.67% when the dependency density is increased by as little as

5%, even though the average reduction for this 5% increment is just 2.07%. Exceptions

are possible because of some other factors that may counter the impact of a higher

dependency density. For example, in project CutOver developers master all skills

required and can be allocated to any task regardless how constrained the tasks are in

terms of dependencies.

In contrast, we have found that increased developer expertise and value-to-cost ratio

have a positive impact on the number of optimal solutions. In order to study the impact

of developer expertise, we generate instances to simulate different developer skills for

5.4. Empirical Study 112

● ● ● ● ●

●
● ●

● ● ●

● ● ●
●

●
●

● ● ●

30

60

90

120

150

180

210

240

270

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Requirement dependencies density

N
um

be
r

of
 s

ol
ut

io
ns

● Cooperation 1 Cooperation 2 CutOver DatabaseUpgrade QuoteToOrder SmartPrice SoftChoice

(a) Impact of the density of the requirement dependencies.

●
● ●

●
●

●

●

●

● ●

0

100

200

300

400

500

600

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Developer expertise

N
um

be
r

of
 s

ol
ut

io
ns

● Cooperation 1 Cooperation 2 CutOver DatabaseUpgrade QuoteToOrder SmartPrice SoftChoice

(b) Impact of the expertise of developers.

● ● ● ● ●

0

100

200

300

400

500

600

700

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Value−to−cost ratio

N
um

be
r

of
 s

ol
ut

io
ns

● Cooperation 1 Cooperation 2 CutOver DatabaseUpgrade QuoteToOrder SmartPrice SoftChoice

(c) Impact of the value-to-cost ratio of requirements.

Figure 5.5: The impact of the project characteristics on the number of optimal solutions.

5.4. Empirical Study 113

●
●

● ● ● ● ●
●

● ●

● ●
●

●
●

●

●
●

●

●

0

10

20

30

40

50

60

70

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Requirement dependencies density

E
xe

cu
tio

n
tim

e
(m

in
)

● Cooperation 1 Cooperation 2 CutOver DatabaseUpgrade QuoteToOrder SmartPrice SoftChoice

(a) Impact of the density of the requirement dependencies.

● ● ● ● ● ●
●

●

● ●

0

2

4

6

8

10

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Developer expertise

E
xe

cu
tio

n
tim

e
(m

in
)

● Cooperation 1 Cooperation 2 CutOver DatabaseUpgrade QuoteToOrder SmartPrice SoftChoice

(b) Impact of the expertise of developers.

● ● ● ● ●

0

2

4

6

8

10

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Value−to−cost ratio

E
xe

cu
tio

n
tim

e
(m

in
)

● Cooperation 1 Cooperation 2 CutOver DatabaseUpgrade QuoteToOrder SmartPrice SoftChoice

(c) Impact of the value-to-cost ratio of requirements.

Figure 5.6: The impact of the project characteristics on the execution time.

5.4. Empirical Study 114

each project. However, in project CutOver every developer is fully qualified for all the

skills demanded. Consequently, there is no skill information associated to the original

project. We randomly generate 20 skills and assign them to the project requirements

to enable the generation of the instances for CutOver.

As shown in Figure 5.5b, the number of optimal solutions that iRASPA can produce is

positively correlated with developer expertise. Therefore, the more the skills mastered

by developers, the higher the number of optimal solutions produced. For a 10% incre-

ment in developer expertise, the number of solutions is 54.62% higher on average and

rises up to 715.00% in one extreme case: when developer expertise is increased from

70% to 80% in project SmartPrice. This circumstance can be explained by the fact

that schedule planning can be more flexible if there are fewer skill constraints between

developers and requirements.

Regarding the impact of the value-to-cost ratio in the number of optimal solutions,

Figure 5.5c shows that an increase in this ratio produces an increase in the number of

solutions too. For ratios in [0.50, 0.95] the average increase is 8.34%, much smoother

than for the extreme ratios in [0.95, 1] where there is an almost perfect linear correlation

between value and cost. For these extreme ratios, the average increase in the number

of solutions rises to 24.38%.

In order to assess the impact of these factors on scalability, we analyse the execution

time of iRASPA for increasing values of the impact factors. Figure 5.6 illustrates the

results, which hint to a positive correlation between the values of the impact factors and

execution time. The longest run is 68.06 minutes and corresponds to one instance of

project SoftChoice, while every instance in projects Cooperation 2, QuoteTo-

Order, DatabaseUpgrade and SmartPrice takes less than 100 seconds. iRASPA

can solve each instance in an average of 6.37 minutes.

However, to provide a significant statistical assessment of the dependence between im-

pact factors and execution time, Kendall rank correlation coefficient was computed

and statistical dependence was tested at 99% confidence level. Results are provided in

5.5. Summary 115

Table 5.3: Kendall’s τ test for dependence between impact factors and execution time
at 99% confidence level.

Project ID Density Expertise Value to cost

τ p-value τ p-value τ p-value

SoftChoice 1.00 �0.001 0.87 �0.001 0.80 �0.001
QuoteToOrder 0.92 �0.001 0.69 �0.001 1.00 �0.001
DatabaseUpgrade 1.00 �0.001 0.78 �0.001 0.60 �0.001
SmartPrice 0.75 �0.001 0.90 �0.001 0.80 �0.001
CutOver 0.99 �0.001 1.00 �0.001 0.80 �0.001
Cooperation 1 0.98 �0.001 0.82 �0.001 0.80 �0.001
Cooperation 2 0.97 �0.001 0.78 �0.001 0.80 �0.001

Table 5.3. We have found a statistically significant dependence between all the three

factors and execution time. Kendall’s τ is always greater than 0.60 with associated

p-values much lower than 0.001.

In summary, we have found three software project characteristics that impact both the

number of optimal solutions and the time taken by iRASPA to find them. On one hand,

our results indicate that dependency density hinders the flexibility of planning in real

projects, while increased developer expertise and value-to-cost ratio have the opposite

effect. Decision makers should then employ highly versatile developers instead of de-

velopers who are merely in possession of some specific talents. On the other hand, the

highest execution times for iRASPA correspond to extremely high densities. However,

we argue that such extreme densities are really infrequent in practice. According to

our project data, dependency density is 2.87% on average with a peak value of 5.87%

corresponding to project Cooperation 1. It would be plausible to state that depen-

dency densities under 10% are quite common in practice. Therefore, all of this evidence

indicates that the iRASPA approach is both useful and scalable.

5.5 Summary

In software engineering, assigning requirements to the right release and allocating re-

sources for their implementation are key processes. Ignoring the interactions between

5.5. Summary 116

these two software planning problems and the existing constraints makes software

projects prone to cost overruns and delays. The release plan may be even invalid

with respect to the resource constraints and the schedule plan would be very likely sub-

optimal if it fails to account for such constraints. Trying to fix this in the final stages

of project development is known to make the situation worse, leading to overworked

employees and overall quality degradation [201].

In this chapter, in order to combine these two critical phases of software development

in an optimal manner, we have introduced iRASPA, a holistic software release planning

and schedule planning approach based on a QP model. An exact solver driven by an

ε-constraint algorithm is used to produce optimal plans and complete Pareto fronts for

two conflicting goals: maximising the overall release value and minimising the workload

variance. This is the first time that QP has been used in this context and both problems

have been solved simultaneously and optimally. Finally, iRASPA successfully addresses

key challenges in software planning. This approach can provide decision makers with

better alternatives and insight.

The experimental evaluation includes seven real-world software projects, coming from

both academy and industry. Experiments on 245 instances derived from the projects

under study show that iRASPA outperforms the current state-of-the-art in terms of both

solution quality and execution speed. The instances take into account three different

dimensions: the value-to-cost ratio of requirements, the density of interactions among

requirements and the expertise of developers in terms of their skills. Experiments

confirm the intuition that a higher number of dependencies can over-constrain the

development and produce less flexibility in planning, while a higher value-to-cost ratio

or wider range of skills in the developers produce the opposite effect.

Chapter 6

Conclusions and Future Work

In this chapter, we conclude the thesis, and review the outcomes and contributions of

our introduction of exact analysis for requirements selection and optimisation. We also

review the threats to validity of our research. At the end of this chapter, we sketch

some potential future research directions.

6.1 Summary

In software engineering, requirements analysis and decision analysis are the critical

foundations of the success of a software project. Uncertainty is essentially inevitable in

early requirements engineering. It particularly comes from partially observable, stochas-

tic environments, or ignorance. The requirements engineering community has demon-

strated the success of research on quantitative multi-objective decision techniques and

search-based approaches to produce optimal solutions to decision makers in the past

decades [28, 30, 83, 98]. Decision makers are informed of possible trade-offs among

conflicting objectives by visualising the Pareto optimal solutions generated by these

quantitative methods. In these previous studies, uncertainty is either underestimated

or completely overlooked [31, 83, 100, 202]. For instance, the attributes of requirements

and stakeholders are quantified as explicit values, most of approaches used to deal with

117

6.1. Summary 118

requirements engineering problems are approximate algorithms, and the uncertainty of

resource constraints about schedule planning is entirely ignored in previous work on

requirements selection and optimisation process.

