58 research outputs found

    DESIGN OF LOW-POWER LOW-VOLTAGE SUCCESSIVE-APPROXIMATION ANALOG-TO-DIGITAL CONVERTERS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Placement techniques in automatic analog layout generation.

    Get PDF
    模擬電路版圖設計是一個非常複雜和耗時的過程。通常情況下,設計一個高質量的模擬電路版圖需要電子工程師花費幾週甚至更長的時間。模擬電路的電子特性對於電路的細節設計非常敏感,因此,減小電路中的失配現象成為模擬電路版圖設計中一個非常重要的課題。在本論文中,我們提出了一系列實際的佈局技術,來降低電路的失配並提高繞線的成功率。我們可以非常容易的將這些技術整合至一個完整的模擬佈局和佈線的工具中,此工具可以在幾分鐘內生成一個完整的、高質量的模擬電路版圖。同時,該版圖能夠通過設計規則驗證(DRC)和佈局與電路設計一致性檢測(LVS)。模擬結果顯示,它的電路性能能夠與達到甚至超出手工設計的電路版圖。我們的論文主要作出了以下兩方面貢獻。1. 平衡佈局:對於模擬電路中的電子元器件,如電容、電阻、晶體管等進行一維和二維的平衡佈局。電子工程師可以根據不同的設計需求,通過選擇不同的佈局參數來改變電路的佈局排列方式。同時,在模擬退火算法中,我們著重考慮了器件間的匹配以生成高質量的模擬電路佈局。2. 消除阻塞的電路佈局:在模擬電路設計中,我們期望盡量避免在電子元器件密度較高的區域進行繞線。因此,我們需要在電路佈局設計過程中在電子元器件間留有足夠的佈線空間。為達到這個目標,我們提出了更精確的阻塞估計方法和版圖拓展方法,使其能夠生成一個高質量、高繞線成功率的電路佈局結果。為了驗證生成的電路版圖的質量和匹配特性,我們利用蒙地卡羅方法來模擬電路中的製程偏差和失配特性。實驗結果顯示,我們的工具可以在幾分鐘內自動生成高質量的電路版圖,與人工設計通常需要花費數日至數週相比,設計時間大幅縮短,同時電路的匹配特性得以提升。Analog layout design is a complicated and time-consuming process. It often takes couples of weeks for the layout designers to generate a qualied layout. The elec-trical properties of analog circuit are very sensitive to the layout details, and mis-match reduction becomes a very important issue in analog layout design.In this thesis, we will present some practical placement techniques to reduce mismatch and improve routability. These techniques can be easily integrated into a complete analog placement and routing ow, which can produce in just a few min-utes a complete and high quality layout for analog circuits that passes the design rule check, layout-schematic check and with performance veried by simulations. The contents of this thesis will focus on the following two issues:(1) Symmetry Placement: We consider symmetric placement of transistors, re-sistors and capacitors, which includes 1-D symmetry and 2-D symmetry (or called common centroid). Different symmetric placement congurations, derived accord-ing to the practical needs in analog design, are considered for the matching devices in the simulated annealing engine of the placer in order to generate a placement with high quality.(2) Congestion-driven Placement: In analog design, wires are preferred not be routed over active devices, so we need to leave enough spaces properly for routing between the devices during the placement process. To achieve this, we explore congestion estimation and layout expansion during the placement step in order to produce a good and routable solution.In order to verify the quality of the generated layouts in terms of mismatch, we will run Monte Carlo simulations on them with variations in process and mismatch. Experiments show that our methodology can generate high quality layout automatically in just a few minutes while manual design may take couples of days.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Cui, Guxin.Thesis (M.Phil.)