7 research outputs found

    JAG: Reliable and Predictable Wireless Agreement under External Radio Interference

    Get PDF
    Wireless low-power transceivers used in sensor networks typically operate in unlicensed frequency bands that are subject to external radio interference caused by devices transmitting at much higher power.communication protocols should therefore be designed to be robust against such interference. A critical building block of many protocols at all layers is agreement on a piece of information among a set of nodes. At the MAC layer, nodes may need to agree on a new time slot or frequency channel, at the application layer nodes may need to agree on handing over a leader role from one node to another. Message loss caused by interference may break agreement in two different ways: none of the nodes uses the new information (time slot, channel, leader) and sticks with the previous assignment, or-even worse-some nodes use the new information and some do not. This may lead to reduced performance or failures. In this paper, we investigate the problem of agreement under external radio interference and point out the limitations of traditional message-based approaches. We propose JAG, a novel protocol that uses jamming instead of message transmissions to make sure that two neighbouring nodes agree, and show that it outperforms message-based approaches in terms of agreement probability, energy consumption, and time-to-completion. We further show that JAG can be used to obtain performance guarantees and meet the requirements of applications with real-time constraints.CONETReSens

    Embracing corruption burstiness: Fast error recovery for ZigBee under wi-Fi interference

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.The ZigBee communication can be easily and severely interfered by Wi-Fi traffic. Error recovery, as an important means for ZigBee to survive Wi-Fi interference, has been extensively studied in recent years. The existing works add upfront redundancy to in-packet blocks for recovering a certain number of random corruptions. Therefore the bursty nature of ZigBee in-packet corruptions under Wi-Fi interference is often considered harmful, since some blocks are full of errors which cannot be recovered and some blocks have no errors but still requiring redundancy. As a result, they often use interleaving to reshape the bursty errors, before applying complex FEC codes to recover the re-shaped random distributed errors. In this paper, we take a different view that burstiness may be helpful. With burstiness, the in-packet corruptions are often consecutive and the requirement for error recovery is reduced as โ€recovering any k consecutive errorsโ€ instead of โ€recovering any random k errorsโ€. This lowered requirement allows us to design far more efficient code than the existing FEC codes. Motivated by this implication, we exploit the corruption burstiness to design a simple yet effective error recovery code using XOR operations (called ZiXOR). ZiXOR uses XOR code and the delay is significantly reduced. More, ZiXOR uses RSSI-hinted approach to detect in packet corruptions without CRC, incurring almost no extra transmission overhead. The testbed evaluation results show that ZiXOR outperforms the state-of-the-art works in terms of the throughput (by 47%) and latency (by 22%)This work was supported by the National Natural Science Foundation of China (No. 61602095 and No. 61472360), the Fundamental Research Funds for the Central Universities (No. ZYGX2016KYQD098 and No. 2016FZA5010), National Key Technology R&D Program (Grant No. 2014BAK15B02), CCFIntel Young Faculty Researcher Program, CCF-Tencent Open Research Fund, China Ministry of Educationโ€”China Mobile Joint Project under Grant No. MCM20150401 and the EU FP7 CLIMBER project under Grant Agreement No. PIRSES-GA- 2012-318939. Wei Dong is the corresponding author