Previous work on requirements selection and optimisation also suffers from important

limitations from uncertainty. Little work has been done to consider uncertainties, in-

terpret the consequences of those uncertainties, and to support decision makers in

analysing the inherent characteristics of uncertainty [22, 116, 148]. Decisions have to

be made under incomplete knowledge about software projects.

The goal of the thesis was to better support requirements engineers in understanding

and analysing the inherent characteristics of uncertainty in the requirements selection

and optimisation process. To achieve this goal, we proposed a simulation-based NRP to

model requirements uncertainty, introduced an exact analysis approach to support re-

quirements selection and optimisation in the presence of algorithmic and requirements

uncertainty, and provided an integrated release and schedule planning approach to

manage both algorithmic uncertainty and uncertainty of resource constraints. We also

provided a more generic exact multi-objective integrated release and schedule plan-

ning approach to manage, simultaneously, both the algorithmic uncertainty and the

uncertainty of resource constraints.

The contributions of the research work presented in this thesis can be summarised as

follows:

6.1.1 Simulation based Robust Next Release Problem Model

We introduced a novel simulation based NRP (sNRP) model to provide requirements

uncertainty management for requirement analysis and optimisation for the first time.

We proposed to take requirements uncertainty as well as the probability of occurrence of

uncertain events into account during the NRP optimisation. Compared to the original

NRP formulation, we formulated one extra objective, “risk”, which was simulated by

6.1. Summary 119

Monte-Carlo Simulation. Two notions of uncertainty were used to explain the “risk”

inherit in a release plan. The first one is “Uncertainty Size”, which offers decision makers

a way to control the fluctuation range of pay-off for solutions. The second notion is

“Failure Risk”, which aims to help decision makers to explore solutions with lower risk

of budget overrun.

We conducted two empirical studies to investigate the effectiveness and applicability of

the proposed sNRP. The empirical study results reveal that the resulting risk-mitigated

release plan solutions could capture the trade-offs among the three competing objectives:

cost, value, and risk. Additionally, we found that the sNRP model could help decision

makers to explore risk-less solutions, while sacrificing only a small quantity of the value

in the pay-off. These validated the feasibility of sNRP, and provided valuable insights

into the requirements uncertainty.

6.1.2 The Value of Exact Analysis in Next Release Problem

To manage and analyse uncertainty in requirements selection and optimisation, it is

important for the decision maker to know that all uncertainty derives from the problem

itself and not from the algorithm used to tackle it. We introduced a requirements

optimisation and analysis decision support framework METRO, which uses an exact

Next Release Problem solver, to manage both algorithmic uncertainty and requirements

uncertainty.

Three experimental studies were conducted to evaluate the proposed decision support

framework. In these three experimental studies, three synthetic NRP instances were

derived from a real world NRP instance (according to the level of uncertainty), in order

to account for the impact of estimation accuracy. There are two boundary scenarios,

in which the uncertainty of a requirement is estimated either highly optimistically or

pessimistically, and one ‘in-between’ scenario. The objectives of the experimental stud-

ies were to: 1) investigate the effectiveness of the proposed exact NRP solver, NSGDP ,

6.1. Summary 120

for eliminating algorithmic uncertainty; 2) analyse the impact of the requirements un-

certainty; 3) help decision makers to understand the requirements characteristics and

requirements inclusions.

According to the experimental results, we found that the proposed exact NRP solver

(NSGDP) can effectively eliminate algorithmic uncertainty, and significantly reduce

execution time. Also, we showed that requirements uncertainty would result in un-

certainty for the overall software release plan. In order to minimise this risk, some

loss of perceived utility must be accepted. Finally, requirement characteristics play an

important role in their inclusion of solutions on Pareto-front. With respect to inde-

pendent requirements, intrinsic uncertainty negatively correlates with inclusion when

minimising solution’s risk. For mutually exclusive requirements, the inclusion of ei-

ther requirement relies on the dominance of this requirement’s fitness value. Therefore,

dominated requirements are seldom selected, compared to their conflicted twins.

6.1.3 Exact Analysis in Integrated Release and Schedule Plan-

ning Problem

Requirements selection and resource allocation are widely recognised as key aspects in

software project management and, in software engineering, as a discipline [75, 107, 203].

The vast majority of the literature is concerned with managing both problems indepen-

dently, dealing with the resource allocation stage after the requirements selection stage

has been completed. The uncertainty of resource constraints is only taken into account

in resource allocation, and thus ignored in requirements selection.

This study argued that the state-of-the-art two-stage approach may produce suboptimal

results. Moreover, most of the existing researches relied solely on approximation meta-

heuristic algorithms, and can only guarantee reasonable approximate solutions.

In order to address these two limitations in a holistic a systematic way, we have proposed

an integrated model, iRASPA, which combines software release planning and software

6.2. Threats to Validity 121

schedule planning. With iRASPA, an ε-constraint algorithm employs an exact solver

to address both planning problems at once through a bi-objective QP model.

One unique advantage of this approach is that the exact solver can always find optimal

results and the entire optimal Pareto front can be produced at the same time, thanks

to the application of the ε-constraint algorithm.

By combining multiple objectives and exact methods, our approach guards us, not

just against the loss of information caused (by the algorithmic uncertainty inherent to

heuristic search-based techniques), but also produces the optimal Pareto front for the

whole planning problem at hand, which enables decision makers to better understand

the trade-offs among the various existing complex and conflicting demands.

We evaluated iRASPA on seven real-world software projects, instantiated as 245 in-

stances augmented with synthetic data to cater for missing values. The experimental

study shows that iRASPA can effectively generate the guaranteed exact Pareto front,

unlike the current state-of-the-art, which misses 87.84% of the optimal solutions on

average and up to 93.38% for some instances. In addition, it takes iRASPA 28.23% less

time on average to solve all the instances under study.

6.2 Threats to Validity

In this section, the key threats to the validity of the research results presented in this

thesis are discussed. Those threats are analysed with respect to three usual dimensions:

construct validity, internal validity and external validity.

6.2.1 Construct validity

In this thesis, only a triangle probability distribution was used to represent requirements

uncertainty. However, there are other kinds of probability distribution that might be

6.2. Threats to Validity 122

used in risk analysis. For example, Gaussian distribution, uniform distribution, and

discrete probability distribution. Catering for other distributions would not be a prob-

lem: our framework computes the estimation uncertainties of requirement attributes

using MCS, and MCS can simulate most kinds of uncertainties straightforwardly. It

merely needs to sample the scenarios based on input probability distribution directly.

Therefore, METRO could use other kinds of uncertainty distribution to model the

uncertainties of requirements.

The requirements selection and resource allocation model, as used throughout this

research, do not contemplate all the factors that it is necessary to take into account

to be able to reflect every possible real-world scenario. Some simplifications have been

necessarily introduced to make the model easy to tailor to a variety of both real-world

projects and synthetic data. For instance, regarding fine-grained resource allocation,

the detailed time slots corresponding to the implementation of each requirement have

not been considered. Developers are merely allocated to tasks in a specific release,

regardless the implementation order of different tasks in the release.

However, providing fine-grain resource allocation should not be an insurmountable prob-

lem. In the approach presented in Chapter 5, the size of the constraint matrix can be

augmented straightforwardly to introduce fine-grained resource constraints dealing with

a higher time granularity. Therefore, we argue that the research undertaken in this the-

sis models the problem at a “reasonable” level of granularity and that the model can be

easily extended to more detailed real-world scenarios, provided the necessary additional

data is readily available.

6.2.2 Internal validity

Internal validity is concerned with any possible factor that may perturb the experimen-

tal evaluations. Typically, perturbations arise during experimental evaluations because

of particular details in the implementation of algorithms and different parameter setting

applied. This is especially true for heuristic and stochastic SBSE algorithms. However,

6.2. Threats to Validity 123

by repeating the experiments a sufficient number of times, significant statistics can be

extracted.

In addition, the solvers proposed in this thesis are all exact approaches, thus the stochas-

tic properties of algorithms can be excluded. With respect to METRO, an exact NRP

solver (NSGDP) is at the heart. NSGDP uses the Nemhauser-Ullmann algorithm,

which is a dynamic programming algorithm, combined with conflict graph to solve

specific instances in a decision tree solution space. Regarding iRASPA, it is a combi-

nation of the ε-constraint technique and an exact black-box solver. The former (the

ε-constraint technique) is in charge of providing multi-objective optimisation for the

problem under study by invoking the latter (an exact black-box solver) to solve a num-

ber of single-objective problems on demand.

The solver employed is CPLEX, a high-performance mathematical programming solver

for linear programming, mixed integer programming and quadratic programming pro-

vided by IBM. 1 CPLEX is a state-of-the-art optimisation solver and, under appropriate

conditions, it always produces exact results, provided enough computational resources

are available. Although we can tune CPLEX parameters to change its behaviour, de-

fault settings have been used for the entire set of experiments and care has been taken

so that exact results can be guaranteed.

