1,220 research outputs found

    Mitigation of the Ground Reflection Effect in Real-Time Locating Systems

    Get PDF
    Real-Time Locating Systems (RTLS) are one of the most promising ap- plications based on Wireless Sensor Networks and represent a currently growing market. However, accuracy in indoor RTLS is still a problem requiring novel solu- tions. One of the main challenges is to deal with the problems that arise from the effects of the propagation of radio frequency waves, such as attenuation, diffrac- tion, reflection and scattering. These effects can lead to other undesired problems, such as multipath and the ground reflection effect. This paper presents an innova- tive mathematical model for improving the accuracy of RTLS, focusing on the mitigation of the ground reflection effect by using Artificial Neural Networks

    Mitigation of the ground reflection effect in real-time locating systems based on wireless sensor networks by using artificial neural networks

    Get PDF
    Wireless sensor networks (WSNs) have become much more relevant in recent years, mainly because they can be used in a wide diversity of applications. Real-time locating systems (RTLSs) are one of the most promising applications based on WSNs and represent a currently growing market. Specifically, WSNs are an ideal alternative to develop RTLSs aimed at indoor environments where existing global navigation satellite systems, such as the global positioning system, do not work correctly due to the blockage of the satellite signals. However, accuracy in indoor RTLSs is still a problem requiring novel solutions. One of the main challenges is to deal with the problems that arise from the effects of the propagation of radiofrequency waves, such as attenuation, diffraction, reflection and scattering. These effects can lead to other undesired problems, such as multipath. When the ground is responsible for wave reflections, multipath can be modeled as the ground reflection effect. This paper presents an innovative mathematical model for improving the accuracy of RTLSs, focusing on the mitigation of the ground reflection effect by using multilayer perceptron artificial neural networks.Wireless sensor networks (WSNs) have become much more relevant in recent years, mainly because they can be used in a wide diversity of applications. Real-time locating systems (RTLSs) are one of the most promising applications based on WSNs and represent a currently growing market. Specifically, WSNs are an ideal alternative to develop RTLSs aimed at indoor environments where existing global navigation satellite systems, such as the global positioning system, do not work correctly due to the blockage of the satellite signals. However, accuracy in indoor RTLSs is still a problem requiring novel solutions. One of the main challenges is to deal with the problems that arise from the effects of the propagation of radiofrequency waves, such as attenuation, diffraction, reflection and scattering. These effects can lead to other undesired problems, such as multipath. When the ground is responsible for wave reflections, multipath can be modeled as the ground reflection effect. This paper presents an innovative mathematical model for improving the accuracy of RTLSs, focusing on the mitigation of the ground reflection effect by using multilayer perceptron artificial neural networks

    Mitigation of the ground reflection effect in real-time locating systems based on wireless sensor networks by using artificial neural networks

    Get PDF
    Wireless sensor networks (WSNs) have become much more relevant in recent years, mainly because they can be used in a wide diversity of applications. Real-time locating systems (RTLSs) are one of the most promising applications based on WSNs and represent a currently growing market. Specifically, WSNs are an ideal alternative to develop RTLSs aimed at indoor environments where existing global navigation satellite systems, such as the global positioning system, do not work correctly due to the blockage of the satellite signals. However, accuracy in indoor RTLSs is still a problem requiring novel solutions. One of the main challenges is to deal with the problems that arise from the effects of the propagation of radiofrequency waves, such as attenuation, diffraction, reflection and scattering. These effects can lead to other undesired problems, such as multipath. When the ground is responsible for wave reflections, multipath can be modeled as the ground reflection effect. This paper presents an innovative mathematical model for improving the accuracy of RTLSs, focusing on the mitigation of the ground reflection effect by using multilayer perceptron artificial neural networks

    Implementing a real-time locating system based on wireless sensor networks and artificial neural networks to mitigate the multipath effect

    Get PDF
    Wireless Sensor Networks comprise an ideal technology to develop Real-Time Locating Systems (RTLSs) aimed at indoor environments, where existing global navigation satellite systems do not work correctly due to the blockage of the satellite signals. In this regard, one of the main challenges is to deal with the problems that arise from the effects of the propagation of radio frequency waves, such as multipath. This paper presents an innovative mathematical model for improving the accuracy of RTLSs, focusing on the mitigation of the multipath effect by using Multi-Layer Perceptron Artificial Neural Networks. The model is used to implement a novel indoor Real-Time Locating System based on Wireless Sensor Networks

    Using Multi-Layer Perceptrons to Enhance the Performance of Indoor RTLS

    Get PDF
    Accuracy in indoor Real-Time Locating Systems (RTLS) is still a problem requiring novel solutions. Wireless Sensor Networks are an alternative to develop RTLS aimed at indoor environments. However, there are some effects associated to the propagation of radio frequency waves, such as attenuation, diffraction, reflection and scattering that depends on the materials and the objects in the environment, especially indoors. These effects can lead to other undesired problems, such as multipath. When the ground is the main responsible for waves reflections, multipath can be modeled as the ground reflection effect. This paper presents a model for improving the accuracy of RTLS, focusing on the mitigation of the ground reflection effect and the estimation of the final position by using Neural Networks

