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Abstract 

When viewed with an electronic imager, any variation in light intensity over time can provide 

valuable information regarding the nature of the object or light source causing the intensity 

change. By estimating the frequency of such light intensity variations, temporal frequencies 

can be extracted from the visual data, which may prove useful in a variety of applications. 

For instance, certain objects exhibit unique temporal frequencies, which could facilitate iden-

tification or classification. Other potential applications include remote, early failure detection 

for rotating machinery, as well as the possible detection of cancerous breasts using infra-red 

imaging techniques. 

The aim of the research reported in this thesis is the development of a CMOS image-processor, 

capable of extracting such temporal frequencies from any scene it is exposed to. In addition to 

finding the fundamental frequency, the sensor aims to extract the relative strength of upto the 

first four harmonics, producing a Fourier style decomposition of the incident light intensity into 

a temporal frequency signature. 

A heavy emphasis was placed on low power operation, leading to an investigation of analogue 

signal processing techniques with transistors biased in the subthreshold region of operation. 

The parallel processing advantages of combining light sensitive elements with signal processing 

elements in each pixel were also investigated, resulting in a system incorporating focal-plane 

computation. 

Software simulations of various novel system level algorithms are reported, with the successful 

approach used to create fundamental frequency maps of test data. The approach was also 

simulated to prove its robustness to noise commonly found in CMOS imager implementations. 

Circuits are presented which accurately extract the fundamental frequency of variations in light 

intensity, while benefiting from the low power consumption of subthreshold analogue circuitry. 

A novel algorithm which places a band pass filter onto the fundamental frequency of any incid-

ent light intensity with an accuracy of 3 % is also presented. The system can tune from 20 Hz 

to 10 kHz at a maximum rate of 9 kHz/s, and can be considered the first step in the creation of 

a single-chip pseudo-Fourier light intensity processing unit. 
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Chapter 1 
Introduction 

1.1 Introduction 

The advent of electronic vision systems has recently produced a rival for traditional optical 

camera systems in the form of digital photography. The ability to capture images digitally and 

then store them using on-board memory has revolutionised the consumer photography market. 

However, another advantage of electronic imaging is the ability to process the images dynamic-

ally using signal processing techniques. This image processing ability allows signal processing 

algorithms to be integrated along with the image capturing hardware, producing dedicated im-

age processors. The aim of the research reported in this thesis is the design of a new type of 

image processor. Instead of capturing image data in the form of a static image or photograph, 

the idea is to analyse any temporal frequencies present in the scene. Temporal frequencies refer 

to the time domain variation in pixel intensity, possibly caused by the presence of an object. As 

an example of a temporal frequency, consider figure 1.1. The diagram contains four consecut-

ive frames of an image sequence depicting a rotating fan blade. Also included is the intensity 

change versus time for a single pixel from the image sequence as highlighted in red. As the 

blade appears and disappears from the selected pixel, the intensity increases and decreases ac-

cordingly, producing a temporal frequency that corresponds to the rotational frequency of the 

fan. The function of the image processor described in this thesis is to ascertain not only the fun-

damental frequency of such temporal variations, but the relative strength of up to the first four 

harmonics. Effectively, each pixel in the two dimensional image processor array should per-

form a Fourier style decomposition of the incident light intensity into its constituent frequency 

components. For the purposes of this thesis, such a Fourier decomposition will be referred to 

as afrequency signature. 

1.2 Motivation 

The main emphasis for the research reported in this thesis stemmed from a collaboration with 

QinetiQ UK Ltd, formerly DERA. While the final applications are classified, research per- 
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Figure 1.1: Temporal Frequency: Four consecutive data frames and the corresponding time 
domain intensity variation from the highlighted pixel location. 

formed by QinetiQ pointed towards the use of temporal frequency signatures for the detection 

and classification of objects present in a scene. As such, QinetiQ provided financial assistance 

to investigate methods of developing a system capable of extracting frequency signatures from 

visual data. 

The sponsor's application for the system involved the extraction of frequency signatures for 

the detection and classification of objects within the field of vision. As depicted in figure 

1. 1, the fundamental frequency of an object can be calculated from the intensity variation. 

However, if two objects share similar fundamental frequencies then more detail is required 

to distinguish between them. For this reason, the frequency signature of the object must be 
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extracted. As an example, consider the three screen-shots depicted in figure 1.2. Each screen-

shot shows the time and frequency domain representations from the output of single logarithmic 

photocircuit, designed as part of this research. Such a circuit converts incident light intensity 

into a corresponding voltage signal. The pixel was exposed to a near JR light emitting diode 

controlled by a function generator, allowing different signals to modulate the intensity of the 

illumination. It is clear from figure 1.2 that despite having similar fundamental frequencies 

of 100 Hz, the sine wave, square wave and sawtooth modulating signals can be distinguished 

between by analysing the frequency domain representations. Finding only the fundamental 

frequency would not provide sufficient information to tell the three modulating signals apart. 

However, a Fourier decomposition of the intensity variation highlights the differences clearly. 

As such, if the three different modulating signals represent different objects then it is clear 

that extracting the underlying frequency signature aids successful discrimination, despite the 

similarity in fundamental frequency. 

As a more practically relevant example, consider figure 1.3 which contains individual frames 

from two different image sequences. Figure 1.3(a) depicts a fan while (b) shows a propeller 

plane with two engines. In each data sequence, two pixels were selected and the variation in 

intensity transformed into the frequency domain using a software-based fast Fourier transform. 

The pixels were selected on the basis that they experience a temporal frequency of interest and 

are highlighted with red and green blocks in figure 1.3(a) and (b). The frequency domain rep-

resentation of the intensity variation for the fan's red and green pixels can be seen in figure 1.3(c) 

and (e) respectively. Similarly, those for the propeller plane's red and green pixels can be seen 

in figure 1.3(d) and (f). It is clear that the same object produces the same underlying frequency 

content, no matter which pixel is analysed. The two pixels corresponding to the fan data se-

quence show very similar frequency signatures, while the same is true for the propeller plane 

sequence. The sponsor company asserts that by analysing any frequency signatures present in a 

scene, it is possible to ascertain which objects are producing them. As such, it is the extraction 

of these underlying frequency signatures that is the ultimate aim for the system described in 

this thesis. 

In addition to the detection and classification of objects in the field of vision, other applications 

for such an image processor include the potential detection of cancerous breasts. A recent paper 

by Anbar et al[l], investigated the use of dynamic area telethermometry for the objective dia-

gnosis of breast cancer. The technique involves computing the fast Fourier transform (FFT) of 
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time series of the average temperatures of areas of the breast. One of the effects of a cancerous 

tumour is to produce nitric oxide (NO), which among other things causes excessive widening 

of the blood vessels in the region. Under normal conditions, blood flow is modulated by neur-

ohumoral control which produces temporally varying picornolar concentrations of NO inside 

blood vessels[l]. Vascular tone is also modulated by hydrodynamic cardiogenic pulses. The 

two effects when combined produce a frequency spectrum of blood flow in the healthy breast in 

the range of low niHz to >10 Hz. The presence of excess concentrations of NO caused by the 

formation of a cancerous tumour causes blood vessels to dilate, thus stopping their response to 

neurohumoral modulation and effectively changing the frequency response of the blood flow. 

The effect of these changes can be quantitatively assessed by dynamic infrared imaging, with 

the results converted to the frequency domain for analysis. The research reported the use of 

a technique termed digital area telethermometry (DAT), basically a series of infra-red images 

taken at a frequency of 100 images per second to avoid aliasing at the frequencies of interest. 

When sampling signals, the frequency content of the signal is present at its original location 

in the frequency domain, but also repeats at integer multiples of the sampling frequency. If 

the sampling frequency is too close to the maximum frequency present in the original signal, 

the 'copy' of its frequency response may fold-down into its frequency spectrum, violating the 

integrity of the signal. This is termed aliasing, and can be removed by sampling according to 

Nyquist's criterion, at no less than twice the largest frequency present in the original signal[2]. 

The time domain signals were then converted to the frequency domain using a computer based 

FFT. The sensor described in this thesis operates in the visible light spectrum, yet it could be 

attached to an infra-red detector array using flip chip bonding techniques[3]. The sensor would 

then accept signals corresponding to the infra-red data it is exposed to, before performing the 

frequency signature extraction. Anbar et al[1] suggest that their analysis techniques provide 

impressive sensitivity and specificity regarding the diagnosis of breast cancer. The authors 

claim that the technique could be a forerunner of 21st century medical diagnostic devices, 

when data is remotely sensed before being analysed by computers. The sensor described in this 

thesis could be integrated with an JR detector to produce a step in this direction, with a real 

time analysis of the frequency spectrum of blood flow in the breast. 

Another potential application for such an image-processor include non-invasive fault analysis 

for rotating machinery, where the harmonic content conveys the condition of the appliance. 

Although no research has been performed on this subject, analysing the harmonic frequency 
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content of a rotating machine may give some insight into the presence or future likelihood of 

a mechanical failure. Current techniques for fault analysis include monitoring the frequency 

response of vibrations[4, 5]. 

1.3 Implementation Issues 

While not providing a detailed list of specifications, the sponsor company had several general 

design criterion which served to shape the development of the research described in this thesis. 

An emphasis was placed on a low power implementation, with the proposed system being able 

to operate for reasonable periods of time from a battery supply. A compact, low area solution 

was also favoured, with a low area implementation having a positive effect on overall economic 

cost. Another important consideration was the desire for real time processing from the system. 

The time delay between the appearance of an object and the capturing of its frequency signa-

ture had to be kept to a minimum. In addition, the system had to be able to operate at low 

frequency, due to the nature of the objects being observed with the sensor. A figure of between 

1 Hz and 10 Hz was specified as the minimum range of fundamental frequencies that had to be 

detectable, with 10 kHz the maximum. For all these reasons, a decision to concentrate on hard-

ware realisation of both the image sensor and the signal processing was made by the sponsoring 

company. 

The next two sections detail the system and circuit level design decisions that were made and 

the reasoning behind those decisions. Although they are separated here, in reality both were 

considered simultaneously to produce the simplest and most elegant solution to the problem. 

1.3.1 System Level Design Decisions 

Essentially given a free reign at both system and circuit level, the initial phase of the research 

described in this thesis was to identify system level algorithms to perform the necessary func-

tion while still being practically realisable in hardware. An obvious solution to the problem 

involves the coupling of a commercially available image sensor with some form of digital sig-

nal processing circuitry. Signals from each pixel would be sampled and stored in memory 

before being multiplexed in time to the DSP block. Such a brute-strength approach may pro-

duce excellent results, but will be both area and power intensive, as well as failing the real-time 

processing requirement. An alternative approach to hardware based image processing that has 

VA 



Introduction 

attracted recent academic interest involves integrating imaging and signal processing circuitry 

on the same substrate. From an engineering view-point, the integration of light sensitive ele-

ments with dedicated processing may provide elegant solutions to practical problems. Such 

focal-plane processing techniques employ pixels that include not only structures to convert the 

incident illumination to an electrical signal, but processors to enhance/suppress certain ele-

ments of that signal. Contrasting this with a standard engineering approach, where there is no 

interaction between image capture (CMOS camera) and image processing (DSP/PC), suggests 

a number of possible advantages for the implementation of such smart sensors[6]: 

Speed: the ability to process in parallel and remove unwanted data at the pixel level 

reduces processing and communication bottlenecks 

Size: focal plane processing may allow for elegant, single-chip solutions to image pro-

cessing problems, where the alternative involves separate, bulky, power intensive pro-

cessing steps 

Power consumption: Due to the large number of pixel level processors, many of the focal 

plane processors reported in the literature employ circuits biased in the weak inversion 

region of operation. This allows for extremely small bias currents which in turn manifests 

as low power consumption 

For the application and design criterion of the research described in this thesis, a focal plane 

processing technique seems particularly relevant. By incorporating some signal processing at 

the pixel level, the potential advantages of a focal plane approach are closely matched to the 

needs of the project. 

Having decided on implementing some form of pixel level pre-processing, development of a 

novel algorithm to extract the temporal frequency signature could begin. Several alternatives 

were developed and simulated in software, the details of which can be found in chapter three. 

All algorithms were conceived with circuit level realisations for each processing step, to allow 

simple conversion into hardware. The chosen algorithm relied on first finding the fundamental 

frequency of the intensity variation using pixel level processing. This information is then used 

to place tunable band pass filters at integer multiples of the fundamental, creating a pseudo 

Fourier decomposition of the incident light intensity. The process is depicted pictorially in 

figure 1.4. The output from each of the band pass filters gives some marker of the energy 

within that particular frequency band. 

M. 
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Figure 1.4: Pseudo Fourier Processor: The adopted algorithm first finds the fundamental fre-
quency of any intensity variation. A tunable band pass filter is then placed at this 
frequency and the first four integer multiples, extracting the frequency signature. 

1.3.2 Circuit Level Design Decisions 

The adopted algorithm was selected on the strength of its performance when compared to the 

alternatives, the details of which can be found in chapter three. However, another advantage 

was the ease with which each processing step could be translated to a circuit level equivalent. 

However, there were still a number of circuit level decisions to be made, based on both the 

original criteria specified by QinetiQ and the requirements of the algorithm. 

Focal plane processing techniques require that the light sensitive elements are integrated on the 

same substrate as subsequent signal processing circuitry. The two dominant types of electronic 

imager systems are charge coupled device (CCD) and CMOS. Vision systems implemented in 

CMOS technology have created recent interest both industrially and academically[7, 8]. Des-

pite the maturity of CCD imagers, an advantage of CMOS in this application is the ability to 

integrate sensors and processing on the same silicon substrate. Vision sensors implemented in 

CMOS processes can also be cheaper than CCD equivalents, and can offer advantages in power 

consumption [7]. 

The first decision to be made was the choice between an analogue or digital CMOS imple-

mentation. With focal plane processing, the area available for each pixel processor has to be 

minimised to allow practically useful resolutions. A digital implementation would require ana- 
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logue to digital converters, either in each pixel or at the side of the array. Placing a sufficiently 

accurate data converter in each pixel while producing a realistically sized pixel cell seemed in-

feasible. A single ADC for each column or row of the imager may be more realistic, but would 

require sampling of the signals from the pixel array, possibly producing a data bottleneck. In 

addition, such sampling would require a clock signal to be supplied to each pixel, producing 

a possible inter-connect problem. Such a clock may also introduce sampling noise to the sys-

tem. The majority of the focal plane image processing systems described in the literature make 

use of analogue circuit techniques to avoid cumbersome data conversion circuitry. In addition, 

the extremely low bias currents required when biasing transistors in the weak inversion region 

of operation allow designers to develop low power image processors. Subthreshold transist-

ors suffer from poor matching characteristics, which limits their usefulness in certain applica-

tions. However, it was felt that such problems could be addressed at the algorithm development 

stage, by choosing circuit structures and techniques for which mismatch posed fewer problems. 

QinetiQ's requirement for a low power system coupled with the potential disadvantages of a 

digital implementation led the research to focus on analogue signal processing techniques using 

transistors biased in the weak inversion region of operation. 

Analogue signal processing techniques can be split into two separate categories, continuous 

time and discrete time. Discrete time techniques such as switched capacitor and switched cur-

rent allow the design of accurate filter time constants, as they are controlled by a digital clock. 

This also means that tunable filters can be implemented, simply by varying the clocking fre-

quency. However, as previously mentioned, supplying clocks to each pixel could prove costly 

in terms of area, particularly with the two-phase, non-overlapping variety required for switched 

capacitor circuitry. Another potential disadvantage of sampled data analogue signal processing 

techniques is the need for accurate analogue memory. The signals would require to be sampled 

and stored before processing, adding to the size of the system. In addition, storing analogue 

values accurately is difficult, which may produce problems regarding the robustness of the al-

gorithm. A continuous time approach to the problem may suffer from poorly controlled filter 

time constants, particularly at the low frequencies of interest. However, it was felt that it may 

offer some advantage in terms of area of implementation as there is no need for memory ele-

ments. Another potential advantage of adopting a continuous time approach stems from the 

very function of the image processor. The aim is to extract frequency signatures as accurately 

as possible. Any sampling of the pixel's photocurrent or photovoltage may introduce aliased 

frequencies, which could conceivably fold down into the frequency band of interest unless re- 
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moved with an anti-aliasing filter. The inclusion of such a filter would add to the silicon area 

consumed by a discrete-time implementation. 

For all these reasons, emphasis was placed on developing an analogue, continuous time focal 

plane processor with circuits biased in the weak-inversion region of operation. 

1.4 Neuromorphic Approach to Image Processing 

Real-time image processing is a computationally intensive task. The high-density of visual 

information in a typical scene, coupled with the large range of illumination levels produces 

huge amounts of data. As an example, a one second long uncompressed NTSC video stream 

creates approximately 22 MB of data[9]. A conventional approach to the implementation of 

real-time image processing algorithms may involve coupling a CCD camera, to capture the 

image data, with a high-end computer to perform the image processing. Such a technique 

produces data rates that only the most advanced computer systems can process[ 10], producing 

an expensive solution in terms of physical space, power consumption and economic cost. A 

standard video camera captures an image approximately 30 times in a second, which in itself 

may be unacceptable delay for some motion control algorithms[ 11]. 

However, the simplest insects, with brains the size of grains of rice, can successfully analyse 

visual data extremely rapidly to avoid obstacles[9]. The reasons for this lie in the differing 

architectures employed by the 'engineering' solution and its biological equivalent. 

The conventional approach described above uses a camera to convert the inherently analogue 

signals into a digital equivalent. These are then passed to a computer in serial format for pro-

cessing. In contrast, a biological motion processing algorithm utilises massive parallelism, 

such that data acquisition and processing can be performed continuously and that the whole 

scene/image can be continuously monitored for events. There is also much closer integra-

tion of light sensitive elements with image processing elements in the form of local opera-

tions. This allows such 'early-vision' tasks as adaptation to ambient light levels (temporal 

processing)[ 12], edge enhancement (spatial filtering)[13, 14] and motion detection (spatio-

temporal processing)[15]. Such techniques produce pre-processed images, thus reducing the 

amount of information required by further stages and speeding up the overall processing time. 

This ambiguity between the complexity of state of the art engineering approaches to motion 
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processing compared with biological alternatives has created academic interest in modelling 

the latter. 

Although researchers had previously attempted to model biological vision algorithms using 

discrete electronics[6], Carver Mead at Caltech was among the original pioneers when he real-

ised the potential in using analogue CMOS VLSI to model biological data processing[ 13]. The 

disparity in processing power between digital computers and even the simplest animal brains 

led him to the conclusion that a new, more powerful and efficient form of computation can 

be instigated from the study of biology[16]. In doing so, he created a new paradigm for ana-

logue circuit design, termed neuromorphic engineering. The idea was to create CMOS chips 

that took biological processing structures as inspiration, in the process both learning more about 

biology as well as creating radical new structures for the solution of common engineering prob-

lems. The rationale behind this new approach was the similarity between neuronal wetware in 

the brain and CMOS hardware when transistors are biased in the subthreshold mode of oper-

ation[17]. Both utilise continuous time variables to convey information from one processing 

stage to the next. The advent of CMOS VLSI provides a two dimensional substrate onto which 

millions of transistors can be integrated, similar to the massive parallelisation present in neural 

structures. In addition, this substrate is as limited by the constraints of power consumption, 

inter-connectivity and precision as biological wetware, thus allowing the design of realistic 

models which may provide extra insight into the actual workings of the biological reality[18]. 

The fact that the underlying computational elements in neural computation exhibit low preci-

sion, poor reliability and low noise maps directly to the problems of matching and noise with 

transistors. Yet, despite this inherent poor quality, the structures and processing techniques 

used to organise these low level operators in the brain perform processing orders of magnitude 

more efficiently than current digital computation[ 16]. Essentially, the study of neuromorphics 

suggests a completely new approach to computation. Using the analogue computation in the 

brain as inspiration, it may be possible to develop extremely efficient algorithms despite the 

inherent limitations and lack of precision in CMOS transistors[ 19]. 

However, there are underlying problems involved in modelling the complexity of biological 

wetware with CMOS hardware. While it is true that the imprecision in matching of transist-

ors is similar to that of individual neurons, the huge number of inter-connections within the 

brain allows complex data to be smoothed and averaged, compensating for the imprecision in 

the processing neurons. Indeed, possibly the greatest barrier to successful neuromorphic im- 
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plementations is in modelling the inter-connect present in the brain. According to Koch[20], 

in each cubic centimeter of the brain there are 100,000 cells and two kilometres of wiring, 

allowing each neuron to communicate with up to 10,000 others. Such dense inter-connect is 

not yet possible in CMOS, meaning the imprecision of matching in subthreshold transistors 

is more prevalent from a system level perspective. The fact that biological neurons exist in a 

three dimensional framework, while standard CMOS processes are strictly two dimensional is 

another severe limitation to neuromorphic implementations. Another potential problem with 

the use of CMOS technology in implementing neural structures is the need to store analogue 

values or weights for extended periods of time. One relatively recent approach involves the use 

of floating gate devices. FG CMOS devices have an electrically isolated gate electrode which 

is manipulated to either add or subtract electrons, effectively changing the threshold voltage 

of the device. It can be considered as an additional voltage source, capable of adding to or 

subtracting from the existing overdrive voltage, allowing manipulation of the Ids-Vgs curves. 

As the gate is floating, the charge on the gate-source junction should remain constant, meaning 

such a device can be used as non-volatile analogue memory, holding its value for long periods 

of time[16, 21,22]. However, the use of floating gate CMOS devices to store analogue values 

for long periods of time is a contentious issue, with some research suggesting that the stored 

charge degrades overtime, with threshold voltages varying by as much as 1V over a four month 

period[23]. 

It is clear that there are many obstacles to be overcome before the potential benefits of adopting 

a neuromorphic approach to circuit design are realised. Despite almost 15 years of research, 

very few commercial products based on a neuromorphic approach have been released, with 

one notable exception being Logitech's optical mouse, based on a design by Arreguit and van 

Schaik[24]. While it is true that the lack of commercial success may be due to the maturity and 

therefore bankability of standard engineering techniques, some of the blame has to be aimed at 

the limited performance of neuromorphics reported in the literature. As the Logitech example 

highlights, the best applications for neuromorphic design principles are low precision tasks 

where the inherent problems of offset and noise are less important than power consumption or 

area of implementation. It is clear that neuromorphics will probably not compete with digital 

techniques in most applications. However, niche markets such as 'bionic' implants or low 

power, low cost image processors may yet benefit from such an approach. Recent efforts by 

Toumaz electronics in implantable electronic cochlea and Iguana Robotics collaboration with 

Ralph-Etienne Cummings suggest that some areas of industry are beginning to take notice 
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of the field[25]. As such, the future of neuromorphic circuit design in its current format is 

in application specific sensors or data processors, where energy efficiency is of paramount 

performance, such as the sensor described in this thesis. 

1.5 Engineering Solution within Neuromorphic Framework 

Many of the potential strengths of adopting a neuromorphic approach to the design of image 

processors map directly to the requirements of the research sponsored by QinetiQ. Both use 

analogue signal processing and allow integration of light sensing elements with signal pro-

cessing circuitry. A neuromorphic approach satisfies the requirement for continuous time oper-

ation, with focal-plane processing reducing the information required by subsequent processing 

stages. Low power constraints are also met by using transistors biased in the subthreshold 

region of operation. 

However, the major stumbling block regarding a fully neuromorphic approach to the solution 

of this particular problem is the lack of a biological equivalent to model. Neuromorphics can 

be split into two main camps; those who attempt to enhance knowledge of biology by creating 

models whose constituent parts are subject to the same physical limitations as nature[18], and 

those who wish to create subtle, efficient solutions to engineering problems. In effect, the field 

can be split into Scientific and Engineering approaches. However, there are no biological entit-

ies whose vision system is concerned with analysing temporal frequency at the expense of all 

other data, ruling out a direct neuromorphic approach. However, the correlation between the 

key advantages of such an approach and the requirements for the sensor to be designed lead to 

an amalgamation of neuromorphic and engineering approaches. The idea is to take the neur-

omorphic framework for vision sensors but apply an engineering solution, thus benefiting from 

the advantages of each. As such, a review of papers that use low power, continuous time, ana-

logue focal plane techniques was undertaken. The emphasis is on some form of neuromorphic 

focal plane technique, be it 'scientific' or 'engineering' in conception, as this is what best suits 

the adopted approach. The results of the literature review can be found in chapter two. 
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1.6 Contributions 

The development of a CMOS image-processor for the extraction of frequency signatures is it-

self a novel concept. The research described in this thesis began with software simulations of 

potential algorithms to ascertain which would both produce the most robust results and more 

importantly, be the simplest to implement in CMOS hardware. The algorithm developed and 

tested in software is novel. Based on results from those simulations, three test chips were de-

veloped, each building on any lessons learnt from previous implementations. Again, each of 

the test ICs contain novel circuits at the system level. The first test chip contains several in-

dividual pixel cells, capable of producing a pulse train whose frequency corresponds directly 

to the fundamental frequency of any incident light change. The second test chip contains sim-

ilar elements, although an improved self-referencing scheme has been implemented to reduce 

manual input. The third and final test chip contains two versions of a novel algorithm for tun-

ing a band pass filter's centre frequency to the fundamental frequency of the incident light. 

The algorithm uses a self-tuning system to automatically place the band pass filter onto the 

fundamental frequency of the input signal. Novelty in this research stems from the algorithm 

employed, principally its design, simulation and hardware implementation. 

1.7 Structure 

The structure of this thesis is as follows: 

Chapter Two provides an introduction to previous research in CMOS image sensors in-

corporating focal plane processing. Both neuromorphic and engineering approaches to 

focal plane processing are discussed. 

Chapter Three introduces the early algorithmic work, with MATLAB simulation results 

to assess the strengths and weaknesses of several potential candidates. 

Chapter Four introduces the first test chip design, with structures that produce pulses 

corresponding to the fundamental frequency of the incident light. Results from chip 

testing are included. 

Chapter Five introduces a second test chip, which once again creates pulses that encode 

the fundamental frequency, this time using an improved, self-referencing algorithm 
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Chapter Six presents the minipix algorithm, included on the third and final test IC. It is 

essentially a miniaturised version of the self-referencing system described in chapter five. 

Chapter Seven introduces the phase-derived feedback algorithm, also included on the 

third IC. It is capable of automatically tuning a band pass filter to the incident light's 

fundamental frequency 

Chapter Eight summarises the work, presents critical evaluation and suggestions for fu-

ture work as a conclusion to this thesis. 
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Chapter 2 
Smart Sensors Incorporating Focal 

Plane Processing: Literature Review 

2.1 Introduction 

As the topic under investigation in this thesis is novel, there are few directly relevant papers 

aimed at CMOS imagers analysing scenes for temporal frequency information. Nevertheless, 

as an engineering approach to neuromorphic image processing is to be pursued, many relevant 

papers incorporating focal plane processing to perform other image processing tasks exist. The 

review of relevant literature will be split into three different sections. The first section deals with 

focal-plane approaches to the spatial processing of image data. The second section is concerned 

with focal-plane approaches to temporal processing, while the third deals with spatio-temporal 

processing. Each category is split into Scientific and Engineering approaches to Neuromorphic 

system implementation, with the core similarity being the type of processing implemented and 

the use of focal plane techniques. 

2.2 Spatial Processors 

The spatial processing of image data refers to techniques that can be performed on static, single 

frames, without the inclusion of any temporal aspects. For instance, de-blurring, edge enhance-

ment and magnification are just some examples of spatial processing available with standard 

image processing software tools. 

Dedicated CMOS implementations of spatial processing incorporating focal plane processing 

have been reported in the literature, with aims such as edge-enhancement, dynamic range re-

duction and object orientation calculation. Generally speaking, the aim of such dedicated spa-

tial processing circuitry is to enhance certain elements from a scene while suppressing others, 

reducing the data provided to subsequent processing stages. In the following sections, the dif-

ferent techniques employed by both scientific and more standard engineering approaches to 

neuromorphic processing are explored. 
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2.2.1 Silicon Retina: 'Scientific' Implementations 

Some of the original work in neuromorphic vision systems concerned modelling the retina's 

spatial processing characteristics. For instance, image smoothing, dynamic range reduction, 

contrast enhancement and feature extraction/orientation can all be considered examples of ret-

inal spatial processing[6]. 

There are many different approaches to such neuromorphic spatial processing, some of which 

employ a mexican hat operator as the underlying convolution kernel. A two dimensional repres-

entation can be seen in figure 2.1(a), with the more familiar one dimensional version in figure 

2.1(b). The kernel depicted here was constructed with the 'Laplacian of Gaussian' approxima-

tion[26], seen in equation 2.1. 

LoG(x,y) = V2 	 x2+y2 G(x,y) - 	- 	 (2.1) 
rc 	2a2 J [1 	

1 

The idea is that pixels are processed using information from neighbouring pixels. Those within 

the central region are given higher weighting, while those towards the outskirts are diminished. 

This form of excitation and inhibition can be used to enhance spatial gradients in the scene, as 

depicted in figure 2.1(c) and (d). Notice also that the output is independent of the actual intens-

ity level and is only concerned with the edges or events in the scene. For example figure 2.1(d) 

shows that despite the input varying from 0 to 150 units of intensity, the output remains centred 

on zero except when a sudden intensity gradient is present. This has the effect of reducing the 

dynamic range of the input data, simplifying the task of further processing stages. It is clear that 

such a convolution kernel spatially high pass filters the image. The Laplacian of Gaussian is just 

one of the approximations to the 'mexican hat' kernel. Others include subtraction or division of 

incident illumination from a spatial average, difference of two Gaussians, Gabor functions and 

both linear and non-linear lateral inhibition. The last two can be considered plausible biological 

models for the retina, while the former are mathematical models used in software and certain 

hardware implementations. 

With the useful characteristics mentioned above, many researchers have attempted to integrate 

the spatial processing of retinal systems onto vision chips. As previously described, there are 

two differing approaches to the implementation of so called silicon retinas, 'scientific', where 

the circuit blocks emulate biological processing steps and 'engineering', where conventional 
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Figure 2.1: Retinal Approach to Spatial Filtering: (a) 2D 'Mexican Hat' Kernel (Laplacian of 
Gaussian), (b) ID version, (c) and (d) Contrast enhancement with edge detection. 

circuit techniques are used yet the end result can be compared with biology. 

Mead's model of early visual processing was one of the original implementations[ 14]. The sys-

tem uses a resistive grid to create a smoothed version of the incident image. This is then sub-

tracted from the actual intensity present at each pixel, re-creating the operation of the photore-

ceptors, horizontal and bipolar cells in retinal processing. The outputs from the silicon im-

plementation correspond directly to those in the biological equivalent. The photoreceptors are 

implemented with logarithmic photodetectors, while amplifiers are used to produce an output 

proportional to the difference between the incident light and the averaged version. One of the 

problems with this implementation is its sensitivity to amplifier offset, causing many pixels to 

be either completely on or off. An improved version using floating gate MOSFETs to correct 

for mismatch has also been developed[27]. 
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Another example of spatial processing is the silicon retina designed by Boahen and An-

dreou[28]. The design models the shunting inhibition found in the distal retina by using two 

smoothing networks, for the interaction between horizontal cells and cone cells in the photore-

ceptor. Both smoothing networks have different conductive properties, with the horizontal cells 

allowing signals to propagate over a much larger distance than the cone cells. A cone cell's 

activity increases when it is exposed to incident light, exciting the surrounding horizontal cells. 

These respond by trying to impede the cone cell, using inhibition. The diffusive networks are 

set up in such a way that the excitation received by cones close to the incident light is stronger 

than the inhibition from the horizontal cells. However, further away from the active cone cell 

the inhibition begins to dominate, producing the overall centre-surround 'mexican-hat' kernel 

seen before. The implementation uses subthreshold, current mode circuitry to produce a com-

pact, low power sensor. However, a problem with the implementation is the fact that the size 

of the centre-surround receptive field varies with the incident light level. A second generation 

implementation with 48,000 pixels was designed[29]. Despite the large imager array, a power 

consumption of only 50 mW was reported from a 5 V supply. 

A more recent silicon retina implementation uses two bipolar phototransistors to model the 

photoreceptors and spatial smoothing of the horizontal cells[30,  311. Instead of implementing 

a relatively large resistive grid to achieve spatial smoothing, an array of phototransistors with 

common base region is realised. When light is incident on the imager, excess carriers are 

generated and diffuse out, producing a current that decays logarithmically with distance. This 

implementation allows for compact pixel size, with each being 60 pm by 60 m when designed 

in a 0.8 pm process. An improved version, where the size of the centre surround receptive field 

is tunable has also been implemented[321. By placing MOSFETs between the phototransistor 

elements, it is possible to control the amount of spatial averaging. A 64 by 64 array was 

designed in a 0.5 pm process, with each pixel taking 45 1Lm2.  The power dissipation of the 

entire imager varies from 3 mW to 30 mW depending on the incident light level. The authors 

claim that such a system can be implemented in both BiCMOS and CMOS processes using 

parasitic phototransistors. In the latter case, mismatch in the parasitic elements may inhibit the 

performance. 

A similar technique using photodiodes instead of phototransistors was implemented by Ikeda 

et al[33, 34]. The aim is to develop an edge extraction imager by modelling the three most 

important neuronal structures in the retina, the photoreceptor, horizontal and bipolar cells. A 
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simplified version of the processing performed by these cells can be found in figure 2.2, together 

with the adopted circuit techniques. As a spatial gradient moves across the surface of the 

retina, the difference between the actual intensity change (photoreceptor cell) and a locally 

smoothed average (horizontal cell) is computed by the bipolar cell. The zero-crossings of the 

bipolar cell's output give the location of the edges. Ikeda et al use only two photodiodes and 

three MOS transistors in each pixel cell to model the edge enhancement capabilities of the 

retina. A projected pixel size when designed in a 0.5 jim process is 12 itiri by 14 tim, allowing 

for high density imagers. Each pixel contains an isolated photodiode (PDI in figure 2.2) to 

model the photoreceptor. The second photoreceptor (PD2) is connected to the equivalent in the 

neighbouring pixels by the transistors controlled by V9, producing a spatially smoothed version 

of the intensity change. The amount of spatial averaging can be controlled by varying the gate 

voltage of the linking transistors, effectively varying the size of the averaging area and therefore 

the sensitivity of the system. A current mirror incorporating Ti and T2 is then used to calculate 

the difference between the isolated and connected photodiodes, mimicking the bipolar cell. 

Potential problems with such a system include mismatch between the two photodiodes, which 

may produce different photocurrents despite exposure to the same intensity. A current mode 

approach such as this may also suffer from inaccuracies in the subtraction calculation per-

formed by the current mirror, particularly if the photocurrents bias transistors Ti and T2 in the 

subthreshold region of operation. 

Other research on implementations of silicon retina includes that by Kameda et al. A model 

based on regularisation theory was implemented using analogue VLSI[35]. The model relies 

on the fact that the responses of retinal photoreceptors and horizontal cells are graded poten-

tials with respect to light. Such responses can be mimicked with analogue network models. 

The VLSI implementation of the model uses two resistive grids of variable conductivity, sim-

ilar to that used by Boahen and Andreou. However, the employed photocircuit samples the 

photocurrent at discrete time intervals, meaning it is not a continuous time implementation. 

Although only a one dimensional implementation, the circuit includes buffers and sample and 

hold circuitry in an effort to compensate for the mismatch and fixed pattern noise attributed to 

sampled-data photocircuits. Adding such circuitry will increase the size of the implementation, 

yet the achieved increase in accuracy means it could potentially be employed in applications 

such as retinal implants[36] and robot vision[37}. 

Another interesting implementation of a silicon retina for spatial processing was developed by 
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Figure 2.2: Retinal Processing for Edge Extraction. (a) Operation of the photoreceptors, ho-
rizontal and bipolar cells within the biological retina. As an edge moves across 
the surface, the photoreceptors produce an output corresponding to the actual in-
tensity variation, while a locally smoothed average is computed by the horizontal 
cells. The difference between the two is calculated by the bipolar cells, enhan-
cing the location of the edge. (b) Compact circuit for modelling photoreceptors, 
horizontal and bipolar cells, adopted by Ikeda at al (adapted from[33].) 

Kobayashi et al[38]. A retina is implemented with two resistive networks to achieve the famil-

iar Laplacian of Gaussian style response. However, the size of the receptive field of the spatial 

filter adapts depending on either global or local light intensity. This is achieved by implement-

ing the conductances in the resistive grid with MOSFETs in the triode region of operation, thus 

tunable with voltage. Such a tunable receptive field allows the system to maximise its response 

depending on the signal to noise ratio of the particular image. For instance, if it is assumed that 

the intrinsic noise is constant, the relative noise to signal ratio during daylight will be small. In 

this situation, the size of the receptive field can be small, increasing the spatial resolution. How-

ever, when exposed to moonlight, the receptive fields need to increase to counter the reduced 

signal to noise ratio. More work by this author includes a 40 x 45 pixel silicon retina with user 

variable receptive field[39]. The implementation uses both negative and positive resistances to 

produce a better approximation to the mexican hat convolution kernel. In a 2 pm process, each 

22 



Smart Sensors Incorporating Focal Plane Processing: Literature Review 

pixel measures 170 im by 200 jim and the entire chip consumes 2 W. 