The other threat to internal validity is concerned with the accuracy of the elicited

probability distributions of requirements attributes. There are methods for eliciting

the probability distributions of uncertainties, but such elicitation is sensitive due to

the cognitive biases of the selected experts [181]. In the Chapter 4, due to the lack of

uncertainty information within the RALIC data set, we generated uncertainty distribu-

tions for the estimation error of the requirement cost, informed by a literature survey.

We cannot know the true estimate uncertainty for a project. Therefore, to minimise

the impact of estimation accuracy, we study three synthetic NRP instances. There are

two boundary scenarios, in which the uncertainty of a requirement is estimated either
1www.ibm.com/software/products/en/ibmilogcpleoptistud

www.ibm.com/software/products/en/ibmilogcpleoptistud

6.2. Threats to Validity 124

highly optimistically or pessimistically, and one ‘in-between’ scenario.

Furthermore, in our experimental study, during the experiment, we excluded other

system applications, so the experimental machine ran only our application. Therefore,

we believe our approaches are exact and repeatable, and can provide valuable insights

into decision analysis to support decision makers.

6.2.3 External validity

External validity is concerned with the extent to which it is possible to generalise the

results. Namely, it may arise due to those choices of data set. In the experimental

studies reported in the thesis, we evaluated different approaches on different data sets

depending on what was available and appropriate for answering our research questions.

Regarding METRO, we evaluated it on three synthetic data sets. These three data sets

are derived from one real world data set from University College London, which contains

two types of dependencies, and 143 raw requirements. Regarding iRASPA, we evaluated

it versus the two-stage approach on 245 project instances with different characteristics.

Those project instances are derived from seven real-world software projects: two of

them are gathered from academia-industry cooperation projects and five of them are,

in fact, real-world IT industry projects.

Nevertheless, there are pros and cons with either kind of project. Academic projects

and academia-industry cooperation projects can provide detailed information on almost

every aspect of the planning and development process but might not be fully practical

and representative of truly industrial projects. Industry projects, on the other hand,

do not usually provide complete project information as required by a research of these

characteristics, so we have to synthetically generate the missing data in a best effort to

accurately represent plausible instances.

Therefore, the results are not entirely genuine and we cannot claim that they generalise

beyond the particular projects under study. For generalisation, more work is required to

6.3. Future Work 125

analyse different scenarios, models of uncertainty, as well as different NRP formulations.

However, with regard to scalability, METRO can process the RALIC dataset (with 143

raw requirements and 10, 000 scenarios) within 40 seconds on average, and iRASPA can

optimally plan the project instances that with more than 200 requirements, a similar

number of dependencies and a major developer effort involved, within a horizon of

two full releases in 6.37 minutes on average. We think that this is relevant and shows

evidence of the usefulness of the approaches.

6.3 Future Work

This thesis established an initial work on exact analysis for requirements selection and

optimisation. The findings of studies have implications for future investigations and

potential research directions. In this section, we list several possibilities for future

work.

One important direction for future work is to verify our findings by applying our ap-

proaches to more real world projects. In real world projects, there may be other formula-

tions of the problem, objectives, or requirements interactions. In this thesis, we adopted

only the basic (and classic) requirements selection and resource allocation formulation,

and took three kinds of requirement dependencies into consideration. Expanding the

proposed framework to more complex problem statements and requirements interac-

tions raises a (significantly challenging) need to improve the generality of our exact

technique.

The other topic in which the wider community may be interested concerns the scalability

of exact requirements selection and optimisation solver. There is no doubt that the

number of requirements and the number of dependencies are negatively correlated with

algorithm speed. In non-trivial software projects, the number of requirements and

requirements dependencies are large. This may be one of the major obstacles for using

our framework in non-trivial software projects. Further work is required to investigate

6.3. Future Work 126

and improve the scalability of our approaches, especially, dealing with requirements

uncertainty, algorithmic uncertainty, and uncertainty of resource constraints all together

simultaneously. One solution might be to cluster requirements to reduce the size of the

optimisation problem presented to the solver. Another solution might involve replacing

the CPLEX solver with customised dynamic programming algorithm to further boost

the implementation’s speed.

Future work will also include considering other kinds of requirements uncertainty. For

example, uncertainty about the extent of requirement fulfilment. Existing requirements

optimisation and analysis work treats the fulfilment of requirements as an entirely

discrete value. However, the requirement may be only partially fulfilled. Uncertainty

about the extent of requirement fulfilment, and its impact on the overall solutions

presented to decision makers have been largely ignored in requirements optimisation

and analysis work, including ours. More work is required to extend our requirements

uncertainty management frameworks to handle such requirements uncertainty.

Bibliography

[1] Lingbo Li, Mark Harman, Emmanuel Letier, and Yuanyuan Zhang. Robust next

release problem: Handling uncertainty during optimization. In Proceedings of the

2014 Annual Conference on Genetic and Evolutionary Computation, GECCO ’14,

pages 1247–1254. ACM, 2014.

[2] Lingbo Li. Exact analysis for next release problem. In 2016 IEEE 24th Interna-

tional Requirements Engineering Conference (RE), pages 438–443, Sept 2016.

[3] L. Li, M. Harman, F. Wu, and Y. Zhang. The value of exact analysis in re-

quirements selection. IEEE Transactions on Software Engineering, 43(6):580–596,

June 2017.

[4] Lingbo Li, Inmaculada Medina-Bulo, Francisco Palomo-Lozano, Mark Harman,

and Yuanyuan Zhang. iRASPA: An exact multi-objective integrated release and

schedule planning approach. Submitted to IEEE Transactions on Software Engi-

neering, 2017. Under review.

[5] Haitao Dan, Mark Harman, Jens Krinke, Lingbo Li, Alexandru Marginean, and

Fan Wu. Pidgin Crasher: Searching for Minimised Crashing GUI Event Se-

quences, chapter Search-Based Software Engineering: 6th International Sympo-

sium, SSBSE ’14, Fortaleza, Brazil, August 26-29, 2014. Proceedings, pages 253–

258. Springer International Publishing, Cham, 2014.

[6] Lingbo Li, Mark Harman, Fan Wu, and Yuanyuan Zhang. SBSelector: Search

Based Component Selection for Budget Hardware, chapter Search-Based Software

127

BIBLIOGRAPHY 128

Engineering: 7th International Symposium, SSBSE ’15, Bergamo, Italy, Septem-

ber 5-7, 2015, Proceedings, pages 289–294. Springer International Publishing,

Cham, 2015.

[7] Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, Donald Lawrence, and Earl

Barr. Darwinian data structure selection. Submitted to IEEE Transactions on

Software Engineering, 2017. Under review.

[8] Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr. Opti-

mising Darwinian Data Structures on Google Guava, pages 161–167. Springer

International Publishing, Cham, 2017.

[9] Ian Sommerville. Software Engineering: (Update) (8th Edition) (International

Computer Science). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2006.

[10] Mian Li, Shapour Azarm, and Vikrant Aute. A multi-objective genetic algorithm

for robust design optimization. In Proceedings of the 2005 Conference on Genetic

and Evolutionary Computation (GECCO’05), pages 771–778, New York, NY,

USA, 2005. ACM.

[11] Stefan Wagner. Global sensitivity analysis of predictor models in software engi-

neering. In Predictor Models in Software Engineering, 2007. PROMISE’07: ICSE

Workshops 2007. International Workshop on, pages 3–3. IEEE, 2007.

[12] James C Felli and Gordon B Hazen. Sensitivity analysis and the expected value

of perfect information. Medical Decision Making, 18(1):95–109, 1998.

[13] Bihuan Chen, Xin Peng, Yijun Yu, Bashar Nuseibeh, and Wenyun Zhao. Self-

adaptation through incremental generative model transformations at runtime. In

Proceedings of the 36th International Conference on Software Engineering, ICSE

2014, pages 676–687, New York, NY, USA, 2014. ACM.

[14] Xin Peng, Bihuan Chen, Yijun Yu, and Wenyun Zhao. Self-tuning of software

BIBLIOGRAPHY 129

systems through dynamic quality tradeoff and value-based feedback control loop.

J. Syst. Softw., 85(12):2707–2719, December 2012.

[15] H. Yang, A. De Roeck, V. Gervasi, A. Willis, and B. Nuseibeh. Speculative

requirements: Automatic detection of uncertainty in natural language require-

ments. In 2012 20th IEEE International Requirements Engineering Conference

(RE), pages 11–20, Sept 2012.

[16] Alain Abran, Pierre Bourque, Robert Dupuis, and James W. Moore, editors.

Guide to the Software Engineering Body of Knowledge - SWEBOK. IEEE Press,

Piscataway, NJ, USA, 2001.

[17] Ian F Alexander and Ljerka Beus-Dukic. Discovering requirements: how to specify

products and services. John Wiley & Sons, 2009.