    ๊ฐ„์„ญ ํ™˜๊ฒฝ์—์„œ ์ €์ „๋ ฅ ๋ฌด์„  ์„ผ์„œ ๋„คํŠธ์›Œํ‚น์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 2. ์ด์šฉํ™˜.The demand for commercial deployment of large-scale wireless sensor networks (WSNs) has rapidly been increasing over the past decade. However, conventional WSN technologies may not be feasible for commercial deployment of large-scale WSNs because of their technical flaws, including limited network scalability, susceptibility to co-channel interference and large signaling overhead. In practice, low-power WSNs seriously suffer from interference generated by coexisting radio systems such as IEEE 802.11 wireless local area networks (WLANs). This interference problem seriously hampers commercial deployment of low-power WSNs. Few commercial WSN chips can provide secure and reliable networking performance in practical operation environments. In this dissertation, we consider performance improvement of low-power WSNs in the presence of co-channel interference. We first investigate the effect of co-channel interference on the transmission of low-power WSN signal, and then design a low-power WSN transceiver that can provide stable performance even in the presence of severe co-channel interference, while providing the backward compatibility with IEEE 802.15.4. We also consider the network connectivity in the presence of co-channel interference. The connectivity of low-power WSNs can be improved by transmitting synchronization signal and making channel hand-off in a channel-aware manner. A beacon signal for the network synchronization is repeatedly transmitted in consideration of channel condition and signaling overhead. Moreover, when the channel is severely interfered, all devices in a cluster network make communications by means of temporary channel hopping and then seamlessly make channel hand-off to the best one among the temporary hopping channels. The performance improvement is verified by computer simulation and experiment using IEEE 802.15.4 motes in real operation environments. Finally, we consider the signal transmission in the presence of co-channel interference. The throughput performance of low-power WSN transceivers can be improved by adjusting the transmission rate and the payload size according to the interference condition. We estimate the probability of transmission failure and the data throughput, and then determine the payload size to maximize the throughput performance. It is shown that the transmission time maximizing the normalized throughput is little affected by the transmission rate, but rather by the interference condition. The transmission rate and the transmission time can independently be adjusted in response to the change of channel and interference condition, respectively. The performance improvement is verified by computer simulation.Chapter 1 1 Chapter 2 11 2.1. ZigBee/IEEE 802.15.4-based cluster-tree networks 11 2.2. Performance of IEEE 802.15.4 transceiver 14 Chapter 3 17 3.1. System model 18 3.2. Previous works 21 3.3. Proposed interference management scheme 28 3.4. Performance evaluation 37 Chapter 4 51 4.1. System model 52 4.2. Transmission in the presence of interference 56 4.3. Proposed transmission scheme 60 4.4. Performance evaluation 65 Chapter 5 82 Appendix 85 A. Average synchronization time during frequency hopping 85 B. Derivation of (4.2) 86 References 88 Korean Abstract 97Docto