Instead of using a resistive grid, Harris et al[40] used non-linear elements they termed resistive 

fuses. These have the properties of linear I-V relationships for small voltage drops, yet the fuse 

'breaks' and current reaches zero for large voltage drops. When incorporated in a vision sensor, 

small discontinuities are smoothed as with standard resistive grids, but large changes turn off 

the fuse, allowing abrupt spatial gradients to be segmented[6]. Such a system was applied to 

robot vision in[41]. 

2.2.2 Silicon Retina: 'Engineering' Approaches 

By producing smart sensors that incorporate focal plane processing, researchers hope to pro-

duce fast, low-power front ends for complex image processing tasks. While many take their 

inspiration from biology, it is possible to include both analogue and digital processing within 

each pixel in an effort to produce superior vision processing systems. 

An interesting approach to extracting spatial gradients from a scene with a CMOS smart sensor 

was implemented by Barbaro et al[42]. The system uses steerable filters to extract both the 

magnitude and direction of spatial gradients in the imagers field of vision. The approach relies 

on the definition of the first order derivative of a two-dimensional function performed in the 

vector direction 	, seen in equation 2.2, where a is the vector's angle. 

31(x ,y) - 3I(x,y) 	DI(x,y) 
- 

ax 	 ay 
cosa + 	since 	 (2.2) 

When applied to the discrete pixel locations associated with a CMOS imager and with the angle 

a swept in time, equation 2.2 becomes that in equation 2.3, where i and j represent the pixel 

coordinates. 

= 'i+l,j - 'i11j 
cosw.t + 1j+1 - 	sin w.t 	 (2.3) 

a(t) 	 2  

It can be seen from equation 2.3 that the local spatial derivative in the vector's direction can 

be computed using only nearest neighbour connectivity and two sine and cosine interpolating 

functions. Note that the partial derivatives in the x and y directions from equation 2.2 have been 
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replaced with numerical approximations based on the central difference theory in equation 2.3. 

The second equation is applied to each pixel in the array, with the amplitude of the result 

representing the magnitude of the gradient, and the phase its direction. The chip uses current 

mode analogue circuitry to apply the equation, with a pixel size of 80 'am by 80 pm in a 0.5 pm 

process. The entire imager of 10000 pixels consumes 50 mW of static power and is designed 

to operate at a frame rate of 1000 Hz. 

2.2.3 Vision Sensors for Object Orientation/Selection 

Another interesting form of spatial processing is concerned with computing the position and 

orientation of objects within the field of vision 

An early attempt was developed by Standley[43], which determines the position and orientation 

of an object against a dark background. A resistive grid is used to calculate the first and second 

moments of the spatial intensity distribution. These moments communicate the centroid of 

the object and the axis of least inertia, which convey the position and orientation respectively. 

The sensor implements a 29 x 29 array of pixel cells, with each cell measuring 190 tm by 190 

jm and incorporating photoreceptors along with current mode brightness thresholding circuitry 

to remove a dim scene background. When tested, the angle of orientation was found to vary 

around the mean by +1- 2% for moderately sized objects. 

A more recent approach by Shi[44], applies Gabor-type filtering algorithms to a two-

dimensional imager array. The applied filters can be tuned to respond strongly to particular 

orientations and ignore others. The design uses subthreshold transistors in a current mode sys-

tem producing a power dissipation of only 1.2 pW per pixel. The system relies on weighted 

summations of nearest-neighbour photocurrents to implement the algorithm, with each pixel 

containing a photo-sensor, two current amplifiers and some subthreshold transistors configured 

as conductance elements. Each pixel is 132 m by 108 im in a 1.2 pm process, with a 20% fill 

factor. When tested, the system performed reasonably well although fixed pattern noise had to 

be digitally removed in a post-processing step. 

A one dimensional imager with the ability to group pixels into objects based on their intensity 

was designed by Morris et al[45]. The idea is to produce a type of visual attention scheme, 

where processing is applied to objects rather than to individual pixels. This will allow pro-

cessing to be concentrated on areas of saliency within the scene, improving the efficiency of 

24 



Smart Sensors Incorporating Focal Plane Processing: Literature Review 

such smart sensors. The algorithm first normalises the photocurrents before spatially filter-

ing them using a variation on Boahen's silicon retina[28]. The spatially filtered signal is then 

thresholded to produce a binary signal that essentially signals the presence or absence of an 

object. Those pixels that have currents larger than the global threshold value are assumed to 

belong to the same object. Within these pixels, the largest current is selected and copies used 

for every pixel in the object. This essentially forces all the selected pixels to act together as a 

single object. The circuitry is implemented with subthreshold current mode blocks in a 2 Pm 

process. However, there is no mention of the size of each pixel processing unit. 

A two-dimensional version was also designed[46]. A single processing unit is shared between 

four photodetector cells to produce a multi-resolution architecture. The imager was designed in 

a 1.2 im process and each four photodetector element is 159.6 jm2. The entire array consumed 

approximately 5.6 mW during operation. 

Other examples of spatial processing for visual attention include work by Brajovic et al{47], 

which describes a system that targets an intensity peak in the incident image and continuously 

reports its location and magnitude. The idea is to reduce data flow for subsequent processing 

stages. 

2.2.4 Other interesting Spatial Processing Performed on the Focal-Plane 

There are many other possible applications for incorporating spatial processing with focal-plane 

architectures. 

For instance, a novel application was developed by Delbruck[48] for digital camera auto-focus 

applications. The chip would be included in a feedback system for camera applications, meas-

uring the sharpness of the image and correcting as necessary. A de-focused image corresponds 

to a circular 'cookie-cutter' kernel whose diameter encodes the distance the image is displaced 

from the plane of focus. The aim of the system is therefore to minimise the effect of this kernel, 

which it achieves by comparing the absolute difference between three neighbouring pixels in a 

hexagonal grid. An anti-bump circuit[49] computes an expansive measure of difference, with 

the sharper the image, the larger the output. The measure of sharpness for the image is the sum 

of all the anti-bump circuits in the array. Each processing element in the 25 by 26 array is 60 

im2  when designed in a 1.2 im process. 

Another interesting application involves an imager designed to convert the intensity present in 
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the scene into timing sensitive events[50]. The idea is that cells receiving more light generate 

events before those cells receiving less light, meaning the intensity of the incident image is 

encoded in the timing of the events. This allows for the sharing of communication resources 

but also produces extremely rapid results based on the intensity profile in the image. The more 

time allowed for the processor, the more inputs that are received so the system builds up a 

global decision, initially based on only a few pixel cells but becoming more detailed as other 

pixel's contribute. Such global processing allows extremely fast decisions to be made about the 

relative intensities in the scene, without the need to read out the entire image. A 21 by 26 cell 

sensor was developed in a 2 pm process, with each cell measuring 152 pm by 180 jim. 

2.2.5 Comments on Focal-Plane Approaches to Spatial Processing 

It is clear that CMOS image sensors performing dedicated spatial processing tasks have cre-

ated much academic interest recently. In general, such sensors can be considered input stages 

for more complex image processing tasks, with edge or feature extraction combined with dy-

namic range reduction the key processing requirements. The 'scientific' approaches benefit 

from low power consumption, with transistors biased in subthreshold a recurring theme for 

such implementations. However, it appears that the motivation for much of the early work on 

neuromorphics was to model the biological retina as accurately as possible. While this was 

successful, the use of such techniques for real-world engineering problems remains to be seen. 

The 'engineering' approaches to focal plane spatial processing highlight interesting solutions 

to niche problems, such as auto-focus and object orientation. Despite large pixel sizes and low 

fill factors, advantages in power consumption and speed of processing make such techniques 

attractive in certain applications. Of particular interest are sensors with visual attention systems, 

which concentrate on regions of interest in a scene. 

2.3 Temporal Processors 

Systems developed with purely temporal aspects as the focus are rare, due to the nature of vision 

processing. Nevertheless, this section aims to review papers that are more concerned with the 

temporal aspects of vision processing than purely spatial or spatio-temporal phenomenon. The 

reason for the distinction is that the aim of the sensor described in this thesis is concerned 

only with the temporal variations of the image intensity, rather than the location of an object 
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within a scene. Other examples of temporal processing include circuits that respond rapidly to 

local intensity variations yet more slowly to global changes in illumination, as well as systems 

concerned with computing the temporal difference between frames. 

2.3.1 Temporal Processing: 'Scientific' Approaches 

The spatial aspects of retinal style processing such as edge and contrast enhancement have been 

previously described. However, the temporal aspects are also of interest. While it is clear from 

figure2.1(c) and (d) that the retina adapts to the background illumination level, enhancing spa-

tial gradients in the process, the length of time that this processing step takes is also of great 

interest. For instance, at a basic level, the eye must be able to operate in the many orders of mag-

nitude of background illumination while still remaining sensitive to local spatial gradients. The 

retina deals with this potential problem by providing low gain to slowly varying illumination 

levels but high gain for rapid changes, effectively adapting slowly to steady-state illumination 

while remaining sensitive to small but sudden changes around this background value. 

An extremely clever circuit that achieves such processing was designed by Delbruck51], with 

improvements highlighted in[12]. The circuit can be seen in figure 2.3 and occupies approxim-

ately 70 1am by 70 pm when designed in a 2 pm process. 

°F8 

Vo  

Figure 2.3: Deibruck's Adaptive Photoreceptor (adapted from [12]) 

The circuit essentially uses feedback to create a 'model' of the input photocurrent. A compar- 
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ison between the prediction the model makes and the actual photocurrent comprises the output. 

The different gain responses to 'slow' and 'fast' temporal inputs are created by the dual feed-

back paths, through C2  and the adaptive element. During a low speed variation in intensity, the 

adaptive element dominates. This element is designed to have large resistance for small signals 

and a low resistance for large voltage variations, allowing rapid adaptation to huge changes in 

illumination while remaining sensitive to small contrast changes. If the change in illumination 

occurs quickly however, the capacitor in the feedback dominates and the gain of the capacitive 

divider is applied to the signal. The dual feedback path provides high gain for quickly varying 

signals and low gain for steady state signals. Vb can be used to set the cutoff frequency of the 

circuit, as it controls the bias current of the amplifier created by transistors Qp,Qcas  and Q. 

Qfb is the transistor used to create the prediction of the input photocurrent. The addition of 

the cascode transistor Qcas reduces the miller effect in Q as well as increasing the gain of 

the inverting amplifier. Results from this photocircuit are promising, with successful operation 

over almost seven decades of input illumination. 

Two variations on this circuit were designed by Liu52, 531. By replacing the adaptive element 

from Deibruck's photoreceptor with a non-linear resistor created from a single transistor, it 

was possible to vary the frequency response of the circuit. The temporal filtering properties 

of both circuits adapt with background intensity, similar to the operation of the vertebrate and 

invertebrate retina. Tests have shown that the retina behaves as a temporal band pass filter at 

high background intensity, yet modifies to a low pass filter at lower intensity levels, where the 

signal to noise ratio is lower. The photoreceptors designed here achieve this by the biasing 

conditions of the non-linear transistor. While the time constant of the adaptation in Deibruck's 

circuit is fixed by design decisions, both circuits presented here have tunable adaptation rates, 

producing better results throughout five orders of input illumination. 

Earlier work on temporal light adaptation was attempted by Mann[54]. The circuit combines 

high pass and low pass filters along with a gain stage to produce a temporal band pass filter. 

The idea is once again to allow the circuit to adapt to a temporal average while still remaining 

sensitive to small changes in illumination, such as an object in a very bright background. While 

only documenting simulation results and integrating large amounts of circuitry into each pixel, 

the results seem to verify operation. 
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2.3.2 Temporal Processing: 'Engineering' Approaches 

A recent 48 by 48 CMOS imager array developed by Kramer[55] is concerned with temporally 

high pass filtering the incident image. The aim is to exploit redundancy in mostly static images 

by producing a sensor that responds only to fast temporal changes within a scene. Using an 

adapted version of Delbruck's photoreceptor, each pixel produces an output at either the ON 

or OFF channel, depending on the polarity of the temporal illumination variation. An output 

is also created encoding the address of the pixel producing the response. The sensor can be 

operated to respond only to positive or negative illumination gradients, as well as producing 

multiple or individual pulses depending in the chosen refractory period. Each pixel measures 

32.8 [im2  and has a fill factor of 9.2% in a 0.35 m process. Such a sensor could be used as 

a general purpose input stage for temporal processing algorithms. Specific details of the pixel 

level transient processing, together with characterisation and test measurements can be found 

in a later paper by Kramer[56]. 

Another example of temporal processing concerns computing the difference between consec-

utive frames of data[57]. Such a technique can be used to extract moving objects from a static 

background as well as in video compression. This particular implementation uses a focal plane 

technique incorporating memory to facilitate the differencing. Each pixel has two outputs: the 

current frame output and that of the previous frame. The chip operates in one of two pos-

sible modes, pipelined which allows continuous difference evaluation and snapshot which is a 

'one-off' difference calculation. However, no details of pixel size are provided. 

A temporal pre-processor designed by Gopalan et al[58] is aimed as an input stage for a motion 

detection algorithm. The idea is to enhance transients and reduce DC effects using analogue, 

continuous time filtering techniques. A low power, low area implementation initially low-pass 

filters the photoreceptor output to remove flickering from AC lighting. A high pass filter is 

used to remove low frequency effects and enhance the temporal aspects of the image data. 

When implemented in a 0.5 im process, each pixel measures 59 /Lm by 59 jim. 

2.3.3 Comments on Focal-Plane Approaches to Temporal Processing 

In general, the 'scientific' approaches to temporal processing aim to mimic the retina's ability to 

adapt with different time delays to slow and fast changes in intensity. Of particular interest from 

the literature review of temporal processing regarding this research was the adaptive photore- 
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ceptor developed by Delbruck[12]. The ability to remain sensitive to sudden, transient changes 

in image irradiance over the eight decades of background intensity would make it an excellent 

input stage for the system described in this thesis. However, the aim of the work described 

here is to investigate system level architectures for the extraction of frequency signatures. As 

such, a decision was made to adopt simple circuit techniques to allow for rapid IC prototyping 

to test the validity of the algorithm. If individual circuits are discovered that out-perform those 

adopted, they could be 'slotted' into the final algorithm to improve the overall performance 

accordingly. Despite the power of Deibruck's photoreceptor, it was felt that time spent on it 

could be better used elsewhere. 

Also of interest was the temporal pre-processor by Gopalan et al[58]. It seems the idea was 

to develop a general purpose temporal processor as the input stage for more advanced image 

processing algorithms. The circuit adopts a standard engineering approach to signal processing 

but uses analogue continuous time circuit techniques biased in weak inversion, similar to 'sci-

entific' neuromorphic approaches. This coupling of an engineering approach at the system 

level with the advantages of so-called scientific neuromorphic circuit techniques is similar to 

the approach adopted in this research. 

2.4 Spatio-Temporal Processors: Motion/Velocity Estimation 

Spatio-temporal processing refers to algorithms that rely on spatial information, such as intens-

ity gradients, combined with some temporal data, such as how these gradients move in time. 

The majority of research in this area has concentrated on motion detection, which involves com-

puting the existence and direction of moving objects in the field of vision. Such work can be 

extended to include velocity estimation, which provides information on the speed of the motion 

in a particular scene. Other examples of spatio-temporal processing include time to collision 

detectors, as well as systems that track objects over space and time. 

The ability to detect the direction and speed of motion with simple, low power vision sys-

tems has created much academic interest over the past 15 years. There is some disagreement 

within the literature over the means of categorising the different algorithms that have been 

developed. Moini[6], draws the distinction between computational implementations and those 

derived from biological inspiration. The computational versions can be further sub-divided into 

intensity-based, feature-based and correlation-based. Intensity based algorithms use calcula- 
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tions of spatial and temporal gradients to estimate the optical flow in the scene. Feature-based 

algorithms first extract tokens from the scene, such as edges or corners and then attempt to 

track them over time. Limitations with such an approach include the correspondence problem, 

which describes the ambiguity in ensuring a feature at one position, at a particular time in-

stant corresponds to the same object at another place and time. Correlation based algorithms 

involve the direct correlation of the current frame with the the previous. By finding the max-

imum points of correlation between the two, estimates to the change in motion can be made. 

Biological algorithms according to Moini's classification mostly stem from the Hassenstein-

Reichardt model of early visual processing in the fly, seen in figure 2.4(a). The output from one 

pixel is compared with that of its neighbour, delayed by a time constant. If the object is moving 

in the preferred direction, and the time it spends passing from one pixel to the next matches the 

delay, a strongly correlated output will result. If, however, the object is moving in the 'null' dir-

ection, no output will be produced. The output from such a system is maximised for a particular 

velocity in a particular direction. A bi-directional version is represented in figure 2.4(b). 

Preferred Direction 

'Null' Direction 
4 

(b) 

Figure 2.4: Hassenstein-Reichardt Biological Motion Detection Algorithm (adapted from[6] 
and [15]):  (a) Single direction, (b) Bi-directional version. 

Moini states that a sensor based on the Reichardt model can be considered a correlation sensor 

where the correlation area has been reduced from the entire image to a single pixel. 

A separate classification scheme was suggested by Sarpeshkar et al[15]. Motion detection 
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algorithms are split into intensity-based and token-based, the difference being the use of the in-

cident illumination. An intensity based algorithm uses the image irradiance or a linearly filtered 

version directly to estimate the optical flow. A token based algorithm first searches for objects 

such as lines, edges and corners and then tracks them through time, making use of the redund-

ancy present in many scenes. Sarpeshkar et al further sub-divide intensity based algorithms into 

gradient methods and correlation methods. Gradient based algorithms are similar to those de-

scribed as intensity-based by Moini, in that spatial and temporal derivatives are calculated as a 

means of estimating optical flow. Sarpeshkar's definition of correlation algorithms corresponds 

with Moini's biologically inspired category, in that most are based on the Reichardt model. 

Sarpeshkar et al mention the difficulty in applying correlation models with direct incident il-

lumination as the input, which led to the development of hybrid techniques, first extracting 

tokens and then applying correlation techniques to these. Also mentioned are time-of-travel 

algorithms, where a token is tracked between two fixed locations to estimate its speed. 

While both classification schemes have their merits, for the purposes of this thesis an approach 

borrowing ideas from both will be applied. Algorithms are split, as with the spatial and tem-

poral processors described earlier into scientific or biologically plausible versions and compu-

tational or engineering solutions. The distinction is based on the extent to which the particular 

algorithm uses a conventional technique to extract information, compared to a biologically in-

spired implementation. Both categories share an element of focal plane processing, and are 

further divided into sub-categories. Within computational approaches are gradient or differ-

ential  algorithms and token-based algorithms, both described earlier. Scientific approaches to 

motion detection include both pure correlation algorithms and correlation with token inputs. 

While one may be simply a subset of the other, the difference in performance[15] warrants the 

distinction. While most of the scientific approaches rely on the Reichardt correlation model, 

there are other biologically inspired algorithms which will also be investigated. 

2.4.1 'Scientific' Motion Detection: Reichardt Correlation Algorithms 

The most popular technique for implementing biologically plausible motion detection al-

gorithms is the Hassenstein-Reichardt model, depicted in figure 2.4. Various implementations 

of this algorithm have been reported in the literature. 

One of the earliest was by Andreou et al[59]. A one-dimensional implementation using sub-

threshold, current-mode circuitry was constructed using a spatially filtered version of the image 
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as an input. When designed in a 2 jLm process, each pixel row is approximately 1000 urn  by 

40 urn.  The author admits the chip was not practically useful, due to limitations in the spatial 

filtering producing an illumination dependent input for the system. However, results do show 

a relatively linear output velocity measurement for input speeds of 0 to 16 pixellmsec. An 

improved, two dimensional version was also reported[60]. The spatial filtering is performed 

by Boahen's current mode silicon retina[28], reducing the illumination dependency of the first 

implementation. Further details of the system, along with a description of Boahen's silicon ret-

ina and an excellent introduction to the benefits of Neuromorphic approaches to certain image 

processing tasks can be found in[18]. 

The problems with outputs that are illumination dependent led to research in hybrid systems, 

where a feature is first detected and then used in subsequent correlation stages. An early ex-

ample of such a system was developed by Horiuchi et al[61]. This one-dimensional sensor 

uses quick temporal rises in intensity as a token to provide input to a correlation stage. The 

underlying algorithm calculates the time such a feature takes to travel from one photoreceptor 

to another. The mechanism is two parallel delay lines, which propagate signals in opposite dir-

ections and a series of correlation units. Imagine a row of photoreceptors, with an edge passing 

from left to right. If the edge moves with infinite velocity, there will be no difference between 

when the two 'end' pixels experience the edge and fire accordingly. As such, the resultant 

signals will propagate down the two delay lines and meet in the centre, producing a strong 

correlation in this location. If the time difference is small (high velocity), correlations occur 

near the centre of the delay line. As the time difference increases, the correlation occurs further 

towards the edges as the velocity reduces. Motion direction can be calculated from which side 

of the centre the strongest correlation occurs. A winner takes all circuit is then used to choose 

the strongest correlation. Results seem promising, with a fairly linear output for an increase 

in stimulus speed, however spatial aliasing caused by the spacing of the photoreceptors can 

introduce errors. 

Another correlation based system was designed by Delbruck[62]. The idea is once again based 

on a delay line, although the mechanism is different. The concept is illustrated in figure 2.5. The 

photoreceptors (P in figure 2.5) are coupled to a uni-directional delay line, with each element 

having a delay of t. If the velocity of an edge matches the delay in the line, the signal on the 

delay line is reinforced. However, an edge in the wrong direction or at the wrong speed has its 

signal diminished. By using some form of non-linear operation (multiplication in figure 2.5) it 
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Delay Line 

... 

Figure 2.5: One Dimensional Delay Line in Delbruck 's Velocity Tuned Pixel (adapted from[62] 

is possible to extract information on the amplitude of the delay line signal, which is sensitive 

to both direction and velocity. A two dimensional system using a hexagonal layout and three 

delay lines was implemented, with each pixel occupying 224 jim by 225 /Lm when using a 2 

jim process. Much of the area is consumed by the capacitance required to achieve the long time 

constants necessary for the delay elements. A possible limitation with such an implementation 

is the need to tune the delay elements to allow a range of object velocities to be detected. Other 

motion sensors can produce outputs for different stimulus speeds without external tuning. 

A clever circuit that attempts to automatically tune the delay in a Reichardt sensor was de-

veloped by Liu[63].  The output from each photoreceptor is passed through both high and low 

pass filters with similar time constants. The output from each filter is compared with a peak 

amplitude detector, the output of which provides an error for tuning the time constants of the 

filters. If the input frequency does not match the time constant of the filters, the output of 

the two filters will be different, with the error encoding the direction the filter's frequency re-

sponse needs to move. While not implementing an actual sensor, possibly due to the size of 

the circuitry required, chip results show the filter's time constant adapting accurately over four 

decades of input frequency. 

A more recent correlation algorithm with token based inputs was developed by Jiang et al[64]. 

The circuit uses the silicon retina developed by Wu et al[65] to create pulses corresponding to 

the edges in the scene. These edges are used as the tokens for input into a correlation system. 

The system converts the zero-crossings from the silicon retina into binary pulses, allowing di-

gital circuitry to implement the correlation. The authors suggest this produces more accurately 

correlated outputs, improving the performance of the motion detector. When designed in a 0.6 

[Lm process, each pixel of the 32 by 32 array is 100 jim2  with a 20 % fill factor. Test results 

show the sensor can detect motion at any angle for a fixed stimulus speed of 0.5 m/s. 
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Another recent implementation of a Reichardt based correlation motion sensor was developed 

by Harrison and Koch[66]. This claims to be one of the most accurate implementations of 

Reichardt's model, working on the hypotheses that more closely modelling nature will produce 

better results. The aim was to outperform other implementations, particularly with respect to 

image contrast dependence. The algorithm uses a Gm-C high pass filter to fix the DC level 

of the photoreceptors output. The delay is implemented with a tunable Gm-C low pass filter, 

while a Gilbert multiplier performs the correlation. Each cell occupies an area of 61 am. by 

199 pm when designed in a 1.2 pm process with much of the area consumed by the capacitors 

needed for the filtering. In the paper, the circuit was strenuously tested to gauge performance, 

particularly with low contrast images. The non-linear saturating characteristics of the Gilbert 

multiplier provide better operation than previous implementations. The authors also claim that 

one pixel cell consumes a mere 50 nW when operated with a 2.5 V power supply. The circuit 

seems to outperform many of the previous implementations. However, a two-dimensional ver-

sion has not been implemented, which may increase pixel size. The authors estimate that an 

80 by 80 pixel sensor could be implemented on a 7 mm by 7 mm chip with less than 700 t1W 

power consumption. 

2.4.2 'Scientific' Motion Detection: Alternative Algorithms 

While the Reichardt model for motion selectivity is the most prevalent in analogue VLSI im-

plementations, other algorithms do exist. 

An alternative was suggested by Barlow and Levick and is implemented in a sensor by Benson 

and Delbruck[67]. The model was originally developed to describe direction selectivity in 

rabbit retinas and utilises inhibition in the null direction. An illustration of the Barlow and 

Levick model can be seen in figure 2.6. As an object moves across the sensor in the preferred 

direction, the photoreceptor on the left excites the direction selective cell, causing it to fire. 

However, when the object reaches the neighbouring photoreceptor to the right, it inhibits the 

firing of the DS cell. An object moving in the null direction produces no outputs from any of 

the direction selective cells, as each is inhibited by the photoreceptor to its right. An estimate 

of velocity can be calculated by the speed with which the DS cell's output is inhibited. Slowly 

moving objects in the preferred direction will produce outputs for longer than quickly moving 

objects, as the inhibition occurs later. The circuit uses Delbruck's adaptive photoreceptor[ 121 

as an input stage to enhance the transients in the incident illumination. An array of 47 x 41 cells 
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was designed, with results verifying the direction selectivity of the system. 

Preferred 

Null 

P 	P Photoreceptors 

Excitation 

FSJ Direction Selective Cell 
Inhibition 

Figure 2.6: Barlow and Levick's Model of Direction Selectivity in the Rabbit Retina (adapted 
from [67]) 

An approach that combines the Reichardt sensor with an algorithm by Ullman and Marr was 

developed by Etienne-Cummings et al[68, 69]. The Ullman-Marr model uses the temporal 

derivatives of zero-crossings for velocity estimation. The idea is to measure the time between 

the disappearance of an edge (negative temporal derivative) at one pixel and its appearance 

(positive temporal derivative) at a neighbouring pixel. The authors state that by combining the 

direction selectivity of the Reichardt model with the velocity estimation of the Ullman-Marr 

algorithm, a more accurate and robust motion detection system is produced. The implemented 

algorithm can be considered a hybrid token-correlation system, based on the classification used 

in this thesis. A resistive grid is used to perform the spatial filtering and extract the spatial 

tokens to be tracked. However, contrary to many other silicon retina implementations[14, 29], 

the transistors are operated in strong inversion rather than subthreshold. The authors state that 

weak inversion resistive grids suffer from large offsets and small signal to noise ratios, problems 

which can be alleviated with a strong inversion implementation. Results from a test chip show 

that the algorithm responds to contrasts as low as 5 % in dim room lighting and bright sunlight. 

Plots of detected speed versus actual speed exhibit good linearity. 

A more detailed description of the algorithm, together with improvements can be found in[70]. 

The operation of the algorithm can be seen in figure 2.7. The image irradiance is spatially 

filtered and then thresholded to produce the zero-crossings. These encode the position of any 

edges in the scene with a binary representation. The pulses of the zero crossings are then tem-

porally differentiated, with a positive result representing the arrival of a zero crossing and a 

negative temporal gradient representing its disappearance. Motion is detected when the dis- 
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Figure 2.7: Etienne- Cummings et a! Correlation/Token Motion Detector Hybrid (adapted from 
[70]) 

appearance of a zero crossing at one pixel corresponds to its appearance at the neighbouring 

pixel. This can be achieved by correlating the positive temporal gradient at one pixel with the 

negative from the neighbouring. As the inset in figure 2.7 depicts, a correlation occurs and the 

length of time that passes until the edge disappears from the pixel is inversely proportional to 

its velocity. In the improved version of the algorithm, each cell measures 110 x 220 jim2  when 

designed in a 2 pm process, with a fill factor of 41 %. 

Another interesting approach to motion detection is described by Liu and Mead[71]. The idea is 

to dynamically adapt the delay in a delay line system such as Delbruck's[62] to allow different 

velocities to be detected without external bias adjustments. The system described by Liu is 
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similar to a phase locked loop, in that a phase difference is calculated and used as an error 

signal to match the delay to the time taken for an object to pass between two pixels. The system 

is based on a model of the optomotor response of the bee. The circuitry is complex and no 

details of pixel size are included, although a detailed analysis of convergence properties of the 

feedback system is included. 

A different neuromorphic approach that relies on an implementation of the template model of 

insect vision systems was developed by Moini et al[72]. The template model was proposed 

by Horridge and operates on the principle that the temporal contrast can be quantised to three 

values; increase, decrease and no change. The signals from two neighbouring detectors can 

have nine possible combinations of temporal contrasts, with 81 in total from two separate de-

tectors at two separate sampling times. In the implementation, the temporal differentiation and 

thresholding circuits are implemented in analogue circuitry, with digital techniques performing 

the template matching. The system makes use of a current mode spatial filter, similar to that 

designed by Andreou[29]. Temporal differentiation is achieved with an operational transcon-

ductance amplifier based system, biased in subthreshold to create the large time constants re-

quired. Results show the successful operation of the spatial filter and overall motion detection 

system. However, bias currents need to be tuned to obtain reasonable outputs for different 

lighting conditions. 

2.4.3 'Engineering' or Computational Motion Detection: Token-Based Al-

gorithms 

Despite the scientific interest in translating biologically inspired motion detection and velocity 

estimation algorithms into VLSI implementations, many are unpractical or limited in their util-

ity. For instance, many of the algorithms based on the Reichardt model have fixed time delay 

elements, resulting in limited velocity estimation range. In addition, many implementations 

produce large pixel circuits, meaning high resolution sensors are unpractical. An engineering 

approach to motion detection and velocity estimation may provide a smaller, more robust cir-

cuit. However, as previously mentioned, the discretisation of image irradiance associated with 

pixel arrays introduces the correspondence problem. The difficulty stems from ensuring one 

token at a particular location corresponds to the same object as it moves in space and time[6]. 

One such technique involves first identifying features or tokens in the incident image. It is 

possible to extract either spatial tokens, such as edges, corners and lines, or temporal features, 
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such as fast changes in intensity[66]. 

2.4.3.1 Token-Based Motion Detection: Spatial Tokens 

The sensor developed by Etienne-Cummings et al[70] could be included in this section as it 

employs a hybrid correlation/token based approach. The tokens that are tracked over time are 

the zero-crossings of the edges of the image when filtered with a difference of Gaussian kernel. 

Figure 2.7 highlights the operation of this algorithm in more detail. 

Another interesting approach was developed by Yamada and Soga[73]. The algorithm calcu-

lates the time in which a spatial edge moves a constant distance, related to the spatial distance 

between pixels. A 10 x 2 array of pixel cells was implemented, with a detectable velocity range 

of 0.2 to 100 mm/s. However, the accuracy is only +/- 20 %, which may be unacceptable for 

certain applications. 

2.4.3.2 Token-Based Motion Detection: Temporal Tokens 

Algorithms that search for abrupt temporal changes in image intensity and track them in time 

have proved popular with regards VLSI implementation. 

An algorithm developed by Kramer et al searches for abrupt temporal changes in image irra-

diance. An original version computed velocity in only one direction[74], while a subsequent 

update operated in two directions[75]. The algorithm works by converting temporal changes 

into thin current pulses, using a circuit based on Delbruck's adaptive photoreceptor[12]. The 

current pulses are then transformed into voltage pulses with pulse-shaping circuits, the out-

puts of which are fed to direction selective motion circuits. There are two separate algorithms 

implemented on the chip, both using the pulse shaping front end. 

The first is termed facilitate and trigger (FT) and works by comparing the timing of pulses 

created by two adjacent pixels. The overlap between the two is directly proportional to velocity. 

Direction selection is created by circuitry that responds differently depending on the order of 

the pulses' arrival. 

The second algorithm is called the facilitate and sample (FS) algorithm. Each pulse shaping 

circuit creates both a thin voltage spike (Vf) and a slowly decaying signal (Vs) at the onset 

of a current pulse. The voltage spike from one pixel is used to sample the slowly decaying 
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output from its neighbour. If V precedes Vf, the sampled value is a measure of the time delay 

between them, and is therefore inversely proportional to velocity. If however the sampling 

pulse arrives before V, it samples the decayed output from the previous edge, which should 

have diminished to a low value unless there is a high frequency of edges. This algorithm was 

conceived to produce outputs over a larger velocity range than the FT version. The operation 

of both can be seen in figure 2.8. 
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Figure 2.8: Kramer et al's Token Based Velocity Sensor(adaptedfroin [75]): (a) PT algorithm, 
pulses from neighbouring pixels are compared, with overlap encoding motion and 
pulse-width inversely proportional to velocity. Direction selectivity maintained by 
circuits sensitive to the order the pulses appear in. (b) FS algorithm, Each pixel 
produces a thin sample pulse (Vf) and a slowly decaying pulse (V8). If(V f ) occurs 
after (V,), it samples its value which provides an estimate to the time delay between 
them and is therefore inversely proportional to velocity. 

One dimensional versions of both algorithms were implemented to verify performance. Both 

produce a cell size of approximately 0.05 mm  when implemented in a 2 tm process. The 

authors predict that with the same technology, a two-dimensional array of 1250 pixels would 

create a chip measuring 62.5 mm2. Despite the increase in pixel size to accommodate two 

dimensional performance, a 128 x 128 pixel array could be integrated into a 16 mm x 16 mm 

chip using a 0.7 tim process. The FS algorithm operates successfully down to low speeds but is 

limited at higher velocity due to the finite width of the sampling pulse. The FT algorithm oper-

ates better at high velocity but is limited at lower speeds due to the mechanism employed in the 

direction selective cells. The FT algorithm is better with respect to different input illumination 
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than its counterpart, although the authors state that both respond better to low contrast stimuli 

than many of the alternative algorithms reported in the literature. Further details of the system, 

along with a detailed review of previous motion detection algorithms can be found in[15] 

A similar approach was developed by Higgins et al[76, 77]. Two separate token based al-

gorithms are presented, Inhibit, Trigger and Inhibit (ITT) and Facilitate, Trigger Compare 

(FTC). Both once again use a circuit based on Delbruck's adaptive photoreceptor to enhance 

transients in the image. The ITT algorithm operates on the principle that an edge crossing any 

pixel triggers a direction voltage for both left and right directions. The same temporal token, 

when seen by a neighbouring pixel inhibits the original pixels left or right pulse, depending on 

orientation. The output current is the difference between the left and right channels. The FTC 

algorithm is similar to the FT algorithm described by Kramer et al[75], in that speed is calcu-

lated by timing the occurrence of an edge at one pixel and its reappearance at a neighbouring 

pixel. Two dimensional versions of both were created, with a 14 x 13 ITT array and a 12 x 13 

FTC sensor. Pixel size is 110 x 120 im2  for the ITT and 128 x 119 im2  for the FTC, with 47 

iW and 29 MW power consumption per pixel respectively. 

The authors allude to the inspiration for these sensors stemming from work by Kramer[75] 

yet claim their implementation is more suitable to two dimensional implementation, with the 

two dimensional ITT pixel cell occupying 20% less area than the one dimensional FS alternat-

ive. There is little to choose between the two algorithms in terms of performance, with both 

computing motion over two orders of magnitude. 

It is interesting that both Kramer and Higgins feel real improvements in the production of robust 

motion detection algorithms would be helped by the design of an improved temporal token 

detector. Although Delbruck's circuitll12j is the basic approach, both authors feel their circuits 

are not limited by the actual algorithm, but the ability to successfully detect rapid temporal 

changes in the image. 

2.4.4 'Engineering' or Computational Motion Detection: Gradient-Based Al-

gorithms 

The gradient method for motion detection relies on the assumption that image brightness re-

mains constant with respect to time[6, 15]. This assumption allows an estimate of velocity to 

be derived from first order spatial and temporal derivatives, as seen for a one dimensional case 
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in equation 2.4. 

= 
DE/0t 	

(2.4) 

However, the calculation of accurate temporal and spatial derivatives with analogue VLSI is 

difficult, particularly with such circuitry's inherent offset and noise problems. 