[18] J. Karlsson. Software requirements prioritizing. In Requirements Engineering,

1996., Proceedings of the Second International Conference on, pages 110–116,

Apr 1996.

[19] A.J. Bagnall, V.J. Rayward-Smith, and I.M. Whittley. The next release problem.

Information and Software Technology, 43(14):883–890, 2001.

[20] D Greer and G Ruhe. Software release planning: an evolutionary and iterative

approach. Information and Software Technology, 46(4):243–253, 2004.

[21] Mark Harman and Bryan F Jones. Search-based software engineering. Information

and Software Technology, 43(14):833–839, 2001.

[22] Mark Harman, Jens Krinke, Inmaculada Medina-Bulo, Francisco Palomo-Lozano,

Jian Ren, and Shin Yoo. Exact scalable sensitivity analysis for the next re-

lease problem. ACM Transactions on Software Engineering and Methodology,

23(2):19:1–19:31, 2014.

[23] Hadar Ziv, Debra Richardson, and René Klösch. The uncertainty principle in

BIBLIOGRAPHY 130

software engineering. In Proceedings of the 19th International Conference on

Software Engineering (ICSE’97), 1997.

[24] J.C. Helton, J.D. Johnson, C.J. Sallaberry, and C.B. Storlie. Survey of sampling-

based methods for uncertainty and sensitivity analysis. Reliability Engineering &

System Safety, 91(10-1):1175 – 1209, 2006. The Fourth International Conference

on Sensitivity Analysis of Model Output (SAMO 2004) {SAMO}.

[25] Rick Salay, Marsha Chechik, Jennifer Horkoff, and Alessio Di Sandro. Man-

aging requirements uncertainty with partial models. Requirements Engineering,

18(2):107–128, 2013.

[26] Christof Ebert and Jozef De Man. Requirements uncertainty: Influencing factors

and concrete improvements. In Proceedings of the 27th International Conference

on Software Engineering, ICSE ’05, pages 553–560, New York, NY, USA, 2005.

ACM.

[27] Watts S. Humphrey. A Discipline for Software Engineering. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1995.

[28] A. Finkelstein, M. Harman, S.A. Mansouri, Jian Ren, and Yuanyuan Zhang.

“Fairness analysis" in requirements assignments. In International Requirements

Engineering, 2008. RE’08. 16th IEEE, pages 115–124, Sept 2008.

[29] Des Greer and Günther Ruhe. Software release planning: an evolutionary and

iterative approach. Information and Software Technology, 46(4):243–253, 2004.

[30] Yuanyuan Zhang, Mark Harman, and S. Afshin Mansouri. The multi-objective

next release problem. In Proceedings of the 9th Annual Conference on Genetic

and Evolutionary Computation, GECCO ’07, pages 1129–1137. ACM, 2007.

[31] Alexander Budzier. Why your it project may be riskier than you think. Harvard

Business Review, 89(9):23–25, 2011.

BIBLIOGRAPHY 131

[32] Douglas W Hubbard. How to measure anything: Finding the value of intangibles

in business. John Wiley & Sons, 2014.

[33] Andrea Saltelli. Sensitivity analysis for importance assessment. Risk Analysis,

22(3):579–590, 2002.

[34] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cari-

boni, Debora Gatelli, Michaela Saisana, and Stefano Tarantola. Global sensitivity

analysis: the primer. Wiley. com, 2008.

[35] Mark Harman, Jens Krinke, Jian Ren, and Shin Yoo. Search based data sensitivity

analysis applied to requirement engineering. In Proceedings of the 11th Annual

Conference on Genetic and Evolutionary Computation (GECCO’09), pages 1681–

1688, New York, NY, USA, 2009. ACM.

[36] A. Saltelli, S. Tarantola, and F. Campolongo. Sensitivity analysis as an ingredient

of modeling. Statistical Science, 15(4):377–395, 2000.

[37] Hans-Georg Beyer and Bernhard Sendhoff. Robust optimization–a comprehensive

survey. Computer Methods in Aplied Mechanics and Engineering, 196(33):3190–

3218, 2007.

[38] A. L. Soyster. Technical note: convex programming with set-inclusive constraints

and applications to inexact linear programming. Operations Research, 21(5):1154–

1157, 1973.

[39] Dimitris Bertsimas, David B. Brown, and Constantine Caramanis. Theory and

applications of robust optimization. SIAM Rev., 53(3):464–501, August 2011.

[40] Matheus Paixão and Jerffeson Souza. A scenario-based robust model for the

next release problem. In Proceedings of the 15th Annual Conference on Genetic

and Evolutionary Computation Conference (GECCO’13), pages 1469–1476, New

York, NY, USA, 2013. ACM.

BIBLIOGRAPHY 132

[41] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimiza-

tion. Princeton University Press, 2009.

[42] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control and Artificial Intelligence. MIT

Press, Cambridge, MA, USA, 1992.

[43] Hans-Paul Schwefel. Numerical Optimization of Computer Models. John Wiley

& Sons, Inc., New York, NY, USA, 1981.

[44] Franz Rothlauf. Design of Modern Heuristics: Principles and Application, chap-

ter Optimization Methods, pages 45–102. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2011.

[45] P. Festa. A brief introduction to exact, approximation, and heuristic algorithms

for solving hard combinatorial optimization problems. In Transparent Optical

Networks (ICTON), 2014 16th International Conference on, pages 1–20, July

2014.

[46] M. Pawlak. Application of evolution program to resource demand optimisation

in project planning. In Evolutionary Computation, 1995., IEEE International

Conference on, volume 1, pages 435–, Nov 1995.

[47] Chen Li, Marjan van den Akker, Sjaak Brinkkemper, and Guido Diepen. An

integrated approach for requirement selection and scheduling in software release

planning. Requirements Engineering, 15(4):375–396, 2010.

[48] Barry Boehm. A view of 20th and 21st century software engineering. In Pro-

ceedings of the 28th International Conference on Software Engineering, ICSE ’06,

pages 12–29, New York, NY, USA, 2006. ACM.

[49] Ieee standard glossary of software engineering terminology. IEEE Std 610.12-

1990, pages 1–84, Dec 1990.

BIBLIOGRAPHY 133

[50] Frederick P. Brooks, Jr. No silver bullet essence and accidents of software engi-

neering. Computer, 20(4):10–19, April 1987.

[51] Klaus Pohl. The three dimensions of requirements engineering, pages 275–292.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1993.

[52] Ian Sommerville and Gerald Kotonya. Requirements Engineering: Processes and

Techniques. John Wiley & Sons, Inc., New York, NY, USA, 1998.

[53] Yuzo Yamamoto, Richard V. Morris, Christopher Hartsough, and E. David Cal-

lender. The role of requirements analysis in the system life cycle. In Proceedings of

the June 7-10, 1982, National Computer Conference, AFIPS ’82, pages 381–387,

New York, NY, USA, 1982. ACM.

[54] MD Richter, JD Mason, MW Alford, IF Burns, and HA Helton. Software require-

ments engineering methodology. Technical report, DTIC Document, 1976.

[55] Merlin Dorfman. System and software requirements engineering. In IEEE Com-

puter Society Press Tutorial, pages 7–22. IEEE Computer Society Press, 1990.

[56] Systems and software engineering – life cycle processes –requirements engineering.

ISO/IEC/IEEE 29148:2011(E), pages 1–94, Dec 2011.

[57] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: A roadmap.

In Proceedings of the Conference on The Future of Software Engineering, ICSE

’00, pages 35–46, New York, NY, USA, 2000. ACM.

[58] R. J. Wieringa. Requirements Engineering: Frameworks for Understanding. John

Wiley & Sons, Inc., New York, NY, USA, 1996.

[59] Mich Luisa, Franch Mariangela, and Inverardi Pierluigi. Market research for

requirements analysis using linguistic tools. Requir. Eng., 9(1):40–56, February

2004.

BIBLIOGRAPHY 134

[60] Axel van Lamsweerde. Formal specification: A roadmap. In Proceedings of the

Conference on The Future of Software Engineering, ICSE ’00, pages 147–159,

New York, NY, USA, 2000. ACM.

[61] Marie-Claude Gaudel. Formal specification techniques (extended abstract). In

Proceedings of the 16th International Conference on Software Engineering, ICSE

’94, pages 223–227, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[62] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland,

John Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor,

Paul Krause, Gerald Lüttgen, Anthony J. H. Simons, Sergiy Vilkomir, Martin R.

Woodward, and Hussein Zedan. Using formal specifications to support testing.

ACM Comput. Surv., 41(2):9:1–9:76, February 2009.

[63] Ieee guide–adoption of the project management institute (pmi(r)) standard a

guide to the project management body of knowledge (pmbok(r) guide)–fourth

edition. IEEE Std 1490-2011, pages 1–508, Nov 2011.

[64] Klaus Pohl. Requirements Engineering: Fundamentals, Principles, and Tech-

niques. Springer Publishing Company, Incorporated, 1st edition, 2010.

[65] Pei Hsia, David Kung, and Chris Sell. Software requirements and acceptance

testing. Ann. Softw. Eng., 3:291–317, January 1997.