--Chinese University of Hong Kong, 2012.Abstracts also in Chinese.Abstract --- p.iAcknowledgement --- p.ivChapter 1 --- Introduction --- p.1Chapter 1.1 --- Background --- p.1Chapter 1.2 --- Physical Design --- p.2Chapter 1.3 --- Analog Placement --- p.4Chapter 1.3.1 --- Methodologies of Analog Placement --- p.4Chapter 1.3.2 --- Symmetry Constraints of Analog Placement --- p.5Chapter 1.4 --- Process Variation and Layout Mismatch --- p.6Chapter 1.4.1 --- Process Variation --- p.6Chapter 1.4.2 --- Random Mismatch and Systematic Mismatch --- p.7Chapter 1.5 --- Monte Carlo Simulation Procedure --- p.9Chapter 1.6 --- Problem Formulation of Placement --- p.9Chapter 1.7 --- Motivations --- p.10Chapter 1.8 --- Contributions --- p.11Chapter 1.9 --- Thesis Organization --- p.12Chapter 2 --- Literature Review on Analog Placement --- p.13Chapter 2.1 --- Topological Representations Handling Symmetry Constraints --- p.14Chapter 2.1.1 --- Symmetry within the Sequence-Pair (SP) Representation . --- p.14Chapter 2.1.2 --- Block Placement with Symmetry Constraints Based on the O-Tree Non-Slicing Representation --- p.16Chapter 2.1.3 --- Placement with Symmetry Constraints for Analog Layout Design Using TCG-S --- p.17Chapter 2.1.4 --- Modeling Non-Slicing Floorplans with Binary Trees --- p.19Chapter 2.1.5 --- Segment Trees Handle Symmetry Constraints --- p.20Chapter 2.1.6 --- Center-based Corner Block List --- p.22Chapter 2.2 --- Other Works on Analog Placement Constraints --- p.25Chapter 2.2.1 --- Deterministic Analog Placement with Hierarchically Bounded Enumeration and Enhanced Shape Functions --- p.25Chapter 2.2.2 --- Analog Placement Based on Symmetry-Island Formulation --- p.27Chapter 2.2.3 --- Heterogeneous B*-Trees for Analog Placement with Symmetry and Regularity Considerations --- p.28Chapter 2.3 --- Summary --- p.31Chapter 3 --- Common-Centroid Analog Placement --- p.32Chapter 3.1 --- Problem Formulation --- p.33Chapter 3.2 --- Overview of Our Work --- p.35Chapter 3.3 --- Handling Common Centroid Constraints in Different Devices --- p.37Chapter 3.3.1 --- Common Centroid Placement of Resistors --- p.38Chapter 3.3.2 --- Common Centroid Placement of Transistors --- p.44Chapter 3.3.3 --- Common Centroid Placement of Capacitors --- p.47Chapter 3.4 --- Congestion Estimation and Layout Expansion --- p.50Chapter 3.4.1 --- Blockage-Aware Congestion Estimation --- p.51Chapter 3.4.2 --- Layout Expansion --- p.56Chapter 3.5 --- Simulated Annealing --- p.59Chapter 3.5.1 --- Types of Moves --- p.59Chapter 3.5.2 --- Handling Devices in Symmetry Group --- p.59Chapter 3.5.3 --- Cost Function of Simulated Annealing --- p.61Chapter 3.6 --- Summary --- p.62Chapter 4 --- Experimental Results and Monte-Carlo Simulations --- p.64Chapter 4.1 --- Study of Congestion-driven Layout Expansion --- p.64Chapter 4.2 --- Monte Carlo Simulations --- p.70Chapter 4.2.1 --- Devices Modeling --- p.70Chapter 4.2.2 --- Study of Layouts with and without Symmetry Groups --- p.71Chapter 4.2.3 --- Study of Layouts with and without Self-Symmetry Devices --- p.73Chapter 4.2.4 --- Study of Layouts with Different Number of Symmetry Groups --- p.74Chapter 4.2.5 --- Study of Large and Small Size Capacitors Array --- p.76Chapter 4.3 --- Comparison of Automatic and Manual Layouts using Monte Carlo Simulations --- p.79Chapter 5 --- Conclusion --- p.86Bibliography --- p.8

    Design of a Programmable Passive SoC for Biomedical Applications Using RFID ISO 15693/NFC5 Interface