One of the earliest implementations of a focal plane motion detection array was that by Tanner 

and Mead[13]. The system utilises analogue computation to solve a mathematical model of 

optical flow. By computing the first spatial derivative of intensity in the x and y directions, to-

gether with the first temporal derivative of the intensity variation, it is possible to approximate 

the global velocity of the image flow. An error signal is then computed to continuously refine 

this velocity estimation, improving the accuracy. This system was one of the first to demon-

strate the potential of implementing motion processing algorithms with dedicated analogue 

computation, despite possible inaccuracies caused by the calculation of accurate derivatives 

with analogue circuitry. 

Another implementation of a gradient based motion detection chip was developed by Chong et 

al[78]. When a time-invariant but spatially variant image is projected onto an array of photore-

ceptors, the output current from each is constant over time. If these output currents are tempor-

ally differentiated, any movement in the image will produce non-zero outputs, proportional to 

the first derivative of the output current. A current mirror differentiator is used and test results 

from a 25 by 25 pixel array prove the successful operation. 

A more recent gradient-based algorithm was developed by Deutschmann and Koch[79]. This 

circuit translates equation 2.4 directly into analogue VLSI, using Delbrucks adaptive photore-

ceptor[12], spatial and temporal derivative circuits and a division circuit. Floating-gate tech-

niques are used to increase the linear range of the amplifier used to implement the spatial 

derivative. Test results from a one directional velocity sensor exhibit a fairly linear output for 

increasing stimulus speed, over a range of approximately 150 mm/sec. Tests show successful 

operation down to approximately 4 % contrast. No details of pixel size are provided, yet the 

authors admit it has to be optimised if inclusion in a two-dimensional array is to be achieved. 
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2.4.5 Programmable Focal-Plane Image Processing 

The CMOS image processors reviewed so far have been hard-wired for a specific task, be it 

motion detection, velocity estimation or spatial filtering. However, the complexity of image 

processing suggests some element of programmability may be useful in certain applications. 

Recently, research on programmable focal plane CMOS image processors has produced inter-

esting systems. 

Etienne-Cummings et al[80] produced a processor with programmable spatial kernels. As with 

digital signal processing techniques, a spatial filtering operation is achieved by convolving the 

incident image with a discrete two dimensional kernel. The process is highlighted in figure 2.9. 
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Figure 2.9: Spatial Processing Using Convolution Kernels: (a) Original image, (b) 3 x 3 con-
volution kernel, approximating the Laplacian of Gaussian, (c) Spatially filtered 
result. 

The convolution kernel is applied to each pixel in the original image, the results for each pixel 

summed and then thresholded to produce a binary image representing the edges in the scene. 

The ability to vary the underlying convolution kernel allows for different spatial filtering effects, 

such as horizontal or vertical edge enhancement and positive or negative intensity gradient 

suppression. A more recent implementation[81] has included temporal processing in the form 

of frame differencing to produce a truly programmable spatio-temporal image processor. The 
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circuitry works by using current mirrors to create copies of the photocurrent, scaled to represent 

the particular convolution kernel being implemented. This produces a relatively small pixel 

size at only 30 im2, yet the mismatch involved with mirroring subthreshold current may cause 

spurious results. However, the reported results appear to verify the versatility of the system. 

An earlier programmable approach to modelling the retina was implemented by Paillet et al [82]. 

This circuit incorporates a digital processing element within each pixel, effectively creating a 

digital, programmable retina. The ever decreasing minimum feature size of CMOS processes 

allows up to 100 minimum sized transistors to be included, with minimal effect on the imaging 

array dimensions. Each pixel is 60 tm by 60 tim, with a fill factor of 30 %. The processing 

element first converts the analogue signal to digital before performing boolean algebra opera-

tions on the data. Image processing tasks such as motion detection, segmentation and shape 

recognition are possible. The processing element is designed to be programmable, allowing 

more flexibility than previous hard-wired analogue approaches. However, the 128 by 128 pixel 

imager uses about 1 W when clocked at 80 MHz. 

Another approach to implementing a programmable CMOS image sensor-processor was de-

veloped by Dudek et al[83-85]. The approach uses analogue sampled data techniques com-

bined with digital control circuitry to produce an analogue microprocessor, capable of perform-

ing different image processing tasks. The system allows for the convolution of image data 

with programmable kernels, similar to the system developed by Etienne-Cummings. By using 

switched current techniques and simple weighted current mirrors, it is possible to achieve addi-

tion, subtraction and multiplication of individual pixel data with the corresponding convolution 

kernel weighting. However, such SI circuit techniques are prone to mismatch, particularly with 

the charge injection caused by analogue switches. As such, a technique involving correlated 

double sampling was adopted. The idea is to sample the pixel data twice per cycle, once to 

measure the actual signal and a second time to measure any underlying noise. The noise can 

then be subtracted from the signal, improving the accuracy at the cost of increased area of im-

plementation. Each analogue microprocessor measures 600 pm by 70 im and consumes 100 

iW when implemented in a 0.8 im process. The authors aim to produce a general, low power 

analogue microprocessor and have aimed in particular at image processing applications. As 

such, the results seem promising, particularly with the ability to program the system to perform 

different tasks. 
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2.4.6 Comments on Focal-Plane Approaches to Spatio-Temporal Processing 

The 'scientific' neuromorphic systems developed to perform spatio-temporal processing seem 

to concentrate on motion and velocity estimation algorithms. The reason for this probably stems 

from the simplicity of the biological models developed to explain such processing in the biolo-

gical retina. Despite this relative simplicity, scientific motion sensors are still far more complex 

than the purely spatial and temporal processors described earlier, combining techniques from 

both alongside additional processing circuitry. The results highlight the potential for develop-

ing complex image processors with dedicated analogue circuitry, although are limited when 

compared with more powerful computer based algorithms. 

2.5 Summary 

The CMOS image processors reviewed in this chapter, both biologically inspired or employ-

ing more traditional engineering techniques, all share some element of focal plane processing. 

Whether employed to perform spatial, temporal or spatio-temporal image processing tasks, the 

fact that signal processing is included with light sensitive elements in each pixel may provide 

advantages in certain key aspects of a system level implementation. 

Most of the reviewed image processors employ analogue signal processing techniques which 

can be more economic regarding both power consumption and silicon area than digital cir-

cuitry of similar complexity[75]. In addition, the vast majority employ transistors biased in the 

subthreshold region of operation, where bias currents are in the nA or pA range, substantially 

reducing power consumption. Analogue processing also has the advantage of operating in con-

tinuous time, allowing precise timing of events and reducing the effects of aliasing, a potential 

problem with sampled data systems. The fact that pixel level processing is performed in par-

allel also allows for more rapid processing times, without the bottleneck associated with data 

being read out per column or row. While the pixel sizes are larger than standard CMOS imager 

arrays, the trade-off between spatial resolution and enhanced functionality produces smaller, 

more elegant system level designs. 

The research documented in this thesis would be classified in the temporal processing section 

of the literature review. The aim is to produce a CMOS imaging system capable of analysing 

temporal frequencies present in any scene. Ultimately, the target is the extraction of a frequency 

signature, incorporating the fundamental frequency and the early harmonics. Such a system 
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could be used in object classification as well as diagnostic testing. An emphasis on low power, 

low area, continuous time processing ties in with the potential advantages of a focal-plane 

implementation, hence the adopted approach involves the development of an algorithm that 

employs parallel, pixel level analogue signal processing. 

It seems that the key to successful neuromorphic image sensor design stems from the particular 

needs of the project. The complexity of real-time image processing coupled with the limitations 

of analogue circuits, particularly when biased in the subthreshold region, raises questions about 

the general application of such techniques. It is clear that for particular applications, success-

ful neuromorphic systems can be developed. For example, motion detection systems based on 

the Hassenstein-Reichardt model seem particularly suited to such implementation techniques. 

Despite this, the results from such systems appear limited, either in detectable speed range, 

detectable illumination range or precision, when compared with computer vision implementa-

tions. Indeed, Sarpeshkar et al[15] recognise that the velocity sensors they produce need to be 

employed in applications where qualitative motion estimates, rather than precise values, are re-

quired. Knowing whether an object has increased or decreased in speed, or changed direction, 

rather than providing exact measurements to the magnitude of object velocities, can be useful 

in systems incorporating feedback control systems. 

As previously mentioned, the study of neuromorphic systems with regard to image processing 

can be split into 'scientific' and 'engineering' categories. The former is concerned with further-

ing the understanding of biology by accurately modelling neural processing using a platform 

that faces similar constraints in terms of power consumption and implementation area. The lat-

ter approach aims to mimic biological signal processing to provide solutions to common visual 

processing problems. Such neuromorphic sensors aim to provide elegant solutions to problems 

where power consumption and area of implementation are more important than the overall pre-

cision of the system's output. As such, the development of neuromorphic image processors 

remains entirely dependent on the identification of relevant applications. In the authors opin-

ion, a general purpose, low power neuromorphic image sensor to rival more traditional image 

processing techniques seems unlikely. 

However, the requirements of the image-processor described in this thesis seem closely linked 

to the potential advantages of employing an engineering approach to neuromorphic processing. 

The aim is a dedicated, low power, continuous time sensor capable of extracting frequency 

signatures from any scene it is exposed to. There exists a trade-off between the accuracy or 
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processing power of the solution and its corresponding power consumption, with the sponsor 

company placing an emphasis on minimising the latter. For this reason, an approach combining 

the advantages of certain neuromorphic design principles in the form of parallel, low power 

focal-plane processing techniques along with more traditional engineering signal processing 

structures has been employed. 
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Chapter 3 
Software Development of Temporal 

Frequency Analysis Algorithm 

The requirements for low power, low area, high speed processing specified by the sponsor 

company led to the decision to concentrate on a focal plane processing solution, incorporat-

ing analogue, continuous time circuits biased in the subthreshold region of operation. After a 

review of image processors incorporating focal-plane processing, the potential advantages of 

such an approach seemed to closely match the requirements of the project. 

With a design framework in place, development of algorithms that could perform the required 

processing while fulfilling the necessary system level requirements could begin. All poten-

tial candidates were developed with simple circuit level realisations for each processing step 

in mind, to ease the translation from software simulation to hardware realisation. The MAT-

LAB programming tool was used to develop and simulate the different approaches, due to the 

large number of in-built, standardised signal processing routines. An emphasis was placed on 

analysing potential techniques for the application specified by the sponsor company. 

3.1 	Test Data 

To test potential algorithms, QinetiQ provided a series of image sequences, each containing 

objects that exhibit temporal frequencies of interest. The data sequences were captured with 

an infra-red camera, the reasons for which were two-fold: the sponsor company has an interest 

in infra-red applications and the camera was selected for its high frame rate. The nature of the 

project requires high sampling rates for the test data to avoid aliasing of the temporal frequen-

cies. The adopted camera sampled at 500 frames per second, meaning the highest detectable 

temporal frequency was 250 Hz. Each data sequence comprises 500 frames, with each indi-

vidual frame having a resolution of 128 by 128 pixels, and each pixel having an 8 bit range of 

data values. 
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3.1.1 Fan Data Sequence 

The fan data sequence contains two different objects, a fan and a negative luminescence device, 

each producing a different temporal frequency of interest. The fan can be clearly seen in the two 

selected frames in figure 3. 1, while the negative luminescence device sits in the very centre of 

the image. Such a device can be thought of as a thermal torch and was used due to the infra-red 

capabilities of the video camera. By biasing certain JR LED devices in reverse bias, the carrier 

densities in the near intrinsic active region fall below the equilibrium value[86], allowing it 

to absorb infra-red radiation without emitting it, effectively contravening Kirchoff's law[87]. 

This means that the device emits less radiation than its surroundings and therefore appears as 

if instantaneously cooled. It was this quick transferral between 'hot' and 'cold' conditions that 

made the negative luminescence device useful for the development of the test data employed in 

this research. 

In all there were seven different fan data sequences. The rotational frequency of the fan remains 

constant in each, acting as a control for the luminescence device, whose flashing frequency was 

changed for each of the eight sequences. The frequency of the thermal torch ramps from 10 Hz 

to 20 Hz, 30 Hz, 40 Hz, 50 Hz, 70 Hz and finally 90 Hz. 

Figure 3.1: Selected Consecutive Frames from Fan Data Sequence: In total there are seven 
different data sequences, each comprising 500 frames. There are two objects ex-
hibiting temnporaifrequencies of interest, afan and a negative luminescence device 
situated in the centre of image. Its intensity changes from dark in (a) to bright 
in (b). The fan rotates at a constant frequency in each data sequence, while the 
frequency of the negative luminescence device's flashing is ramped from 10 Hz 
through to 90 Hz 
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3.1.2 Propeller Plane Data Sequence 

The propeller plane data sequence depicts a twin engined plane, with both propeller blades 

rotating as it prepares to take-off. As such, the temporal frequencies of interest are the two 

rotors. The plane is static throughout the data sequence, with the only motion belonging to the 

propeller blades. Two consecutive frames from the sequence can be seen in figure 3.2. 

Figure 3.2: Selected Consecutive Frames from Propeller Plane Data Sequence. The temporal 

frequencies of interest are the twin engines of the aircraft 

3.1.3 Helicopter Data Sequence 

With the helicopter data sequence, the temporal frequencies of interest are the main rotor and 

the tail rotor. The helicopter itself is airborne in the data sequence, and moves relative to the 

camera from the centre to the bottom right of the image. Two consecutive frames can be seen 

in figure 3.3. The rotors in the images are very faint, due partly to their width and partly to the 

low contrast between them and the background. 

3.2 Dyadic Tree Algorithm 

The ability to extract the underlying frequency signature from transient changes in illumina-

tion is the underlying aim of the research described in this thesis. As previously mentioned in 

chapter one, the ideal approach would be the integration of a Fourier style processor within each 

pixel. Such an approach proved unrealistic given the design criterion imposed by the sponsor 

company. Nevertheless, the idea of converting the time domain variation in intensity into its 

corresponding frequency domain representation seemed the best approach to a successful im-

plementation. An initial study of signal transform techniques led to an investigation of wavelet 
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Figure 3.3: Selected Consecutive Frames from Helicopter Data Sequence: The temporal fre-
quencies of interest are the main and tail rotors of the helicopter 

transforms. 

Wavelet transforms differ from Fourier transforms in that the scale of the underlying basis 

function is variable, giving potentially more detail about the input signal's frequency content. 

The dyadic tree is a simple method of implementing a wavelet style decomposition of the input 

signal into frequency bins of differing size. Essentially, the approach uses a bank of low and 

high pass filters to split the signal's frequency content in two. The lower frequency band is then 

further sub-divided in two, and so on, producing a series of frequency bins covering different 

sections of the signal's frequency content. Specific details of the dyadic tree and its simulation 

with regards to the research documented here can be found in appendix A. It was discovered that 

the approach was unsuitable for this application, as it was unable to successfully discriminate 

between different temporal frequencies given the imposed size constraints. The technique also 

required the use of sampled data filter techniques, which is opposed to the sponsor companies 

initial design criterion. 

3.3 	Focal Plane Extraction of Fundamental Temporal Frequency 

With the failure of the dyadic tree algorithm, attention shifted to alternative approaches to the 

problem. Consider figure 3.4, which shows temporal and frequency domain representations of 

a 100 Hz square wave, with and without an additional 200 Hz sine wave. Imagine the sine wave 

is a noise signal, possibly caused by two objects contributing to the same pixel's intensity vari-

ation. The difference in the frequency domain signals can clearly be seen, suggesting a further 

problem with the dyadic tree algorithm. The tree filterbank technique is unable to differentiate 
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between signal and noise, producing a different frequency signature dependent on the relative 

strength of the signal and the noise. 

(a) 	100 Hz Square Wave 	
Square Wave + 'Noise' 
	

(d) 	Time Domain 
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Figure 3.4: Temporal and Frequency Domain Representations of 100 Hz Square Wave, with 
and without 200 Hz Sine Wave Noise Source.(a) 100 Hz square wave, (b) 200 Hz 
Sine wave (noise), (c)frequency domain version of sine wave combined with square 
wave, (d) temporal domain version of sine wave compared with square wave, (e) 
frequency domain version of square wave only. The addition of the noise changes 
the frequency domain signal, highlighting a potential problem with the dyadic tree 
algorithm. 

This potential problem became the inspiration for another approach to the extraction of fre-

quency signatures from visual data. Once again, the idea relies on filterbanks being placed 

in the frequency domain, with the outputs from each giving an estimate of the energy in that 

band. However, the approach differs from the dyadic tree in that the filters are programmable 

and placed depending on a calculation of the fundamental frequency, as depicted in figure 3.5. 

The first step involves the calculation of the fundamental frequency as accurately as possible, 

possibly using focal plane processing techniques. A tunable band pass filter is then placed at 

this frequency, and at the first four integer multiples, ensuring that each is in a sensitive place. 

In effect, the algorithm constructs a pseudo Fourier-processor. Obviously, the success of the 

algorithm depends strongly on the accuracy with the the fundamental frequency is calculated. 

For this reason, at this stage of the research, the focus moved to finding accurate techniques 
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for finding the fundamental frequency of temporal variations. An emphasis was placed on al-

gorithms which allowed simple circuit level realisations, as well as elements of focal plane 

processing. 
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Figure 3.5: Tuning Band Pass Filters to integer Multiples of the Fundamental Frequency: 
First, the fundamental frequency is calculated as accurately as possible. A band 
pass filter is tuned to this frequency, and the first four integer multiples, effectively 
creating a pseudo Fourier processor 

3.4 	The Average vs Active Algorithm 

The initial approach to finding the fundamental frequency stemmed from research into imple-

mentations of silicon retina circuitry. Many rely on creating an averaged or spatially smoothed 

version of the incident light intensity, using either resistive grids[14] or current mode techniques 

[28-30]. This is then compared with the incident photocurrent from a single photoreceptor, in 

an effort to re-create the centre-surround property of the retina and extract edges accordingly. 

By continually detecting the appearance and disappearance of edges in a scene with some form 

of comparator, a series of pulses will result. The frequency of these pulses will correspond dir-

ectly to the fundamental frequency of the object producing them. This pulse train could then be 

used to place the band pass filters accordingly. The idea is that the frequency of the pulse train 

will be simpler to measure accurately than the small signal variations produced by a CMOS 

image sensor. The process is highlighted in figure 3.6. The 'flashing' of the active pixel corres-

ponds to the intensity change caused by an object producing a temporal frequency of interest. If 
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the intensity of the active pixel is compared directly with the average of the surrounding pixels 

using a comparator, the resultant pulse train encodes the fundamental temporal frequency. 

ACTIVE 	 =5 •=O 

MEASURE THE PERIOD 

Figure 3.6: Operation of the Average vs Active Algorithm: The intensity of the active (central) 
pixel is compared to the average of the surrounding pixels with a comparator The 
resultant pulse train encodes the flmdamental frequency of the temporal variations 
in intensity. 

3.4.1 Software Simulation of the Average vs Active Algorithm 

To test the performance of the algorithm, a series of simulations using the MATLAB processing 

tool were developed. A simple routine to calculate the average intensity of a programmable area 

around the active pixel was implemented. Once again, the 'fan' data sequence was used to test 

the performance of the algorithm. The pixels highlighted in figure 3.7 (a) and (b) were chosen 

as the active pixels for the luminescence and fan respectively. The algorithm was applied to 

the test data sequence with the luminescence device flashing at 20 Hz. Figure 3.8 shows the 

results. The luminescence device produces an intensity variation that approximates a square 
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wave, hence the frequency domain representation in figure 3.8 (a). As such, the algorithm 

manages to successfully estimate the fundamental frequency as highlighted in the table in figure 

3.8 (c), even with a relatively small averaging area of seven by seven pixels. 

; 

Figure 3.7: Selected Pixels from the 'Fan' Data Sequence used to test the Average vs Active Al-
gorithm: (A) corresponds to the negative luminescence device, while (B) represents 
the fan itself. 

The results from applying the algorithm to the pixel corresponding to the fan can be found in 

figure 3.9. It is clear that the algorithm struggles to accurately estimate the fundamental fre-

quency of the fan's temporal intensity variations. The averaging area was increased in steps 

up to 41 by 41 pixels, yet the estimate is still not accurate. The poor performance of the al-

gorithm regarding the fan, when compared with the luminescence device may be due a number 

of factors. The fan rotates at higher frequency and also produces a less 'well-defined' temporal 

variation, as can be seen by comparing figure 3.8(b) with figure 3.9(b). The variation in intens-

ity from the luminescence device is far sharper than the fan, producing a better estimate to a 

square wave. Whatever the reason, it is clear that the average vs active algorithm struggles to 

resolve the fundamental frequency of the fan's rotation. 

3.4.2 Comments on the Average vs Active Algorithm 

The results from the average vs active algorithm suggest that it is unsuitable for the application 

described in this thesis. Although tested on limited data, it is clear that the results, particularly 

when tested on a pixel corresponding to the fan, are not accurate enough. Coupled with this are 

the complexities of a circuit level implementation. For the best estimate of the fan's rotational 

frequency, the algorithm required an averaging area of nearly 1000 pixels. While simple in 

software, the interconnect required for such an implementation in silicon would severely limit 
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Frequency Domain Representation of Luminescence Intensity 

Figure 3.8: Average vs Active Algorithm Applied to Luminescence Device Flashing at 20 Hz: 
(a) luminescence device active pixel - frequency domain, (b) luminescence device 

active pixel - temporal domain, (c) fundamental frequency estimate versus actual. 

No matter the averaging area, the prediction of the fundamental frequency is close 

to the actual value. 

the feasibility of the resultant image-processor. In addition, a direct comparison of the active 

pixel's intensity with the surrounding pixel's average with a comparator is not guaranteed to 

produce pulses. If an area of low or high intensity is included in the average calculation, the 

active pixels variation may not 'cross' the average value, meaning the comparator will be unable 

to switch. Any missed pulses will produce highly inaccurate estimates of the fundamental 

frequency. It may be this phenomenon that is responsible for the inaccuracy of the algorithm 

when applied to the fan. Given all these reasons, it was decided a circuit level implementation 

of the average vs active algorithm was too large and inaccurate to be a feasible solution to the 

problem. 

3.5 	The Flashing Pixel Algorithm 

With the average vs active algorithm highlighting potential problems with grouping pixels to-

gether in processing steps, a decision was made to investigate methods of reducing the required 

interconnectivity. The results of this investigation developed into the flashing pixel algorithm. 
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Figure 3.9: Average vs Active Algorithm Applied to Fan: (a) fan active pixel - frequency do-

main, (b) fan active pixel - temporal domain, (c) fundamental frequency estimate 
versus actual. The algorithm struggles to estimate the fundamental frequency ac-
curately. 

The approach is still based on the simple premise of producing pulses that chart the appearance 

and disappearance of edges in a scene. The frequency of the pulse train then directly encodes 

the fundamental frequency of the temporal intensity variation within that scene. However, a 

simpler approach to edge-enhancement was required, motivated by the short-comings of the 

average vs active algorithm. Attention shifted to work performed by Dudek et al[83-85, 88], 

which detailed the development of a general purpose analogue microprocessor. The targeted 

application was image processing, with the microprocessor allowing convolution of image data 

with edge enhancing kernels, such as the Laplacian seen in figure 2.9. The circuitry employed 

switched current techniques and, crucially, nearest neighbour connectivity to perform the ne-

cessary processing. Such techniques suggested a simple method of enhancing the edges in a 

scene, which might serve as a useful front-end for the Flashing Pixel algorithm. 

3.5.1 Laplacian Mask vs Half-Laplacian Mask 

The Laplacian mask highlighted in figure 2.9 is an attempt to model the mexican-hat response 

of the retina. As such, when applied to images such as those in figure 3. 10, both positive and 
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(a) Propeller Plane Data Sequence 	(b) Helicopter Data Sequence 

Figure 3.10: Selected Frames from the Propeller Plane and Helicopter Data Sequences 

negative intensity gradients are enhanced, as depicted in figure 3.11. A three by three Laplacian 

kernel (figure 3.11(a)) was convolved with every pixel in figure 3.10 (a) and (b), producing the 

results in figure 3.11 (b) and (c). 

It is clear that the Laplacian convolution kernel provides equal weighting to both positive and 

negative intensity gradients. While this is essential for standard edge-enhancing algorithms, 

in this application it may produce spurious pulses, reducing the accuracy of the fundamental 

frequency calculation. The aim is to edge enhance the scene, using a comparator to create 

pulses according to the appearance and disappearance of edges. If a pulse is produced for both 

positive and negative edges, then both rising and falling edges of an object may produce a 

pulse, effectively creating a spurious double pulse, where only one is required. For this reason, 

an emphasis was placed on the development of a new mask, which highlights only positive 

intensity gradients, ignoring the corresponding negative gradients. 

The operation of the desired convolution mask is to enhance positive intensity gradients, while 

suppressing negative intensity gradients. The adopted approach was to adapt the weighting of 

the three by three Laplacian mask to effectively skew the output. After much experimentation 

in MATLAB, the convolution kernel seen in figure 3.12 (a) was chosen as the best solution. 

It is clear from figures 3.12 (b) and (c) that the desired effect has been produced. A direct 

comparison of the results can be found in figure 3.13. 

From the propeller plane data sequence, the different effect of the Laplacian and half-Laplacian 
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(a) 30 Laplacian 	(b) Propeller Plane Data Sequence 	(c) Helicopter Data Sequence 
Convolution Ker-
nel 

Figure 3.11: Edge-Enhancement with the Laplacian Convolution Kernel 

(a) 	30 Half- 	(b) Propeller Plane Data Sequence 	(c) Helicopter Data Sequence 
Laplacian 
Convolution 
Kernel 

Figure 3.12: Edge-Enhancement with the Half-Laplacian Convolution Kernel 
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masks can be clearly seen in the enhancement of the runway underneath the plane in figure 

3.13 (a). As expected, the Laplacian kernel highlights both positive and negative intensity 

gradients, as seen in figure 3.13 (c). However, the half-Laplacian mask, depicted in figure 3.13 

(e), strongly enhances the positive intensity gradient, dark to light as we move both left to right 

and top to bottom, while completely ignoring the corresponding negative intensity gradient. A 

similar effect with the engine of the helicopter can be seen in figure 3.13 (d) and (f). Notice 

also that the edges enhanced by the half-Laplacian mask appear stronger than the equivalent 

by the standard Laplacian technique. This may make subsequent thresholding of the edges an 

easier task, producing a more robust input to the algorithm. 

This hypothesis was tested by selecting an individual pixel from each of the propeller plane and 

helicopter data sets. That pixel was then processed with both the half-Laplacian and Laplacian 

masks, with the output from each thresholded to produce a series of pulses. The results can 

be seen in figure 3.14. As expected, the output from each edge-enhancing mask is centred at 

zero, only moving when an edge is present in the scene. It is clear that for both selected pixels, 

the half-Laplacian mask produces a 'stronger' output, making thresholding a simpler task. The 

resultant pulse trains are a better estimate of the fundamental frequency than those from the 

Laplacian mask algorithm. 

3.5.2 Development of the Flashing Pixel Algorithm 

The aim of the flashing pixel algorithm is to first enhance the edges in a scene, using a three 

by three half-Laplacian mask. These edges are then thresholded using a comparator to produce 

a series of pulses, the frequency of which corresponds to the fundamental frequency of the 

intensity variation. To this end, a series of MATLAB simulations were performed to test the 

validity of the approach, using the plane and helicopter data sequences as inputs. Initially, 

individual pixel cells from each data set were selected, with the algorithm applied to their 

intensity variation. The pixels chosen to test the algorithm can be seen in figure 3.15. Pixels 

were selected if they experienced a temporal frequency of interest. 

Figure 3.16 highlights the processing steps performed by the algorithm, when applied to pixel 

(100,72) from the propeller plane data sequence. The half-Laplacian mask is applied to the 

selected pixel, taking weighted information from its nearest neighbours. The output from the 

mask is then thresholded, to produce a series of pulses. The frequency of the pulse train cones-

ponds to that of the fundamental frequency of the original intensity variation. This information 

60 



Software Development of Temporal Frequency Analysis Algorithm 

(a) Original Frame from Propeller 	(b) Original Frame from Helicopter 
Plane Data Sequence 	 Data Sequence 

(c) 	Plane Edge-Enhanced with 	(d) Helicopter Edge-Enhanced with 
Laplacian Mask 	 Laplacian Mask 

/ 

r 

(e) Plane Edge-Enhanced with Half- 	(f) Helicopter Edge-Enhanced with 
Laplacian Mask 	 Half-Laplacian Mask 

Figure 3.13: Comparison of Edge-Enhancement Convolution Kernels 
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(a) Selected Frame from Propeller 	(b) Selected Frame from Helicopter 
Plane Data Sequence 	 Data Sequence 

Figure 3.15: Selected Frames from the Plane and Helicopter Data Sequences, Highlighting the 

Chosen Pixel Locations 

is then used to place a series of band-pass filters at integer multiples of the fundamental. The 

fourth row superimposes the position of the band-pass filters on the frequency domain repres-

entation of the pixels intensity variation. An estimate of the energy at the output of each filter 

produces a frequency signature of the object that produces the temporal intensity variations. It 

is clear from figure 3.16 that the algorithm successfully places the band pass filters in the rel-

evant area in the frequency domain. For the purposes of this simulation, a frequency counting 

algorithm that ignores certain gaps in the pulse train was employed. The original pixel intensity 

displays a cyclical variation in the magnitude of the propeller blade, due to the sampled nature 

of the image data sequence. It is envisaged that a continuous time implementation of the al-

gorithm would produce a more constant pulse train, allowing the use of a simpler frequency 

counting technique. For all subsequent simulations, a threshold level was selected to ensure 

that the required pulse train would be created. In a circuit-level implementation, the threshold-

ing will be performed by a comparator circuit, meaning that the temporal variations will be 

compared to their quiescent DC level. As such, the thresholding stage in these simulations is 

an analogy to the process employed in the final version, and is chosen to ensure the greatest 

number of output pulses. 

The same algorithm was applied to a pixel from the helicopter data sequence, the results of 

which can be found in figure 3.17. The fundamental frequency of the helicopter's main pro-

peller is such that the harmonics are folded down to lower frequencies, hence the unorthodox 
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Figure 3.16: Operation of the Flashing Pixel Algorithm Applied to Pixel 100,72 in the Plane 
Data Sequence: The half-Laplacian mask is applied to the intensity variation 
before being thresholded. The frequency of the resultant pulses is used to place 
a series of five band pass filters, the energy content from each displayed in the 
frequency signature bar-chart. 

appearance of the frequency content. In addition, the frequency domain representation exhibits 

a large DC offset, due probably to the helicopter's engine passing through the selected pixel. 

Nevertheless, the algorithm does place the band pass filters over the frequency content, ignoring 

the DC offset. To further test the technique, the algorithm was applied to all four highlighted 

pixels in figure 3.15. For the plane data set, the positioning of the band pass filters can be seen 

in figure 3.18. It is clear that for each of the four selected pixels, the algorithm successfully 

positions the first band pass filter on the fundamental frequency. The subsequent band pass fil-

ters are accurately placed on the integer multiples of the fundamental, building a Fourier-style 

decomposition of the original signal. 

The same experiment with the selected pixels from the helicopter data set can be seen in fig-

ure 3.19. The algorithm copes well with (a),(c) and (d), but is slightly inaccurate with pixel 

(41,53). The slight difference between the calculated fundamental frequency and the actual 

value becomes more apparent at the higher frequency integer multiples. However, in general, 
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Figure 3.17: Operation of the Flashing Pixel Algorithm Applied to Pixel 45,53 in the Heli-

copter Data Sequence 

the algorithm copes well with the plane and helicopter data sequences. 

3.5.3 Noise Analysis of the Flashing Pixel Algorithm 

With the results from the flashing pixel algorithm appearing promising, physical limitations 

from a CMOS implementation had to be considered and factored into the simulations. CMOS 

imagers traditionally suffer more from noise than their CCD equivalents [89]. Of particular 

interest regarding this project are fixed pattern noise and random transient noise. 

3.5.3.1 Fixed Pattern Noise: Appearance and Causes 

In a standard CMOS process, mismatch between process parameters across the surface of the 

die produce offsets which effect the performance of the implemented circuitry. Such mismatch 

effects passive devices such as resistors and capacitors as well as the active MOSFETs. In 

a CMOS image sensor, such mismatch manifests as fixed pattern noise, so-called because it 

is strictly a DC phenomenon. If every pixel in the imager is illuminated with the same light 
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(a) Pixel (100,72) 	 (b) Pixel (119,30) 

(c) Pixel (126,67) 	 (d) Pixel (13,70) 

Figure 3.18: Band Pass Filter Positioning with the Plane Data-Set, using the half-Laplacian 
Mask algorithm 
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(a) Pixel (105,5 1) 	 (b) Pixel (41,53) 

(c) Pixel (45,53) 	 (d) Pixel (91,68) 

Figure 3.19: Band Pass Filter Positioning with the Helicopter Data-Set, using the half-
Laplacian Mask algorithm 
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source, the output image will display a pattern corresponding to the mismatch. From a circuit 

level point of view, techniques such as common centroid layout, dummy transistors and ensur-

ing transistors are large and given the same orientation can be adopted[90]. When considering 

an image sensor, approaches such as 'remembering' the fixed pattern noise and subtracting it 

from each frame can help to reduce the effect. Such correlated double sampling techniques[6] 

involve taking two readings of the photocurrent to be used differentially in subsequent pro-

cessing stages. 

For the purposes of this research, fixed pattern noise can be modelled as a different DC offset 

applied to each pixel, which is then held constant for each frame in the data sequence. The 

amount of fixed pattern noise added to the simulation is variable, with a threshold setting the 

maximum value. For this simulation, the threshold was set such that the maximum possible 

value of fixed pattern noise is 7.8% of the intensity range. This manifests as a maximum 

possible noise value of ± 10 (20 units from the maximum intensity value of 255) added to the 

actual intensity value for that particular pixel. To allow direct comparison, the selected pixels 

for the propeller plane and helicopter data sets were those highlighted in figure 3.15. 

3.5.3.2 Simulating the Flashing Pixel Algorithm with Fixed Pattern Noise 
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Figure 3.20: Effect of Fixed Pattern Noise on the Flashing Pixel Algorithm: Plane Pixel 

(100,72) 

The effect of fixed pattern noise on the flashing pixel algorithm can be seen in figure 3.20, 
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when applied to the plane data set. The algorithm was applied to the selected pixel, both with 

and without the added fixed pattern noise, such that a direct comparison of the effects can be 

made. The left hand side depicts the algorithmic flow for the noisy pixel, while the right is the 

same pixel without noise added. At first glance, the difference between the noisy pixel and its 

clean equivalent appear minimal, with both appearing to place the band pass filters relatively 

accurately. However, looking at the output from the half-Laplacian mask for both shows the 

presence of a DC offset in the noisy pixel. This is a potential problem for the algorithm, as the 

next phase relies on thresholding the output from the mask to produce a pulse train. In this case, 

the pulses for the noisy pixel appear relatively close to those for the clean version, but a few 

spurious pulses are produced, compromising the accuracy with which the band pass filters are 

positioned. The presence of this DC offset can be explained by the nature of fixed pattern noise 

and the operation of the half-Laplacian mask, as highlighted in figure 3.21. The original image 

contains no edges, yet the fixed pattern noise produces an artificial edge which is subsequently 

amplified by the half-Laplacian convolution kernel. In effect, the discontinuities in the fixed 

pattern noise are amplified, producing spurious edges where none in fact exist. As the sum of 

the weights in the half-Laplacian mask equal zero, the output should sit at zero when no edge is 

present. When the result from the application of the mask is computed, an intensity of 22 units 

is produced, simply by the presence of fixed pattern noise. 

It is clear that fixed pattern noise creates potential problems for the algorithm in its current state, 

in the form of a DC offset. The same experiment applied to the helicopter data set produced the 

results in figure 3.22. Once again, the DC offset caused by the presence of fixed pattern noise 

effects the accuracy of the technique, with spurious pulses produced as a result. 

However, a simple adaptation could be made to solve the problem. If the mask is applied as 

usual, but the output is passed through a high pass filter before thresholding, any DC offset 

caused by fixed pattern noise will be removed. This led to two new versions of the algorithm. 

The first is termed the half-Laplacian  HPF algorithm, and is exactly as described above with 

the DC offset from the mask's output removed with a high pass filter. The second is called the 

no mask algorithm and simply involves high pass filtering the original pixel intensity before 

thresholding, without applying an edge-enhancing mask. It was felt that any degradation in 

performance of such a technique may be offset by the simplified circuit-level implementation. 

Not applying a convolution kernel to the image means that no nearest-neighbour connectivity 

is required, effectively allowing each pixel to operate independently. The two techniques are 
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Figure 3.21: DC Offset caused by Fixed Pattern Noise with the Flashing Pixel Algorithm: Des-
pite the absence of an edge in the original frame, the fired pattern noise mimics 
the appearance of an edge, and is thus amplified by the half-Laplacian convolu-
tion kernel 

depicted pictorially in figure 3.23, together with the original version. 