[66] Q. Wang and X. Lai. Requirements management for the incremental development

model. In Proceedings of the Second Asia-Pacific Conference on Quality Software,

APAQS ’01, pages 295–, Washington, DC, USA, 2001. IEEE Computer Society.

[67] James Herbsleb, David Zubrow, Dennis Goldenson, Will Hayes, and Mark Paulk.

Software quality and the capability maturity model. Commun. ACM, 40(6):30–40,

June 1997.

[68] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber. Capability

maturity model, version 1.1. IEEE Softw., 10(4):18–27, July 1993.

BIBLIOGRAPHY 135

[69] O. C Z Gotel and A C W Finkelstein. An analysis of the requirements trace-

ability problem. In Requirements Engineering, 1994., Proceedings of the First

International Conference on, pages 94–101, Apr 1994.

[70] B. Ramesh, T. Powers, C. Stubbs, and M. Edwards. Implementing requirements

traceability: A case study. In Proceedings of the Second IEEE International

Symposium on Requirements Engineering, RE ’95, pages 89–, Washington, DC,

USA, 1995. IEEE Computer Society.

[71] Raymond T Yeh and Peter A Ng. Software requirements?a management perspec-

tive. System and Software Requirements Engineering, pages 450–641, 1990.

[72] Yuanyuan Zhang. Multi-Objective Search-based Requirements Selection and Op-

timisation. University of London, 2010.

[73] T.L. Saaty. The Analytic Hierarchy Process: Planning, Priority Setting, Resource

Allocation. Advanced book program. McGraw-Hill, 1980.

[74] Lai-Kow Chan and Ming-Lu Wu. Quality function deployment: A literature

review. European Journal of Operational Research, 143(3):463 – 497, 2002.

[75] Joachim Karlsson and Kevin Ryan. A cost-value approach for prioritizing require-

ments. IEEE Software, 14(5):67–74, 1997.

[76] Joachim Karlsson, Claes Wohlin, and Björn Regnell. An evaluation of meth-

ods for prioritizing software requirements. Information and Software Technology,

39(14?15):939 – 947, 1998.

[77] Jason Eisner. State-of-the-art algorithms for minimum spanning trees - a tutorial

discussion, 1997.

[78] W Issel. Aho, av, je hopcroft, jd ullman: Data structures and algorithms. addison-

wesley amsterdam 1983. 436 s. Biometrical Journal, 26(4):390–390, 1984.

[79] Peter F Windley. Trees, forests and rearranging. The Computer Journal, 3(2):84–

88, 1960.

BIBLIOGRAPHY 136

[80] A.D. Booth and A.J.T. Colin. On the efficiency of a new method of dictionary

construction. Information and Control, 3(4):327 – 334, 1960.

[81] Björn Regnell, Martin Höst, Natt Johan och Dag, Per Beremark, and Thomas

Hjelm. An industrial case study on distributed prioritisation in market-driven re-

quirements engineering for packaged software. Requirements Engineering, 6(1):51–

62, 2001.

[82] Soo Ling Lim, Daniela Damian, and Anthony Finkelstein. Stakesource2.0: Using

social networks of stakeholders to identify and prioritise requirements. In Pro-

ceedings of the 33rd International Conference on Software Engineering, ICSE ’11,

pages 1022–1024, New York, NY, USA, 2011. ACM.

[83] Yuanyuan Zhang, Anthony Finkelstein, and Mark Harman. Search based require-

ments optimisation: Existing work and challenges. In Barbara Paech and Colette

Rolland, editors, Requirements Engineering: Foundation for Software Quality,

volume 5025 of Lecture Notes in Computer Science, pages 88–94. Springer Berlin

Heidelberg, 2008.

[84] M. S. Feather and T. Menzies. Converging on the optimal attainment of require-

ments. In Requirements Engineering, 2002. Proceedings. IEEE Joint International

Conference on, pages 263–270, 2002.

[85] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated an-

nealing. Science, 220(4598):671–680, 1983.

[86] Christopher C. Skiścim and Bruce L. Golden. Optimization by simulated an-

nealing: A preliminary computational study for the tsp. In Proceedings of the

15th Conference on Winter Simulation - Volume 2, WSC ’83, pages 523–535,

Piscataway, NJ, USA, 1983. IEEE Press.

[87] Günther Ruhe and An Ngo. Hybrid intelligence in software release planning. Int.

J. Hybrid Intell. Syst., 1(1-2):99–110, April 2004.

BIBLIOGRAPHY 137

[88] G. Ruhe and M. O. Saliu. The art and science of software release planning. IEEE

Software, 22(6):47–53, Nov 2005.

[89] An Ngo-The and Günther Ruhe. Optimized resource allocation for software re-

lease planning. IEEE Trans. Softw. Eng., 35(1):109–123, January 2009.

[90] Mark Harman, Alexandros Skaliotis, Kathleen Steinhöfel, and Paul Baker.

Search–based approaches to the component selection and prioritization problem.

In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Com-

putation, GECCO ’06, pages 1951–1952, New York, NY, USA, 2006. ACM.

[91] He Jiang, Jingyuan Zhang, Jifeng Xuan, Zhilei Ren, and Yan Hu. A hybrid aco

algorithm for the next release problem. In Software Engineering and Data Mining

(SEDM), 2010 2nd International Conference on, pages 166–171, June 2010.

[92] Paul Baker, Mark Harman, Kathleen Steinhofel, and Alexandros Skaliotis. Search

based approaches to component selection and prioritization for the next release

problem. In Proceedings of the 22Nd IEEE International Conference on Soft-

ware Maintenance, ICSM ’06, pages 176–185, Washington, DC, USA, 2006. IEEE

Computer Society.

[93] Brian J. Ritzel, J. Wayland Eheart, and S. Ranjithan. Using genetic algorithms

to solve a multiple objective groundwater pollution containment problem. Water

Resources Research, 30(5):1589–1603, 1994.

[94] Carlos A. Coello Coello. A comprehensive survey of evolutionary-based multiob-

jective optimization techniques. Knowledge and Information Systems, 1(3):269–

308, 1999.

[95] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. Search-based soft-

ware engineering: Trends, techniques and applications. ACM Computing Surveys,

45(1):11:1–11:61, 2012.

[96] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective

BIBLIOGRAPHY 138

genetic algorithm: NSGA-II. Transaction on Evoluionary Computation, 6(2):182–

197, Apr 2002.

[97] A. Finkelstein, M. Harman, S. A. Mansouri, J. Ren, and Y. Zhang. Fairness anal-

ysis; in requirements assignments. In International Requirements Engineering,

2008. RE ’08. 16th IEEE, pages 115–124, Sept 2008.

[98] Yuanyuan Zhang, Enrique Alba, Juan J. Durillo, Sigrid Eldh, and Mark Harman.

Today/future importance analysis. In Proceedings of the 12th Annual Conference

on Genetic and Evolutionary Computation (GECCO’10), pages 1357–1364, New

York, NY, USA, 2010. ACM.

[99] Yuanyuan Zhang and Mark Harman. Search based optimization of requirements

interaction management. In Proceedings of the 2nd International Symposium on

Search Based Software Engineering, SSBSE ’10, pages 47–56. IEEE Computer

Society, 2010.

[100] Juan J. Durillo, YuanYuan Zhang, Enrique Alba, and Antonio J. Nebro. A study

of the multi-objective next release problem. In Proceedings of the 2009 1st In-

ternational Symposium on Search Based Software Engineering, SSBSE ’09, pages

49–58, Washington, DC, USA, 2009. IEEE Computer Society.

[101] Yuanyuan Zhang, Mark Harman, Anthony Finkelstein, and S. Afshin Mansouri.

Comparing the performance of metaheuristics for the analysis of multi-stakeholder

tradeoffs in requirements optimisation. Information and Software Technology,

53(7):761 – 773, 2011.

[102] Antonio J. Nebro, Juan J. Durillo, Francisco Luna, Bernabé Dorronsoro, and En-

rique Alba. Mocell: A cellular genetic algorithm for multiobjective optimization.

Int. J. Intell. Syst., 24(7):726–746, July 2009.

[103] K. Praditwong and Xin Yao. A new multi-objective evolutionary optimisation al-

gorithm: The two-archive algorithm. In Computational Intelligence and Security,

2006 International Conference on, volume 1, pages 286–291, Nov 2006.

BIBLIOGRAPHY 139

[104] Yuanyuan Zhang, Mark Harman, Gabriela Ochoa, Guenther Ruhe, and Sjaak

Brinkkemper. An empirical study of meta- and hyper-heuristic search for multi-

objective release planning. UCL Department of Computer Science Research Note,

14(07), 2014.

[105] Alan W. Johnson and Sheldon H. Jacobson. A class of convergent generalized hill

climbing algorithms. Appl. Math. Comput., 125(2-3):359–373, January 2002.