    ๋ฌด์„ ๋žœ ๋น„๋””์˜ค ๋ฉ€ํ‹ฐ์บ์ŠคํŠธ์˜ ๋ฌธ์ œ ๋ฐœ๊ฒฌ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 8. ์ตœ์„ฑํ˜„.Video multicast, streaming real-time videos via multicast, over wireless local area network (WLAN) has been considered a promising solution to share common venue-specific videos. By virtue of the nature of the wireless broadcast medium, video multicast basically enables scale-free video delivery, i.e., it can deliver a common video with the fixed amount of wireless resource regardless of the number of receivers. However, video multicast has not been widely enjoyed in our lives due to three major challenges: (1) power saving-related problem, (2) low reliability and efficiency, and (3) limited coverage. In this dissertation, we consider three research topics, i.e., (1) identification of practical issues with multicast power saving, (2) physical (PHY) rate and forward erasure correction code (FEC) rate adaptation over a single-hop network, and (3) multi-hop multicast, which deal with the three major challenges, respectively. Firstly, video multicast needs to be reliably delivered to power-saving stations, given that many portable devices are battery-powered. Accordingly, we investigate the impact of multicast power saving, and address two practical issues related with the multicast power saving. From the measurement with several commercial WLAN devices, we observe that many devices are not standard compliant, thus making video multicast performance severely degraded. We categorize such standard incompliant malfunctions that can result in significant packet losses. We also figure out a coexistence problem between video multicast and voice over Internet protocol (VoIP) when video receivers runs in power saving mode (PSM). The standard-compliant power save delivery of multicast deteriorates the VoIP performance in the same WLAN. We analyze the VoIP packet losses due to the coexistence problem, and propose a new power save delivery scheme to resolve the problem. We further implement the proposed scheme with an open source device driver, and our measurement results demonstrate that the proposed scheme significantly enhances the VoIP performance without sacrificing the video multicast performance. Second, multi-PHY rate FEC-applied wireless multicast enables reliable and efficient video multicast with intelligent selection of PHY rate and FEC rate. The optimal PHY/FEC rates depend on the cause of the packet losses. However, previous approaches select the PHY/FEC rates by considering only channel errors even when interference is also a major source of packet losses.We propose InFRA, an interference-aware PHY/FEC rate adaptation framework that (1) infers the cause of the packet losses based on received signal strength indicator (RSSI) and cyclic redundancy check (CRC) error notifications, and (2) determines the PHY/FEC rates based on the cause of packet losses. Our prototype implementation with off-the-shelf chipsets demonstrates that InFRA enhances the multicast delivery under various network scenarios. InFRA enables 2.3x and 1.8x more nodes to achieve a target video packet loss rate with a contention interferer and a hidden interferer, respectively, compared with the state-of-theart PHY/FEC rate adaptation scheme. To the best of our knowledge, InFRA is the first work to take the impact of interference into account for the PHY/FEC rate adaptation. Finally, collaborative relaying that enables selected receiver nodes to relay the received packets from source node to other nodes enhances service coverage, reliability, and efficiency of video multicast. The intelligent selection of sender nodes (source and relays) and their transmission parameters (PHY rate and the number of packets to send) is the key to optimize the performance. We propose EV-CAST, an interference and energy-aware video multicast system using collaborative relays, which entails online network management based on interference-aware link characterization, an algorithm for joint determination of sender nodes and transmission parameters, and polling-based relay protocol. In order to select most appropriate set of the relay nodes, EV-CAST considers interference, battery status, and spatial reuse, as well as other factors accumulated over last decades. Our prototype-based measurement results demonstrate that EV-CAST outperforms the state-of-the-art video multicast schemes. In summary, from Chapter 2 to Chapter 4, the aforementioned three pieces of the research work, i.e., identification of power saving-related practical issues, InFRA for interference-resilient single-hop multicast, and EV-CAST for efficient multi-hop multicast, will be presented, respectively.1 Introduction 1 1.1 Video Multicast over WLAN 1 1.2 Overview of Existing Approaches 4 1.2.1 Multicast Power Saving 4 1.2.2 Reliability and Efficiency Enhancement 4 1.2.3 Coverage Extension 5 1.3 Main Contributions 7 1.3.1 Practical Issues with Multicast Power Saving 7 1.3.2 Interference-aware PHY/FEC Rate Adaptation 8 1.3.3 Energy-aware Multi-hop Multicast 9 1.4 Organization of the Dissertation 10 2 Practical Issues with Multicast Power Saving 12 2.1 Introduction 12 2.2 Multicast & Power Management Operation in IEEE 802.11 14 2.3 Inter-operability Issue 15 2.3.1 Malfunctions of Commercial WLAN Devices 17 2.3.2 Performance Evaluation 20 2.4 Coexistence Problem of Video Multicast and VoIP 21 2.4.1 Problem Statement 21 2.4.2 Problem Identification: A Measurement Study 23 2.4.3 Packet Loss Analysis 27 2.4.4 Proposed Scheme 32 2.4.5 Performance Evaluation 33 2.5 Summary 37 3 InFRA: Interference-Aware PHY/FEC Rate Adaptation for Video Multicast over WLAN 39 3.1 Introduction 39 3.2 Related Work 42 3.2.1 Reliable Multicast Protocol 42 3.2.2 PHY/FEC rate adaptation for multicast service 44 3.2.3 Wireless Video Transmission 45 3.2.4 Wireless Loss Differentiation 46 3.3 Impact of Interference on Multi-rate FEC-applied Multicast 46 3.3.1 Measurement Setup 47 3.3.2 Measurement Results 47 3.4 InFRA: Interference-aware PHY/FEC Rate Adaptation Framework 49 3.4.1 Network Model and Objective 49 3.4.2 Overall Architecture 50 3.4.3 FEC Scheme 52 3.4.4 STA-side Operation 53 3.4.5 AP-side Operation 61 3.4.6 Practical Issues 62 3.5 Performance Evaluation 65 3.5.1 Measurement Setup 66 3.5.2 Small Scale Evaluation 67 3.5.3 Large Scale Evaluation 70 3.6 Summary 74 4 EV-CAST: Interference and Energy-aware Video Multicast Exploiting Collaborative Relays 75 4.1 Introduction 75 4.2 Factors for Sender Node and Transmission Parameter Selection 78 4.3 EV-CAST: Interference and Energy-aware Multicast Exploiting Collaborative Relays 80 4.3.1 Network Model and Objective 80 4.3.2 Overview 81 4.3.3 Network Management 81 4.3.4 Interference and Energy-aware Sender Nodes and Transmission Parameter Selection (INFER) Algorithm 87 4.3.5 Assignment, Polling, and Re-selection of Relays 93 4.3.6 Discussion 95 4.4 Evaluation 96 4.4.1 Measurement Setup 96 4.4.2 Micro-benchmark 98 4.4.3 Macro-benchmark 103 4.5 Related Work 105 4.5.1 Multicast Opportunistic Routing 105 4.5.2 Multicast over WLAN 106 4.6 Summary 106 5 Conclusion 108 5.1 Research Contributions 108 5.2 Future Research Directions 109 Abstract (In Korean) 121Docto
    corecore