3.5.3.3 Simulating the Half-Laplacian HPF Algorithm with Fixed Pattern Noise 

The first variation on the original flashing pixel algorithm uses a high pass filter to remove any 

DC offset caused by the presence of fixed pattern noise. To test the algorithm, the pixels from 

the plane and helicopter data sequence highlighted in figure 3.15 were selected. As before, a 

randomly generated 128 by 128 array was added to each of the 500 frames in the sequence, 

to model the DC nature of fixed pattern noise. The processing steps when applied to the pixel 

corresponding to the plane data sequence can be seen in figure 3.24 (a). As before, the left hand 

side represents the pixel with added fixed pattern noise, while the right hand side is the same 

pixel without any additional noise. The DC offset caused by fixed pattern noise is clear to see 

at the output from the half-Laplacian mask in the noisy pixel. However, after high pass filtering 

this signal, it resembles exactly the same processing stage in the clean pixel. Removing the 

DC offset allows simple thresholding, with the result that the filterbank is accurately positioned 

and the underlying frequency signatures for noisy and clean pixels are similar. It is clear that 

removing the DC level caused by fixed pattern noise with a high pass filtering stage makes the 
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Figure 3.22: Effect of Fixed Pattern Noise on the Flashing Pixel Algorithm: Helicopter Pixel 
(45,53) 

noisy pixel behave exactly like its clean counterpart. The same algorithm was applied to the 

helicopter data set, with the results in figure 3.24 (b). Once again, the DC offset is removed 

with the filtering stage, resulting in both noisy and clean pixels producing the same frequency 

signature. 

3.5.3.4 Simulating the No-Mask Algorithm with Fixed Pattern Noise 

The No-Mask Algorithm was conceived as a simpler alternative to the Half-Laplacian HPF al-

gorithm. By not applying an edge-enhancing convolution kernel to the image, the savings in 

terms of inter-connect and processing time may prove advantageous for the application con-

cerned. However, the original aim of applying a mask was to enhance edges in the scene, 

making thresholding a far simpler task. Without the mask, such a thresholding step may be 

more complex, with the possibility that certain objects may be missed. Nevertheless, given the 

potential savings from a circuit-level perspective, it was decided to simulate such a system to 

see how it compares with the other techniques. The algorithm was tested on the same pixels that 

were selected for the flashing-pixel and half-laplacian HPF versions, to allow a direct compar-

ison of results. The results when applied to the plane data sequence can be seen in figure 3.25 

(a). The pixel's intensity is passed directly through a high pass filter, removing any DC offset 

and centring it on zero. This is then thresholded to produce pulses, the frequency of which is 
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Figure 3.24: Effect of Fixed Pattern Noise on the Half-Laplacian HPF Algorithm 
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used to position band pass filters. In this case, the combined effect of the actual DC bias of the 

pixel intensity and the fixed pattern noise is completely removed with the high pass filter. In 

effect, only the transient properties of the signal are passed to the thresholding stage. As such, 

both clean and noisy pixels produce the same pulse train when thresholded, ensuring similar 

underlying frequency signatures. The results when the algorithm is applied to the helicopter 

data set can be found in figure 3.25 (b). Once again, the DC is removed with the high pass 

filter and the transient signal is thresholded. In both cases, the results are comparable with the 

half-Laplacian HPF algorithm, suggesting that this technique may be a viable alternative. 

3.5.3.5 Comments on Fixed Pattern Noise 

The aim of the simulations within the previous section was to ascertain the robustness of the 

flashing pixel algorithm to a common source of noise with CMOS imagers. It was discovered 

that fixed pattern noise manifests as a fixed DC offset, which can vary from pixel to pixel. 

As such, the original approach of applying an edge-enhancing mask to the image data was 

proved to be unsuitable, as edges caused by the fixed pattern noise were enhanced together 

with the actual edges in the scene, producing a DC pedestal onto which the mask's output is 

superimposed. However, a solution in the form of high pass filtering the signal to remove this 

DC offset was discovered. This led to the development of two alternative algorithms, the half-

Laplacian HPF algorithm and the no-mask algorithm, both of which were found to be robust 

to fixed pattern noise. The filter simply removes any DC level created by fixed pattern noise, 

ensuring that both techniques operate well despite the presence of fixed pattern noise. It is clear 

that the robustness to fixed pattern noise of both the half-Laplacian HPF algorithm and the no-

mask algorithm is data-independent, in that no matter the magnitude of the noise, the systems 

will function correctly. 

3.5.3.6 Random Transient Noise: Appearance and Causes 

Each component in a CMOS circuit, either passive or active, introduces some element of ran-

dom transient noise. Such noise exhibits random amplitude versus time and has an average of 

zero when measured over extended time periods. Thermal noise, shot noise and flicker noise 

are all examples of random transient noise[91], which can combine to produce the total noise 

for the circuit. The nature of such noise means it is unavoidable, yet its effects can be dimin-

ished with clever design at both algorithm and circuit levels. Random transient noise is termed 
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Figure 3.25: Effect of Fixed Pattern Noise on the No-Mask Algorithm 
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white-noise in that it appears at all frequencies and therefore cannot be removed with a filtering 

step. 

Transient noise was modelled by creating a random temporal signal to add to each pixel's 

temporal intensity variation. The magnitude of this noise signal was set at roughly 3 % of the 

maximum signal swing, modelling what might be expected from a circuit-level implementation. 

The amplitude of random transient noise is less than that from fixed pattern noise. Once again, 

the pixels highlighted in figure 3.15 were used to perform the simulations. 

3.5.3.7 Simulating the Flashing Pixel Algorithm with Random Transient Noise 

The results from applying transient noise to the flashing pixel algorithm can be seen in figure 

3.26. The added noise is clearly visible in the left hand column, adding a 'fuzziness' to the pixel 

intensity when compared with the clean signal in the right hand side. This in turn produces a 

noisy output from the mask, which introduces problems for the thresholding step. Despite the 

spurious pulses, the frequency counting algorithm manages to place the band pass filters fairly 

accurately in both place and helicopter data sets, with the underlying frequency signatures 

similar to the clean counterparts. 

3.5.3.8 Simulating the Half-Laplacian HPF Algorithm with Random Transient Noise 

The same simulation setup was applied to the half-Laplacian HPF algorithm, with the results 

in figure 3.27. The presence of temporal noise once again serves to produce spurious pulses, 

but the algorithm manages to place the filterbank fairly accurately for the plane data sequence. 

However, the algorithm struggles with the helicopter sequence, producing different frequency 

signatures. Changing the thresholding level may improve the performance, but it is clear that 

random transient noise poses difficult questions of the technique. 

3.5.3.9 Simulating the No-Mask Algorithm with Random Transient Noise 

Finally, transient noise was added to the no-mask version of the algorithm. The results for 

both plane and helicopter data sets can be seen in figure 3.28. As before, the presence of 

noise creates spurious pulses at the thresholding stage, particularly with the helicopter data 

sequence. However, the system seems to cope well with the plane data set, producing fewer 

spurious pulses than both the flashing pixel and half-Laplacian HPF versions for the same pixel. 
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Figure 3.26: Effect of Random Transient Noise on the Flashing Pixel Algorithm 
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Figure 3.27: Effect of Randoin Transient Noise on the Half-Laplacian HPF Algorithm 
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As such, the frequency signatures for the plane sequence for both noisy and clean pixels are 

extremely close. It may be that the absence of a edge-enhancing mask in some way helps the 

no-mask algorithm out-perform its counterparts. 

3.5.3.10 Comments on Random Transient Noise 

It is clear that transient noise creates more problems for the three versions of the algorithm than 

fixed pattern noise. In effect, a random signal in terms of both amplitude and frequency content 

is superimposed onto the existing intensity variation for each pixel, making the job of extracting 

the fundamental more difficult. If the magnitude of the noise is comparable to the size of the 

signal of interest, no amount of clever processing will allow the two to be separated. However, 

the size of the noise in the simulations from figures 3.26, 3.27 and 3.28 may be slightly larger 

than could be expected from a circuit level implementation. A value of 3% of the maximum 

possible signal swing was selected for the analysis. This manifests as approximately 8 intensity 

units out of the maximum 255 produced by the camera. As the maximum signal swing for the 

plane data is about 70 units, with that of the helicopter even less at about 30 units, the adopted 

noise percentage can be considered a harsh test of the algorithms robustness, with a signal to 

noise ratio of 18.84 dB and 11.48 dB respectively. Despite this, on the whole the three systems 

cope fairly well, with the thresholding process providing some degree of protection. Unlike 

with fixed pattern noise, the robustness of the three algorithms to random temporal noise is 

data-dependent, in that the magnitude of the noise effects the performance. 

3.5.4 Whole Image Analysis of the Flashing Pixel Algorithm 

The noise analysis of the flashing pixel algorithm led to the development of two new versions, 

both relying on a high pass filter to remove any DC offset caused by fixed pattern noise. A 

choice of whether to implement the half-Laplacian HPF algorithm or the no-mask algorithm 

on a CMOS test IC had to be made. To this end, a series of simulations analysing every pixel 

in the test data sequences were undertaken. Previous simulations had applied the algorithm to 

single pixels in the data sequence, selected as they experienced temporal frequencies of interest. 

It was decided that a truer picture of the power of the candidate algorithms could be made by 

analysing each pixel in the image sequence. As the success of each algorithm depends on its 

ability to extract the fundamental frequency as accurately as possible, it was decided to create 

a series of fundamental frequency maps of the test data sequences 
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Figure 3.28: Effect of Random Transient Noise on the No-Mask Algorithm 
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3.5.4.1 Fundamental Temporal Frequency Maps 

The critical point of each candidate algorithm is the accuracy with which the fundamental fre-

quency is extracted from the temporal intensity variation. A band pass filter array is positioned 

at the calculated fundamental frequency and its first four integer multiples, making the ac-

curacy of this initial calculation of paramount importance. To test each algorithms' ability to 

successfully extract the fundamental frequency of any temporal variation in the scene, a series 

of fundamental temporal frequency maps were created. The idea is to first apply the algorithm 

to each pixel in the data sequence. The frequency of the generated pulse train is calculated 

for each pixel, and encoded as a normalised intensity between 0 and 255. The intensity value 

is then placed in the fundamental frequency map at the same location as the pixel whose fun-

damental frequency has been calculated. In this way, each of the 500 frame data sequences 

are represented with a single frame, whose intensity at each pixel maps to the temporal fun-

damental frequency at that pixel location. To make the frequency maps more easily readable, 

the intensities were normalised to the highest detected frequency in the sequence, in an effort 

to maximise the contrast. Each fundamental frequency map provides a simple, visual method 

of ascertaining the accuracy of each candidate algorithm. In all of the subsequent simulations, 

fixed pattern noise of approximately 30 % of the maximum pixel intensity was added, to prove 

the robustness of the half-Laplacian HPF and no-mask algorithms. Random transient noise was 

not included, as previous simulations had shown that there is very little that can be done about 

this phenomenon, apart from varying the threshold level of the comparator. Examples of indi-

vidual frames from the propeller plane, helicopter and fan data sets can be found in figure 3.29. 

For the fan data sequence, frequency maps of the negative luminescence device flashing at both 

10 Hz and 90 Hz were produced. 

3.5.4.2 Frequency Maps: Flashing Pixel Algorithm 

Although the problems with the original flashing pixel algorithm regarding fixed pattern noise 

are well documented, it was decided to use it to create frequency maps for comparison. The 

generated fundamental frequency maps can be see in figure 3.30. As expected, the addition of 

fixed pattern noise to the data renders the algorithm completely unable to differentiate between 

pixels that experience temporal frequencies and those whose intensity remains static. Both 

propeller plane and helicopter data sequences show no discernible output, while the guard mesh 

from the fan data sets is almost visible. Nevertheless, this simulation proves the unsuitability of 
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(a) Propeller Plane Se- 	(b) Helicopter Sequence 	 (c) Fan Sequence 
quence 

Figure 3.29: Selected Frames from the Test Data Sequences 

the flashing pixel algorithm, when noise simulating a CMOS implementation is introduced. As 

such, there is little point in producing a CMOS implementation of this version of the algorithm. 

3.5.4.3 Frequency Maps: Half-Laplacian HPF Algorithm 

The frequency maps generated with the half-Laplacian HPF algorithm can be seen in figure 

3.31. The inclusion of a high pass filter ensures the algorithm is completely robust to fixed 

pattern noise. The map for the propeller plane clearly highlights the twin engines, while ig-

noring all the other stationary pixels. Ideally, the frequency seen by each pixel, and therefore 

the intensity in the frequency map would be constant. It is clear that this is not the case, with 

several patches of differing intensity. The reasons for this stem from the infra-red camera used 

to capture the image sequence. The difference in temperature between the propeller and its 

background is so little that the algorithm cannot differentiate between the two. In short, there 

is simply too little contrast for the algorithm to operate successfully in certain pixel locations. 

Despite this, it is clear that the algorithm successfully differentiates between static pixels and 

those that experience a temporal frequency of interest. 

The frequency map for the helicopter data sequence shows two different 'blocks' of intensity, 

corresponding to the main and tail rotor blades of the helicopter. Note also that the helicopter 

moves in the data sequences with respect to the camera, hence the intensity blocks seeming to 

gravitate to the bottom right hand corner. Once again, the algorithm produces very few spurious 

frequencies, with only pixels of interest producing an output. 
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3.5.4.4 Frequency Maps: No-Mask Algorithm 

The no-mask algorithm simply high pass filters the intensity variation from each pixel before 

thresholding to produce a series of pulses. The frequency maps generated with this technique 

can be seen in figure 3.32. There is little discernible difference between the plane map and 

the equivalent generated with the half-Laplacian HPF algorithm. The two tone effect caused 

by lack of contrast is still present. The results for the helicopter data set also appear similar, 

with the main rotor and tail blades clearly visible. There are a few spurious frequencies at 

the bottom of the frequency map, probably due to camera-wobble on the concrete runway 

present in figure 3.29(b). The results from the fan data set are the most striking, with very few 

spurious frequencies created. The luminescence devices are clear to see in the very centre of 

the frequency map, with the 10 Hz and 90 Hz alternatives producing low and high intensity 

blocks respectively. The fans themselves produce very uniform blocks of intensity, meaning 

the algorithm computes the same fundamental frequency for the vast majority of the pixels it 

passes through. There are a few spurious frequencies in the bottom right corner, but very little 

compared to the corresponding frequency maps created with the half-Laplacian HPF algorithm. 

3.5.4.5 Comments on Fundamental Temporal Frequency Maps 

Comparing the frequency maps generated with the three algorithms suggests that the no-mask 

algorithm may be the best in terms of a CMOS implementation. All the frequency maps were 

generated with the addition of fixed pattern noise, which, as expected, rendered the flashing 

pixel algorithm completely unable to distinguish between actual frequencies and those caused 

by noise. The results from the half-Laplacian HPF algorithm were more promising, with the 

rotational elements of the data sequences clearly visible against the stationary background. 

However, particularly with the fan sequence, an alarming number of spurious frequencies were 

detected, suggesting the approach may attempt to 'lock' onto frequencies that do not exist. 

Although much simpler, the results from the no-mask algorithm appear the best, with very few 

spurious frequencies and relatively uniform blocks of intensity representing the same object. 

The better results, coupled with the far simpler circuit level implementation led to the no-mask 

algorithm being selected as the approach for implementation in a CMOS test IC. 
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(a) Propeller Plane Sequence 
	

(b) Helicopter Sequence 

(c) Fan Sequence, Luminescence 
Flashing at 10Hz 

(d) Fan Sequence, Luminescence 
Flashing at 90Hz 

Figure 3.31: Fundamental Frequency Maps Generated with the Half-Laplacian HPF Al-
gorithni 
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(a) Propeller Plane Sequence 
	

(b) Helicopter Sequence 

(c) Fan Sequence, Luminescence 
Flashing at 10Hz 

(d) Fan Sequence, Luminescence 
Flashing at 90Hz 

Figure 3.32: Fundamental Frequency Maps Generated with the No-Mask Algorithm 
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3.5.5 Circuit-Level Implementation of the Flashing Pixel Algorithm 

With the no-mask algorithm selected as the best approach for determining the fundamental 

frequency of any temporal intensity variations, focus switched to the circuit-level implementa-

tion. A decision to concentrate on analogue, continuous time circuitry incorporating focal-plane 

techniques was made at the inception of the research. All of the candidate algorithms were de-

veloped with such a frame-work in mind, with the selected technique involving very simple 

processing steps. 

The no-mask algorithm can be effectively split into two main tasks: first extracting the funda-

mental frequency as accurately as possible, before using this information to place a program-

mable band pass filter array. The frequency map simulations confirm the ability of the no-mask 

algorithm to successfully extract fundamental frequencies while ignoring pixels that experi-

ence no temporal intensity variation. It was decided to concentrate first on this fundamental 

frequency extraction, with the development of a focal-plane technique. With this in place, an 

algorithm to tune the programmable band pass filter array could be developed. 

The adopted algorithm uses two very simple processing steps to find the fundamental frequency 

of any 'flashing' objects in the field of view. From a single pixel's perspective, the light intensity 

is high pass filtered, to remove any DC offset and centre the AC signal on a pre-determined 

bias level. This signal is then thresholded with a comparator to produce a series of pulses, the 

frequency of which corresponds to the fundamental frequency of the original temporal intensity 

variation. The process is depicted pictorially in figure 3.33. A photocircuit converts the light 

into an electrical signal, which is then high pass filtered to superimpose it on a known DC 

level. The resultant signal is then thresholded with a comparator to produce the pulse train. The 

next phase of the research involves finding suitable circuit techniques to realise a focal-plane 

implementation of the algorithm as efficiently as possible. The aim is to include such circuitry 

within each pixel of the final CMOS image-processor, placing an emphasis on low power and 

low area circuit implementations. 

3.6 Conclusions 

This chapter has introduced the initial software simulations that were performed to identify pos-

sible algorithms for the extraction of frequency signatures from visual data. Two underlying 

approaches were considered. The first involved wavelet processing in the form of a dyadic tree 
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Figure 3.33: Circuit-Level Implementation of the No-Mask Algorithm 

filter structure to split the signal into frequency bands of differing resolution. The results from 

software simulations of the technique suggested that it was not powerful enough to distinguish 

accurately between objects with similar fundamental frequencies. Other concerns over the size 

and feasibility of a circuit-level implementation led to other techniques being investigated. Fo-

cus instead shifted to a two-phase system, with the fundamental frequency first being detected 

using focal-plane techniques, before being used to position a pseudo-Fourier filterbank. A tech-

nique based on early-processing within the retina was briefly analysed, but deemed unrealistic 

for circuit implementation. Research into analogue circuit techniques for applying simple con-

volution masks to the image data led to the flashing pixel algorithm, which was then superseded 

by the no-mask algorithm, owing to both superior performance and simpler implementation. 

Of the different algorithms considered for the extraction of frequency signatures from the tem-

poral intensity variations subject to a CMOS imager, the no-mask algorithm was selected. The 

adopted approach seemed the best compromise in terms of processing power and ease of circuit 

level implementation, while still adhering to the sponsor companies requirements for a com-

pact, continuous time approach incorporating focal-plane processing techniques. The noise 

analysis proved the technique is completely robust to fixed pattern noise, a common problem 

with CMOS imager arrays. Random transient noise is more problematic, but the thresholding 

process provides some protection. Finally, the whole image analysis proved that the no-mask al-

gorithm clearly distinguishes between pixels that experience frequencies of interest, and those 

whose intensity remains static. Combined with the simple circuit level implementation, it is 

clear that the adopted approach is well-suited to a CMOS implementation. The strength of the 

approach lies in the fact that each pixel is treated as an independent frequency sensitive unit, 

providing massively parallel processing across the surface of the array. With the algorithm in 
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place, the next phase of the research involved translating each processing step into a circuit 

level equivalent. 

EM 



Chapter 4 
Test IC One: Fundamental Frequency 

Extraction 

The software simulations detailed in chapter three identified the no-mask algorithm as the best 

approach for extracting the fundamental frequency of temporal intensity variations, regarding 

a CMOS implementation. This chapter details the development of a test chip incorporating 

the no-mask algorithm, coupled with test results from the fabricated ICs. All of the test chips 

were developed using the Cadence suite of tools, incorporating the analog artist simulation 

environment and the virtuoso layout package. The chips were developed with an AMS 0.6 

sm process available through Europractice, and were financed by QinetiQ. A third metal layer 

was employed on this chip and all subsequent IC's developed during this research to shield 

those sections of circuitry not directly exposed to the incident light intensity, thus reducing 

the potential effects of unwanted photo-induced currents. This is particularly important when 

subthreshold bias conditions are utilised, as such photocurrents can be similar in magnitude to 

the bias currents, seriously effecting the subsequent performance. 

4.1 	System-Level Design 

The three processing steps of the fundamental frequency extraction algorithm are depicted in 

figure 4.1. A photocircuit converts the incident light intensity to an electrical signal. The DC 

level is then removed with a high pass filter, designed with a low cutoff frequency due to the 

low frequency nature of the transient changes in intensity. In order to 'pass' a signal at 10 Hz, a 

time-constant of 0.1 s or longer is required, which poses difficult design constraints on the filter 

implementation. Finally, a comparator is used to threshold the signal, producing the required 

pulse train. A reference of 2.5 V is selected in figure 4.1 as it occupies the midrange of the 5 V 

power supply, ensuring maximum possible signal swing. 

At the system level, a choice of continuous time circuit techniques had already been made, 

based on the sponsor companies requirements. This led to an exploration of continuous time 
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Figure 4.1: Circuit Level Implementation for the No-Mask Algorithm. The incident light is 
converted to an electrical signal which is then filtered to remove the DC level, 
before thresholding with a comparator 

circuit techniques that could be employed in the development of the system. A choice between 

current or voltage mode processing techniques had to be made. The difference stems from 

the electrical signal used to perform the processing steps. In general, current mode circuit 

techniques are thought to be faster that their voltage mode counterparts [92, 93]. This is due to 

the ability of transistors used as current amplifiers to operate right up to the maximum realisable 

frequency, fT.  The frequency range of interest is relatively low, meaning very high speed 

processing is not essential. In addition, the emphasis on transistors biased in subthreshold to 

reduce power consumption may make current mode techniques impractical. Mismatch between 

subthreshold currents can be as much as 5 % - 20 % depending on transistor dimensions[94], 

creating potential problems for such an approach. However, a recent paper by Schmid[95] casts 

doubt on the relevance of defining circuitry as either current or voltage mode, arguing that both 

share the same underlying properties. An emphasis was placed on simple circuit techniques to 

allow quick and easy simulation and testing. 

4.2 Circuit-Level Design 

With the decision to pursue an analogue, continuous time approach incorporating focal-plane 

techniques, the next phase of the research was the identification of circuit structures that could 

perform the three processing steps depicted in figure 4.1. The emphasis on the test chips de-

signed in this research was proof of concept. As such, if superior circuit-level topologies are 

discovered, they could be 'slotted' into the algorithm at a later date. 
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4.3 Photoelement 

The job of converting the incident light intensity into a useful electrical quantity is performed 

by the photoelement. In a standard CMOS process, there are a number of alternative structures, 

all with certain strengths and weaknesses. The response of silicon to incident light photons of 

sufficient energy is the liberation of a valence electron from the bonds holding the silicon atoms 

together. This process leaves behind a positively charged 'hole', thus creating an 'electron-

hole pair' and allows the structure to conduct a certain amount of electrical current. As the 

light intensity increases, the number of liberated electrons also increases, producing a higher 

current. By exposing certain structures to light intensity, photocurrents related to the strength 

of that light energy are created. 

4.3.1 Photodiode 

The photodiode tends to be the most widely used photoelement in commercial CMOS imagers 

due to its relatively good matching properties[96]. In general, such devices are used in reverse-

bias, due to the relatively linear relationship between light intensity and photocurrent. As a 

consequence of this, the photocurrents produced by a photodiode tend to be in the pA to mA 

range. There are different ways of realising photodiodes in a CMOS process, including well-

substrate diode, diffusion-well diode, diffusion-substrate diode and lateral diode. 

4.3.2 Phototransistor 

Parasitic bipolar transistors exist in CMOS processes due to the layers of differently doped n-

type and p-type material. It is possible to create a phototransistor by exposing such a structure 

to the incident light. A standard bipolar transistor operates by multiplying the base current 

by a gain factor /3, which then appears at the collector terminal. If the base current is gener-

ated by light energy, the effective photocurrent will be multiplied by the 3 factor, producing 

approximately 100 times the value from a photodiode. However, this also proves to be the pho-

totransistors downfall, due to the poor matching characteristics of this gain factor. For CMOS 

imagers, it is imperative that each pixel produces the same photocurrent for the same incident 

light intensity. Such a situation is unlikely with a phototransistor, without post-processing cir-

cuit or software techniques. Nevertheless, the phototransistor is a useful structure for converting 

light into photocurrent in certain applications. 
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4.4 	Photocircuit: Logarithmic Compression Photocircuit 

The task of the photocircuit is to condition the current from the photoelement into a useful 

format for further processing stages. The choice of a continuous time approach at the system 

level reduced the number of potential candidates considerably. Many industrial CMOS imagers 

make use of active pixel sensors, where the charge is integrated on a node and then read-out 

when required[6]. Such an approach requires clock signals to control the charge collection and 

read-out periods, with the output appearing as a sampled version of the incident light intensity. 

The rationale behind a continuous time approach to the system stemmed from the underlying 

requirement to extract a meaningful frequency signature from each pixel. With a sampled data 

approach, the sampling time would have to be sufficient to pass the requirements for Nyquist's 

criterion regarding aliasing. Standard approaches to CMOS imagers take a sample from each 

pixel in a row or column in turn, meaning the clocking frequency in this application would need 

to take into account the overall dimensions of the imager array, placing a potential upper-limit 

on the maximum resolution of the system. A continuous time approach stops potential aliasing 

problems, allowing each pixel to be accurately analysed for frequency content. 

A potential problem with continuous time photocircuits is the huge range of illumination levels 

incident to the imager. There are almost eight decades of incident illumination, producing a 

huge range of possible inputs for a photocircuit to cope with. Active pixel circuits adapt the 

integration period depending on the background illumination, allowing long periods for dark 

conditions and short periods for bright conditions. While a useful approach, if the same image 

incorporates regions of dark and bright light, certain details will be lost. A potential solution 

to this dynamic range problem is the logarithmic compression photocircuit, depicted in figure 

4.2. The circuit works on the basis that the photocurrent produced by the photoelement (in 

figure 4.2, a photodiode) is small enough to bias the transistor loads in the subthreshold region 

of operation. 

4.4.1 Large-Signal Characteristics 

A simplified version of the Ids-Vgs relationship for a subthreshold transistor[97] can be found 

in equation 4.1, along with the corresponding strong-inversion version in equation 4.2. In 

equation 4.1, W and L represent the physical dimensions of the transistor, 'DO  is a process 

dependent reverse voltage saturation current, Vgs  is the gate-source voltage of the transistor, Th 
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is the subthreshold slope factor, k is Boltzmann's constant, T is the ambient temperature and q 

is the charge on an electron. The parameters for equation 4.2 once again include the transistor 

dimensions W and L, the mobility factor yo, oxide capacitance CO3  and the threshold voltage 

of the device V subtracted from the gate source voltage. The exponential nature of the current 

of a subthreshold transistor with respect to the gate-source voltage results in a logarithmic 

compression of the output voltage for the photocircuit, as seen in the simulation results in 

figure 4.3. When the photocurrent starts to reach strong inversion magnitudes, the square-law 

relationship seen in equation 4.2 begins to dominate and the output voltage drops significantly. 

Figure 4.2: Logarithmic Compression Photocircuit: The current produced by the photoelement 
bias the transistors in the subthreshold regime, resulting in a logarithmic compres-
sion in the output voltage 

kT 	 (4.1) 
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The slope of the DC response for the logarithmic photocircuit can be modified by varying 

the number of load transistors. By increasing the number of load transistors, the slope of 

the logarithmic photoreceptor's DC characteristic can be increased, effectively increasing its 

sensitivity to transient signals[98]. This property was simulated using the Spectre simulation 

tool, for photocircuits with one, two and three load transistors. The results in figure 4.3 highlight 

the change in slope as the load is varied. 
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DC Response of Log Photocircuit 
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Figure 4.3: Simulation of the Logarithmic Photoreceptor's DC Response: As the number of 
load transistors increase, the slope of the DC characteristic steepens, increasing 
the sensitivity 

4.4.2 Small-Signal Characteristics 

The frequency response of the logarithmic compression photocircuit is of paramount import-

ance to its use in this application. The photocircuit has to be able to operate at the frequencies 

of interest, in this case from about 1 Hz to 10 kHz. For simplicity, the small signal response of 

the photocircuit was derived with a single load transistor. Based on figure 4.4, with C repres-

enting the parasitic capacitance of the photoelement, the small signal transfer function can be 

calculated as that in equation 4.4, using Kirchoff's current law at the output node. 

gV07j  + iph,, + VoutSCp  = 0 	 (4.3) 

V0  (s) - -1 
(4.4) 

ipho(S) - 9m + SCp  

It is clear that the logarithmic compression photocircuit exhibits a first order low pass response, 

with dominant pole P1 =Depending on the ambient light conditions, the photocurrent 
CP 

will bias the transistor load in the subthreshold regime, producing a small value of transcon- 
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Figure 4.4: Logarithmic Compression Photocircuit. Small Signal Model 

ductance. The main limiting factor in the frequency response is the parasitic capacitance of 

the photoelement, which is directly proportional to its size. This suggests a design trade-off 

between the size of the photoelement and therefore the magnitude of the photocurrent, with the 

maximum input frequency that the photocircuit can 'pass'. Methods of decreasing the depend-

ence of the bandwidth on the parasitic capacitance include using an amplifier with feedback to 

shift the dominant pole to higher frequencies[6]. 

Once again, the photocircuit was simulated with the Spectre simulation tool, in an effort to 

ascertain the effect of the number of load transistors on the AC response. From the DC char-

acteristics in figure 4.3, the slope increased as the load increased, suggesting higher gain. It 

is clear from the simulated AC response in figure 4.5, that more load transistors does provide 

higher gain. However, the increased sensitivity to transient signals comes at the cost of a reduc-

tion in bandwidth. 

4.4.3 Implementation of the Logarithmic Compression Photocircuit 

The actual circuit implemented on test chip one can be seen in figure 4.6, together with the tran-

sistor dimensions. Based on the simulation results, three load transistors were used in an effort 

to increase the slope of the logarithmic compression, providing larger output voltage swings 

for the same transient photocurrent[6, 98]. However, as figure 4.5 highlights, this approach has 

the disadvantage of reducing the bandwidth of the device. Both are important considerations 

for the photocircuit's application in this research, but it was decided that the advantage of in-

creased gain from three load transistors out-weighed the reduction in bandwidth. Two different 
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AC Response of Log Photocircuit 
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Figure 4.5: Simulation of the Logarithmic Photoreceptor's AC Response: As expected, the gain 
increases as the number of load transistors increases. However, the cost is a re-
duction in bandwidth 

photoelement structures were included, both with dimensions 50 ftm by 50 im to allow a direct 

comparison of results. The first photoelement was a diffusion-substrate photodiode, with the 

other being a parasitic vertical bipolar phototransistor. 

4.4.4 IC Test Results: Logarithmic Compression Photocircuit 

The logarithmic photoreceptor implemented on the test IC was tested with the aid of an LED 

controlled by a signal generator, to allow input frequencies to be changed. In order to test the 

frequency response of all the implemented circuits, a simple buffer circuit was employed to 

prevent the relatively high capacitance of the analogue pads from loading the sensitive nodes. 

The circuitry within each pad, particularly the protection diodes, produce a large capacitance 

which can effect the frequency response of the circuits under test. The details of the buffer 

circuitry can be found in appendix B. 
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Figure 4.6: Logarithmic Compression Photocircuit: Implementation on Test Chip One 

4.4.4.1 Comparison of Output Voltage Between Diffusion Substrate Photodiode and Ver-

tical Parasitic Phototransistor 

The first experiment involved proving the fact that the vertical parasitic bipolar phototransistor 

produced more photocurrent than a photodiode for the same input intensity. To test this, the 

LED was illuminated with a DC supply source which was slowly varied to increase the level of 

illumination. As the light level increases, the corresponding photocunent should also increase, 

with that of the phototransistor producing a more pronounced change than the photodiode. As 

such, the output voltage from the phototransistor should vary over a wider range than the photo-

diode. The test results in figure 4.7 confirm this, with the output from the phototransistor driven 

photocircuit varying from 1.65 to 1.56 Volts, while the photodiode version moves down only to 

approximately 1.64V. In this application, any increased signal swing from the photocircuit will 

aid the thresholding stage of the algorithm. 

4.4.4.2 Frequency Response of the Photocircuit 

The frequency response of the log compression photocircuit is dominated by the size of the 

parasitic capacitance caused by the photoelement, as seen by the relationship in equation 4.4. 

An effort to measure the photocircuits frequency response was made by controlling the LED 

with a signal generator, which allowed the input frequency to be ramped. The ratio of the output 

voltage to the input was taken at each frequency step, with the results plotted in the bode plot 

of figure 4.8. The experiment was repeated three times, with the DC level of the LED's light 
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Figure 4.7: Measured Test IC Results- Comparison of Logarithmic Photoreceptor with Pho-
todiode and Phototransistor Loads: As expected the phototransistor produces a 
larger output swing due to the inherent amplification of the photocurrent by its 3. 
For all subsequent implementations, the phototransistor was the employed pho-
toelement 

intensity varied but the AC kept constant throughout at 500 mV. As expected, the differing DC 

level manifests as a different level of attenuation in the low frequency pass band. However, the 

cutoff frequency for all three remains fairly constant at around 1kHz. This could be increased 

by reducing the number of load transistors or the size of the phototransistor. 

4.4.5 Comments on the Logarithmic Compression Photocircuit 

The logarithmic compression photocircuit exploits the physics of a transistor when biased in 

the weak inversion region of operation to reduce the huge potential input photocurrent range to 

a much smaller output voltage. Potential disadvantages of this approach regarding the chosen 

application include the fact that the high compression may result in small, transient intensity 

changes being effectively 'missed' as the voltage change they produce are so small. Also, the 

frequency response is low pass in nature, with a dominant pole caused by the size of the pho- 
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Frequency Response of Logarithmic Photocircuit 
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Figure 4.8: Measured Test IC Results- Frequency Response of the Logarithmic Compression 
Photocircuit with Phototransistor: Despite the variation in pass band attenuation, 
the cutofffrequency tends to be constant at around ]kHz 

toelement. Nevertheless, the circuit does fit the design criterion in that it operates in continuous 

time, with low power consumption and produces an output voltage signal that is related to the 

input photocurrent. 

The use of a phototransistor as the photoelement is acceptable in this particular application, as 

each pixel in the imager operates independently from the others. As such, any mismatch in the 

gain from each photocircuit will have no effect on the system's performance, with the larger 

signal swings afforded by the multiplication factor an advantage for subsequent thresholding. 

As previously mentioned in chapter two, Delbruck's adaptive photoreceptor[12] would be an 

excellent photocircuit for the chosen application. However, it was felt that the simplicity of the 

logarithmic compression approach made it a more feasible input stage. Although its perform-

ance is poorer, the ease with which it could be implemented was the reason for using it as the 

input stage for the prototype CMOS implementation of the fundamental frequency extraction 

algorithm. 
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4.5 High Pass Filter: Gm-C First Order Filter 

The second stage of the fundamental frequency extraction algorithm uses a high pass filter 

to remove the DC level from the photocircuit's output and bias the transient information at a 

well-defined reference level. Due to the relatively low frequency range of the input, the cutoff 

frequency of the filter had to be low, such that signals close to 1 Hz could be passed without 

considerable attenuation. Cutoff frequencies of this order are generally difficult to achieve 

in CMOS VLSI, particularly given the constraints in this particular application. The adopted 

approach requires that the filter consumes as little area as possible, as the three processing 

elements in figure 4.1 are to be included within each pixel of the image-processor array. This, 

coupled with the low power constraints imposed by the sponsor company, led to a decision to 

implement a simple first order high pass filter. 

4.5.1 Low Frequency Filtering with Gm-C Circuit Structures 

Various continuous time methods for realising filter structures exist in CMOS VLSI. Active and 

passive RC filters, current mode filters and log-domain filters are all examples of design meth-

odologies for producing frequency selective circuits. Based on work published in the literature, 

a decision to implement a Gm-C/OTA-C filter was made. Such circuits use transconductance 

elements combined with capacitors to produce integrators, which act as the basis of Gm-C fil-

teringI99I. These can then be combined to implement higher order structures, either by simply 

cascading low order stages or converting an LC ladder prototype. 

The reason for the choice of Gm-C filter stems from the need for large time constants to real-

ise the low cutoff frequency required. Work into the realisation of very low frequency Gm-C 

filtering has recently been published [100-1031, together with more general work on such filter 

techniques[99, 104-106]. The ability to bias the transconductance element in the weak inver-

sion region of operation allows for the creation of very large time constants, due to the resultant 

small values in transconductance. As an example, consider the simple first order integrator 

illustrated in figure 4.9. As previously mentioned, such integrators act as the basic elements 

in the realisation of higher order Gm-C filter structures. The figure illustrates the fact that the 

unity gain frequency depends directly on the ratio of the transconductance to the capacitance. 