[106] Peter Ross. Search Methodologies: Introductory Tutorials in Optimization and

Decision Support Techniques, chapter Hyper-Heuristics, pages 529–556. Springer

US, Boston, MA, 2005.

[107] Ho-Won Jung. Optimizing value and cost in requirements analysis. IEEE Soft-

ware, 15(4):74–78, 1998.

[108] Pär Carlshamre. Release planning in market-driven software product develop-

ment: Provoking an understanding. Requirements Engineering, 7(3):139–151,

2002.

[109] Marjan Van Den Akker, Sjaak Brinkkemper, Guido Diepen, Johan Versendaal,

et al. Flexible release composition using integer linear programming. UU-CS,

(2004-063), 2004.

[110] Marjan van den Akker, Sjaak Brinkkemper, G van Diepen, and Johan Versendaal.

Flexible release planning using integer linear programming. REFSQ’05, 2005.

[111] Marjan van den Akker, Sjaak Brinkkemper, Guido Diepen, and Johan Versendaal.

Software product release planning through optimization and what-if analysis. In-

formation and Software Technology, 50(1?2):101–111, 2008. Special issue with

two special sections. Section 1: Most-cited software engineering articles in 2001.

Section 2: Requirement engineering: Foundation for software quality.

[112] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization:

algorithms and complexity. Courier Corporation, 1982.

BIBLIOGRAPHY 140

[113] C. Li, J. M. Van Den Akker, S. Brinkkemper, and G. Diepen. Integrated require-

ment selection and scheduling for the release planning of a software product. In

Proceedings of the 13th International Working Conference on Requirements En-

gineering: Foundation for Software Quality, REFSQ ’07, pages 93–108, Berlin,

Heidelberg, 2007. Springer-Verlag.

[114] Chen Li, Marjan Akker, Sjaak Brinkkemper, and Guido Diepen. An integrated

approach for requirement selection and scheduling in software release planning.

Requirements Engineering, 15(4):375–396, 2010.

[115] G. L. Nemhauser and Z. Ullmann. Discrete dynamic programming and capital

allocation. Management Science, 15(9):494–505, 1969.

[116] Emmanuel Letier, David Stefan, and Earl T. Barr. Uncertainty, risk, and informa-

tion value in software requirements and architecture. In Proceedings of the 36th

International Conference on Software Engineering, ICSE 2014, pages 883–894,

New York, NY, USA, 2014. ACM.

[117] Nadarajen Veerapen, Gabriela Ochoa, Mark Harman, and Edmund K. Burke. An

integer linear programming approach to the single and bi-objective next release

problem. Information and Software Technology, 65:1 – 13, 2015.

[118] Hwang Ching-Lai and Syed Md Masud Abu. Multiple objective decision making,

methods and applications: a state-of-the-art survey. Springer-Verlag, 1979.

[119] Y. Li, J. Chen, and L. Feng. Dealing with uncertainty: A survey of theories and

practices. IEEE Transactions on Knowledge and Data Engineering, 25(11):2463–

2482, Nov 2013.

[120] National Research Council (US). Committee on Risk-Based Analysis for Flood

Damage Reduction. Risk analysis and uncertainty in flood damage reduction

studies. Natl Academy Pr, 2000.

[121] Frank H Knight. Risk, uncertainty and profit. New York: Hart, Schaffner and

Marx, 1921.

BIBLIOGRAPHY 141

[122] Gabriele Bammer and Michael Smithson. Uncertainty and risk: multidisciplinary

perspectives. Routledge, 2012.

[123] Shabnam Rasoulian and Luis Alberto Ricardez-Sandoval. Uncertainty analysis

and robust optimization of multiscale process systems with application to epitax-

ial thin film growth. Chemical Engineering Science, 116:590 – 600, 2014.

[124] Donovan Chaffart, Shabnam Rasoulian, and Luis A. Ricardez-Sandoval. Distri-

butional uncertainty analysis and robust optimization in spatially heterogeneous

multiscale process systems. AIChE Journal, pages n/a–n/a, 2016.

[125] Michael D McKay. Sensitivity and uncertainty analysis using a statistical sample

of input values. Uncertainty analysis, pages 145–186, 1988.

[126] Güzin Bayraksan. Monte Carlo sampling-based methods in stochastic program-

ming. PhD thesis, University of Texas at Austin, 2005.

[127] A. Saltelli, K. Chan, and E.M. Scott. Sensitivity Analysis. Number no. 2008 in

Wiley paperback series. Wiley, 2009.

[128] Eric Smith. Uncertainty analysis. Encyclopedia of environmetrics, 2006.

[129] Lakshmi S Dutt and Mathew Kurian. Handling of uncertainty–a survey. Inter-

national Journal of Scientific and Research Publications, 3:2250–315, 2013.

[130] Z. Zi. Sensitivity analysis approaches applied to systems biology models. Systems

Biology, IET, 5(6):336–346, Nov 2011.

[131] Ahmed Al-Emran, Puneet Kapur, Dietmar Pfahl, and Guenther Ruhe. Studying

the impact of uncertainty in operational release planning - an integrated method

and its initial evaluation. Information and Software Technology, 52(4):446–461,

April 2010.

[132] Ahmed Al-Emran, Dietmar Pfahl, and Guenther Ruhe. Decision support for

product release planning based on robustness analysis. In Proceedings of the 2010

BIBLIOGRAPHY 142

18th IEEE International Requirements Engineering Conference (RE’10), pages

157–166, Washington, DC, USA, 2010. IEEE Computer Society.

[133] George L Nemhauser and Zev Ullmann. Discrete dynamic programming and

capital allocation. Management Science, 15(9):494–505, 1969.

[134] He Zhang, B. Kitchenham, and D. Pfahl. Software process simulation modeling:

Facts, trends and directions. In Software Engineering Conference, 2008. APSEC

’08. 15th Asia-Pacific, pages 59–66, Dec 2008.

[135] Aharon Ben-Tal and Arkadi Nemirovski. Robust optimization ? methodology

and applications. Mathematical Programming, 92(3):453–480, 2002.

[136] A. L. Soyster. Technical note: convex programming with set-inclusive constraints

and applications to inexact linear programming. Operations Research, 21(5):1154–

1157, 1973.

[137] Aharon Ben-Tal and Arkadi Nemirovski. Robust optimization–methodology and

applications. Mathematical Programming, 92(3):453–480, 2002.

[138] Laurent El Ghaoui and Hervé Lebret. Robust solutions to least-squares problems

with uncertain data. SIAM J. Matrix Anal. Appl., 18(4):1035–1064, October

1997.

[139] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Math. Oper. Res.,

23(4):769–805, November 1998.

[140] A. Ben-Tal, A. Nemirovski, and C. Roos. Robust solutions of uncertain quadratic

and conic-quadratic problems. SIAM J. on Optimization, 13(2):535–560, June

2002.

[141] Indraneel Das. Robustness optimization for constrained nonlinear programming

problems. Engineering Optimization, 32(5):585–618, 2000.

BIBLIOGRAPHY 143

[142] Sigrún Andradóttir. A review of simulation optimization techniques. In Proceed-

ings of the 30th Conference on Winter Simulation, WSC ’98, pages 151–158, Los

Alamitos, CA, USA, 1998. IEEE Computer Society Press.

[143] Emre Kazancioglu, Guangquan Wu, Jeonghan Ko, Stanislav Bohac, Zoran Filipi,

S Jack Hu, Dennis Assanis, and Kazuhiro Saitou. Robust optimization of an

automotive valvetrain using a multiobjective genetic algorithm. In ASME 2003

International Design Engineering Technical Conferences and Computers and In-

formation in Engineering Conference, pages 97–108. American Society of Me-

chanical Engineers, 2003.

[144] M. Papadrakakis, N.D. Lagaros, and V. Plevris. Design optimization of steel

structures considering uncertainties. Engineering Structures, 27(9):1408 – 1418,

2005.

[145] J.W. Herrmann. A genetic algorithm for minimax optimization problems. In

Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on,

volume 2, pages –1103 Vol. 2, 1999.

[146] Adrian Thompson and Paul Layzell. Evolution of robustness in an electronics de-

sign. In Julian Miller, Adrian Thompson, Peter Thomson, and TerenceC. Fogarty,

editors, Evolvable Systems: From Biology to Hardware, volume 1801 of Lecture

Notes in Computer Science, pages 218–228. Springer Berlin Heidelberg, 2000.

[147] Apurva Kumar, Andy J. Keane, Prasanth B. Nair, and Shahrokh Shahpar. Robust

design of compressor fan blades against erosion. Journal of Mechanical Design,

128(4):864–873, 2006.

[148] W. Heaven and E. Letier. Simulating and optimising design decisions in quan-

titative goal models. In Requirements Engineering Conference (RE), 2011 19th

IEEE International, pages 79–88, Aug 2011.

[149] Jaak Jurison. Software project management: The manager’s view. Commun.

AIS, 2(3es), November 1999.

BIBLIOGRAPHY 144

[150] A. Ngo-The and G. Ruhe. Optimized resource allocation for software release

planning. IEEE Transactions on Software Engineering, 35(1):109–123, 2009.

