152 research outputs found

    Recent Development of Sb-based Phototransistors in the 0.9- to 2.2-microns Wavelength Range for Applications to Laser Remote Sensing

    Get PDF
    We have investigated commercially available photodiodes and also recent developed Sb-based phototransistors in order to compare their performances for applications to laser remote sensing. A custom-designed phototransistor in the 0.9- to 2.2-microns wavelength range has been developed at AstroPower and characterized at NASA Langley's Detector Characterization Laboratory. The phototransistor's performance greatly exceeds the previously reported results at this wavelength range in the literature. The detector testing included spectral response, dark current and noise measurements. Spectral response measurements were carried out to determine the responsivity at 2-microns wavelength at different bias voltages with fixed temperature; and different temperatures with fixed bias voltage. Current versus voltage characteristics were also recorded at different temperatures. Results show high responsivity of 2650 A/W corresponding to an internal gain of three orders of magnitude, and high detectivity (D*) of 3.9x10(exp 11) cm.Hz(exp 1/2)/W that is equivalent to a noise-equivalent-power of 4.6x10(exp -14) W/Hz(exp 1/2) (-4.0 V @ -20 C) with a light collecting area diameter of 200-microns. It appears that this recently developed 2-micron phototransistor's performances such as responsivity, detectivity, and gain are improved significantly as compared to the previously published APD and SAM APD using similar materials. These detectors are considered as phototransistors based-on their structures and performance characteristics and may have great potential for high sensitivity differential absorption lidar (DIAL) measurements of carbon dioxide and water vapor at 2.05-microns and 1.9-microns, respectively

    CMOS IMAGE SENSORS FOR LAB-ON-A-CHIP MICROSYSTEM DESIGN

    Get PDF
    The work described herein serves as a foundation for the development of CMOS imaging in lab-on-a-chip microsystems. Lab-on-a-chip (LOC) systems attempt to emulate the functionality of a cell biology lab by incorporating multiple sensing modalidites into a single microscale system. LOC are applicable to drug development, implantable sensors, cell-based bio-chemical detectors and radiation detectors. The common theme across these systems is achieving performance under severe resource constraints including noise, bandwidth, power and size. The contributions of this work are in the areas of two core lab-on-a-chip imaging functions: object detection and optical measurements

    Analogue VLSI for temporal frequency analysis of visual data

    Get PDF

    Study of spin-scan imaging for outer planets missions

    Get PDF
    The constraints that are imposed on the Outer Planet Missions (OPM) imager design are of critical importance. Imager system modeling analyses define important parameters and systematic means for trade-offs applied to specific Jupiter orbiter missions. Possible image sequence plans for Jupiter missions are discussed in detail. Considered is a series of orbits that allow repeated near encounters with three of the Jovian satellites. The data handling involved in the image processing is discussed, and it is shown that only minimal processing is required for the majority of images for a Jupiter orbiter mission

    Photo-FETs: phototransistors enabled by 2D and 0D nanomaterials

    Get PDF
    The large diversity of applications in our daily lives that rely on photodetection technology requires photodetectors with distinct properties. The choice of an adequate photodetecting system depends on its application, where aspects such as spectral selectivity, speed, and sensitivity play a critical role. High-sensitivity photodetection covering a large spectral range from the UV to IR is dominated by photodiodes. To overcome existing limitations in sensitivity and cost of state-of-the-art systems, new device architectures and material systems are needed with low-cost fabrication and high performance. Low-dimensional nanomaterials (0D, 1D, 2D) are promising candidates with many unique electrical and optical properties and additional functionalities such as flexibility and transparency. In this Perspective, the physical mechanism of photo-FETs (field-effect transistors) is described and recent advances in the field of low-dimensional photo-FETs and hybrids thereof are discussed. Several requirements for the channel material are addressed in view of the photon absorption and carrier transport process, and a fundamental trade-off between them is pointed out for single-material-based devices. We further clarify how hybrid devices, consisting of an ultrathin channel sensitized with strongly absorbing semiconductors, can circumvent these limitations and lead to a new generation of highly sensitive photodetectors. Recent advances in the development of sensitized low-dimensional photo-FETs are discussed, and several promising future directions for their application in high-sensitivity photodetection are proposed.Peer ReviewedPostprint (author's final draft

    Emerging Artificial Two-Dimensional van der Waals Heterostructures for Optoelectronics

    Get PDF
    Two-dimensional (2D) materials are attracting explosive attention for their intriguing potential in versatile applications, covering optoelectronics, electronics, sensors, etc. An attractive merit of 2D materials is their viable van der Waals (VdW) stacking in artificial sequence, thus forming different atomic arrangements in vertical direction and enabling unprecedented tailoring of material properties and device application. In this chapter, we summarize the latest progress in assembling VdW heterostructures for optoelectronic applications by beginning with the basic pick-transfer method for assembling 2D materials and then discussing the different combination of 2D materials of semiconductor, conductor, and insulator properties for various optoelectronic devices, e.g., photodiode, phototransistors, optical memories, etc

    Recent progress of photodetector based on carbon nanotube film and application in optoelectronic integration

    Get PDF
    Due to its remarkable electrical and optical capabilities, optoelectronic devices based on the semiconducting single-walled carbon nanotube (s-SWCNT) have been studied extensively in the last two decades. First, s-SWCNT is a direct bandgap semiconductor with a high infrared absorption coefficient and high electron/hole mobility. In addition, as a typical one-dimensional material, there is no lattice mismatch between s-SWCNT and any substrates. Another advantage is that the optoelectronic devices of s-SWCNT can be processed at low temperatures. s-SWCNT has intriguing potential and applications in solar cells, light-emitting diodes (LEDs), photodetectors, and three-dimensional (3D) optoelectronic integration. In recent years, along with the advancement of solution purification technology, the high-purity s-SWCNTs film has laid the foundation for constructing large-area, homogenous, and high-performance optoelectronic devices. In this review, optoelectronic devices based on s-SWCNTs film and related topics are reviewed, including the preparation of high purity s-SWCNTs film, the progress of photodetectors based on the s-SWCNTs film, and challenges of s-SWCNTs film photodetectors

    Miniaturized Silicon Photodetectors

    Get PDF
    Silicon (Si) technologies provide an excellent platform for the design of microsystems where photonic and microelectronic functionalities are monolithically integrated on the same substrate. In recent years, a variety of passive and active Si photonic devices have been developed, and among them, photodetectors have attracted particular interest from the scientific community. Si photodiodes are typically designed to operate at visible wavelengths, but, unfortunately, their employment in the infrared (IR) range is limited due to the neglectable Si absorption over 1100 nm, even though the use of germanium (Ge) grown on Si has historically allowed operations to be extended up to 1550 nm. In recent years, significant progress has been achieved both by improving the performance of Si-based photodetectors in the visible range and by extending their operation to infrared wavelengths. Near-infrared (NIR) SiGe photodetectors have been demonstrated to have a “zero change” CMOS process flow, while the investigation of new effects and structures has shown that an all-Si approach could be a viable option to construct devices comparable with Ge technology. In addition, the capability to integrate new emerging 2D and 3D materials with Si, together with the capability of manufacturing devices at the nanometric scale, has led to the development of new device families with unexpected performance. Accordingly, this Special Issue of Micromachines seeks to showcase research papers, short communications, and review articles that show the most recent advances in the field of silicon photodetectors and their respective applications
    corecore