If the designer wishes to realise this unity gain at low frequency, as is the case with the imple-

mentation of low frequency filters, one approach may be to increase the size of the capacitance. 
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However, capacitors consume large amounts of space on a CMOS IC. The only other possibil-

ity is to reduce the magnitude of the transconductance, which is readily achievable by biasing 

the element with a subthreshold current. A device biased with a weak-inversion current has 

the added benefit of consuming very little power, which was one of the driving factors behind 

the implementation of this system. It seems that low frequency filters implemented with this 

technique are ideal for the application presented in this thesis. 

Vin 
Mag 

OdB 	
- Freq(rad) 

-20dB/dec  

 

Vout 	9M 

Vin 	Sc 	- 	s - 

Figure 4.9: First Order Integrator- The Basis for many Gm-C Filter Structures: The unity gain 
point depends on the ratio of the transconductance to the capacitance. 

However, there are disadvantages regarding implementing filters with subthreshold currents. 

Mismatch between weak inversion currents[19, 94] can manifest as similar filter structures with 

wildly different cutoff frequencies. Gm-C filters biased in the strong inversion region of oper-

ation require tuning circuitry to accurately control the frequency response, due to the inherent 

mismatch in CMOS elements[106]. The error only increases when using subthreshold currents, 

suggesting that accurate filter cutoff frequencies are difficult to achieve without expensive tun-

ing techniques. Another disadvantage with subthreshold circuitry is its inherent temperature 

sensitivity, as highlighted in the dependence on T in equation 4.1. Changes in the ambient 

temperature of the IC will produce different filter time constants. It is possible to develop sys-

tems which are more tolerant to temperature variation, but at the cost of increased area and 

complexity. 

For the purposes of the research documented in this thesis, the fact that the time constant of 

the high pass filter will vary is of little concern, given its task in the fundamental frequency 

extraction algorithm. The sole aim of the filter is to separate the transient information from 

the photocircuit's output from its bias level. To achieve this, the cutoff frequency simply has 
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to be lower than the input fundamental frequency, but exactly how much lower is of little 

consequence. At worst, the pixel may produce no output, however the chances of every pixel 

doing so are small. Crucially, the system wont produce a spurious output frequency if the filter's 

time constant varies, meaning the system can be relied upon at all times. 

4.5.2 Realising Transconductance Elements with Operational Transconduct-

ance Amplifiers 

There are many methods for implementing the transconductance element in figure 4.9. Opera-

tional transconductance amplifiers (OTAs) are a simple way to realise a tunable transconduct-

ance element. An OTA is essentially an operational amplifier with a low impedance output. 

The gain of an OTA is normally characterised by the transconductance of the input differential 

pair, which serve to convert the input voltage to a current. Consider the simple OTA in figure 

4.10, which is essentially a standard differential stage with current mirror load. When biased 

in strong inversion, the transconductance of this element is given by equation 4.5[91], where 

W and L are the dimensions of the differential pair transistors, yo is the mobility factor, C0  

is the oxide capacitance and 'tail  is the tail current. It is clear that the transconductance, and 

therefore the time constant of the circuit, can be controlled by varying the tail current. However, 

there is a square-root relationship, reducing the potential tuning range of any subsequent filter 

implemented with this approach. 

Vinl 

	

Vijn2,,  

CI 

YlT 
vout 

Figure 4.10: Operational Transconductance Amplifier: NMOS Differential Pair with Current 
Mirror Load 
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gm = \J2 OCox Itail 	 (4.5) 

The relationship for the transconductance of the same circuit when biased in subthreshold be-

comes that in equation 4.6[100],  where K is a process dependent constant and Vthe7.mal is the 

thermal voltage. In this case, there is a linear relationship between transconductance and tail 

current, allowing a wider tuning range for filters implemented using this technique. 

'tail 
IT 
V thermal 

(4.6) 

The relationships in equations 4.5 and 4.6, for the simple OTA in figure 4.10 were simulated 

using the Spectre simulation tool. The transconductance versus tail current for both strong and 

weak inversion bias can be seen in figure 4.11. Figure 4.11(a) clearly highlights the square-

law relationship between tail current and transconductance, while the linear relationship for the 

same circuit biased in subthreshold is depicted in figure 4.11(b). The ability to realise large 

time constants using subthreshold currents is the prime motivation for adopting the technique 

in this research. The fact that the device can be tuned over a wide range of transconductance 

values may have no explicit benefit at this stage, but any implementation of programmable band 

pass filter banks at a later stage would benefit greatly. 

For the purposes of this research, two simple OTA structures were implemented in an effort 

to compare the relative strengths and weaknesses. The simple differential stage with current 

mirror load was the first structure, with the mirrored OTA acting as the second. Both OTA 

topologies are highlighted in figure 4.12. The mirrored OTA uses three current mirrors to 

convert the differential input to a single-ended output. The idea is that it is a more balanced 

circuit than that in figure 4.12 (a), with a resultant improvement in output offset voltage[105]. 

The transistor sizes for the two OTA structures can be seen in tables 4.1 and 4.2. The elements 

were sized by using the simulator to achieve reasonable values of transconductance. Given that 

the elements are biased in the subthreshold region of operation, large transistor aspect ratios 

were adopted to improve the effects of current mismatch. 
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Figure 4.12: OTA Structures Implemented on Test Chip One: (a) Differential Stage with Cur-
rent Mirror Load, (b) Mirrored OTA 

Transistor (tim) 

Ti 40/10 

T2 40/10 
T3 30/10 

T4 30/10 
T5 10/6 

Table 4.1: Transistor Dimensions for Differential Pair OTA 

4.5.3 OTA-C First Order High Pass Filter 

The generic form for a first order high pass filter based on Gm-C/OTA-C principles is high-

lighted in figure 4.13 (a), together with its transfer function. The circuit consists of a capacitor 

and a transconductance element connected with negative feedback. The non-inverting terminal 

of the OTA is connected to a reference voltage, normally midway between the power supply 

rails. It is this reference voltage onto which the filter's passband is superimposed. 

The idealised frequency response depicted in figure 4.13 (b) shows the high pass response of the 

circuit, coupled with the assertion that the cutoff frequency is equal to f-3dB =. It is clear 

that the position of the cutoff frequency can be reduced by either increasing the capacitance or 

reducing the transconductance of the OTA. 

The high pass filter in figure 4.13 (a) was implemented on board test chip one, using both 

OTA structures highlighted in figure 4.12. The capacitor was realised with a 1 pF polysilicon 
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Transistor I (um) 
Ti 5/6 
T2 5/6 
T3 10/6 
T4 4/4 
T5 4/4 
T6 4/4 
T7 4/4 
T8 4/4 
T9 4/4 

Table 4.2: Transistor Dimensions for Mirrored OTA 

(a) Symbolic Representation 	 (b) Frequency Response 

Figure 4.13: 1st Order Gin-C High Pass Filter 
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structure, due to the good matching properties of such devices. The layout of both filters can 

be seen in figure 4.14. High pass filter one is approximately 125 im by 75 pm, while filter 

two consumes almost 110 pm by 70 pm. Although both fairly large, it is clear from figure 

4.14 that there is a large amount of redundancy in both layouts, with guard rings and dummy 

transistors employed. Little effort was made at this stage to minimise the size of the filter 

structures, with the emphasis on a working prototype of the system. However, it is clear that 

smaller implementations of the filters could be realised. 

4.5.4 OTA-C High Pass Filter: Power Consumption 

The need for very low filter cutoff frequencies led to the use of subthreshold bias currents. This 

in turn ties in well with the sponsor's requirement for low power processing. This rare mutually 

beneficial scenario allows for the realisation of relatively small, low frequency filter structures 

that consume extremely low power levels. 

An estimate of the power consumption of both filter structures was made using the Spectre 

simulation tool. Measurements from test IC's were not made, due both to the extremely small 

nature of the bias currents and the difficulty in isolating individual processing elements. Table 

4.3 highlights the current consumption for both filter structures for a bias of 0.51 V and 0.56 V. 

typical values that may be used in fundamental frequency extraction system. If a power supply 

of 5 V is adopted, the first high pass filter consumes between 237 pW and 830 pW, while the 

second version uses between 549 pW and 1.76 nW. The higher values for the second filter are 

expected, as the mirrored OTA structure has more current consuming paths than the simple 

differential version. Although these values are likely to be inaccurate regarding the actual IC 

power consumption, it is clear that the filter structures consume extremely low power. Even 

if the values are multiplied by a factor of 10 or 100, the filters still consume power in the 

nano-Watt range, allowing for potential battery-powered operation. 

Control Voltage HPF1 HPF2 
0.51 V 47.4 pA 109.8 pA 
0.56 V 166 pA 352.7 pA 

Table 4.3: Simulated Bias Current Consumption of OTA -C High Pass Filter Structures 
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(a) HPFI: Simple Differential OTA 

(b) HPF2: Mirrored OTA 

Test IC One: Fundamental Frequency Extraction 

Figure 4.14: Physical Layout of the High Pass Filters on Test IC One 
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4.5.5 IC Test Results: OTA-C First Order High Pass Filter 

The two different versions of the first order OTA-C high pass filter implemented on IC one were 

tested for their frequency response, in an effort to verify the low frequency nature of biasing 

them in the subthreshold regime. Another test that was performed was to ascertain the DC 

offset between the output signal and the reference voltage. The aim of the high pass filter is to 

separate the transient (AC) information from the ambient light conditions (DC), before biasing 

the former at the reference level. As such, any discrepancy between the reference level and the 

filter's output is of particular interest. 

4.5.5.1 Frequency Response of the OTA-C First Order High Pass Filters 

The frequency response of the filter was estimated by connecting a signal generator to the input 

and measuring the ratio between the input and output voltage. Once again, the buffer circuit 

highlighted in figure B. 1 was used to prevent any loading effect. The results for the high pass 

filter realised with the simple differential OTA (HPFI) can be found in figure 4.15 (a), with 

the corresponding results from the mirrored OTA implementation (HPF2) in figure 4.15 (b). 

The tunability of both circuits is clear, as the control voltage is varied from 0.7 V to 0.6 V. 

As expected, the deeper into subthreshold the filter is biased, the lower the cutoff frequency. 

With a control voltage of 0.6 V, the cutoff frequency of both high pass filters is approximately 

100 Hz, suggesting transconductances in the region of 60 nA/V. The pass-bands of both filters 

exhibit almost five decibels of attenuation, which is a potential problem for the approach. Any 

reduction in signal swing makes the next step of thresholding the signal more complex. Both 

filters exhibit the expected 20 dB per decade attenuation associated with a first order filter. At 

very low frequency, the bode plots appear to level off, suggesting the presence of an unwanted 

zero. In fact, at such low frequency, with such high levels of attenuation, the difference between 

signal and background noise is hard to distinguish, resulting in the 'levelling-off' of the bode 

plot. It is however clear from the test results in figure 4.15 that both high pass filters perform as 

expected. 

4.5.5.2 DC Offset of the OTA-C First-Order High Pass Filters 

Another property of the high pass filter of interest to its application in this research is the DC 

offset between the output voltage and the reference voltage. All differential stages introduce 
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Frequency Response of High Pass Filter One 
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(b) HPF with Mirrored OTA (HPF2) 

Figure 4.15: Measured Test IC Results-Frequency Response of the Two OTA -C High Pass Filter 
Structures 
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some element of offset, due to the inherent mismatch present in CMOS processes. Layout 

techniques can be adopted to reduce this offset, including placing similar structures with the 

same geometry and common centroid layout[90]. In an effort to reduce the offset of the high 

pass filters, common centroid techniques were employed, in the form of constructing large 

transistors from smaller, inter-digitated versions. In addition, dummy transistors were added at 

the ends of the common-centroid implementation, in an effort to ensure each small transistor 

'sees' the same structures to the left and right. Guard ring structures were also included to 

protect the transistors from noise, as highlighted previously in figure 4.14. 

When measuring the DC offset from the filter, it is important to remember that the buffer circuit 

may also exhibit some offset, which will effect the measured results. A measure of the buffer's 

DC offset when biased with a control voltage of IV can be seen in figure B.2. It seems that the 

buffer's offset increases with the input DC level, from 32 mV at 1 V to 91 mV at 4.5 V. 

The DC offset for each filter was tested by fixing the reference point of the filter at 2.5 V. The 

input was then generated with a signal generator, with the input DC level ramped from 0 V to 

5 V. In theory, the filter's output should remain biased at the 2.5 V reference level, completely 

independent of the rising input. The results for HPF1 and HPF2 can be seen in figure 4.16. It 

is clear from (a) and (c) that the output from both high pass filters does remain close to 2.5 V, 

confirming the correct operation. This also suggests that the low frequency data in the bode 

plots of figure 4.15 is misleading due to the extremely low signal to noise ratio. The detail in 

figure 4.16 (b) shows the variation in offset for HPF1 as the control voltage of the filter is varied 

from 0.7 V to 0.6 V. From first inspection, all three bias conditions produce relatively constant 

levels of offset, with 0.6 V exhibiting roughly 50 mV, 0.65 V having approximately 40 mV and 

0.7 V producing about 45mV between the filter output and the reference level. 

The same experiment was applied to the second high pass filter, with the results detailed in 

figure 4.16 (d). Once again, the offset seems fairly constant, with all three bias conditions pro-

ducing very similar offsets. In this case, a bias of 0.6 V provides approximately 55 mV of offset, 

0.65 V gives around 54 mV, and 0.7 V exhibits 55 mV. The initial reason for implementing a 

mirrored OTA structure was its superior offset performance, although these results suggest this 

may not be the case when biased in the subthreshold regime. The mismatch between weak in-

version currents may go some way to explaining this, with the simple differential OTA having 

only one current minor, while the mirrored version incorporates three. However, the mismatch 

appears more constant for the second HPF, which may be an advantage for this particular ap- 
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plication. Despite all these points, it is clear there is very little difference between the two filter 

structures in terms of DC offset, with both exhibiting expected amounts. 

4.5.6 Comments on the OTA-C First Order High Pass Filter 

The aim of the high pass filter in the algorithm depicted in figure 4.1 is to remove the DC level 

from the output of the photocircuit and superimpose the transient information on a well- defined 

reference level. The need for continuous-time circuitry led to an investigation of Gm-C filter 

techniques, while area constraints led to the implementation of a simple, first order structure. 

The need for very low cutoff frequencies suggested the use of subthreshold bias currents for 

the transconductance elements, allowing large time constants to be achieved. This approach 

is also relevant from a system viewpoint, given the emphasis on low power signal processing 

specified by the sponsor company. Other potential advantages of OTA-C filter structures biased 

in weak inversion include tunability with a single control voltage or current, as well as a much 

wider potential tuning range than the same technique biased in strong inversion. However, 

the disadvantages of the approach include high mismatch between subthreshold currents and 

temperature sensitivity, all which serve to produce similar filter structures on the same IC having 

different cutoff frequencies. Nevertheless, it was felt that for this particular application, the fact 

that the cutoff frequency may vary from pixel to pixel will not have too drastic an effect on 

system-level operation, and the benefits of simple, low power and low area filtering outweighed 

the potential disadvantages. 

The test IC results for both the filter structures behave as expected, with both exhibiting readily 

tunable low frequency time constants. However, the attenuation level in each passband may be 

a disadvantage, as may the level of DC offset between the filter's output and its reference level. 

The structures behaviour in this respect is similar, with perhaps the reduced levels of DC offset 

for the simple differential OTA giving it a slight advantage over its mirrored OTA alternative. 

Despite the inherent DC offset, it is clear both filters superimpose the transient information onto 

the reference voltage, and as such can be considered successful. 

4.6 Comparator 

The final element of the fundamental frequency extraction algorithm involves thresholding the 

filter's output with a comparator. In keeping with the previous circuit blocks, an emphasis was 
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placed on low power, continuous time and simple circuit techniques. The adopted approach 

involves the use of positive feedback to force an amplifiers output to either the positive or 

negative power supply rail, depending on the input conditions. 

4.6.1 Comparator with Positive Feedback and Optional Hysteresis 

The chosen circuit[107] can be seen in figure 4.17. The reason for its choice stems from the 

ability to include optional hysteresis at the circuit design stage. Hysteresis allows a comparator 

to operate successfully in a noisy environment, by varying the trip-point of positive and negative 

excursions. It was felt that the output from the filter may exhibit some temporal noise, which 

could conceivably cause spurious pulses in the comparators output. The effect of hysteresis 

can be seen in figure 4.18. The comparator switches at the threshold plus or minus the offset, 

for positive and negative excursions respectively, reducing the likelihood of noise producing 

spurious output pulses. 

T6 

T7 

Vout 

Figure 4.17: Comparator with Optional Hysteresis 

The circuit in figure 4.17 works by exploiting positive feedback to force the comparators output 

to either the positive or negative rail. Consider the case when the circuit in figure 4.17 is 

powered by a zero to five volt supply rail, with the reference point set in the centre at 2.5 V. If 

the input is at ground, Ti will be fully on, while T2 will be completely off. This means that the 

tail current from T5 will all flow down the left hand side of the T1-T2 differential pair, turning 
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LII] 
Standard Comparator 

Comparator with Hysteresis 

Figure 4.18: Effect of a Comparator with Hysteresis on a Noisy Signal. One a positive ex-
cursion, the comparator switches at the threshold plus the offset, while for the 
negative case it switches at the threshold minus the offset. Adapted from [107] 

T3 and T 1 on and ensuring T4 and TI 1 are off. The gate of T8 is subsequently pulled low, 

meaning transistors T9 and T7 are turned on, creating a path from the output to ground. At the 

same time, the gate of T6 is pulled high, ensuring that the output is held low. 

If the input now starts to increase, some of the tail current will begin to flow through T2. At 

some point, the current sunk by T2 will equal the current sourced by 110, and the comparator 

will begin to switch state. By equating these currents and using them to calculate the gate 

source voltages of TI and T2, it is possible to calculate the positive trip voltage, based on the 

more extensive analysis in[ 107]: 

i 5  
il = Z3 = 

	

	 (4.7) 
1+ [(w/L)10 / (W/L)3] 

= i5 - il 
	 (4.8) 

The positive trip voltage can be found by reversing equation 4.2 to make Vg8  the focus, and 

solving equation 4.9, where /3 = itoCox: 

115 



Test IC One: Fundamental Frequency Extraction 

[ 1 2i1 	1 

	

VGS2 - V81 
= [(L2) 

+ V2] 
- LY () 

+ 1] 	(4.9) 

Similar analysis yields a relationship between the currents in T4 and Ti 1 for the negative trip 

point: 

15 

1+ [(w/L)11 / (W/L)41 	
(4.10) 

11 = 15 - 
	 (4.11) 

[ I 2i2 	1 	r I 2i1 	1 
Vtrip_ = Vcs2 - VGS1 	

L\/ (k-) + V2] - [I (-) + Vt i] 	(4.12) 

The important thing to notice is the dependence on the aspect ratio of T3 and T10 for the 

positive trip voltage, and the corresponding negative trip voltages relationship to the size of 

transistors T4 and TI 1. It is clear that it if T3, T4, T10 and TI  are all made the same size, 

the circuit behaves as a standard comparator without hysteresis, with the positive and negative 

switch points coinciding with the reference voltage. However, if the ratio of T3 to T10 and 

T4 to Ti 1 is varied, the positive and negative trip voltages are changed, introducing hysteresis 

into the system. It is this property that made this particular circuit topology interesting for this 

application. 

4.6.2 Comparators Implemented on Test IC One 

Two versions of the comparator circuit were implemented on the test IC, with and without 

hysteresis. For the purposes of this thesis, the comparator without hysteresis is termed the 

'standard' comparator. In keeping with previous circuit elements, an effort to bias the compar-

ator in the subthreshold region of operation was made to reduce the switching current of the 

device. It was felt that the low frequency range of the input signals may allow the tail current 

i 5  to be limited, based on the low slew rate requirements. The idea was to allow control over 

the tail current on test IC one and to vary it until an acceptable compromise between power 

consumption and speed of operation was found. However, the amount of hysteresis in the corn- 
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parator is directly related to the value of the tail current as equations 4.7 and 4.10 highlight. 

If the tail current is to be variable, there seemed little point in designing for a precise value of 

hysteresis. For this reason, a decision was made to minimise the value of hysteresis by select-

ing the smallest possible difference between T10 and T3, with the same difference between T4 

and Til. This lead to the choice of transistor aspect ratios found in table 4.4. It was felt that 

the small signal variations from the output of the photocircuit, coupled with the 5 decibels of 

attenuation from the high pass filter would warrant small values of hysteresis. 

Transistor Standard Comparator - 	(tim) Comparator with Hysteresis -  (,um) 

Ti 6/1.5 6/1.5 

T2 6/1.5 6/1.5 

T3 3/1.5 3/1.5 

T4 3/1.5 3/1.5 

T5 5/2 5/2 

T6 3/3 3/3 
T7 1.5/3 1.5/3 

T8 3/3 3/3 
T9 1.5/3 1.5/3 
T10 3/1.5 4/1.5 

Til 3/1.5 4/1.5 

Table 4.4: Transistor Dimensions for the Comparator With and Without Hysteresis 

The layout of the standard comparator can be seen in figure 4.19. As before, common centroid 

techniques, dummy transistors and guard structures were adopted in an effort to improve per-

formance. Both comparator's dimensions are approximately 45 tm by 50 /im, although once 

again this could be reduced considerably. 

4.6.3 Comparator Power Consumption 

The approximate power consumption for the comparator for different control voltages was cal-

culated using the Spectre simulation tool. The comparator exhibits both static power consump-

tion, when the output is stable, and dynamic power consumption when the output is switching 

state. In an effort to combine both into a general power consumption value for the comparator, 

a time-domain plot of the current consumption was created. The reference was fixed at 2.5 V 

and the input varied around this level, to ensure the comparator output switches. The transient 

current waveform therefore contains information about both static and dynamic current con-

sumption. This waveform was integrated using the waveform calculator's average function, 
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Figure 4.19: Physical Layout of the Standard Comparator (Without Hysteresis) 

which performs the integral in equation 4.13. If y = f(x): 

to 
f f(x)dx 

average(y) 
- from 

(4.13) 
- to - from 

Equation 4.13 produces a single output value which is effectively a time referred average of 

the input signal. Using this command, the results in table 4.5 were created. Both Sine waves 

were 10 mV in amplitude, biased at the reference of 2.5 V, while the square wave swept the full 

range from 0 V to 5 V. 

Control Voltage 100 Hz Sine 1 kHz Sine 100 Hz Square 
0.6 V 677 pA - 787 pA 
0.75 V 32.15 nA 32.2 nA 37.7 nA 

1 V 3.065 MA 3.065 pA 3.41 pA 

Table 4.5: Simulated Bias Current Consumption of Standard Comparator 

As expected, the current consumption reduces as the control voltage is reduced, biasing the 

comparator further into the subthreshold regime. As the frequency of the input increases, the 

power consumption remains relatively constant as the averaging function takes into account the 

reduced time interval. However, the gradient with which the input passes through the com- 



Test IC One: Fundamental Frequency Extraction 

parator's reference point is increased as the waveform changes from a sine wave to a square 

wave, producing a corresponding increase in current consumption. Large switching transients 

are seen at the actual switch points, although these last for extremely brief time periods. 

4.6.4 IC Test Results: Comparator 

Both versions of the comparator were tested to ensure correct operation, as well as to ascertain 

certain performance relevant criterion. Measurement of the effect of control voltage on speed 

of operation was made, together with the magnitude of the hysteresis. 

4.6.4.1 Comparator Switching Frequency 

One of the fundamental aims for the system developed in this research is low power processing. 

As such, the control voltage for the comparator was made variable in an effort to limit the bias 

current, therefore reducing power consumption. However, reducing the current in the system 

has the effect of reducing the maximum speed of operation that the comparator can switch. By 

fixing the reference at 2.5 V and applying a sinusoidally varying input around this reference, 

the comparator is guaranteed to switch. The results in figure 4.20 were made by calculating the 

difference between the input and output frequencies. The results for the standard comparator in 

figure 4.20 (a) are very similar to those for the version with hysteresis, with a strong inversion 

bias of 1 V able to switch up to almost 100 kHz. As the control voltage is reduced to 0.6 V, 

both comparators maximum switching frequency moves down to nearer 100 Hz. 

4.6.4.2 Hysteresis Measurement 

To confirm the difference between the two comparators, an estimate of the amount of hysteresis 

present in the second comparator was made, for a selection of different bias conditions. By once 

again fixing the reference point at 2.5 V and applying a sinusoid around this DC level as the 

input, the comparator produced a series of output pulses. By applying such an input to both 

comparators, the difference between the positive and negative switch points for the standard 

and hysteresis comparators could be calculated. 

The screen-shots in figure 4.21 were made with an Agilent A54624A oscilloscope, and depict 

the difference in switching between the two comparators implemented on test IC one. Figure 

4.21 (a) and (b) depict the positive and negative transitions of both comparators respectively, 
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with the control voltage at 1V and a 100 Hz input signal. On the positive transition there is a 

difference of 14.5 mV between the standard comparator and the version with hysteresis, while 

the downward switch exhibits 22.5 mV hysteresis. For the same control conditions but with 

an increased input frequency of 1 kHz, the positive hysteresis is 12 mV while the difference 

on the negative transition is 20.5 mV, as highlighted in figure 4.21 (c) and (d). As expected, 

the hysteresis remains roughly the same for similar bias conditions. However, the difference 

between the positive and negative hysteresis is unaccounted for, particularly considering the 

ratio between transistors T3 and T10 is the same as that between T4 and Ti!. Despite this, the 

actual size of the hysteresis is not so important in this application, as it will have little effect 

on the accuracy of the frequency pulses. The same test was applied with a reduction in bias 

current, with the results for a control voltage of 0.75V and a 10 Hz input depicted in figure 4.21 

(e) and (I). As expected, the positive hysteresis is reduced, down to almost 5 mV. However, 

the negative hysteresis remains relatively high at 22.5 mV, which was unexpected. It may be 

that by biasing the comparator with a subthreshold current, the resultant increase in current 

mismatch effects the hysteresis. The circuit relies heavily on current mirrors to produce ratioed 

versions of the tail current. As the mismatch is a DC phenomenon, the fact that the hysteresis 

is different for positive and negative excursions is unimportant in this application. If however 

the variation in hysteresis changes with time, this may effect the accuracy of the pulse timing, 

ultimately reducing the accuracy of the extracted fundamental frequency. 

4.6.5 Comments on the Comparator 

The IC test results confirm the fact that both comparators operate as expected, and are capable 

of operating with subthreshold currents as the results in figure 4.20 highlight. With a control 

voltage of 0.75 V, the comparator is still able to switch up to an input frequency of almost 

2 kHz, while a 0.6 V control voltage reduces this maximum switching frequency to nearer 

100 Hz. However, it is clear that for true subthreshold operation, the switching current from the 

comparators output stage would need to be limited. As the circuit diagram in figure 4.17 shows, 

the output is formed by transistors T6 and T7 sourcing or sinking sufficient current respectively 

to create the output voltage swing. It is this switching current that will govern the dynamic 

power consumption of the comparator circuit. Nevertheless, by using reduced bias currents 

elsewhere in the system, a significant power saving will be made. 

The specific value of hysteresis in the comparator is directly dependent on the value of the tail 
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current. However, the screen-shots in figure 4.21 suggest that there is a difference in the mag-

nitude of the positive and negative hysteresis. The aim of the comparator is simply to threshold 

the high pass filter's output, producing a pulse train whose frequency corresponds directly to 

the fundamental frequency of the filter's output. As such, providing the relative size of the 

hysteresis does not vary greatly, the noted difference between positive and negative value is ir-

relevant. More specifically, providing the positive and negative hysteresis for a specific control 

voltage remains relatively constant, the difference between the two will not effect the accuracy 

of the output pulse frequency. From the screen-shots in figure 4.21 (a) and (c), the positive 

hysteresis for a 1 V control voltage appears similar, despite the change in input frequency. The 

same is also true for the negative hysteresis, highlighted in figure 4.21 (b) and (d). This seems 

to suggest that the hysteresis will not effect the accuracy of the output pulses. 

4.7 System Level Test IC Results 

From a system viewpoint, the three circuit structures described in this chapter are combined to 

implement the No-Mask Algorithm described in detail in chapter three. The photocircuit takes 

the photocurrent from the photoelement to make a voltage signal dependent on the incident 

light intensity. This voltage is then passed through a low frequency, first-order OTA-C high 

pass filter, biased in subthreshold, to remove the DC level and place the AC information on 

a stable reference level. This reference is then used as the thresholding level for a compar-

ator, the idea being that the frequency of the output pulses directly encodes the fundamental 

frequency of the incident light intensity. The filter essentially ensures that the comparator is 

biased in a sensitive place to ensure that it switches with the photocircuits output. The various 

processing steps can be seen in figure 4.22. 

The layout of such a fundamental frequency extraction algorithm can be seen in figure 4.23. 

The dimensions of the pixel processing unit are approximately 180 pm by 170 /im, with a 

photoelement of 50 pm2, producing a fill factor of just over 8 %. However, as the layout 

highlights, little effort was made to minimise the processing unit. It should be possible to 

drastically reduce the size of the implementation once correct operation has been confirmed. 

The ultimate test of the success of the approach stems from the accuracy of the output pulse 

with respect to that of the incident light intensity. In order to test this property, a series of 

combinations of the different processing elements described in this chapter were included on 
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Figure 4.22: Signal Flow for Fundamental Frequency Extraction Algorithm One: The No-
Mask Algorithm 

the IC, each described as a fundamental frequency finding pixel cell. A summary of the different 

pixel cells and their constituent parts can be found in table 4.6. The different combinations of 

the the two high pass filter structures and the two comparator structures allow an assessment of 

the relative strengths and weaknesses of each. 

Pixel Cell Photoelement Photocircuit HPF Comparator 
One Photodiode Logarithmic HPF1 Standard 

Two Phototransistor Logarithmic HPF1 Hysteresis 
Five Photodiode Logarithmic HPF2 Standard 

Six Phototransistor Logarithmic HPF2 Hysteresis 

Table 4.6: Pixel Processing Cells On Test IC One 

4.7.1 Pixels One and Two: Frequency Accuracy 

The differences between pixels one and two are the inclusion of hysteresis in the comparator of 

the latter, as well as the use of a photodiode in pixel one and a phototransistor in pixel two. Both 

pixels were tested for frequency accuracy by illuminating an LED with a signal generator. The 

transient intensity is therefore directly controllable, allowing the input frequency and therefore 

the illumination's temporal frequency to be varied. By setting both the reference point of the 

filter and the comparator's reference midway between the power rails at 2.5 V, the filter's output 

should cause the comparator to pulse. The frequency of these pulses should then correspond to 
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Figure 4.23: Physical Layout of Fundamental Frequency Extraction Algorithm: Pixel Two 

the current LED modulation frequency. 

This experiment was carried out for pixel's one and two, with the filter control voltage fixed 

at 0.51 V. The input frequency was ramped from 1 Hz to 10 kHz in logarithmic steps, with 

the results in figure 4.24 showing the accuracy of the output pulse train. Between 1 Hz and 

10 Hz, both pixels' output pulse train frequency accurately reflects the input. The same is true 

for 10 Hz to 100 Hz and 100 Hz up to 1 kHz. However, in the 1 kHz to 10 kHz frequency 

band, pixel two ceases to operate at approximately 2 kHz, while pixel one is still relatively 

accurate up to 10 kHz. The reasons for this stem from the inclusion of hysteresis in pixel two. 

Figure 4.25 shows the combined frequency response from all three circuit blocks in pixels one 

and two. These were created by once again by modulating an LED with a signal generator. 

The magnitude of the output voltage from the filter was measured with the comparator by 

varying the threshold voltage and noting its value when the comparator output has just fallen 

low and stopped producing pulses. If the threshold is now varied until the comparator's output 
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is completely high, the difference between the two reference points conveys the magnitude 

of the comparators input. As such, the bode plots for pixels one and two in figure 4.25 (a) 

and (b) respectively combine the frequency performance of the photocircuit, high pass filter 

and the comparator. The increased photocurrent produced by pixel two's phototransistor when 

compared with the photodiode from pixel one is clearly evident, resulting in an increased signal 

swing of over 5 decibels. The pixel's frequency response appear band pass in shape, due to the 

combination of the high pass filter and the low pass response of the photocircuit. At higher 

frequencies, the attenuation of the photocircuit is such that the comparator with hysteresis is 

simply unable to switch, due probably to the fact that the signal swing is smaller than the 

hysteresis itself. This is highlighted in the bode plot in figure 4.25 (b), where above about 2 

kHz the bode plots remain flat as no magnitude information could be extracted. The comparator 

without hysteresis is still able to switch, as the results in figure 4.25 (a) for pixel one highlight. 

This hypothesis is confirmed by the frequency accuracy results for pixels one and two in figure 

4.24. It would appear that the hysteresis may intuitively offer advantages in terms of accuracy, 

as the smoothness of the bode plot in figure 4.25 (b) seems to suggest, but at the price of a 

reduction in sensitivity. 

200 400 600 800 1000 
Input Freq (Hz) 

2000 4000 6000 8000 10000 
Input Freq (Hz) 

Figure 4.24: Measured Test IC Results-Frequency Accuracy of Pixel Cells One and Two 
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Figure 4.25: Measured Test IC Results-Combined Frequency Response of the Circuit Elements 
Combined to Produce Pixel Processing Cells One and Two: The Bode plots con-
vey the combined frequency response of the photocircuit, HPF and comparator; 
which combine to produce a fundamental frequency extraction pixel cell 

4.7.2 Pixels Five and Six: Frequency Accuracy 

A similar experiment was performed on pixels five and six. These can be considered analogous 

to pixels one and two respectively, but the simple differential OTA filter has been replaced by 

the mirrored OTA structure. Once again, the system bode plots were developed as before, with 

the resultant bode plots in figure 4.26. A similar trend to that exhibited by pixels one and two is 

depicted, with the phototransistor form pixel six providing a larger signal swing. As previously 

discussed, this appears to be an advantage in this particular application, as each pixel essentially 

behaves as an independent frequency sensitive device. The hysteresis in pixel six also serves to 

reduce the sensitivity compared to pixel five. 

The frequency accuracy for pixels five and six is depicted in figure 4.27. Both circuits operate 

over the full frequency range, from 1 Hz to 10 kHz. 

4.8 Comments on Test IC One 

The aim for test IC one was to investigate different methods of implementing the no-mask 

algorithm. To this end, a photocircuit, two different low frequency high pass filter implement- 
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ations and a comparator with and without hysteresis were designed. These elements were then 

combined to produce pixel processing cells, whose task was to extract the fundamental fre-

quency from the incident light intensity. From the frequency accuracy results in figures 4.24 

and 4.27, it is clear that the system is capable of accurately extracting the fundamental fre-

quency, over a range of 1 Hz to 10 kHz, depending on the combination of circuit elements. 

4.8.1 Conclusions on Photoelement 

It is clear from both theory[6] and IC results such as figure 4.3, that the phototransistor produces 

larger signal swings for the same incident light intensity, based on its 0 multiplication factor. 

However, this factor is subject to process variation, ruling out its inclusion in standard image 

sensors, where many pixel cells are combined to produce an accurate representation of the 

scene. The application described in this thesis does not suffer from the same limitations, as the 

absolute value of the incident light intensity from one pixel to the next is unimportant. The ulti-

mate aim is to find the relative strength of the fundamental and the first four harmonics for each 

pixel location. As such, if two neighbouring pixels produce different amplitude signal swings 

for the same light intensity, the underlying relative amplitude between frequency signatures will 
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Figure 4.27: Measured Test IC Results-Frequency Accuracy of Pixel Cells Five and Six 

remain the same. Each pixel can be considered as an independent processing element, allowing 

the use of a phototransistor as the photoelement and gaining from the increased photocurrent. 

4.8.2 Conclusions on Photocircuit 

The logarithmic photocircuit employed in this research suffers from a series of potential limita-

tions. The logarithmic compression that reduces the eight orders of potential light intensity into 

an acceptable voltage swing ensures that it can operate in a variety of ambient light conditions. 

However, the aim of the project is to analyse transient changes in intensity, which in real-world 

applications may be too small to register a significant output voltage. As demonstrated with 

simulations in figure 4.3, the sensitivity of the photocircuit can be increased by increasing the 

number of load transistors. However, this comes at the cost of a reduction in bandwidth, as 

the simulation results in figure 4.5 highlight. Another area of possible concern is the use of 

this photocircuit with the increased photocurrent from the phototransistor. As figure 4.3 shows, 

if the photocurrent nears strong-inversion magnitudes, the logarithmic compression gives way 

to a square root relationship, resulting in the output voltage collapsing. However, at low light 

levels, the increased photocurrent will be an advantage, suggesting this may be an application 
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specific design trade-off. As previously mentioned, the adaptive photoreceptor developed by 

Delbruck [12] may be a more sophisticated solution, which could be adopted at a later date. 