[151] Filomena Ferrucci, Mark Harman, Jian Ren, and Federica Sarro. Not going to

take this anymore: Multi-objective overtime planning for software engineering

projects. In Proceedings of the 2013 International Conference on Software Engi-

neering, ICSE ’13, pages 462–471. IEEE Press, 2013.

[152] Gunther Ruhe and Moshood Omolade Saliu. The art and science of software

release planning. IEEE Software, 22(6):47–53, 2005.

[153] Guenther Ruhe and Joseph Momoh. Strategic release planning and evaluation

of operational feasibility. In Proceedings of the 38th Annual Hawaii International

Conference on System Sciences, HICSS ’05, pages 313.2–313.2. IEEE Computer

Society, 2005.

[154] Linda A. Macaulay. Requirements Engineering. Springer-Verlag, London, UK,

UK, 1996.

[155] Luis Daniel Otero, Grisselle Centeno, Alex J. Ruiz-Torres, and Carlos E. Otero.

A systematic approach for resource allocation in software projects. Computers &

Industrial Engineering, 56(4):1333 – 1339, 2009.

[156] Silvia T. Acuna, Natalia Juristo, and Ana M. Moreno. Emphasizing human

capabilities in software development. IEEE Software, 23(2):94–101, March 2006.

[157] F. Sarro, F. Ferrucci, M. Harman, A. Manna, and J. Ren. Adaptive multi-

objective evolutionary algorithms for overtime planning in software projects.

IEEE Transactions on Software Engineering, 2017. To appear.

[158] Tarek K. Abdel-Hamid. The dynamics of software project staffing: A system

dynamics based simulation approach. IEEE Trans. Softw. Eng., 15(2):109–119,

February 1989.

BIBLIOGRAPHY 145

[159] Tarek Abdel-Hamid and Stuart E. Madnick. Software Project Dynamics: An

Integrated Approach. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1991.

[160] G. Antoniol, M. Di Penta, and M. Harman. Search-based techniques applied

to optimization of project planning for a massive maintenance project. In 21st

IEEE International Conference on Software Maintenance (ICSM’05), pages 240–

249, Sept 2005.

[161] Raymond Ho-Leung TSOI. Using analytic hierarchy process (ahp) method to

prioritise human resources in substitution problem. International Journal of the

Computer, the Internet and Management, 9(1):36–45, 2001.

[162] Santanu Kr. Misra and Amitava Ray. Article: Software developer selection: A

holistic approach for an eclectic decision. International Journal of Computer

Applications, 47(1):12–18, June 2012.

[163] Luis Daniel Otero, Grisselle Centeno, Alex J. Ruiz-Torres, and Carlos E. Otero.

A systematic approach for resource allocation in software projects. Comput. Ind.

Eng., 56(4):1333–1339, May 2009.

[164] Carl K. Chang, Mark J. Christensen, and Tao Zhang. Genetic algorithms for

project management. Annals of Software Engineering, 11(1):107–139, 2001.

[165] Jim Duggan, Jason Byrne, and Gerard J. Lyons. A task allocation optimizer for

software construction. IEEE Softw., 21(3):76–82, May 2004.

[166] Silvia T. Acuña and Natalia Juristo. Assigning people to roles in software projects.

Softw. Pract. Exper., 34(7):675–696, June 2004.

[167] Barry W. Boehm. Software Engineering Economics. Prentice Hall, Upper Saddle

River, NJ, USA, 1st edition, 1981.

[168] John Michael Hammersley, David Christopher Handscomb, and George Weiss.

Monte carlo methods. Physics Today, 18:55, 1965.

BIBLIOGRAPHY 146

[169] Dimitris Bertsimas and Melvyn Sim. The price of robustness. Operations research,

52(1):35–53, 2004.

[170] Yuanyuan Zhang, Mark Harman, and Soo Ling Lim. Empirical evaluation of

search based requirements interaction management. Information and Software

Technology, 55(1):126–152, 2013. Special section: Best papers from the 2nd In-

ternational Symposium on Search Based Software Engineering 2010.

[171] Alper Atamtürk, George L. Nemhauser, and Martin W.P. Savelsbergh. Conflict

graphs in solving integer programming problems. European Journal of Operational

Research, 121(1):40 – 55, 2000.

[172] Klaus Jansen and Sabine Öhring. Approximation algorithms for time constrained

scheduling. Inf. Comput., 132(2):85–108, February 1997.

[173] Karla L. Hoffman and Manfred Padberg. Solving airline crew scheduling problems

by branch-and-cut. Manage. Sci., 39(6):657–682, June 1993.

[174] Ulrich Pferschy and Joachim Schauer. The knapsack problem with conflict graphs.

Journal of Graph Algorithms and Applications, 13(2):233–249, 2009.

[175] Tobias Brunsch and Heiko Röglin. Improved smoothed analysis of multiobjective

optimization. In Proceedings of the Forty-fourth Annual ACM Symposium on

Theory of Computing, STOC ’12, pages 407–426, New York, NY, USA, 2012.

ACM.

[176] Pär Carlshamre, Kristian Sandahl, Mikael Lindvall, Björn Regnell, and Jo-

han Nattoch Dag. An industrial survey of requirements interdependencies in

software product release planning. In Proceedings of the Fifth IEEE International

Symposium on Requirements Engineering, RE ’01, pages 84–91. IEEE Computer

Society, 2001.

[177] William N. Robinson, Suzanne D. Pawlowski, and Vecheslav Volkov. Require-

ments interaction management. ACM Computing Surveys, 35(2):132–190, 2003.

BIBLIOGRAPHY 147

[178] Walker Royce. Software project management. Pearson Education India, 1998.

[179] Tom DeMarco and Tim Lister. Waltzing with bears: Managing risk on software

projects. Addison-Wesley, 2013.

[180] Roy Schmidt, Kalle Lyytinen, Mark Keil, and Paul Cule. Identifying software

project risks: An international delphi study. J. Manage. Inf. Syst., 17(4):5–36,

March 2001.

[181] Anthony O’Hagan, Caitlin E Buck, Alireza Daneshkhah, J Richard Eiser, Paul H

Garthwaite, David J Jenkinson, Jeremy E Oakley, and Tim Rakow. Uncertain

judgements: eliciting experts’ probabilities. John Wiley & Sons, 2006.

[182] J. W. Pratt. Risk aversion in the small and in the large. Econometrica,

32(1/2):122–136, 1964.

[183] Soo Ling Lim and Anthony Finkelstein. Stakerare: Using social networks and

collaborative filtering for large-scale requirements elicitation. IEEE Trans. Softw.

Eng., 38(3):707–735, May 2012.

[184] Michael Bloch, Sven Blumberg, and Jürgen Laartz. Delivering large-scale it

projects on time, on budget, and on value. Harvard Business Review, 2011.

[185] Magne Jørgensen and Kjetil Moløkken-Østvold. How large are software cost over-

runs? a review of the 1994 {CHAOS} report. Information and Software Technol-

ogy, 48(4):297 – 301, 2006.

[186] Jennifer Lynch. The standish group report. http://www.standishgroup.com/

sample_research_files/chaos_report_1994.pdf, 1994. Accessed: 2015-01-12.

[187] N.D. Fogelstrom, M. Svahnberg, and T. Gorschek. Investigating impact of busi-

ness risk on requirements selection decisions. In Software Engineering and Ad-

vanced Applications, 2009. SEAA ’09. 35th Euromicro Conference on, pages 217–

223, Aug 2009.

http://www.standishgroup.com/sample_research_files/chaos_report_1994.pdf
http://www.standishgroup.com/sample_research_files/chaos_report_1994.pdf

BIBLIOGRAPHY 148

[188] Edward Yourdon. Death March: The Complete Software Developer’s Guide to

Surviving Mission Impossible Projects. Prentice Hall PTR, 1997.

[189] L. L. Minku, D. Sudholt, and X. Yao. Improved evolutionary algorithm design

for the project scheduling problem based on runtime analysis. IEEE Transactions

on Software Engineering, 40(1):83–102, Jan 2014.

[190] X. Shen, L. L. Minku, R. Bahsoon, and X. Yao. Dynamic software project schedul-

ing through a proactive-rescheduling method. IEEE Transactions on Software

Engineering, 42(7):658–686, July 2016.

[191] Mark Harman. The current state and future of search based software engineer-

ing. In 2007 Future of Software Engineering, FOSE ’07, pages 342–357. IEEE

Computer Society, 2007.

[192] Ahmed Al-Emran, Puneet Kapur, Dietmar Pfahl, and Guenther Ruhe. Studying

the impact of uncertainty in operational release planning - an integrated method

and its initial evaluation. Inf. Softw. Technol., 52(4):446–461, 2010.

[193] George Mavrotas. Effective implementation of the ε-constraint method in multi-

objective mathematical programming problems. Applied Mathematics and Com-

putation, 213(2):455–465, 2009.