    Automatic UAVs path planning

    Get PDF
    My work at the University of Salamanca took place between 14th September 2017 and 1st December 2017. During these months, I have had the opportunity to work with the BISITE Research Group, attend different congresses held in Spain and learn new computer techniques related to artificial intelligence. The work has been focused on the development of software that implements algorithms for the control of UAVs (Unmanned Aerial Vehicles) autonomously. The algorithms are capable of guiding each UAV in such a way that they make an optimal route when travelling the area covered by a perimeter introduced by the user. As an important part of the algorithms, it is emphasized that when calculating changes of direction in the route, it is necessary to take into account the type of camera and its opening. This ensures that the captured images do not overlap or overlap with the minimum required to avoid spaces in 3D reconstruction software. As part of the work, the bibliography indicated in the References section has been used

    Artificial Intelligence techniques for big data analysis

    Get PDF
    During my stay in Salamanca (Spain), I was fortunate enough to participate in the BISITE Research Group of the University of Salamanca. The University of Salamanca is the oldest university in Spain and in 2018 it celebrates its 8th centenary. As a computer science researcher, I participated in one of the many international projects that the research group has active, especially in big data analysis using Artificial Intelligence (AI) techniques. AI is one of BISITE's main lines of research, along with bioinformatics and robotics. In addition, they combine all these fields working with Internet of Things (IoT) in all its parts: sensors, communications, data analysis using Big Data techniques and visualization software with the latest technologies

    New platform for intelligent context-based distributed information fusion

    Get PDF
    Tesis por compendio de publicaciones[ES]Durante las últimas décadas, las redes de sensores se han vuelto cada vez más importantes y hoy en día están presentes en prácticamente todos los sectores de nuestra sociedad. Su gran capacidad para adquirir datos y actuar sobre el entorno, puede facilitar la construcción de sistemas sensibles al contexto, que permitan un análisis detallado y flexible de los procesos que ocurren y los servicios que se pueden proporcionar a los usuarios. Esta tesis doctoral se presenta en el formato de “Compendio de Artículos”, de tal forma que las principales características de la arquitectura multi-agente distribuida propuesta para facilitar la interconexión de redes de sensores se presentan en tres artículos bien diferenciados. Se ha planteado una arquitectura modular y ligera para dispositivos limitados computacionalmente, diseñando un mecanismo de comunicación flexible que permite la interacción entre diferentes agentes embebidos, desplegados en dispositivos de tamaño reducido. Se propone un nuevo modelo de agente embebido, como mecanismo de extensión para la plataforma PANGEA. Además, se diseña un nuevo modelo de organización virtual de agentes especializada en la fusión de información. De esta forma, los agentes inteligentes tienen en cuenta las características de las organizaciones existentes en el entorno a la hora de proporcionar servicios. El modelo de fusión de información presenta una arquitectura claramente diferenciada en 4 niveles, siendo capaz de obtener la información proporcionada por las redes de sensores (capas inferiores) para ser integrada con organizaciones virtuales de agentes (capas superiores). El filtrado de señales, minería de datos, sistemas de razonamiento basados en casos y otras técnicas de Inteligencia Artificial han sido aplicadas para la consecución exitosa de esta investigación. Una de las principales innovaciones que pretendo con mi estudio, es investigar acerca de nuevos mecanismos que permitan la adición dinámica de redes de sensores combinando diferentes tecnologías con el propósito final de exponer un conjunto de servicios de usuario de forma distribuida. En este sentido, se propondrá una arquitectura multiagente basada en organizaciones virtuales que gestione de forma autónoma la infraestructura subyacente constituida por el hardware y los diferentes sensores

    Virtual Organizations of Agents for Monitoring Elderly and Disabled People in Geriatric Residences

    Get PDF
    This paper presents the use of PANGEA platform applied to improve healthcare and assistance to elderly and dependent people in geriatric residences. PANGEA is based on Virtual Organizations of agents (VO) and integrates a set of autonomous deliberative agents designed to support the carers' activities and to guarantee that the patients are given the right care. The system makes use of Wireless Sensor Networks and a Real-Time Locating System for providing autonomous responses according to the environment status. Agents are a suitable alternative to manage the enormous quantity of data provided of sensors because they can represent autonomous entities by modelling their capabilities, expertise and intentions. This approach facilitates the inclusion of context-aware capabilities when developing intelligent and adaptable systems, where functionalities can communicate in a distributed and collaborative way. Several tests have been performed to evaluate this framework and preliminary results and conclusions are presented
    corecore