The advantages of the logarithmic compression photocircuit include its simplicity and resultant 

low cost in terms of silicon area. The circuit also fits the design criterion in that it produces a 

continuous time output voltage that is a function of the incident light intensity. The circuit also 

benefits from very low power operation, as the photocurrent is used to bias the circuit. Despite 

its shortcomings, the circuit is a simple method for converting the light intensity into a suitable 

voltage signal. As such, it was deemed a good compromise between size, power consumption 

and processing power at this stage of the research. 

4.8.3 Conclusions on High Pass Filter 

The high pass filter was implemented with OTA-C circuit techniques, due to the requirements 

for continuous-time operation. By biasing the circuit in the subthreshold regime, the constraints 

of both low frequency time constants and low power operation were achieved, meeting the 

system-level requirements. From this perspective, such an approach is highly suited to the 

application in this research. It is estimated that a first order high pass filter with a cutoff freq of 

100 Hz consumes a mere 200 pA, allowing many to be realised on chip. Low cutoff frequencies 

are realised with a reasonable sized capacitance of 1 pF, producing small, low power filtering 

devices. 

However, the approach does suffer from some potential limitations. The statistical mismatch 

between subthreshold currents[94, 97] means that no two filters will have the same cutoff fre-

quency. In this application, the filter's task is to remove the DC level from the photocircuit's 

output, and superimpose the transient (AC) information onto a well defined reference level. It 

is clear from the IC test results in figure 4.16 that the filters successfully remove the input DC 

level, biasing the output at the reference. The frequencies of interest are as low as 1 Hz, mean-

ing the filter's cutoff frequency should conceivably be lower than this value. However, as the 

filters are first order structures, the attenuation around this level is relatively small. As such, any 

variation in the filters cutoff due to poorly matched subthreshold currents will merely serve to 

reduce the magnitude of the filter output. At the very worst, the comparator for that particular 

pixel may not be able to switch, producing no output pulses as the filter's output is simply too 

small to threshold. No output pulse train is preferable to a spurious output frequency. If the 

filter's cutoff frequency is moved lower due to subthreshold current mismatch, the output mag- 
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nitude will be unaffected as the filter will simply try to pass even smaller input frequencies. It 

is theoretically impossible to pass the input DC level to the output, which is the filter's sole task 

to prevent. If the cutoff is moved higher in frequency, the output magnitude will decrease until 

the comparator can no longer switch. It should be possible to select a value of cutoff frequency 

for every pixel based on statistical measurements of subthreshold mismatch, to ensure that most 

pixel's comparators are capable of switching. 

Another potential problem with the filter is the DC offset between the filter's output and the ref-

erence level. The idea was to use the same reference level for both the filter and the comparator 

for all the pixels in the imager system. However, the DC offset measurements in figure 4.16 

suggest that this may not be feasible. The size of the offset is between 40 mV to 50 mV, which 

may be larger that the actual magnitude of the filter's AC output, meaning the reference point 

of the comparator would have to be varied to make it switch. The five decibels of attenuation 

in the passband of both OTA-C implementations is another potential problem. The AC mag-

nitude of the photocircuit's output may be small as it is, without the extra attenuation through 

the filter. There appears to be very little difference between the two OTA-C filter structures 

implemented on test IC one, with both the simple differential stage and the mirrored version 

producing similar results. Both OTA structures are essentially behaving as nothing more than 

tunable resistors, based on the inverse of their transconductance. 

Despite the potential disadvantages, there are few other circuit techniques that allow such low 

frequency, low area and low power filter structures to be realised. Coupled with the simple 

tunability properties, the OTA-C filters biased in subthreshold are the best approach for the 

given application. 

4.8.4 Conclusions on Comparator 

The two comparator structures implemented on test IC one were found to operate as expected. 

The difference between the standard version and that with hysteresis is highlighted in the os-

cilloscope screen-shots in figure 4.21. It was discovered that there seems to be some variation 

in the size of the positive and negative hysteresis. However, providing the size of both remains 

relatively constant, the fact that they are different with respect to each other will not effect the 

accuracy of the output pulse frequency. Based on the test results, this would seem to be the 

case. 
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The test IC results in figure 4.20 show that both comparators are able to switch with control 

voltages biasing the circuit in the subthreshold region of operation. With a control of 0.75 

V, the current consumption is roughly 37 nA, based on circuit simulation measurements. It 

is clear that the static power consumption of the device is low. However, the dynamic power 

consumption is higher as the output stage will create momentarily large currents as the output 

switches. This could be limited in future implementations by controlling this switching current, 

possibly by including a transistor in the output stage to act as a current limiter. 

4.8.5 Conclusions on Pixel Processing Cells 

The circuit elements that combine to produce the fundamental frequency extraction elements 

have been shown throughout this chapter to operate as expected, although with certain per-

formance limitations. When combined, the resultant pixel processing cells accurately extract 

the fundamental frequency of the incident light intensity[ 1081, as the results in figure 4.24 and 

figure 4.27 confirm. 

From a system viewpoint, it is clear from the pixel bode plots in figure 4.25 and figure 4.26 

that the increased photocurrent from the phototransistor is an advantage in this application. As 

previously discussed, the increase in signal swing makes the thresholding task of the comparator 

simpler. 

Including hysteresis in the comparator reduces the sensitivity of the system. Both pixels using 

comparators with hysteresis stop operating before the version without due to the increased 

signal attenuation at higher frequencies. However, the aim of hysteresis is to increase robustness 

to noise, meaning it may have advantages regarding accuracy. Both of these observations make 

intuitive sense, suggesting a trade-off between accuracy and sensitivity. The small size of the 

output signal swing from the photocircuit suggests that sensitivity may be of higher importance 

with this combination of components. 

In general, the systems based on this approach worked well, with four pixel elements producing 

accurate output pulse trains. However, the DC offset from the output of the high pass filter may 

produce problems regarding the reference level of the system. As previously mentioned, if the 

magnitude of the filter's output is less than the offset, the reference point of the comparator will 

have to be changed. This effects the practicality of an array of such pixel processing structures 

operating independently. It is infeasible to have to set the reference for each pixel differently 
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from its neighbours. The output from the photocircuit is likely to be small in magnitude, due to 

the nature of its logarithmic compression. Coupled with this is the attenuation through the high 

pass filter, which reduces it further. The general feeling with the approach implemented on test 

IC one was that despite the promising results, it is too sensitive to be a realistic implementation. 

As feared, it was found that the reference points of the filter and the comparator had to manip-

ulated independently to create the output pulse train. The design meets the specifications for 

a low power, continuous time system capable of extracting the fundamental frequency of the 

incident illumination. However, it was decided to modify the system to test a slightly different 

system level approach. To this end, a second test IC was manufactured containing an improved 

fundamental frequency extraction algorithm. 

133 



Chapter 5 
Test IC Two: Self-Referencing 

Fundamental Extraction 

The results from the first test IC proved the feasibility of combining the photocircuit, low fre-

quency OTA-C filtering and comparator structures into a fundamental frequency extracting pro-

cessing unit. Test results showed the accuracy with which the fundamental frequency could be 

extracted, over the range of 1 Hz to 10 kHz. However, the ultimate aim is to create an imager 

consisting of an array of such pixel processing units. The initial approach relies on a fixed 

reference level of 2.5 V, onto which the filter's output is superimposed, and is then used as a 

reference level for the comparator. It was discovered that the system was extremely sensitive 

to this reference level, making a large array infeasible as each processing unit would have to be 

individually manipulated. The aim of the second test IC is to test an improved, self-referencing 

pixel processing unit. 

As before, a 0.6 um AMS process available through Europractice was adopted, coupled with 

the Cadence design tools. Once again, a third metal layer was employed to provide shielding 

from unwanted photocurrents. 

5.1 System Level Approach 

The improved approach is similar to the original algorithm, but the high pass filter is replaced 

by a low pass version. Instead of removing the DC level from the photocircuit's output and 

biasing the transient information at fixed reference level, the DC level is used as the reference 

for the comparator. The approach is depicted in figure 5.1. Once again, the filter has to have a 

low cutoff frequency, to allow the low frequency transients to be separated from the underlying 

DC level. The new approach effectively creates the comparator's reference point internally, 

without the need for an external bias. This should allow an array of such pixel processing units 

to operate independently. 
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Figure 5.1: Circuit Level Implementation of the Self-Referencing Algorithm. The low pass filter 
takes the DC level from the photocircuit and presents it as the reference for the 
comparator, ensuring it is in a 'sensitive' place 

5.2 Low Frequency OTA-C Low Pass Filter 

The low frequency filter was implemented using the same OTA-C techniques described in 

chapter four. Once again, the benefits of low frequency, low power and wide tunability when 

biasing OTA-C filters in the subthreshold regime were exploited. The generic form for a first 

order gm-C low pass filter can be seen in figure 5.2. As before, the filter has a cutoff frequency 

Of f3dB = 27r 
-1C 

5.2.1 Operational Transconductance Amplifiers on IC Two 

The first test IC proved there was little in the way of performance difference between the simple 

differential stage and the mirrored OTA alternative. In fact, due to the increased number of 

current consuming paths, the mirrored version consumed more power. For this reason, a de-

cision was made to concentrate on the implementation of simple differential stage operational 

transconductance amplifiers for the low pass filter structures. 

Three OTA structures were implemented, an NMOS differential stage and PMOS differential 

stages with and without cascode transistors. The adopted process is an N-well technology, 

meaning PMOS transistors are fabricated in a separate well from the substrate. It is therefore 

possible to connect the bulk terminal directly to the source terminal for the PMOS differential 

OTA input transistors, reducing the bulk effect and the subsequent danger of variable threshold 
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Figure 5.2: 1st Order Gm-C Low Pass Filter 

voltages. The NMOS and PMOS differential stage structures also have different input common 

mode range properties, which will have a direct effect on the system-level operation. The aim 

of cascode transistors is to increase the small signal gain of a differential stage. A detailed 

analysis of cascode operation is presented in[109] and as such will not be covered here. The 

cascode transistors serve to increase the output resistance of the differential stage. It was felt 

that the increased gain may provide some advantage due to the feedback properties of the low 

pass filter topology. 

The three OTA structures included on test IC two can be seen in figure 5.3, with the transistor 

dimensions in table 5.1. 

Transistor 0TA1 . 	(pm) OTA2 	(pm) OTA3 - 	(pm) 
Ti 15/15 15/15 15/15 
T2 15/15 15/15 15/15 
T3 12/12 12/12 12/12 
T4 12/12 12/12 12/12 
T5 10/10 10/10 10/10 

TC1 - 12/12 - 

TC2 - 12/12 - 

Table 5.1: Transistor Dimensions for the OTA Structures on IC Two 
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Figure 5.3: Operational Transconductance Amplifiers on Test IC Two 

5.2.2 OTA structures: Input Common Mode Range 

The range of common mode inputs over which the transistors in the OTA structures in figure 5.3 

remain in the saturation region is termed the input common mode range. In this application, the 

photocircuit's output is applied directly to the OTA-C filter, meaning the ICMR of each OTA 

structure is important. The ICMR is calculated for the both the highest and lowest DC input for 

which the transistors remain in the saturation region. 

For OTA I, the maximum possible input voltage can be calculated by starting at the positive 

supply voltage and subtracting the transistor voltage drops until the non-inverting input terminal 

(gate of transistor Ti) is reached. The positive ICMR is therefore calculated as highlighted in 

equation 5.1: 

ICMR+ = VDD - VSD5(sat) - Vci 	 (5.1) 

The negative CMR can be calculated in the same manner, but beginning at the ground terminal 

as in equation 5.2: 

ICMR— = ACnd + VGs3  + V9 - VSG1 
	 (5.2) 

The same process for OTA2 yields the results in equations 5.3 and 5.4. 
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ICMR+ = VDD - VSD5(sat) - 	VSG1 	 (5.3) 

	

ICMR— = AGnd + Vcs3 + VGSC1 + VSD1 - 	VSG1 	 (5.4) 

The results for the third operational transconductance amplifier can be seen in equations 5.5 

and 5.6: 

	

ICMR+ = VDD - Vg3 - VDS1 + V81 	 (5.5) 

	

ICMR— = AGnd + VDS5(sat) + Vcsi 	 (5.6) 

It is clear that the input common mode range for OTA one and three is very similar, with the 

diode connected transistor T3 limiting the lower and upper ICMR respectively. However, the 

cascode OTA structure has two diode connected transistors, resulting in two VGS drops in its 

negative ICMR. The cost of increased gain is a severely reduced common mode input range, 

which may limit OTA2's usefulness in this application. 

5.2.3 Low Pass Filter's Implemented on IC Two 

The three OTA structures described previously were used in the implementation of first order 

OTA-C low pass filters, based on the topology in figure 5.2. The capacitor was realised with an 

MOS transistor, connected as shown in figure 5.4. The idea was to create a larger capacitor for 

the same silicon area than would be possible with a poly-poly capacitive structure. By shorting 

together the drain, source and bulk terminals, a relatively large capacitance is achieved for a 

small silicon area. A 30 ,urn2  MOS structure was used to realise the 1 pF capacitance required 

by the low pass filter. 

As with the first test IC, layout techniques were adopted to improve the matching properties of 

the filters. Common-centroid, inter-digitated small transistors were combined to realise large 

transistors, while dummy transistors and guard rings were also included. The physical layout 

of the three filter structures can be seen in figure 5.5. Low pass filter one is approximately 160 

im by 95 ttm, LPF2 consumes 170 im by 100 /Lm, while LPF3 uses 155 ,im by 100 tim. 
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Figure 5.4: Capacitor created with MOS Transistor: By shorting the bulk, drain and source 
terminals, the parasitic capacitances combine to produce a larger capacitor 

5.2.4 Low Pass Filter: Power Consumption 

As with the previous test IC, the low pass filter structures will be biased with subthreshold 

currents to enable the very low cutoff frequencies required. The power consumption of each 

filter was estimated with the Spectre simulation tool. The estimated current consumption was 

calculated for three different values of control voltage which might be typically used in the 

fundamental frequency extraction system. The results can be seen in tables 5.2 and 5.3. As 

expected, both PMOS filters (LPF1 and LPF2) consume the same current, despite the presence 

of cascode transistors. The NMOS filter is biased further into the subthreshold regime, hence 

the reduced current consumption. All three filters consume power in the nano-Watt range, 

confirming the low power nature of the circuitry. 

Filter control = 4.3V control = 4.35V control = 4.4V 

LPFI 3.166nA 850 pA 190 pA 
LPF2 3.15nA 850 pA 190 pA 

Table 5.2: Simulated Current Consumption for the PMOS OTA-C Low Pass Filter Structures 

Filter control = 0.55V control = 0.5V control = 0.45V 
LPF3 80 pA 30 pA 15 pA 

Table 5.3: Simulated Current Consumption for the NMOS OTA-C Low Pass Filter Structures 

5.2.5 IC Test Results: OTA-C First Order Low Pass Filter 

The three OTA-C low pass filter structures on IC two were tested for frequency response, input 

common mode range and DC offset. The same buffer circuit employed to measure the high 

pass filters was employed to prevent the high capacitance of the pad-ring from effecting the 
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LPF 1 Layout 

LPF2 Layout 

LPF3 Layout 

Figure 5.5: Physical Layout of the Three OTA-C Low Pass Filter Structures 

140 



Test IC Two: Self-Referencing Fundamental Extraction 

circuitry. 

5.2.5.1 Frequency Response of the OTA-C Low Pass Filters 

The frequency response of the low pass filter structures was measured as before, by increasing 

the input frequency with a signal generator and measuring the ratio between output and input 

voltages. 

The frequency response of LPF1 is highlighted in figure 5.6. With a control voltage of 4.3 

V, the cutoff frequency is approximately 300 Hz, reducing to below 10 Hz for 4.4 V. At high 

frequencies, the high attenuation makes discriminating between signal and noise extremely 

difficult, hence the inaccuracy of the results at frequencies above 1 kHz. Despite this, it is clear 

that the filter structure allows very low, tunable cutoff frequencies. 

Frequency Response ot Low Pass Filter One 

10' 	 100 	 100 	 100  

Frequency (Hz) 

Figure 5.6: Measured Test IC Results: Frequency Response of OTA-C Low Pass Filter One 

A similar test for the filter employing an OTA structure with cascode transistors was performed, 

with the results depicted in figure 5.7. The enhanced output resistance of the cascode config-

uration has little effect on the frequency response, with the results appearing very similar to 

LPF1. The task of the OTA in the filter is simply to convert the input voltage into a proportional 

current due to its transconductance. As such, the output resistance of the OTA has very little 

effect on the filter's frequency response. 
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Frequency Response of Low Pass Filter Two 

I1 — PMOS LPF Control = 4.3V 
PMOS LPF Control = 435V 
PMOS LPF Control = 4.4V 

100 	 tO' 	 100 	 100 	 100 

Frequency (Hz) 

Figure 5.7: Measured Test IC Results: Frequency Response of OTA-C Low Pass Filter Two 

The filter employing the NIVIOS differential pair OTA was also tested for its frequency response 

in the same manner. The bode plots in figure 5.8 show the familiar low pass response, with the 

cutoff varying from about 200 Hz for 0.7 V control voltage to 20 Hz for 0.6 V. 

5.2.5.2 Input Common Mode Range of the OTA-C Low Pass Filters 

The range of input DC levels over which the low pass filter will operate is important in this 

application. The photocircuit's output is applied directly to the filter, and as its DC level varies 

with the background light intensity, it is important that the filter can operate over a range of 

input levels. The ICMR calculations in equations 5.1 to 5.6 suggest that the cascode transistors 

in LPF2 will severely limit its input common mode range. The ICMR was tested by applying a 

DC input to the filter, increasing from 0 V to 5 V. The output voltage was measured as the input 

increased. 

The input common mode range for the three low pass filters can be seen in figure 5.9. The 

control voltage for filters one and two was fixed at 4.35 V, while that for the NMOS differential 

OTA in LPF3 was set at 0.6 V, ensuring all three are biased in the subthreshold region of 

operation. The results for LPF1 can be seen in figure 5.9(a) and show that the filter operates 

as expected from about 1 V to 4.5 V. The same experiment for LPF2 shows a similar range, 
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Frequency Response of Low Pass Filter Three 
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Figure 5.8: Measured Test IC Results. Frequency Response of OTA -C Low Pass Filter Three 

contrary to the earlier calculated expression. The third low pass filter appears to have the best 

input common mode range, operating from approximately 1 V up to nearly 5 V. 

In the strong inversion region of operation, a VGS term incorporates a threshold voltage, pro-

ducing a large voltage drop. However, the expression for VGS for a transistor biased in the 

subthreshold region does not include such a threshold voltage term, meaning the corresponding 

voltage drop is smaller. It is clear from the results in figure 5.9 that biasing the OTA structures 

in the weak inversion regime serves to maximise the potential input common mode range, yet 

another advantage of this approach. This may explain why the ICMR for the cascode OTA 

structures on LPF2 is not as bad as expected. All three filters allow operation over an accept-

ably wide range of input DC values, with the NMOS differential pair OTA employed in LPF3 

producing the widest linear range. 

5.2.5.3 DC Offset of the OTA-C Low Pass Filters 

The aim of the low pass filter in the self-referencing fundamental frequency extraction al-

gorithm is to separate the DC level from the transient AC signals of interest. The filter's output 

is then used as the reference for the thresholding stage, ensuring the comparator will switch. 

As such, the offset through the filter is of interest. If the offset is large, the filter's output may 
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Figure 5.9: Measured Test IC Results. Input Common Mode Range of OTA-C Low Pass Filter 
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not cut through the photocircuit's output, meaning the comparator will be unable to switch. 

The results in table 5.4 highlight the DC offset between the input and output signals, in the 

range from 0 V to 5 V. All three filters exhibit similar levels of offset, which appears to increase 

as the input DC level increases. Of the three filters, LPF3 with the NMOS differential pair OTA 

appears to produce marginally the lowest offset, which becomes more pronounced at higher 

input voltages. 

Input LPF1 LPF2 LPF3 
0V - - - 

0.5V - - 
1.0 V 42.5 mV 30.7 mV 30.5 mV 
1.5 V 32.6 mV 28 mV 23.5 mV 

2.0 V 43.5 mV 43 mV 38.3 mV 
2.5 V 55.5 mV 99.6 mV 50.2 mV 
3.0 V 51.7 mV 57.1 mV 54.4 mV 

3.5 V 73.9 mV 70.7 mV 66.1 mV 
4.0 V 88.8 mV 66.2 mV 80.7 mV 
4.5 V 104 mV 100 mV 92.4 mV 

5.0V 547 mV 543 mV 163 mV 

Table 5.4: Measured Test IC Results: DC Offset for OTA-C Low Pass Filters 

5.2.6 Comments on the OTA-C First Order Low Pass Filter 

The benefits of employing OTA-C filter structures biased in the subthreshold region of operation 

have been explored previously, with low cutoff frequencies consuming nano-watts of power. 

The three low pass filter structures implemented on test IC two all perform as expected, with 

cutoff frequencies lower than 10 Hz easily achievable. In addition to low power processing, 

biasing the filters in the subthreshold regime would appear to maximise the input common 

mode range, based on the measured test results in figure 5.9. This is an advantage in this 

application, given the variable DC level of the photocircuit's output voltage. 

The attenuation that was present in the pass band of the high pass filters implemented on test 

IC one is not present in the corresponding pass band of the low pass filters. This is an ob-

vious advantage, as the signal swing will be maximised to allow easier thresholding by the 

comparator. 

The cascode transistors in LPF2 seem to have little effect on performance, when compared with 
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the standard version in LPF1. As previously mentioned, the cascode transistors serve to increase 

the output impedance of the OTA, which is of little benefit in this application. The NMOS 

differential pair OTA in LPF3 seems to give the best results in terms of both input common 

mode range and DC offset, suggesting it might produce the best results when incorporated in 

the final algorithm. 

5.3 System Level Test IC Results: Self-Referencing Pixel Pro-

cessing Units 

The algorithm implemented on test IC two is highlighted in figure 5.1. The photocircuit creates 

a voltage signal that is dependent on the incident light. The low pass filter then separates the 

photocircuit's DC level from the transient signal, with the former supplied to the comparator as 

a reference voltage. The photocircuit's output is then applied directly to the comparator's input 

terminal. As with the first test IC, the aim is a pulse train whose frequency directly corresponds 

to the fundamental frequency of the incident light intensity. The difference stems from the 

internal creation of the comparator's reference voltage, as opposed to the use of an externally 

created reference signal. 

The photocircuit and comparators with and without hysteresis from the initial test IC were once 

again adopted in IC two. The employed photoelement was a 50 m2  phototransistor, due to its 

high photocurrent capability. The load transistor dimensions of the photocircuit were reduced to 

5 m by 5 tim, in an effort to reduce the area of implementation. A parameter of interest in the 

system is the input common mode range of the comparator, as it will be expected to operate over 

a range of inputs. The comparator is essentially an NMOS differential stage, so the expressions 

calculated for OTA3 in equations 5.5 and 5.6 will be valid. The comparator will also be biased 

with moderate inversion bias currents, meaning the VGS drops will not include a threshold 

voltage. As such, the comparator's ICMR should be adequate for the chosen application. 

In total, six different pixel processing units were included on the second test IC, to allow sep-

arate testing of the different processing elements. The pixel cell's contents are summarised in 

table 5.5. There are two pixel cells for each of the low pass filter structures, using compar-

ators with and without hysteresis. The layout of one of the pixels can be seen in figure 5.10. 

Little effort was made to minimise the size of the pixel cell, with the algorithm consuming 

approximately 430 tLm by 100 tim. 
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Pixel Cell Photoelement Photocircuit LPF Comparator 
Three Phototransistor Logarithmic LPF I Standard 
Four Phototransistor Logarithmic LPFI Hysteresis 
Five Phototransistor Logarithmic LPF2 Standard 
Six Phototransistor Logarithmic LPF2 Hysteresis 

Seven Phototransistor Logarithmic LPF3 Standard 
Eight Phototransistor Logarithmic LPF3 Hysteresis 

Table 5.5: Pixel Processing Cells On Test IC One 

Figure 5.10: Physical Layout of Pixel Processing Cell Three 

As before, the best test for measuring the performance of the system is the accuracy of the 

output pulse train's frequency. To this end, a series of four different frequency accuracy tests 

were performed. 

5.3.1 Frequency Accuracy Tests 

The frequency accuracy tests were conceived to allow direct comparison of the different pro-

cessing elements that combine to make fundamental frequency extraction pixel processing 

units. Parameters that were examined include response to different illumination levels, the ef-

fect of including hysteresis in the comparator, varying the control voltage of the filter structures 

and the potential benefits of including cascode transistors in the low pass filter. The differ-

ent experiments are summarised in table 5.6. For all experiments, the comparator's control 

voltage was fixed at 1 V. The frequency accuracy of each pixel's output pulse train was once 

again measured with an Agilent A56424 oscilloscope. As with the first test IC, the intensity 

of an LED was modulated by a signal generator, to allow complete control over the incident 

illumination. 

The frequency accuracy results for all pixel processing units can be seen in figure 5.11. Pixels 
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Figure 5.11: Measured Test IC Results: Frequency Accuracy of the Pixel Processing Elements 
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Test LED: DC LED: AC (sine) NMOS LPF Control PMOS LPF Control 
FA1 1.2 V 100 mV 0.55 V 4.4 V 
FA2 2 V 500 mV 0.55 V 4.4 V 
FA3 2 V 500 mV 0.45 V 4.4 V 
FA4 1.2 V 100 mV 0.45 V 4.35 V 

Table 5.6: Frequency Accuracy Testing: Parameter Values 

three to six produced no output for frequency accuracy test two, so FA3 was not applied to these 

pixels. 

5.3.2 Comparison of Pixels with and without Hysteresis in the Comparator 

The processing elements that combine to produce pixel four are similar to those for pixel three, 

except the comparator has a small amount of hysteresis to provide protection against noisy input 

signals. The same relationship exists between pixels six and five, and pixels eight and seven, 

with the former in each case using hysteresis and the latter using a standard comparator circuit. 

This allows a comparison of the potential advantages and disadvantages of hysteresis regarding 

the self-referencing fundamental frequency extraction algorithm. 

5.3.2.1 Pixel Three vs Pixel Four: Hysteresis Comparison 

Pixel three operates well for the entire frequency range of 1 Hz to 10 kHz when tested with 

FA 1. However, pixel four under the same test setup only begins to operate at 3 Hz, before 

failing to produce an output pulse train at frequencies over 40 Hz, as seen in figure 5.11(b). 

This would suggest that at very low frequency, the difference between the photocircuit's output 

and that from the low pass filter is too small for the comparator with hysteresis to discern. As 

the frequency increases, the size of the photocircuit's output reduces, and the comparator with 

hysteresis in pixel four is unable to threshold the signal. 

For frequency accuracy test four (FA4), the low pass filter's control voltage has been reduced 

to 4.35 V, meaning the low pass filter's cutoff frequency has increased. The effect of this can 

be seen in figure 5.11(a), with the low frequency performance appearing less accurate than that 

for FAI. The reason for this is the lack of a large enough difference between the photocircuit 

and low pass filter's outputs, meaning the comparator is unable to threshold the signal. Pixel 

four produces no output for FA4, suggesting the signals are too small for the comparator with 
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hysteresis. 

5.3.2.2 Pixel Five vs Pixel Six: Hysteresis Comparison 

The results for pixel five when tested with FA  are highlighted in figure 5.11(c). The output 

pulse train is highly inaccurate at low frequency, but works well from 10 Hz up to almost 2 kHz. 

When compared with the results from the same test for pixel six in figure 5.11(d), it appears 

the inclusion of hysteresis improves the low frequency accuracy but at the cost of a reduction 

in range to 300 Hz. This is exactly what would be expected from a comparator with hysteresis, 

as the safety margin increases accuracy at the cost of reduced sensitivity. 

The same pixels were tested with frequency accuracy test four (FA4). In this case, pixel five's 

low frequency operation is even less precise, as the filter's cutoff has increased in frequency. 

However, it does operate well from 70 Hz to about 1 kHz. As expected, the same test for pixel 

six produces a reduced operating range of approximately 80 Hz to 300 Hz. The presence of 

hysteresis once again restricts the operating range of the device. 

5.3.2.3 Pixel Seven vs Pixel Eight: Hysteresis Comparison 

Pixels seven and eight use the NMOS OTA as the basis of the low pass filter structure. All four 

frequency accuracy tests were applied to these pixels. 

For FA 1 in figure 5.11(e), pixel seven is relatively accurate from 1 Hz to 6 kHz, with a small 

glitch at 6 Hz. The same test applied to pixel eight produces a more accurate output pulse train, 

but over a restricted range of 4 Hz to 400 Hz, as highlighted in figure 5.11 (f). 

The results for the second frequency accuracy test (FA2) when applied to pixel seven produce 

a very poor low frequency performance, with the pixel only beginning to produce an accurate 

output pulse frequency at about 100 Hz, continuing up to 10 kHz. When applied to pixel eight, 

FA2 produces a much more accurate pulse train over the range 20 Hz to 7 kHz. At very low 

frequency, pixel eight fails to produce an output pulse train. 

Both pixels produce similar results to those for FA2 when tested with FA3. Pixel seven exhib-

its spurious output pulse train frequencies until approximately 70 Hz, when it becomes more 

accurate. Pixel eight works well from 10 Hz up to 7 kHz. The effect of reducing the cutoff 

frequency of the filter is to improve the low frequency performance very slightly. 
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Finally, frequency accuracy test four (FA4) was applied to both pixels seven and eight. Pixel 

seven operates well at low frequency under this test condition, but begins to produce occasional 

spurious output frequencies above 10 Hz. Pixel eight produces highly accurate output pulses 

from 1 Hz up to 300 Hz, above which it is unable to differentiate between its two inputs. 

5.3.2.4 Comments on the use of Hysteresis in the Comparator 

In general, hysteresis appears to increase the accuracy of the output pulse train, while reducing 

the sensitivity of the pixel processing units. The aim of hysteresis is to provide some degree 

of robustness to noise, by only switching when the input exceeds the threshold plus or minus 

the added hysteresis. The improved accuracy therefore makes sense, as spurious pulse are less 

likely to be created. The reduction in range is also expected as the large attenuation at higher 

frequencies means the signals may be to small for the comparator to switch. 

5.3.3 Comparison of Different Illumination Levels 

Two different LED control voltages were used to test the response of the pixel processing units 

to a variation in illumination intensity. For FAI and FA4, the LED was controlled with a DC 

level of 1.2 V and a transient signal of 100 mV peak to peak, while FA2 and FA3 use aDC level 

of 2 V and a larger AC signal swing of 500 mV peak to peak. Based on this, it is possible to 

directly compare the response of all six pixels to FAI and FA2, as well pixels seven and eight 

to FA3 and FA4. 

5.3.3.1 Frequency Accuracy Test One vs Frequency Accuracy Test Two 

All six pixels were tested for their operation under FAI when compared with the increased 

illumination levels of FA2. It is clear from figure 5.11(a) that while the response of pixel 

three to FAI is very accurate, there is no output for FA2. A similar trend is highlighted for 

pixel four in figure 5.11(b), with FA  producing a limited but highly accurate range of output 

frequencies, while FA2 produces nothing. The same is true for pixels five and six in figures 

5.11(c) and (d), with FAI producing a limited output range for each. However, when applied 

to pixels seven and eight in figures 5.11(e) and (f), both FAI and FA2 produce outputs. For 

pixel seven, FAI produces relatively accurate results over the entire range, while FA2 gives 

spurious output frequencies until approximately 100 Hz, when it begins to accurately represent 

151 



Test IC Two: Self-Referencing Fundamental Extraction 

the input frequency. FA2 does however operate to a higher input frequency than FAI, which 

stops producing pulses at approximately 6 kHz. This trend is repeated for pixel eight, which 

works well at low frequency for FA  before FA2 begins to produce better high frequency results. 

5.3.3.2 Frequency Accuracy Test Three vs Frequency Accuracy Test Four 

It is also possible to directly compare the response of pixels seven and eight to differing illu-

mination levels when tested with FA3 and FA4. As is the case for the comparison ofFAl and 

FA2, the lower intensity FA4 seems to work best at low input frequencies, while the higher 

illumination levels of FA3 produces superior high frequency results, as highlighted in figure 

5.11(e). The same is true for pixel eight, as depicted in figure 5.11 (f). 

5.3.3.3 Comments on Different Illumination Levels 

It appears that for pixels seven and eight, low intensity illumination levels operate best at low 

frequency, while higher intensity produces better results at higher input frequencies. Pixels 

three to six produce no output for the higher illumination level. The difference between pixels 

three to six and seven to eight is the use of PMOS and NMOS OTA structures in the low pass 

filters respectively, suggesting this may be a factor in the differing performance. However, when 

tested individually, the three low pass filter structures produced similar results, with the NMOS 

OTA in LPF3 having slightly superior ICMR and DC offset performance. It may be that the 

increased illumination produces smaller signal swings from the photocircuit, as highlighted in 

figure 4.8, which in turn prevents the pixels using LPF1 and LPF2 from operating successfully. 

There may also be discrepancies between the test setups used, with the filters for pixels seven 

and eight biased further into the subthreshold regime than their counterparts in pixels three to 

six. However, the exact reasons for the failure of pixels three to six when tested with FA2 

remain unclear. 

5.3.4 Comparison of Pixels with Varying Filter Control Values 

Another variable that may have an effect on the frequency accuracy of the self-referencing 

pixel processing unit is the cutoff frequency of the low pass filter. Pixels three to six use PMOS 

differential pair OTAs as the basis of the filter, and therefore use a different control voltage to 

the NMOS differential pair OTAs of pixels seven and eight. For this reason, it is possible to 
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directly compare frequency accuracy tests one and four for all six pixels, while pixels seven 

and eight can also make a comparison between FA2 and FA3. 

5.3.4.1 Effect of Filter Control Voltage: Pixels Three to Six 

The sole difference between FA1 and FA4 is the reduction in PMOS filter control voltage from 

4.4 V to 4.35 V. This will have the effect of increasing the bias current for the filter structures 

under frequency accuracy test four, therefore increasing the cutoff frequency, as highlighted 

in figures 5.6 and 5.7. Comparing the results for pixel three when tested with FAI and FA4, 

it is clear from figure 5.11(a) that increasing the filter's cutoff frequency reduces the accuracy 

at low frequencies. This makes intuitive sense, as the system works by using a comparator to 

sense the difference between the output from the photocircuit and the low pass filter. From the 

measured test results for LPF1 in figure 5.6, a control voltage of 4.4 V gives a cutoff frequency 

of approximately 10 Hz, while 4.35 increases this to nearer 100 Hz. At the low frequency range 

of 1 Hz to 10 Hz for pixel three in figure 5.11(a), there is simply no discernible difference 

between the comparators' inputs when tested with FA4. However, reducing the filter's cutoff 

frequency allows the comparator to 'see' the difference between the two. 

A similar argument seems to exist for pixel four, with FA  producing a limited range of outputs 

while no output is produced for FA4, as seen in figure 5.11(b). The hysteresis in pixel four 

stops the comparator from thresholding the small signal variations between the photocircuit's 

and low pass filter's outputs. 

Pixel five's operation in the 1 Hz to 10 Hz range is inaccurate for both FA  and FA4. However, 

as highlighted in figure 5.11(c), the accuracy under FA  is superior to that for FA4 in the 10 Hz 

to 100 Hz range, continuing the trend from pixels three and four. The same is true of pixel six 

in figure figure 5.11(d), whose low frequency performance under FA1 are superior to those for 

FA4. 

5.3.4.2 Effect of Filter Control Voltage: Pixels Seven and Eight 

Pixels seven and eight use LPF3, which is based on the NMOS differential pair OTA structure. 

It is possible to measure the effect of NMOS filter control on the frequency accuracy of these 

pixels by comparing FA2 and FA3, as well as FA  and FA4. 
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The results for pixel seven are depicted in figure 5.11(e). It is clear that the accuracy for FA4 in 

the range of 1Hz to 10 Hz is superior to those for FA1 in the same region. FA4 uses a control 

voltage of 0.45 V, which means a lower cutoff frequency for the filter than the 0.55V of PAl. 

This follows the general results seen for the PMOS filters of pixels three to six, where reducing 

the cutoff frequency improves the low frequency results. A similar relationship is seen between 

FA3 and FA2 for pixel seven, although it is clear that the pixel processing unit is generally not 

as accurate as is the case for the lower intensity levels of FA I. and FA4. 