[194] J. Blazewicz, J.K. Lenstra, and A.H.G.Rinnooy Kan. Scheduling subject to re-

source constraints: classification and complexity. Discrete Applied Mathematics,

5(1):11–24, 1983.

[195] Pär Carlshamre. Release planning in market-driven software product develop-

ment: Provoking an understanding. Requirements Engineering, 7(3):139–151,

2002.

[196] Filomena Ferrucci, Mark Harman, and Federica Sarro. Search-Based Software

Project Management, pages 373–399. Springer-Verlag, 2014.

BIBLIOGRAPHY 149

[197] Wei-Neng Chen and Jun Zhang. Ant colony optimization for software project

scheduling and staffing with an event-based scheduler. IEEE Trans. Softw. Eng.,

39(1):1–17, January 2013.

[198] Jian Ren, Mark Harman, and Massimiliano Di Penta. Cooperative Co-

evolutionary Optimization of Software Project Staff Assignments and Job Schedul-

ing, pages 127–141. Springer-Verlag, 2011.

[199] Yv Haimes, Ls Lasdon, and Da Wismer. On a bicriterion formulation of the prob-

lems of integrated system identification and system optimization. IEEE Transac-

tions on Systems, Man, and Cybernetics, SMC-1(3):296–297, July 1971.

[200] Junjie Wang, Juan Li, Qing Wang, He Zhang, and Haitao Wang. A simulation

approach for impact analysis of requirement volatility considering dependency

change. In Proceedings of the 18th International Conference on Requirements En-

gineering: Foundation for Software Quality, REFSQ ’12, pages 59–76. Springer-

Verlag, 2012.

[201] Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on Software Engineer-

ing (Anniversary Ed.). Addison-Wesley Longman Publishing Co., Inc., 1995.

[202] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. Search based software

engineering: A comprehensive analysis and review of trends techniques and ap-

plications. Department of Computer Science, King?s College London, Tech. Rep.

TR-09-03, 2009.

[203] Linda Rising and Norman S. Janoff. The scrum software development process for

small teams. IEEE Software, 17(4):26–32, 2000.

[204] Fred Glover. Future paths for integer programming and links to artificial intelli-

gence. Comput. Oper. Res., 13(5):533–549, May 1986.

[205] J D Farmer, N H Packard, and A S Perelson. The immune system, adaptation,

and machine learning. Phys. D, 2(1-3):187–204, October 1986.

BIBLIOGRAPHY 150

[206] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Politec-

nico di Milano, Italy, 1992.

[207] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In

Micro Machine and Human Science, 1995. MHS ’95., Proceedings of the Sixth

International Symposium on, pages 39–43, Oct 1995.

[208] Mark Harman, Edmund Burke, John Clark, and Xin Yao. Dynamic adaptive

search based software engineering. In Proceedings of the ACM-IEEE Interna-

tional Symposium on Empirical Software Engineering and Measurement, ESEM

’12, pages 1–8, New York, NY, USA, 2012. ACM.

[209] Richard Fairley. Risk management for software projects. IEEE Softw., 11(3):57–

67, May 1994.

[210] Barry W. Boehm. Software risk management: Principles and practices. IEEE

Softw., 8(1):32–41, January 1991.

[211] Yudistira Asnar, Paolo Giorgini, and John Mylopoulos. Goal-driven risk assess-

ment in requirements engineering. Requir. Eng., 16(2):101–116, June 2011.

[212] Moshood Omolade Saliu and Guenther Ruhe. Bi-objective release planning for

evolving software systems. In Proceedings of the the 6th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium

on The Foundations of Software Engineering, ESEC-FSE ’07, pages 105–114, New

York, NY, USA, 2007. ACM.

[213] Marjan van den Akker, Sjaak Brinkkemper, Guido Diepen, and Johan Versendaal.

Software product release planning through optimization and what-if analysis. Inf.

Softw. Technol., 50(1-2):101–111, January 2008.

[214] Dietmar Pfahl, Ahmed Al-Emran, and Günther Ruhe. A system dynamics simula-

tion model for analyzing the stability of software release plans: Research sections.

Softw. Process, 12(5):475–490, September 2007.

BIBLIOGRAPHY 151

[215] B. Yang, H. Hu, and L. Jia. A study of uncertainty in software cost and its impact

on optimal software release time. IEEE Transactions on Software Engineering,

34(6):813–825, Nov 2008.

[216] Hugh W Coleman and W Glenn Steele. Experimentation, validation, and uncer-

tainty analysis for engineers. John Wiley & Sons Incorporated, 2009.

[217] Günther Ruhe and Des Greer. Quantitative studies in software release planning

under risk and resource constraints. In Proceedings of the 2003 International Sym-

posium on Empirical Software Engineering, ISESE ’03, pages 262–, Washington,

DC, USA, 2003. IEEE Computer Society.

[218] Susan DP Harker, Ken D Eason, and John E Dobson. The change and evolu-

tion of requirements as a challenge to the practice of software engineering. In

Requirements Engineering, 1993., Proceedings of IEEE International Symposium

on, pages 266–272. IEEE, Jan 1993.

[219] L. Li. Exact analysis for next release problem. In 2016 IEEE 24th International

Requirements Engineering Conference, RE ’16, pages 438–443, 2016.

[220] J. J. Durillo, Y. Zhang, E. Alba, and A. J. Nebro. A study of the multi-objective

next release problem. In 2009 1st International Symposium on Search Based

Software Engineering, SSBSE ’09, pages 49–58, 2009.

[221] Jian Ren, Mark Harman, and Massimiliano Di Penta. Cooperative co-evolutionary

optimization of software project staff assignments and job scheduling. In Proceed-

ings of the Third International Conference on Search Based Software Engineering,

SSBSE ’11, pages 127–141. Springer-Verlag, 2011.

[222] James E. Kelley, Jr and Morgan R. Walker. Critical-path planning and scheduling.

In Papers Presented at the December 1-3, 1959, Eastern Joint IRE-AIEE-ACM

Computer Conference, IRE-AIEE-ACM ’59 (Eastern), pages 160–173, New York,

NY, USA, 1959. ACM.

BIBLIOGRAPHY 152

[223] Quentin W Fleming and Joel M Koppelman. Earned value project management.

Project Mangement Institute, 2000.

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivation of the Research
	1.2 Objectives of the Research
	1.3 Contributions
	1.4 Organisation of the PhD Thesis

	2 Literature Review
	2.1 Overview of Requirements Engineering
	2.1.1 Requirement
	2.1.2 Requirements Engineering

	2.2 Requirements Selection and Optimisation
	2.2.1 Priority-based Requirements Optimisation
	2.2.2 Heuristic Search-based Requirements Optimisation
	2.2.3 Exact Requirements Optimisation

	2.3 Uncertainty Handling
	2.3.1 Analysing Uncertainty in Requirements Optimisation
	2.3.2 Robust Optimisation in Requirements Optimisation

	2.4 Software Project Resource Allocation

	3 Simulation based Robust Next Release Problem Model
	3.1 Motivation
	3.2 Problem Formulation
	3.2.1 Robust MONRP formulation

	3.3 Optimisation Approach
	3.4 Experimental Set Up
	3.4.1 Data Sets
	3.4.2 Search Algorithmic Tuning
	3.4.3 Evaluation
	3.4.4 Research Questions

	3.5 Experimental Results and Analysis
	3.5.1 Experiment One (E1)
	3.5.2 Experiment Two (E2)
	3.5.3 Statistical Analysis

	3.6 Summary

	4 The Value of Exact Analysis in Next Release Problem
	4.1 Motivation
	4.2 Background
	4.2.1 Next Release Problem with Conflict Graphs
	4.2.2 Nemhauser-Ullmann Algorithm

	4.3 Simulation based NRP Decision Analysis Framework METRO
	4.3.1 Requirements Interaction Pre-Processing
	4.3.2 Exact NRP optimisation Solver
	4.3.3 Results Analysis & visualisation

	4.4 Applying our approach to the RALIC dataset
	4.4.1 Experimental set up
	4.4.2 Research Questions
	4.4.3 Experiment Results

	4.5 Summary

	5 Exact Analysis in Integrated Release and Schedule Planning Problem
	5.1 Motivation
	5.2 Problem Statement
	5.2.1 Software Release Planning
	5.2.2 Software Schedule Planning
	5.2.3 Integrated Release and Schedule Planning

	5.3 The Solution Approach
	5.4 Empirical Study
	5.4.1 Datasets
	5.4.2 Experimental Setup
	5.4.3 Research Questions
	5.4.4 Analysis of Results

	5.5 Summary

	6 Conclusions and Future Work
	6.1 Summary
	6.1.1 Simulation based Robust Next Release Problem Model
	6.1.2 The Value of Exact Analysis in Next Release Problem
	6.1.3 Exact Analysis in Integrated Release and Schedule Planning Problem

	6.2 Threats to Validity
	6.2.1 Construct validity
	6.2.2 Internal validity
	6.2.3 External validity

	6.3 Future Work

	Bibliography