    Get PDF
    Low power, low cost inductively powered passive biotelemetry system involving fully customized RFID/NFC interface base SoC has gained popularity in the last decades. However, most of the SoCs developed are application specific and lacks either on-chip computational or sensor readout capability. In this paper, we present design details of a programmable passive SoC in compliance with ISO 15693/NFC5 standard for biomedical applications. The integrated system consists of a 32-bit microcontroller, a sensor readout circuit, a 12-bit SAR type ADC, 16 kB RAM, 16 kB ROM and other digital peripherals. The design is implemented in a 0.18 μ m CMOS technology and used a die area of 1.52 mm × 3.24 mm. The simulated maximum power consumption of the analog block is 592 μ W. The number of external components required by the SoC is limited to an external memory device, sensors, antenna and some passive components. The external memory device contains the application specific firmware. Based on the application, the firmware can be modified accordingly. The SoC design is suitable for medical implants to measure physiological parameters like temperature, pressure or ECG. As an application example, the authors have proposed a bioimplant to measure arterial blood pressure for patients suffering from Peripheral Artery Disease (PAD)

    Practical Techniques for Improving Performance and Evaluating Security on Circuit Designs

    Get PDF
    As the modern semiconductor technology approaches to nanometer era, integrated circuits (ICs) are facing more and more challenges in meeting performance demand and security. With the expansion of markets in mobile and consumer electronics, the increasing demands require much faster delivery of reliable and secure IC products. In order to improve the performance and evaluate the security of emerging circuits, we present three practical techniques on approximate computing, split manufacturing and analog layout automation. Approximate computing is a promising approach for low-power IC design. Although a few accuracy-configurable adder (ACA) designs have been developed in the past, these designs tend to incur large area overheads as they rely on either redundant computing or complicated carry prediction. We investigate a simple ACA design that contains no redundancy or error detection/correction circuitry and uses very simple carry prediction. The simulation results show that our design dominates the latest previous work on accuracy-delay-power tradeoff while using 39% less area. One variant of this design provides finer-grained and larger tunability than that of the previous works. Moreover, we propose a delay-adaptive self-configuration technique to further improve the accuracy-delay-power tradeoff. Split manufacturing prevents attacks from an untrusted foundry. The untrusted foundry has front-end-of-line (FEOL) layout and the original circuit netlist and attempts to identify critical components on the layout for Trojan insertion. Although defense methods for this scenario have been developed, the corresponding attack technique is not well explored. Hence, the defense methods are mostly evaluated with the k-security metric without actual attacks. We develop a new attack technique based on structural pattern matching. Experimental comparison with existing attack shows that the new attack technique achieves about the same success rate with much faster speed for cases without the k-security defense, and has a much better success rate at the same runtime for cases with the k-security defense. The results offer an alternative and practical interpretation for k-security in split manufacturing. Analog layout automation is still far behind its digital counterpart. We develop the layout automation framework for analog/mixed-signal ICs. A hierarchical layout synthesis flow which works in bottom-up manner is presented. To ensure the qualified layouts for better circuit performance, we use the constraint-driven placement and routing methodology which employs the expert knowledge via design constraints. The constraint-driven placement uses simulated annealing process to find the optimal solution. The packing represented by sequence pairs and constraint graphs can simultaneously handle different kinds of placement constraints. The constraint-driven routing consists of two stages, integer linear programming (ILP) based global routing and sequential detailed routing. The experiment results demonstrate that our flow can handle complicated hierarchical designs with multiple design constraints. Furthermore, the placement performance can be further improved by using mixed-size block placement which works on large blocks in priority

    Practical Techniques for Improving Performance and Evaluating Security on Circuit Designs