Pixel eight also sees improved low frequency performance for FA4 when compared with FA I, 

as highlighted in figure 5.11(f). The difference between FA2 and FA3 is negligible, which is 

due to the presence of hysteresis in the comparator 

5.3.4.3 Comments on Varying the Filter Control Voltages 

The comparison of varying the control voltage of the low pass filters suggests that the lower the 

cutoff frequency, the better the low frequency performance. The aim of the low pass filter is to 

extract the DC level from the photocircuit's output and present it as the reference point for the 

comparator. However, due to the extremely low frequency nature of the illumination variation, 

the low pass filter's output is not a stable DC level, but a slightly attenuated and phase shifted 

version of the photocircuit's output. It follows that if the cutoff frequency is too high, there is 

no difference between the photocircuit's and LPF's outputs, as the filters output is in the pass-

band. In most cases, reducing the cutoff frequency improves the low frequency performance 

as it makes sure there is a difference between the comparator's input signals. Therefore, in 

general, reducing the cutoff frequency of the filter improves the low frequency performance of 

the system, while having little effect on the higher frequency operation. 

5.3.5 Comparison of Pixels with and without Cascode OTAs 

As the IC test measurements for low pass filter's one and two highlighted, there appears to 

be very little difference between a PMOS differential pair with or without additional cascode 

transistors. The frequency response in the bode plots of figures 5.6 and 5.7 are very similar, 

as are the DC offsets in table 5.4 and the input common mode range in figure 5.9. However, 

from a system perspective, it seems worthwhile to observe if there is any difference between 

the pixels that include cascode transistors and those that do not. 
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Pixels five and six are similar to three and four respectively, except for the inclusion of cascode 

transistors in the OTA filter structure. It is therefore possible to compare pixel three(four) with 

pixel five(six) for both FA! and FA4. There was no output from these pixels for frequency 

accuracy test two and three, hence the lack of meaningful comparison between them. 

It would appear that the accuracy of pixel three for both PA 1 and FA4 is superior to that of pixel 

five as highlighted in figures 5.11(a) and (c). Pixel three is able to operate up to the maximum 

input frequency of 10 kHz, for both FA1 and FA4, while pixel five stops at approximately 2 

kHz. The low frequency performance of pixel three is also superior. However, the results for 

pixel six appear superior to those for pixel four. FA4 produces no output for pixel four, while 

there is a limited output for the same test setup for pixel six. The results for pixel six when 

tested with frequency accuracy test one are also superior to those for pixel four. 

5.3.5.1 Comments on the use of Cascode OTAs 

The discrepancy between the performance of pixel three and pixel five to pixel four and pixel 

six may be due to some inconsistency in the value of hysteresis in the comparator, or some other 

test parameter. However, it is hard to draw a conclusion on the use of cascode OTA structures 

based on these test results. Although the filters when tested individually show little in the way 

of a performance difference, the results when included in the pixel processing units seem to 

conflict with each other. There is no difference in power consumption between the two filter 

structures, but the use of cascode transistors does increase the area of implementation. In this 

application, the silicon area consumed by each pixel processing unit is important if a useful 

array is to be realised. For this reason, cascode transistors will not be included in future filter 

implementations. 

5.3.6 Comments on Self-Referencing Pixel Processing Units 

In general, the self-referencing pixel processing units work well. At first glance, system level 

results in figure 5.11 appear less impressive than those for the pixel processors implemented 

on test IC one. However, the great advantage of the approach on IC two is the self referencing 

system, which both removes the need for an external reference voltage and allows for much 

more realistic integration into a CMOS imager-processor array. Pixels seven and eight appear 

to operate over a wider range of test conditions than the others, producing outputs despite 
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varying illumination levels and filter control values. Adding hysteresis to the pixels improves 

the accuracy but reduces the sensitivity, while filter's should be biased deep into subthreshold, 

with lower cutoff frequencies giving the best performance. 

5.4 Comments on Test IC Two 

Test IC two built on the experience gained from the first test integrated circuit, but introduced 

a small yet fundamental difference to the frequency extraction algorithm. Instead of trying 

to accurately superimpose the transient information from the photocircuit's output onto a pre-

defined reference voltage, the actual DC level of the photocircuit's output voltage is extracted 

and used as the comparator's reference. This creates a self-referencing algorithm, that greatly 

increases the feasibility of an array of such pixel processing units being realised. The problems 

of sensitivity regarding the first approaches dependency on this external reference voltage are 

removed, allowing each pixel to operate without external reference manipulation. 

5.4.1 Conclusions on OTA-C Low Pass Filters 

The first test IC highlighted the advantages of creating low cutoff frequency filters with OTA-

C structures biased in the subthreshold region of operation. As well as realising large time 

constants with reasonably small silicon areas, the power consumption of such filters is in the 

nW region, agreeing with the requirements of the sponsor company. Another advantage is the 

wide tunability range of such filters when biased with weak inversion currents. 

The low pass filters implemented on the second test IC performed well. The frequency response 

Bode plots in figures 5.6, 5.7 and 5.8 highlight the low cutoff frequencies that are easily achiev-

able with the approach. In total, three different low pass filters were implemented, two with 

PMOS differential pair OTA structures (with and without cascode transistors) and one with an 

NMOS differential pair. The area of each implementation is similar, with LPF1 consuming 

160 im by 95 ttm, LPF2 using 170 jim by 100 rim, while LPF3 is approximately 155 im by 

100 Iim.  Little effort was made to minimise the area of implementation as the physical layout 

in figure 5.5 highlights, with guard structures, common-centroid layout and dummy transistors 

incorporated to improve matching performance. The power consumption of all three filters is 

in the nW region, as the simulation estimates summarised in tables 5.2 and 5.3 confirm. Al-

though likely to be inaccurate, it is clear that the filters consume very small bias currents, which 

156 



Test IC Two: Self-Referencing Fundamental Extraction 

manifest as low power consumption. 

The three filters were tested for input common mode range, as highlighted in figure 5.9. The 

mathematically derived expressions in equations 5.1 to 5.6 predict poor performance for LPF2, 

due to the cascode transistors. However, biasing the OTA structures with subthreshold cur-

rents appears to maximise the ICMR, as the VGS drops do not include a threshold voltage. Of 

the three filters, the NMOS differential pair OTA in LPF3 seems to produce the widest input 

common mode range. 

The DC offset between input and output was also measured for all three filters, with the results 

included in table 5.4. Although very similar, the results for the third filter appear slightly 

superior to those for the two PMOS differential pair devices. 

All three filters perform as expected, with similar results in general. LPF3 is probably the best 

of the three, due to the superior ICMR and DC offset performance. However, any of the three 

could be included in a pixel processing unit incorporating the self-referencing fundamental 

frequency extraction algorithm. 

5.4.2 Conclusions on Self-Referencing Pixel Processing Cells 

The low pass filters described earlier were combined with phototransistors, logarithmic com-

pression photocircuits and positive feedback comparators developed on the first test IC, to create 

self-referencing pixel processing units. The aim of these units is as before, to create an output 

pulse train whose frequency directly encodes the fundamental frequency of the variation in in-

cident illumination. In total, six different pixel processing units were created, two with each 

low pass filter, to allow a comparison of the effects of including comparators both with and 

without hysteresis. The contents of the pixels can be seen in table 5.5. 

The best measure of the success of the self-referencing pixels is the accuracy of the frequency of 

the output pulse trains. For this reason, a series of four different test procedures were performed, 

as summarised in table 5.6. The frequency accuracy tests allow direct comparisons of the effects 

of including hysteresis in the comparator, changing the illumination level, varying the filter 

control voltage and the use of cascode transistors in the OTA circuit. 

It is clear from the frequency accuracy results in figure 5.11, that in general all six pixels 

operated in certain test conditions. Regarding the use of hysteresis in the comparator, it would 
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seem that hysteresis can improve the accuracy of the output pulse train, but at the cost of a 

reduced operating range. This is highlighted in the comparison of pixels seven and eight for 

frequency accuracy test 4 in figures 5.11(e) and (f), as well as that between pixel five and 

pixel six for FAI, as highlighted in figures 5.11(c) and (d). This property of hysteresis makes 

intuitive sense, and agrees with similar tests applied to the pixels on test IC one. It appears 

that hysteresis may be more important in this algorithm than the original implementation on 

test IC one. In the original technique, the high pass filter's output is compared with an external 

reference, which should be relatively clean. However, the self-referencing technique compares 

the photocircuit's output with that of the low pass filter, both of which may exhibit noise, 

suggesting hysteresis may offer advantages in this technique. It is clear from pixels four, six and 

eight compared to three, five and seven in figure 5.11, that there are no spurious output pulses 

from the pixels which incorporate hysteresis. The frequency accuracy tests prove the benefits 

of making the cutoff frequencies as low as possible, by biasing the OTA structures deep into 

the subthreshold regime. This has further advantages regarding the power consumption of the 

system. As previously mentioned, the performance benefits of including cascode transistors do 

not appear to merit the increased area of implementation. The two different illumination levels 

applied to the pixels suggests that the pixels incorporating NMOS differential pair OTA-C filters 

are superior to their PMOS counterparts. 

As with the first pixel processing unit algorithm, the self referencing system benefits from 

low power operation, with the low pass filters consuming subthreshold bias currents. All six 

pixels perform relatively well, and importantly, do not require an external reference signal as 

was the case with the first approach. This, coupled with the positive test results led to this 

approach being adopted and improved for a third test IC. The aim of this new chip is to adapt 

the system to create an tunable band pass filter, whose centre frequency tunes automatically 

to the fundamental frequency of the incident illumination. Also, included on the third test 

IC is a miniaturised version of the self-referencing pixel processing unit, which combines, 

photoelement, photocircuit, low pass filter and comparator into an area of only 60 pm2. 
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Chapter 6 
Test IC Three: Minipix 

Self-Referencing Pixel Processing Unit 

As mentioned in the conclusions of chapter five, the self-referencing pixel processing unit was 

well suited to inclusion in a image processor pixel array. However, the size of the pixel pro-

cessing units, at approximately 430 ,um by 100 /1m, was such that the spatial resolution of any 

resultant image processor would be too low to be of any practical use. An effort to reduce the 

size of the self-referencing pixel processing unit was made on test IC three, with the develop-

ment of the minipix algorithm. The circuitry is the same as was implemented on the second 

test IC, but the area has been reduced considerably to 60 	potentially allowing for a more 

realistic image processor. 

6.1 Minipix: Physical Layout 

The algorithm implemented in minipix is repeated in figure 6.1 (a), together with the transistor-

level schematic and physical layout in (b) and (c) respectively. The circuitry consists of a log-

arithmic photocircuit with three transistor load, a first order PMOS OTA-C low pass filter and 

a comparator without hysteresis, all described in detail in chapters four and five. The transistor 

dimensions have been significantly reduced from previous implementations, as highlighted in 

table 6. 1, along with the size of the capacitor and the phototransistor. The algorithm consumes 

approximately 60 ,um2, with a 250 if capacitor using approximately 40 ,um by 11.5 ,um, and a 

phototransistor taking 48.8 pirt by 10.4 urn. The fill factor for the pixel is defined as the ratio 

of the area of the photoelement to the complete pixel, which in this instance equals 14.1%. 

6.2 Minipix: Simulated Current Consumption 

The current consumed by the minipix algorithm was estimated from simulation results. As 

before, the average current from a transient simulation was calculated, combining static and 
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Figure 6.1: Minipix Self Referencing Pixel Processing Unit 
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Transistor (tim) 
Ti 2/2 
T2 2/2 
T3 2/2 
T4 5/5 
T5 5/5 
T6 5/5 
T7 5/5 
T8 5/5 
T9 6/1.5 

T1O 6/1.5 
Tli 3/1.5 
T12 3/1.5 
Ti3 3/1.5 
Ti4 3/1.5 
Ti5 3/3 
T16 3/3 
T17 5/2 
T18 1.5/3 
Ti9 1.5/3 

Table 6.1: Transistor Dimensions for the Minipix Algorithm 

dynamic current consumption. The results in table 6.2 show current consumption for typical 

parameter values when the system is stimulated with a sinusoidal input. It is clear that the 

comparator consumes the majority of the current. By reducing its bias such that it operates in 

subthreshold, a significant reduction is achievable, but at the cost of a reduction in maximum 

input frequency. However, with 0.7 V bias the system can operate successfully up to i kHz. 

Parameter Values 
Input (Hz) LPF Ctrl Comp Ctrl Current Consumption 

100 Hz 4.5V 1V 3.577 MA 
I kHz 4.5 V i V 3.578 1iA 

100 Hz 4.5 V 0.7 V 13.98 nA 
1 kHz 4.5 V 0.7 V 13.99 nA 

100 Hz 4.59 V 0.7 V 13.76 nA 
1 kHz 4.59 V 0.7 V 13.83 nA 

Table 6.2: Simulated Current Consumption of the Minipix Algorithm 
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6.3 	Minipix: Effect of Increased Variation in Filter Cutoff Due to 

Subthreshold Current Mismatch 

A consequence of reducing the size of the transistors in the minipix algorithm is an increase in 

subthreshold current mismatch. Research suggests that there are three main causes of mismatch 

in subthreshold currents[94], edge effects, striation effects and random variations. Edge effects 

depend on the orientation of each transistor with its neighbouring structures, while striation 

effects manifest as a spatial variation in transistor current which can be as large as 30 % of 

the average. Random variations can be described by a Gaussian distribution, and are inversely 

proportional to the length of each transistor. The standard deviation of the random current 

mismatch can be as large as 20 %, causing a potential design trade-off between accuracy and 

area. 

Current mismatch in the minipix algorithm will manifest as a variation in filter cutoff frequency 

across the surface of the image-processor. Although each minipix's low pass filter will receive 

the same bias voltage, current mismatch will result in each filter having different bias currents, 

therefore different cutoff frequencies. To test the robustness of the minipix to such current 

mismatch, a series of simulations were performed with the Spectre simulation tool. By varying 

the bias of the filter around the default value of 4.5 V, it is possible to simulate the resultant 

effect on the accuracy of the output pulse train. The variation in filter amplitude response can 

be seen in figure 6.2 (a), with the corresponding cutoff frequencies and simulated bias currents 

in Table 6.3. It is clear that the chosen values produce bias currents which far exceed the 

maximum expected variation in bias current, with well over a 2000 % increase from 4.6 V to 

4.5 V and again from 4.5 V to 4.4 V. Despite this, the pulse trains in figure 6.2 (b) show that the 

system produced accurate outputs when attempting to measure a 100 Hz input signal. As the 

filter's cutoff varies, the phase response is also effected which explains the difference in mark to 

space ratio of the output pulse trains. However, this is of no consequence, with only the timing 

of subsequent rising or falling edges being of interest. It is clear that the minipix algorithm can 

cope with an extremely large variation in LPF cutoff frequency. 

To further analyse the system's robustness, the results in table 6.4 were obtained from sim-

ulation. In this test, the low pass filter's cutoff was once again varied from 4.6 V to 4.4 V, 

with the output accuracy measured as the input frequency varies from 1 Hz to 10 kHz. It is 

clear from the results that the system operates extremely accurately over a large range of input 
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Figure 6.2: Effect of Subthreshold Current Mismatch on the Minipix Algorithm 

LPF Control Cutoff Freq Bias Current 
4.6 V 0.6 Hz 173.5 fA 
4.5V 15 Hz 4.5pA 
4.4 V 350 Hz 105.8 pA 

Table 6.3: Minipix: Simulated Variation in LPF Cutoff Frequency 

LPF Control 
Input (Hz) 4.6 V 4.5 V 4.4 V 

1 	H 1Hz - - 
10 Hz 9.981 Hz 10 Hz - 

100 Hz 100.047 Hz 99.98 Hz 100 Hz 
1 kHz 1000.036 Hz 999.6 Hz 1000.017 Hz 

10 kHz - - - 

Table 6.4: Simulated Minipix Output Frequency Accuracy with Variable LPF Cutoff 
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values. If 4.5 V is taken as the default LPF bias voltage, the minipix can accurately encode 

the input fundamental at 100 Hz and 1 kHz despite the presence of massive variations in filter 

cutoff frequency. However, at extremely low or high input frequencies, the system cannot cope 

with these bias values. It can be concluded that an imager constructed with the minipix pixel 

processing units may require several frequency sensitivity settings, depending on the range of 

frequencies of interest. This would be a simple matter of varying the bias of the low pass filter. 

Despite this, it is clear that the minipix system is extremely robust to potential variations in LPF 

cutoff frequency caused by subthreshold current mismatch. 

6.4 Minipix: Measured IC Test Results 

The fabricated version of the minipix algorithm was tested in a similar fashion to the self-

referencing pixel's of test IC two. Once again, the most important parameter is the accuracy 

with which the output pulse train's frequency maps to that of the input. Measurements of 

the frequency accuracy for the lighting conditions detailed in table 6.5 were taken. These 

correspond directly to those employed in the testing of the self-referencing pixel, allowing a 

direct comparison of the results. In addition, the frequency response of the photocircuit and 

LPF under FA2 were measured. 

Test LED: DC LED: AC (sine) PMOS LPF Control Comp. Control 
FA1 1.2V 100 m 4.59V 1V 

FA2 2 V 500 mV 4.59 V 1 V 

Table 6.5: Minipix Frequency Accuracy Testing: Parameter Values 

6.4.1 Minipix: Frequency Response 

The frequency response for the minipix photocircuit and low pass filter are included in figure 

6.3 (a) and (b) respectively. The cutoff frequency for the photocircuit is approximately 1 kHz, 

while the LPF is biased deep into subthreshold with a cutoff below 10 Hz. 

6.4.2 Minipix: Frequency Accuracy 

The accuracy of the minipix algorithm is included in figure 6.4. It is clear that the algorithm 

struggles at frequencies below 5 Hz, but operates with high accuracy to 10 kHz depending on 
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Figure 6.3: Minipix Sub-Circuit Frequency Response 

the lighting conditions. This compares well with pixel three on test IC two, which is the closest 

to minipix in terms of circuit structure. Despite the significant reduction in implementation 

area, the minipix algorithm performs well. 

6.5 	Conclusions on the Minipix Algorithm 

The performance of the minipix algorithm is comparable to the larger version implemented in 

test IC two. The system contains a photoelement, logarithmic photocircuit, low pass filter and 

comparator in an area of 60 pm 2,  with a fill factor of 14.1%. Simulations highlighting the ro-

bustness of the algorithm to variations in filter cutoff frequency caused by subthreshold current 

mismatch are introduced, together with an estimate of current consumption at approximately 14 

nA when operating at 1 kHz. Such a pixel could be potentially integrated into a fully functional 

CMOS imager, producing a fundamental temporal frequency image-processor. By simply in-

tegrating the output from each pixel in a fixed time frame, an analogue level corresponding to 

the input frequency could be created, producing a hardware version of the fundamental fre-

quency maps discussed in chapter three. 
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Chapter 7 
Test IC Three: Automatically Tuned 
Band Pass Filter with Phase Derived 

iij 

The test ICs detailed in chapters four, five and six were concerned with analysing pixel-level 

algorithms for the extraction of the fundamental frequency of any illumination variation. As 

such, various different processing structures were combined to produce pixel processing ele-

ments, highlighting the relative advantages and disadvantages of each approach. However, the 

ultimate aim of the research described in this thesis is not simply the extraction of the funda-

mental frequency, but also the relative strength of the first four harmonics. The approach, as 

detailed in chapter three, relies on using the fundamental frequency to place a series of band 

pass filters at relevant points in the frequency domain, thus building apseudo-Fourier processor. 

The circuits implemented on test IC three can be considered the first step in the development of 

such a pseudo-Fourier processor, while conforming to the low power constraints imposed by the 

sponsor company. As with the previous ICs developed in this research, a 0.6 pm AMS process 

available through Europractice was used, along with the Cadence design tools. As before, a 

third metal layer was employed to protect the signal processing circuitry from unwanted photo-

induced currents. 

7.1 	Automatically Tuning BPF: System Level Approach 

The success of the approach relies on the ability to accurately position band pass filters, based 

on the fundamental frequency extracted using the techniques described in previous chapters. 

Test ICs one and two concentrated on creating pulse trains, whose frequency directly corres-

ponds to the fundamental frequency of the variation in illumination. The algorithm used in test 

IC three builds upon both techniques, to automatically tune an OTA-C band pass filter to the 

fundamental frequency of the incident illumination. The system-level algorithm can be seen in 

figure 7.1. 
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Figure 7.1: System Level Algorithm Implemented on Test IC Three: the BPF is automatically 
tuned to the incident illumination's fundamental frequency using phase-derived 
feedback 

The algorithm uses the phase difference between the band pass filter's input and output to tune 

it to the relevant frequency. A filter was designed with a 00  phase difference between input 

and output at the peak of its magnitude response or centre frequency. If a negative feedback 

loop is created to force this phase difference to be zero, the BPF will automatically be tuned 

to the fundamental frequency of the incident illumination. As the input frequency changes, 

the feedback loop will force the filter's centre frequency to vary as it tries to ensure the phase 

difference between its input and output remains zero. 

The phase-derived negative feedback system in figure 7.1 operates by first converting the in-

cident illumination to a voltage signal with a logarithmic compression photocircuit. Due to the 

requirements of the employed OTA-C BPF, the DC level from the photocircuit is removed with 

a low frequency high pass filter, with the transient information superimposed onto a 2.5 V ref-

erence level. The BPF requires this well defined reference voltage for correct operation. At this 

stage, the algorithm splits into two paths, with both the BPF's input and the output signals being 

passed through self-referencing pulse creation units, as described in chapter five. These units 

create pulse trains that directly correspond to the frequency information seen before and after 

the band pass filter, meaning any phase difference between the two will be evident in the time 

delay between the two pulse trains. A digital phase detector is then used to find the difference 
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between these signals, raising one of two outputs depending on whether there is a negative of 

positive phase difference. These outputs are supplied to a charge pump circuit, which either 

charges or discharges a capacitor depending on the direction and magnitude of the phase differ-

ence. The charge pump's output voltage is then fed-back through a low pass filter to act as the 

control voltage of the band pass filter, completing the loop and ensuring the phase difference 

between the BPF's input and output is 00. 

As before, the sponsor companies requirements for low power circuit techniques and focal 

plane processing shaped the choice of circuit elements that were employed. The algorithm is 

too large to fit into a single pixel processing element if a realistic resolution is to be achieved. 

However, a system that employs such a BPF tuning unit for a group of pixels may be feasible, 

with each pixel acting as the input in turn. Wherever possible, circuits biased with subthreshold 

currents were used to minimise power consumption. Many of the circuit elements are similar 

to those previously implemented on test ICs one and two, with the logarithmic photoreceptor, 

low and high pass OTA-C filters and comparators documented in chapters four and five. 

The use of circuits biased in the weak inversion region of operation may result in an increase 

in bias current mismatch. An advantage of the proposed system is that the filter is continually 

tuned by the feedback loop, increasing the accuracy accordingly. The phase of the band pass 

filter's output is used directly to tune its centre frequency, meaning that the potential mismatch 

between each transconductance element will be minimised. Such a technique is an example of 

direct filter tuning[ 1 101. 

7.2 OTA-C 4th-Order Band Pass Filter 

As previously mentioned, the band pass filter is required to have a phase difference of 00  at its 

centre frequency. Coupled with this is the low frequency nature of the signals of interest in this 

research, along with the low power requirements imposed by the sponsor company. Previous 

work on OTA-C filters biased in the subthreshold region of operation has proved the success of 

the approach, with very low cutoff frequencies consuming nW power levels. Another potential 

advantage of the approach for this application is the ease with which the cutoff frequencies can 

be varied, using a single control voltage to vary the bias of OTA element. Combined with this 

is the wide tuning range available to filters when biased in the subthreshold region of operation 

when compared with strong inversion. This stems from the wider range of transconductance 
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values that can be achieved in the subthreshold regime due to the linear relationship between g 

and tail current, compared with the square root relationship for strong inversion. This principle 

was highlighted in chapter four, with equations 4.5 and 4.6 and the simulation results in figure 

4.11. For all these reasons, coupled with the experience gained through test ICs one and two, a 

decision to implement the band pass filter using OTA-C techniques was made. 

7.2.1 OTA-C 4th-Order BPF: Theory 

A simple approach to realising high order filter structures involves cascading lower order biquad 

filter sections. A biquad is essentially a hybrid second-order filter section that can be used create 

different filtering effects depending on which output is selected. The circuit in figure 7.2 is an 

OTA-C band pass biquad filter stage, which has the transfer function highlighted in equation 

7.1. Comparing the transfer function to the standard form for a second order BPF as highlighted 

in equation 7.2, it is clear that the centre frequency wo is equal to 9M, which is similar to the 

relationship of the cutoff frequencies for the first order low and high pass filters used in test ICs 

one and two. This property allows the filter to be tuned by varying the transconductance of the 

OTA elements. The factor Q refers to the pole quality factor and governs the distance of the 

poles from the jw axis when viewed on the pole-zero map. A high Q factor means the poles 

are close to the jw axis, resulting in a highly selective filter. To ease the design process, a pole 

quality factor of one was selected for the BPFs implemented on test IC three, allowing all four 

OTA elements to have the same transconductance values and the g-, and Q control lines to be 

shorted together. However, the option remains available to vary the filter's Q factor if required, 

at the cost of tuning two control parameters independently instead of one. 

9M S 
V0t(s) -  

(7.1) 
17(s) - s2  + 	s + C ) 

17 t (s) - 
V(s) 

—K1s 

82 +
wo  8+ (wo)2 

(7.2) 

Of particular interest regarding the biquad BPF is its phase response corresponding to the centre 

frequency. Using the standard form for the biquad's frequency response, the phase response can 

be calculated using the relationship in figure 7.3. By replacing s with jw and applying equation 

7.3 to equation 7.2, the expression in equation 7.4 is achieved. 
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Figure 7.2: Second Order OTA-C Band Pass Biquad Filter 
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Now, tan —  1 (_IiW) = _900 , while at the centre frequency of the filter, w0  = w. Therefore, 

the relationship becomes that in equation 7.5: 

( wow \ 
arg (Vout(s)'\ 

= 90 - tan 

	

Vim(s)) 	
(7.5) 

	

Once again, tam1 (+) 	_900, so the overall phase response for this OTA-C band pass 

filter biquad at its centre frequency is _1800.  If two such biquad stages were to be cascaded, 

to produce a fourth order BPF, the combined phase response at the centre frequency would be 

_1800 + _1800, which equals 00  in total. Such a filter was implemented and simulated using 

the Spectre design tool, with the simulation results depicted in figure 7.3. It is clear that the 

phase response at the filter's centre frequency is 00,  allowing it to be used as the band pass 

filter in the phase-derived feedback system. In effect, any band pass filter built using cascaded 

biquad sections could be used in the automatic tuning algorithm, provided the order is an integer 
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multiple of four. 

Frequency Response of OTA-C BPF 4th Order 

m 

> 

tO 	10 	100 	10 0 	100 	100 	10 	100 	10 	10, 
 

Frequency (Hz) 

Figure 7.3: Simulated Frequency Response for the 4th-Order OTA-C Biquad Band Pass Filter. 
The phase response at the centre frequency is 000  meaning it meets the criterion for 
the phase-derived feedback system 

7.2.2 Operational Transconductance Amplifiers on Test IC Three 

The operational transconductance amplifiers used in the implementation of the OTA-C band 

pass filter employ simple differential stages, similar to those on test IC two. The OTA can be 

seen in figure 7.4, together with the transistor dimensions. Two control transistors are included 

in the OTA, one which remains fixed to provide a certain minimum value of 9m.  The variable 

control voltage can then be used to fine tune the transconductance value. From the filter's 

perspective, the fixed control sets a minimum possible centre frequency for the band pass filter, 

while the variable control receives the fed-back control signal, allowing the filter to tune itself 

to different centre frequencies. 

7.2.3 Physical realisation of the 4th-Order OTA-C BPF 

The OTA-C biquad band pass filter section comprises four OTA structures and two 10 pF poly-

poly capacitors, connected as shown in figure 7.2. The fourth order BPF is realised by simply 

cascading two such biquad sections, meaning it requires four capacitors and eight OTA struc-

tures. The physical layout of the filter can be seen in figure 7.5. The structure consumes an 

area of approximately 475 pm by 550 /in-i. However, by reducing the size of the capacitors and 
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(a) Tunable OTA 	 (b) Transistor Dimensions 

Figure 7.4: Tunable PMOS Differential Pair OTA Circuit Implemented on Test IC Three: The 
circuit has two control voltages, one which remains fixed and the other which is 
variable, to fine tune the transconductance 

employing fewer guard structures, this could be reduced considerably. 

7.2.4 OTA-C 4th-Order BPF: Power Consumption 

An attempt to estimate the power consumption of the filter was made using the Spectre sim-

ulation tool. As with previous filter implementations, the BPF is biased with subthreshold 

currents, principally to allow the low centre frequencies required. The current consumption 

values in table 7.1 were taken by measuring the current drawn from the supply voltage, for 

different combinations of control voltages. It is clear that the current consumption increases as 

the bias voltages reduce, meaning that higher centre frequencies consume more power. This 

makes intuitive sense, with the filter biased in weak inversion for low centre frequencies but 

moving into moderate or even strong inversion for higher frequencies. 

7.2.5 OTA-C 4th-Order BPF: Measured Test IC Results 

The band pass filter implemented on IC three was tested for both its phase and magnitude 

frequency response. The success of the approach relies on the filter's centre frequency corres-

ponding to a 00  phase difference between its input and output. The filter also has to be able 

to tune to the low frequencies required by the system. Another BPF feature of interest is the 

variation in magnitude response caused by the Q control parameter. As previously mentioned, 
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Figure 7.5: Physical Layout of the OTA-C 4th-Order Band Pass Filter 

Fixed Control (V) Variable Control (V) Current Consumption 
4.4 4.1 37.75 nA 
4.4 4.0 178.67 nA 
4.4 3.9 489.8 nA 
4.3 4.1 61.39 nA 
4.3 4.0 202.30 nA 
4.3 3.9 512.4 nA 
4.2 4.1 298.6 nA 
4.2 4.0 439.48 nA 
4.2 3.9 750.5 nA 

Table 7.1: Simulated Current Consumption for the 4th-Order OTA-C Band Pass Filter 

the Q factor of the filter governs its selectivity for a particular centre frequency. 

7.2.5.1 OTA-C 4th-Order BPF: Frequency Response 

The Bode plots in figure 7.6 were created by applying a sinusoidal input from a signal generator 

and measuring the output amplitude, with the phase response measured from the output to the 

input. The results were obtained with both the fixed control and Q control parameters set at 

4.33 V, while the variable control parameter was varied from 4.25 V to 4.10 V. 

Figure 7.6 (a) clearly depicts the tunability of the filter, with the four separate values of the 
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variable control parameter producing four different centre frequencies, ranging from approx-

imately 45 Hz for 4.25 V to about 250 Hz for 4.10 V. The Bode plots in figures 7.6 (b) - (e) 

are detailed plots of the phase and magnitude response for each of the four different variable 

control values. It is clear from each that the phase difference of 00  corresponds directly to the 

peak in the magnitude response, meaning the filter will work well in the proposed system. 

7.2.5.2 OTA-C 4th-Order BPF: Response to Variation in Q Control 

The ability to tune the BPF to different Q values allows for its selectivity to be altered, which 

may prove useful in this application. The magnitude responses in figure 7.7 were obtained in a 

similar manner to those in figure 7.6, with the fixed control set at 4.33 V, the variable control 

held constant at 4.20 V and the Q control varied from 4.35 V to 4.30 V. The results show 

that there is a clear difference in the magnitude response dependent on the value of Q control, 

with the peak more pronounced for a Q factor greater than one and becoming shallower as Q 

control is reduced. From figure 7.2, it is clear that the value of Q depends on the ratio of the 

transconductance of the three OTA's controlled by 'g control' to that of the OTA governed by 

'Q control'. If the transconductance of the Q control OTA is greater (smaller) than the other 

three, the resultant Q factor will be less than (greater than) unity. As previously mentioned, 

when the BPF is employed in the phase-derived feedback network, the 9m  control and Q control 

parameters are effectively shorted together, ensuring that all four OTA's have the same value of 

transconductance and that Q = 1. 

7.2.6 Comments on on the OTA-C 4th-Order BPF 

It is clear from the test results that the band pass filter behaves as expected. Crucially, the phase 

difference at the centre frequency is 00,  as proven mathematically, meaning the filter meets 

the requirements for inclusion in the phase derived feedback system. The results in figure 7.7 

highlight the change in amplitude response achievable by varying the filter's Q factor. However, 

to make the system as simple as possible, the fixed control and Q control parameters of the BPF 

included in the on-chip feedback algorithm were shorted together, effectively guaranteeing a 

unity quality factor. 

The size of the band pass filter implementation is a potential problem for inclusion in a system 

such as this. At 475 m by 550 pm, the filter is too large to be repeated many times on the 
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Figure 7.6: Measured Test IC Results: Band Pass Filter Frequency Response and the Effect of 
Varying the Control Voltage 
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Figure 7.7: Measured Test IC Results: Response of the BPF to a Variation in Q Control 

same IC. As this was a proof of concept, little effort was made to minimise the silicon area, with 

guard rings, dummy transistors and other safety structures included to ensure correct operation. 

In future versions of the system, the area of the band pass filter will be a critical parameter to 

reduce, with potential solutions such as using smaller transistors or capacitors. It should be 

possible to drastically reduce the area of the BPF, while still maintaining its correct operation. 

7.3 	Digital Phase Detector 

The phase derived feedback system requires a phase detector circuit that can sense not only 

the magnitude of the difference in phase, but also the direction. More specifically, it requires 

a circuit that has two outputs, once which is asserted when there is a positive phase difference 

and the other which does the same for a negative difference. The reason for this stems from 

the phase response of the 4th order OTA-C band pass filter, which is positive at frequencies 

below the filter centre frequency and becomes negative at larger frequencies. The circuit[ 11 1] 

highlighted in figure 7.8 achieves this. 
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BPF Out 

Pixel Out DOWN 

Figure 7.8: Asynchronous Digital Phase Detector Circuit: The circuit has two outputs, which 
are asserted depending on the direction of the phase difference between the two 
inputs[1 II] 

7.3.1 Digital Gates with Current Limiting Transistors 

The original aim of the project was to develop an entirely analogue circuit level solution to 

the problem. The principle reason for this approach was to bias transistors in the subthreshold 

region of operation, thus producing a very low power system. However, given the nature of the 

pulse trains generated by the self-referencing pixel units, a digital phase detector seemed the 

best choice in terms of functionality. The requirement for the direction of any phase difference 

to be ascertained by the circuit added a level of complexity that could best be solved with digital 

techniques. 

Despite meeting the functional requirements of the system, digital techniques in general suffer 

from higher dynamic current consumption than subthreshold analogue counterparts. The reason 

for this stems from the use of transistors to switch the output between high and low logic states, 

thus consuming high switching currents. An effort to reduce the dynamic current consumption 

of the phase detector was made by including an extra transistor in each pull up chain of the 

digital gates, effectively acting as a current limiter. As an example, consider the two inverters 

in figure 7.9. The inverter on the left is the standard technique, while that on the right includes 

an extra current limiting transistor in the pull-up path. 

Limiting the current in this manner is possible due to the relatively low input frequencies of 

interest in this research. In high speed applications, the current required to charge and discharge 
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ChC7n 
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(a) Standard Standard Inverter (b) Current-Limited Inverter 

Figure 7.9: Comparison of Inverter Circuits with and without Current Limiting Transistors 

the node capacitances is much higher, due to the relationship I = C. In the inverter on the 

left of figure 7.9, the current used to charge the output node is set by the slew rate requirements, 

coupled with the rise and fall times of the input signal. In contrast, the inverter in figure 7.9 (b) 

has a reduced current with which to charge the output node, thus reducing the switching current, 

but at the price of a reduction in slew rate. This is a trade-off between power consumption and 

functionality which may not be useful in other applications, but was included here due to the 

low frequency operation and the sponsor companies requirements for low power consumption. 

Estimates of the difference in current consumption for the two inverter circuits were made using 

the Spectre simulation tool. A series of transient simulations were performed for differing input 

rise times and control voltages, with both average and peak current consumption calculated. 

The simulations were performed at an input frequency of 100 Hz, with a load capacitance of 

1 pF connected to each output. The results in table 7.2, highlight the power reduction caused 

by the inclusion of the current limiting transistor, with the final two columns reporting a power 

saving of at least an order of magnitude in both peak and average current consumption. 

7.3.2 Digital Phase Detector: Physical Realisation 

The physical layout of the phase detector circuit can be seen in figure 7.10. The circuit con-

sumes approximately 310 ,um by 285 sum. All the digital gates are surrounded by guard ring 

structures and emphasis was placed on functionality rather than minimising the implementation 

area. 
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Input Setup Standard Inverter Limited Inverter Power Saving 
Rise time control Average Peak Average Peak Average Peak 

10 ns 4.1 V 1.845 1jA 36.72 uA 105.8 nA 2.528 MA 17.43 x 14.53 x 
20 ns 4.1 V 5.821 pA 56.43 pA 165.8 nA 2.217 1tA 35.1 x 25.45 x 
30 ns 4.1 V 10.74 pA 68.71 pA 209.3 nA 1.987 pA 51.31 x 34.58 x 
40 ns 4.1 V 16.23 pA 77.27 pA 241.5 nA 1.818 pA 67.2 x 42.5 x 

10 ns 4.2V 1.845iA 36.721A 94.06 nA 2.421 pA 19.62 x 1 	15.17 x 
10 ns 4.3 V 1.845 pA 36.72 pA 93.9 nA 2.405 pA 19.65 x 15.23 x 

Table 7.2: Simulated Current Consumption for Digital Inverter Circuits with and without Cur-
rent Limiting Transistor 

50 urn 

Figure 7.10: Physical Layout of the Asynchronous Digital Phase Detector Circuit 

7.3.3 Digital Phase Detector: Simulated Test Results 

The digital phase detector circuit was simulated using the Spectre simulation tool, with the 

results depicted in figure 7.11. If the pixel's output (BPF input path) falls after the BPF's 

output, the 'down' signal is asserted, while the 'up' signal asserts if the opposite is true. In both 

cases, the width of the output pulse is proportional to the size of the phase difference between 

its two inputs. 