    Get PDF
    As the modern semiconductor technology approaches to nanometer era, integrated circuits (ICs) are facing more and more challenges in meeting performance demand and security. With the expansion of markets in mobile and consumer electronics, the increasing demands require much faster delivery of reliable and secure IC products. In order to improve the performance and evaluate the security of emerging circuits, we present three practical techniques on approximate computing, split manufacturing and analog layout automation. Approximate computing is a promising approach for low-power IC design. Although a few accuracy-configurable adder (ACA) designs have been developed in the past, these designs tend to incur large area overheads as they rely on either redundant computing or complicated carry prediction. We investigate a simple ACA design that contains no redundancy or error detection/correction circuitry and uses very simple carry prediction. The simulation results show that our design dominates the latest previous work on accuracy-delay-power tradeoff while using 39% less area. One variant of this design provides finer-grained and larger tunability than that of the previous works. Moreover, we propose a delay-adaptive self-configuration technique to further improve the accuracy-delay-power tradeoff. Split manufacturing prevents attacks from an untrusted foundry. The untrusted foundry has front-end-of-line (FEOL) layout and the original circuit netlist and attempts to identify critical components on the layout for Trojan insertion. Although defense methods for this scenario have been developed, the corresponding attack technique is not well explored. Hence, the defense methods are mostly evaluated with the k-security metric without actual attacks. We develop a new attack technique based on structural pattern matching. Experimental comparison with existing attack shows that the new attack technique achieves about the same success rate with much faster speed for cases without the k-security defense, and has a much better success rate at the same runtime for cases with the k-security defense. The results offer an alternative and practical interpretation for k-security in split manufacturing. Analog layout automation is still far behind its digital counterpart. We develop the layout automation framework for analog/mixed-signal ICs. A hierarchical layout synthesis flow which works in bottom-up manner is presented. To ensure the qualified layouts for better circuit performance, we use the constraint-driven placement and routing methodology which employs the expert knowledge via design constraints. The constraint-driven placement uses simulated annealing process to find the optimal solution. The packing represented by sequence pairs and constraint graphs can simultaneously handle different kinds of placement constraints. The constraint-driven routing consists of two stages, integer linear programming (ILP) based global routing and sequential detailed routing. The experiment results demonstrate that our flow can handle complicated hierarchical designs with multiple design constraints. Furthermore, the placement performance can be further improved by using mixed-size block placement which works on large blocks in priority

    Energy-efficient analog-to-digital conversion for ultra-wideband radio

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 207-222).In energy constrained signal processing and communication systems, a focus on the analog or digital circuits in isolation cannot achieve the minimum power consumption. Furthermore, in advanced technologies with significant variation, yield is traditionally achieved only through conservative design and a sacrifice of energy efficiency. In this thesis, these limitations are addressed with both a comprehensive mixed-signal design methodology and new circuits and architectures, as presented in the context of an analog-to-digital converter (ADC) for ultra-wideband (UWB) radio. UWB is an emerging technology capable of high-data-rate wireless communication and precise locationing, and it requires high-speed (>500MS/s), low-resolution ADCs. The successive approximation register (SAR) topology exhibits significantly reduced complexity compared to the traditional flash architecture. Three time-interleaved SAR ADCs have been implemented. At the mixed-signal optimum energy point, parallelism and reduced voltage supplies provide more than 3x energy savings. Custom control logic, a new capacitive DAC, and a hierarchical sampling network enable the high-speed operation. Finally, only a small amount of redundancy, with negligible power penalty, dramatically improves the yield of the highly parallel ADC in deep sub-micron CMOS.by Brian P. Ginsburg.Ph.D

    Biomedical Engineering

    Get PDF
    Biomedical engineering is currently relatively wide scientific area which has been constantly bringing innovations with an objective to support and improve all areas of medicine such as therapy, diagnostics and rehabilitation. It holds a strong position also in natural and biological sciences. In the terms of application, biomedical engineering is present at almost all technical universities where some of them are targeted for the research and development in this area. The presented book brings chosen outputs and results of research and development tasks, often supported by important world or European framework programs or grant agencies. The knowledge and findings from the area of biomaterials, bioelectronics, bioinformatics, biomedical devices and tools or computer support in the processes of diagnostics and therapy are defined in a way that they bring both basic information to a reader and also specific outputs with a possible further use in research and development
    corecore