7.3.4 Comments on the Digital Phase Detector Circuit 

The aim of the digital phase detector is to not only extract any phase difference between its two 

inputs, but to convey the direction of this phase difference. It is clear from the simulation results 

in figure 7.11 that this is achieved, with the two outputs being activated depending on which 
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Figure 7.11: Simulated Operation of the Digital Phase Detector 

input falls first. Based on the simulation results of the digital inverter, the dynamic power 

reduction technique does seem to provide some benefit, with a saving of at least an order of 

magnitude as highlighted in table 7.2. However, this approach is only valid at low frequencies, 

such as those of interest in this research. 

7.4 Charge Pump 

The charge pump circuit essentially converts the 'up' and 'down' signals from the phase de-

tector into a reference voltage, used to control the band pass filter. At its simplest, it is just a 

capacitor which is charged by the presence of a pulse on the 'up' signal, and correspondingly 

discharged by a similar pulse on the 'down' signal[1 11]. The capacitor's voltage is then sup-

plied to the OTA-C band pass filter, as the input to the gm control variable transistor. Due to 

the sensitive nature of the band pass filter's control voltage, a subthreshold current is used as 

the charging/discharging current, meaning output voltage changes are very small. The circuit 

can be seen in figure 7.12. Transistors T1-T6 create the subthreshold reference current for the 

switching control transistors, T7 and T8. Transistors T9-T1 1 form a diode load for the output, 

which can be switched in or out of the circuit with the load switch input. The aim is to create a 

minimum voltage to which the capacitor can discharge, by having a continuous drizzle of cur- 
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rent from the load which begins to increase as the output voltage reduces. Creating a minimum 

voltage in this manner effectively translates to a maximum centre frequency for the tunable 

band pass filter, ensuring it does not move outwith a sensitive frequency range. Transistors T12 

and T13 allow the charge pump's output to be initialised to external voltage references, thus 

providing some control over the band pass filter's initial centre frequency. It is also possible to 

effectively break the feedback loop with these transistors, by forcing the charge pump's output 

to an external reference. The dimensions of the transistors can be found in table 7.3. 

charge pump 
control 

UP mit 	UP initialise, control  r 
UP 	T7 	load 	T11 switch 

T8 1OpF 	r-M3 

DOWN mit 	DOWN initialiser 
control 

16  

Figure 7.12: Charge Pump Circuit. The capacitor is charged or discharged due to the asser-
tion of the 'UP' or 'DOWN' control signal from the phase detector 

Transistor (tm) 
Ti 10/10 

T2 5/10 
T3 5/10 
T4 10/10 

T5 10/10 
T6 5/10 
T7 1/0.6 
T8 1/0.6 
T9 10/1 

T10 10/1 
Til 1/0.6 
T12 1/0.6 

T13 1/0.6 

Table 7.3: Transistor Dimensions for the Charge Pump 
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7.4.1 Charge Pump: Power Consumption 

The charge pump is biased with a subthreshold current to allow very small changes in the 

capacitors stored voltage value, thus allowing the band pass filter to be controlled with relatively 

high sensitivity. An advantage of this approach is the extremely low current consumption of 

the circuit. As before, an estimate of the current consumption was made with the Spectre 

simulation tool, with the results for typical control voltage values highlighted in table 7.4. As 

with other simulations of this type, the absolute values may be inaccurate, but it is still clear 

that the charge pump will consume power in the nW range. 

Control Voltage (V) Current Consumption 
4.3 10.05 nA 
4.35 2.62 nA 
4.4 630 pA 

Table 7.4: Simulated Charge Pump Current Consumption, for Typical values of Control 
Voltage 

7.4.2 Charge Pump: Physical Realisation 

The charge pump circuit is dominated by the 10 pP poly-poly capacitor, as the layout in figure 

7.13 highlights. The circuit consumes almost 180 pm by 175 /im, of which the capacitor 

accounts for about half. The charge pump uses current mirror circuitry, which were constructed 

with common-centroid techniques and guard ring structures in an effort to improve matching. 

7.4.3 Charge Pump: Simulated Results 

The charge pump circuit was simulated using the Spectre simulation tool, with the results 

depicted in figure 7.14. Depending on the 'up' or 'down' control signals, the capacitor is 

charged or discharged with the subthreshold current. The sensitivity of the charge pump's 

output voltage can be varied by altering the control voltage, thus increasing or decreasing the 

charging/discharging current. 
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Figure 7.13: Physical Layout of the Charge Pump Circuit 

7.4.4 Comments on the Charge Pump Circuit 

The charge pump is a relatively simple circuit, yet its correct operation is crucial to the accur-

acy of the proposed system. The large 10 pF capacitance could be reduced in size, providing 

a benefit in implementation area, but at a cost of reduced sensitivity. Potentially, this could 

be countered by reducing the available charging or discharging current deeper into the sub-

threshold regime. The inclusion of the switchable diode load should provide a safety factor in 

the form of an upper limit on the frequency to which the band pass filter can be tuned. The 

NMOS and PMOS initialisation transistors will also prove useful, by providing a simple means 

of reseting the BPF to a known centre frequency. 

7.5 System-Level Test IC Results: Automatically Tuned BPF 

The algorithm implemented on test IC three is depicted in figure 7.1. The aim is to centre the 

magnitude response of the band pass filter onto the fundamental frequency of the input, by 

comparing the phase difference between its input and output. To this end, the chip was tested 

to evaluate the performance of the system. Figures of merit that were examined include the 

range over which the band pass filter can successfully tune, the speed with which it does so and 

the accuracy of the filter's placement in the frequency domain. The system was characterised 

with inputs generated directly from a signal generator, to allow measurements with 'pure' input 

signals. 

184 



Test IC Three: Automatically Tuned Band Pass Filter with Phase Derived Feedback 

	

3.5 	 I 	 I 	 I 	 I  

- Charge Pump 

2.5 

	

10 	0.01 	0.02 	003 	004 	0.05 	0.06 	0.07 	0.08 

______ 
—UPI 

6 

2 

4. 

0 .. . 

0 	0.01 0.02 0.03 0.04 0.05 0.06 0.07 008 

I--oowN 

II 	
I 	 II 	ft 

0 	0.01 	0.02 	0.03 	0.04 	0 05 	0.06 	0,07 	0,08 
Time (s) 

Figure 7.14: Simulated Operation of the Charge Pump Circuit 

The layout of the algorithm can be seen in figure 7.15. For test purposes, a second band pass 

filter was included, together with eight analogue output buffers. In total, the algorithm con-

sumes an area of 1350 /-tm by 1180 /irrl, with approximately half of this due to test structures, 

which will be unnecessary in future versions. No effort was made to minimise the area of the 

algorithm, as the large amounts of empty space between the processing elements confirm. 

7.5.1 Automatically Tuned BPF: Simulated Current Consumption 

The simulated current consumption for the algorithm tuning to 250 Hz is included in table 7.5. 

The currents were calculated using the average function in the waveform calculator as detailed 

in chapter four. Measurements were taken with control parameters initialised for normal oper-

ation. The table highlights the contribution of both analogue and digital current consumption 

separately, in an effort to gauge the effect of different parameters. From the table, it is clear that 

the analogue output buffers constitute the vast majority of the current drawn from the analogue 

supply, as they are biased in the strong inversion region of operation. With the buffers turned 

off, the band pass filter consumes the majority of the analogue current, which rises as the filter's 

centre frequency increases. The difference between the average analogue current for 30 ms, 60 

ms and 100 ms is due to the filter tuning to a higher frequency in the longer time frame. The 

current drawn from the digital supply is dominated by the two comparator circuits. This can be 
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Figure 7.15: Layout of the Phase Derived BPF Tuning Algorithm 

significantly reduced by biasing them in the subthreshold regime, but at the price of a reduced 

maximum operating frequency. 

The average current consumption for the system, combining analogue bias currents and dy-

namic digital currents can be estimated at approximately 4.5 A for a 250 Hz target frequency, 

giving a power consumption of 22.5 ttW when operated with a 5 V power supply. It is clear 

that digital switching currents dominate the system's consumption at low input frequencies, but 

as the required target frequency increases, the BPF's bias current requirements also increase as 

reported in table 7.1. 

As expected, the current consumption increases when the algorithm tunes to the higher input 

frequency of I kHz, as the results in table 7.6 highlight. A plot of the current consumption for 

the 200 ms simulation can be seen in figure 7.16. It is clear that switching currents from the 

digital supply dominate the system's power consumption. Notice also the current drawn from 

the analogue supply increases until the filter is locked to the correct centre frequency, from 
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Parameter Average Current 
Buffer Ctrl Comp Ctrl Sim time I(AVdd) I(DVdd) 

1 V 1 V 30 ins 9.033 [LA 7.225 1uA 
1 V 0.75 V 30 ins 9.033 [LA 1.222 [LA 
0 V 0.75 V 30 ins 6.992 nA 1.221 ,uA 
0 V 0.75 V 60 ms 13.564 nA 1.57 [LA 
0 V 0.75 V 100 ms 13.7 nA 4.437[LA 

Table 7.5: Simulated Average Current Consumption for the Automatically Tuned BPF Al-
gorithm, Tuning to 250 Hz 

which point on the analogue bias current remains constant. 

Parameter Average Current 
Buffer Ctrl Comp Ctrl Sim time I(AVdd) I(DVdd) 

0  0.75 V 100 ms 21.78 nA 11.47 [LA 
0 V 0.75 V 200 ms 59.95 nA 13.12 [LA 

Table 7.6: Simulated Average Current Consumption for the Automatically Tuned BPF Al-
gorithm, Tuning to I kHz 

7.5.2 Automatically Tuned BPF: Tuning Range 

The tuning range of the system refers to the range of input frequencies over which the band 

pass filter can successfully tune. Two parameters were monitored as the input frequency was 

increased, the magnitude of the band pass filter's output and the fed-back value of the filter's 

variable control voltage. With a fixed amplitude input, generated with a signal generator, the 

band pass filter's output amplitude should remain relatively constant over its tuning range. The 

value of the variable control voltage should exhibit a linear relationship with input frequency, 

due to the subthreshold biasing of the band pass filter. The test was repeated for a variety of 

different system control parameters, as highlighted in table 7.7. All nine tests were performed 

with an input sinusoid of magnitude 200 mV-PP, at a DC level of 2.5 V. In addition, the BPF's 

reference was fixed at 2.5 V, the comparator control at 1 V, both LPFs were controlled with 4.4 

V and the HPF's reference and control voltages were set at 2.5 V and 0.53 V respectively. The 

main parameters that were directly varied to gauge their effect on the system's performance are 

the charge pump's diode load, the charge pump's control voltage, the phase detector's control 

voltage and the value of BPF fixed control. 
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Figure 7.16: Simulated Analogue and Digital Current Consumption when Tuning to I kHz 

Frequency Range Test 
Parameter Value 1 2 3 4 5 6 7 8 9 
BPF fixed ctrl (V) 4.33 4.33 4.33 4.33 4.33 4.33 4.4 4.25 4.25 
P detect. ctrl (V) 4.2 4.2 4.2 4.2 4.1 4.1 4.2 4.2 4.2 

Charge pump ctrl (V) 4.39 4.39 4.35 4.45 4.39 4.39 4.39 4.39 4.39 
Diode Loadswitch (V) 0 5 0 0 0 5 0 0 5 

Table 7.7: Parameter Values for the Nine Different Frequency Tuning Range Tests 

7.5.2.1 Tuning Range: Band Pass Filter's Output Magnitude 

The results in figure 7.17 are grouped into four different graphs, highlighting the effect of 

varying each of the four system parameters mentioned earlier. 

Figure 7.17 (a) depicts the effect of the diode load, which can be included or removed from the 

charge pump's output by varying the 'loadswitch' parameter. The aim of the diode load was to 

limit the charge pump's output voltage from falling below two threshold drops, effectively pla-

cing an upper limit on the maximum attainable tuning frequency. It is clear from the results that 

the diode load does effect the high frequency performance, with the limit being approximately 

2 kHz when it is included, increasing to 5 kHz in its absence. 

The results depicted in figure 7.17 (b) highlight the effect of varying the charge pump's control 

voltage. Increasing this parameter forces the bias network further into the subthreshold regime, 
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reducing the current available to charge or discharge the capacitor, therefore effecting the sens-

itivity of the BPF's variable control parameter. However, this has little effect on the tuning 

range of the algorithm as the results confirm. 

The effects of varying the phase detectors control voltage are depicted in figure 7.17 (c). When 

the phase detector is biased with a control voltage of 4.2 V, the maximum frequency is ap-

proximately 2 kHz. This increases to nearer 9 kHz when the bias voltage is reduced to 4.1 V, 

with the absence of the diode load increasing this to over 10 kHz. This is probably due to the 

trade-off between power consumption and speed of operation as mentioned in the section on the 

design of the phase detector, with the current limiting transistors impeding the high frequency 

performance. By reducing the control voltage, more current is available to charge the node 

capacitances, meaning the circuit can operate at higher frequencies. 

The final set of test data is plotted in figure 7.17 (d), which shows the effect of varying the 

fixed control voltage of the band pass filter. This parameter effectively fixes a lower limit to the 

band pass filter's tuning frequency. Range 1, with a fixed control voltage of 4.33 V has a lower 

frequency limit of approximately 90 Hz. This is reduced only slightly to 80 Hz by increasing 

the fixed control voltage to 4.40 V. As expected, reducing the parameter to 4.25 V for ranges 8 

and 9 increases the lower tuning limit to approximately 3 kHz. 

7.5.2.2 Tuning Range: Band Pass Filter's Variable Control Voltage 

For all nine frequency range tests, measurements of the BPF's variable control voltage were 

taken, which serves to tune the filter in the frequency domain. At low frequencies, the variable 

control voltage should exhibit a linear relationship when plotted against log frequency, due to 

the subthreshold biasing of the band pass filter. In weak inversion, Id, is exponentially related 

to V, and directly proportional to g. This results in an exponential relationship between 

the BPF's transconductance and Vgs  or the variable control voltage, which appears linear when 

plotted against the logarithm of the input frequency. As the frequency increases, the relationship 

may exhibit a square law characteristic as the BPF moves from weak inversion into moderate 

and strong inversion. 

The results in figure 7.18 (a) highlight the linear relationship between variable control voltage 

and log frequency, confirming the band pass filter is biased in the subthreshold regime. The 

linear range begins at approximately 40 Hz, and stops at 2 kHz with the diode load, and nearer 
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Figure 7.17: Measured Test IC Results: Algorithm Tuning Range as a Function of BPF Output 
Magnitude. The BPF 's output should remain constant over the tuning range 
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8 kHz without it. 

Similar results are depicted in figure 7.18 (b), highlighting the limited effect of variations in the 

charge pump control voltage on the tuning range. 

The tuning range for different phase detector control voltages is highlighted in figure 7.18 (c), 

with increased current increasing the range to over 10 kHz. The linear relationship appears 

to give way to a quadratic relationship above approximately 3 kHz, suggesting the filter is 

beginning to move out of the subthreshold regime. 

Figure 7.18 (d) shows the effect of varying the value of the band pass filter's fixed control 

voltage. As expected, the lower frequency limit of the automatically tuning system is varied, 

with a minimum achievable frequency of approximately 20 Hz, corresponding to a fixed control 

voltage of 4.4 V. 

7.5.2.3 Comments on the Algorithm's Tuning Range 

From the results included in figures 7.17 and 7.18, it is clear that the system is capable of 

successfully tuning the band pass filter from approximately 20 Hz to 10 kHz, depending on 

the control parameters. As expected, the diode load places an upper limit on the tuning range, 

while the inclusion of a fixed control voltage for the BPF performs the same function at low 

frequency. Varying the charge pump's control voltage has little effect on the frequency range, 

but the phase detector is capable of operating at higher frequencies if it is biased with more 

current. 

Of particular interest is the linear relationship between the variable control voltage and the 

logarithm of the input frequency at low input frequencies, suggesting the BPF is biased in the 

weak inversion regime. The results in figure 7.18 (c) show that this relationship changes to 

a square law as the frequency is increased, meaning the filter is moving out of subthreshold. 

This suggests that the power consumption of the system will be linked to the required input 

frequency, with lower frequencies requiring less power. It would appear that the threshold of 

weak inversion operation is approximately 3 kHz. 

Note that the values of variable control voltage reported in figure 7.18 suggest that the variable 

control transistor will be biased in the strong inversion region of operation. However, the aspect 

ratio of this transistor was selected such that the current it injects into the differential pair at 
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Figure 7.18: Measured Test IC Results: Algorithm Tuning Range as a Function of BPF Vari-
able Control Voltage. The BPF's variable control parameter should exhibit a 
relatively linear relationship with frequency 
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low frequencies is sufficient to bias them in weak inversion. As it is the transconductance of 

this differential pair that governs the centre frequency, we can assume that the filter is in the 

subthreshold regime. 

7.5.3 Automatically Tuned BPF: Tuning Speed 

Another parameter of interest is the speed with which the algorithm 'locks' onto the required 

centre frequency. Two different types of test were performed to this end. The first involves 

forcing the charge pump's output to a pre-determined voltage using the PMOS reset transistor 

(T12), effectively breaking the feedback loop. When the loop is completed, the BPF tunes from 

the initialisation voltage to the actual voltage for that particular input frequency. The second 

test involves sweeping the input frequency from 100 Hz to 1kHz within different time frames, 

giving an indication of the maximum rate of change of input frequency which the algorithm 

can process. 

7.5.3.1 Tuning Speed: Charge Pump Initialisation Voltage 

By varying the initialisation voltage of the charge pump before completing the feedback, the 

algorithm will attempt to tune to whichever input frequency is currently applied. For the pur-

poses of these tests, the time taken to tune to 100 Hz and 1kHz were taken, giving an estimate 

of the speed with which the system can tune. 

Table 7.8 highlights the effect of varying the initialisation voltage, combined with the diode 

load. For the purposes of this test, the phase detector's control voltage was fixed at 4.2 V, 

while the charge pump's control voltage was 4.39 V. As expected, reducing the charge pump's 

initialisation voltage results in an reduction in tuning delay. The diode load appears to make 

very little difference to the tuning speed. 

The effect on tuning time of changes in charge pump control voltage are highlighted in table 

7.9. In this case, the phase detector control was fixed at 4.2 V and the charge pump's output was 

initialised to 4.3 V. If the charge pump's control is increased, the circuit is biased deeper into 

the subthreshold regime, meaning the current available to charge or discharge the capacitor is 

reduced. The results highlight the different sensitivities available to the system, with reductions 

in charge pump control speeding up the tuning time considerably. However, at higher values 

of charge pump current, the accuracy required to tune to a low frequency target is unavailable. 
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Load Switch CPump mit 100 Hz 1 kHz 
o V 4.44 V 430 ms 642 ms 
5 V 4.44 V 430 ms 624 ms 
0 V 4.4 V 392 ms 576 ms 
5 V 4.4 V 392 ms 574 ms 
0  4.3V 250 ms 422 ms 
5V 4.3V 258 ms 422 ms 

Table 7.8: Algorithm Tuning Time: Effect of Different Charge Pump initialisation Voltages 

The system begins to take longer to tune to 100 Hz than 1 kHz, before finally failing to tune 

altogether for a charge pump control voltage of 4.25 V. At low frequency, any inaccuracy in the 

system will produce long, spurious 'up' or 'down' control signals. At extremely low values of 

charge pump current, such signals will have a small effect on the output voltage. However, as 

the charge pump's current is increased, the system will essentially oscillate around the correct 

voltage, unable to actually tune to the desired input frequency. Despite this, it is possible to 

increase the tuning speed of the system by a factor of over 130, simply by varying the charge 

pump's control voltage. 

CPump Ctrl Load Switch 100 Hz 1 kHz 
4.45 V DV 1.08s 2.13s 
4.45 V 5 V 1.096s 1.95 s 
4.39V DV 250 ms 422 ins 
4.39V 5V 258 ms 422 ms 
4.35V DV 162 ms 160 ms 
4.35V 5V 160 ins 160 ms 
4.30 V 0 V 80.80 ms 41 ms 
4.30 V 5 V 76.40 ms 43.6 ms 
4.25 V DV - 15.6 ms 
4.25V 5V - 15.4 ms 

Table 7.9: Algorithm Tuning Time: Effect of Charge Pump Control Voltage 

7.5.3.2 Tuning Speed: Rate of change of Frequency 

The second type of tuning speed test that was performed involved sweeping the system input 

from 100 Hz to 1 kHz, using an Agilent 33120A signal generator. It is possible to vary the time 

it takes for the input to sweep, allowing the response to the rate of change of input frequency 

to be quantified. The results in table 7.10 highlight a series of input frequency sweeps over 
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varying time intervals, with a charge pump control voltage of 4.39 V. For correct operation, the 

BPF's variable control voltage should vary approximately from 4.128 V to 3.997 V. When the 

system is unable to reach this voltage in the available time frame, it can be assumed that it has 

reached its limit. When tuning from a lower frequency to a higher one, the system begins to fail 

at a time difference of less than 0.3 s, corresponding to a frequency rate of 3000 Hz/s. When 

tuning down in frequency, the system fails at frequency rates below 0.5 s or 1800 Hz/s. 

Frequency Sweep gm Control Variable 
Start Stop At Initial Final 

100 Hz 1kHz 2s 4.128 V 3.997 V 
100 Hz 1 kHz 1 s 4.128 V 3.994 V 
100 Hz 1kHz 0.5s 4.128V 3.997V 
100 Hz 1kHz 0.3s 4.128V 3.997 V 
100 Hz 1kHz 0.2s 4.128V 4.013V 
100 Hz 1kHz 0.1s 4.128V 4.072V 

1kHz 100 Hz 2s 3.997V 4.128 V 
1 kHz 100 Hz 1 s 3.997 V 4.128 V 
1kHz 100 Hz 0.5s 3.997V 4.128 V 
1kHz 100 Hz 0.3s 3.997V 4.113V 
1kHz 100 Hz 0.2s 3.997V 4.100V 
1 kHz 100 Hz 0.1 s 3.997 V 4.056 V 

Table 7.10: Algorithm Response to Changes in Input Frequency: Charge Pump Control Equal 
to 4.39 V 

The results for the increased current available with a charge pump control of 4.3 V are included 

in table 7.11. As expected, the system is able to cope with much higher rate of input frequency 

change. When tuning up in frequency, the system fails at a time interval below 50 ms, corres-

ponding to a frequency rate of 18 kHz/s. As the frequency sweep reduces from 1 kHz to 100 

Hz, the algorithm fails at a time interval of less than 0.1 s or a frequency rate of 9 kHz/s. 

7.5.3.3 Comments on the Algorithm's Tuning Speed 

It is clear from both of the the tuning speed tests that the system can be made to respond more 

quickly if the charge pump's control voltage is reduced, thus providing a larger current with 

which to manipulate the capacitor's charge. However, the results in table 7.9 suggest there is 

a trade-off between the tuning speed and the system's ability to tune to the correct frequency. 

If the charge pump's current is made too large, it appears that the system is unable to find the 

accuracy required to tune to lower frequencies. 
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Frequency Sweep gm Control Variable 
Start Stop At Initial Final 

100 Hz 1kHz 2s 4.128V 3.997V 
100 Hz 1 kHz 1 s 4.128 V 3.997 V 
100 Hz 1kHz 0.5s 4.128 V 3.997 V 
100 Hz 1 kHz 0.3 s 4.128 V 3.997 V 
100 Hz 1kHz 0.2s 4.128V 3.997V 
100 Hz 1 kHz 0.1 s 4.128 V 3.997 V 
100 Hz 1kHz 0.05s 4.128V 3.997V 
100 Hz 1kHz 0.01s 4.128V 4.078V 

1kHz 100 Hz 2s 3.997 V 4.128 V 
1 kHz 100 Hz 1 s 3.997 V 4.128 V 
1kHz 100 Hz 0.5s 3.997V 4.128V 
1kHz 100 Hz 0.3s 3.997V 4.128V 
1 kHz 100 Hz 0.2s 3.997 V 4.128 V 
1kHz 100 Hz 0.1s 3.997V 4.128V 
1kHz 100 Hz 0.05s 3.997 V 4.103 V 

Table 7.11: Algorithm Response to Changes in Input Frequency. Charge Pump Control Equal 
to 4.3 V 

A possible solution to this trade-off involves dynamically biasing the charge pump, based on the 

width of the 'up' or 'down' pulses. When the target frequency is far away from the BPF's actual 

centre frequency at a particular time instant, the phase difference will be large, which manifests 

as long 'up' or 'down' control signals. At this point, the accuracy of the system is relatively 

unimportant, but the speed with which it moves towards the target should be maximised. As 

the target moves closer, the phase difference will be reduced, corresponding to shorter charge 

pump control signals. At this point, the system can be considered to be fine-tuning the BPF's 

centre frequency, with the accuracy of critical importance compared to the tuning speed. It 

follows that at large phase differences, the speed is critical which means the charge pump's 

current should be large, while for small phase differences, the required accuracy dominates so 

the current should be reduced. Such a dynamic bias arrangement could be achieved by relating 

the value of charge pump control to the width of the 'up' or 'down' control pulses. 

7.5.4 Automatically Tuned BPF: Tuning Accuracy 

The aim of the system is to place a band pass filter onto the fundamental frequency of the input 

waveform. An obvious test to perform involves finding the accuracy with which the system 
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achieves this. Based on the IC test measurements for the band pass filter in figure 7.6, it is 

clear that the peak of the magnitude response corresponds to a phase difference of 00.  Based 

on this, a test was performed to calculate the phase difference between the band pass filter's 

input and its output as it is tuned over its entire frequency range. Another accuracy test was 

performed by initially tuning the system to a particular input frequency, and noting the value 

of variable control voltage. By forcing the charge pump's output to this value with the PMOS 

reset transistor, the feedback is broken but the filter has effectively been tuned by the algorithm. 

It is therefore possible to measure the BPF's frequency response, without the system attempting 

to follow the variations in input frequency. 

7.5.4.1 Tuning Accuracy: BPF's Phase Difference 

Based on both mathematical proof and measured test results, it is clear that the BPF exhibits a 

00  phase difference between input and output when the magnitude response is at its peak. As a 

result, a measure of the BPF's phase difference over its tuning range can give an indication of 

the accuracy of the algorithm. The results in figures 7.19 and 7.20 depict the phase difference 

versus frequency, for the nine different frequency range tests in table 7.7. 

Figure 7.19 (a) highlights the phase difference versus frequency as a function of the diode 

load, with a magnified version of the same data in (b). For the operational frequency range, 

the phase difference is approximately constant at between 40  and 50  The effects of charge 

pump control variation are included in 7.19 (c) and (d). The results for range tests 1, 3, and 4 

are very similar, with a phase difference varying between 30  and 50  for the successfully tuning 

frequency range. Reducing the phase detector's control voltage increases the algorithm's tuning 

range as highlighted in 7.20 (a), although at the cost of a very slight reduction in accuracy at 

low frequencies. At frequencies above 1 kHz, the accuracy is greatly improved, with an average 

of approximately 40  Figures 7.20 (c) and (d) highlight the effect of BPF fixed control on the 

system's accuracy. For a reduction in this parameter, the accuracy fluctuates between 50  and 

100, which is inferior to larger values of BPF fixed control. 

7.5.4.2 Tuning Accuracy: BPF Frequency Response with Feedback Broken 

While the value of the phase difference gives an idea of the limitations of the algorithm, it 

is perhaps hard to relate to the accuracy with which the band pass filter is placed onto the 
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Figure 7.20: Measured Test IC Results: Algorithm Phase Difference vs Frequency 
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fundamental frequency of the input. A better measure is the difference between the target centre 

frequency and the peak of the BPF's magnitude response. To this end, a series of different tests 

were performed to find the BPF's frequency response for four different target frequencies. The 

presence of the initialisation transistors in the charge pump (T12 and T13 in figure 7.12) allows 

the BPF's variable control voltage to be externally manipulated. The tests were performed by 

first allowing the algorithm to tune to the proposed target frequency, producing a corresponding 

DC level on the charge pump's output. This value was then mimicked with the 'UP initialiser' 

external control signal, by turning on transistor T12. This effectively breaks the feedback path, 

but crucially, the BPF is biased as if the feedback was complete, meaning its position in the 

frequency domain should remain unchanged. This allows the frequency response of the BPF 

to be measured by simply ramping the system's input frequency, with the broken feedback 

stopping the system from tracking the frequency change. The approach was repeated for four 

different target frequencies, 1 kHz, 500 Hz, 100 Hz and 50 Hz, with each test producing a phase 

and magnitude bode plot highlighting the accuracy with which the filter has been tuned. 

The results for each of the target frequencies are highlighted in figure 7.21. The system was 

setup with the parameter values for frequency range test 1, as highlighted in table 7.7. For the 1 

kHz target frequency, the filter is positioned at approximately 980 Hz, based on the frequency 

that exhibits a 00  phase difference. At 1 kHz, the phase difference is approximately 40,  which 

maps well to the results in figures 7.19 and 7.20. For a 500 Hz target frequency, the filter is 

positioned at approximately 485 Hz, while the 100 Hz target produces a filter centred at approx-

imately 98 Hz. Finally, the 50 Hz target frequency results in a filter positioned at approximately 

48.5 Hz. Table 7.12 depicts the four different target frequencies and the percentage accuracy 

with which the filter has been tuned. The measured accuracy is good, with a maximum error of 

3% of the desired centre frequency. 

Target Actual A % Accuracy 
1 kHz 980 Hz 20 Hz 2% 

500 Hz 485 Hz 15 Hz 3% 
100 Hz 98 Hz 2 H 2% 
50 Hz 48.5 Hz 1.5 Hz 3% 

Table 7.12: Algorithm Tuning Accuracy 
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Figure 7.21: Measured Test IC Results: Algorithm Tuning Accuracy for 1 kHz, 500 Hz, 100 Hz 
and 50 Hz. The Bode plots highlight the accuracy with which the BPF is tuned 
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7.5.4.3 Comments on Algorithm Tuning Accuracy 

The measured test results prove that the system can tune a band pass filter to the fundamental 

frequency of the input, with a high accuracy of no worse than 3%. The phase difference versus 

frequency results confirm this accuracy is relatively constant over a range of approximately 20 

Hz to over 10 kHz, depending on parameter values. Such results are more impressive given the 

subthreshold biasing of much of the system. It is clear that the direct tuning approach increases 

the accuracy of the system. 

The phase and magnitude responses for the band pass filter in figure 7.6 highlight the relatively 

high gain of the phase response. Around the peak of the magnitude response, the gradient of 

the phase difference is high, meaning a constant phase difference of between 40  to 50  is only a 

small difference in terms of frequency. 

7.6 System-Level Test IC Results: Automatically Tuned BPF with 

Visual Stimulus 

With the figures of merit in terms of tuning range, speed and accuracy established with an input 

applied directly from a signal generator, the performance of the system with a visual input 

was also measured. By connecting a logarithmic photodetector to the system's input, it was 

possible to measure the algorithm's response to a variation in input light intensity. As with 

the tests performed on chips one and two, an LED's intensity was modulated with a signal 

generator, allowing both intensity and frequency to be varied in a controlled manner. 

7.6.1 Automatically Tuned BPF: Tuning Range with Visual Stimulus 

The tuning range of the system was determined as before, by measuring the value of the BPF's 

variable control voltage versus frequency for the five different parameter setups detailed in table 

7.13. For all five tests, the LED was illuminated with a 200 mV A.C. signal, superimposed onto 

a 1.5 V D.C. level. 

The results in figure 7.22 highlight the achieved tuning range, which appear very slightly re-

stricted at lower frequencies when compared with the function generator inputs. The reasons 

for this may include the frequency response of the employed LED, combined with distortion 
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LED Frequency Range Test 
Parameter Value 1 2 3 4 5 
BPF fixed ctrl (V) 4.33 4.33 4.40 4.40 4.40 
BPFreference(V) 2.5 2.5 2.5 2.5 2.5 
Comp control (V) 1.3 1.3 1.3 1.3 1.3 
Pdetect.ctrl(V) 4.23 4.23 4.23 4.23 4.23 
LPFI control (V) 4.24 4.24 4.24 4.20 4.27 
LPF2control(V) 4.25 4.25 4.25 4.20 4.27 

Chargepumpctrl(V) 4.39 4.39 4.39 4.39 4.39 
HPFreference(V) 2.5 2.5 2.5 2.5 2.5 
HPF control(V) 0.61 0.47 0.47 0.47 0.47 

DiodeLoadswitch(V) 5 5 5 5 5 

Table 7.13: Parameter Values for the Five Different LED Frequency Tuning Range Tests 

through the logarithmic photocircuit. 

7.7 Conclusions on the Performance of the Automatically Tuned 

BPF Algorithm 

From the test measurements taken from the phase-derived feedback network, it is clear that 

the algorithm works well. The tuning range can vary from approximately 20 Hz to over 10 

kHz, depending on parameter values, while the tuning speed is also variable. It can cope with 

a maximum rate of change of frequency in either direction of 9 kHz/s. The accuracy with 

which the system tunes is also impressive, with an error of no more than 3% between the 

target frequency and the BPF's centre frequency. These results are more impressive given the 

subthreshold nature of much of the circuitry, with simulated estimates of the entire system's 

current consumption at approximately 4.5 MA for a 250 Hz input. 

The fact that the phase-derived feedback algorithm utilises a direct tuning technique means that 

mismatch caused by poor subthreshold matching is minimised. The high accuracy is achieved 

because the band pass filter's output signal is directly employed in tuning its centre frequency. 

However, the proposed algorithm is still at the test and development stage, and as such con-

sumes more silicon area than could feasibly be integrated into a dedicated CMOS image pro-

cessor. The on-chip algorithm takes an area of approximately 1350 ym by 1180 jon, and while 

much is consumed by unnecessary test circuitry such as output buffers and a second BPF, an 
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Figure 7.22: Measured Test IC Results: Algorithm Tuning Range with Visual Stimulae 
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Test IC Three: Automatically Tuned Band Pass Filter with Phase Derived Feedback 

estimate of the actual area might reduce this by a factor of two or three at best. Much of the 

area is consumed by the band pass filter, which has four 10 pF capacitor as well as eight OTA 

structures. The phase detector is also fairly large, due mostly to the guard ring structures around 

each individual logic gate. Future implementations of the circuit would concentrate on reducing 

the area of the implementation, possibly by taking more risks with the layout regarding noise 

reduction techniques. 

Other potential areas for improvement include a reduction in the dynamic power dissipation, 

possibly by replacing the digital phase detector with an analogue equivalent. The difficulty here 

stems from the need to find not only the magnitude of the phase difference but also its polarity, 

achieved with memory elements in the implemented phase detector. An analogue approach 

may prove more difficult to implement, but the potential advantages in terms of physical area 

and power dissipation warrant an investigation. 

The low frequency operation of the system is limited to approximately 20 Hz when supplied 

with an input directly from a signal generator, as highlighted in figure 7.18. This increases 

slightly to approximately 70 Hz when the visual stimulus is applied. Ideally, the system would 

be able to operate down to almost 1 Hz, with the limiting factor in this case being the band 

pass filter. At such low frequencies, it appears the deep subthreshold biasing required limits 

the low frequency performance of the band pass filter. The reasons for the slight increase in 

low frequency cutoff for the visual stimulus probably stem from the employed logarithmic 

photodetector, and the attenuation caused by the high pass filter. 

Despite these shortcomings, the performance of the system is encouraging, proving the auto 

matically tuned BPF algorithm is the first step in the creation of a low power, pseudo-Fourier 

image processor 
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Chapter 8 
Summary and Conclusions 

The research documented in this thesis involves novel algorithms and their subsequent IC im-

plementations for extracting temporal frequencies from visual stimulae. This chapter aims to 

summarise each previous chapter, before presenting the conclusions and findings. The contri-

butions to knowledge are highlighted along with a critical evaluation of the work undertaken. A 

section on future work is included, to highlight the directions that further research could take. 

8.1 Summary 

Chapter one introduced the concept of temporal frequency signatures, together with a number 

of target applications for a sensor capable of extracting such signatures. In addition, a number 

of implementation issues are discussed, with the sponsor's requirements leading to an investig-

ation of continuous time, focal-plane computation, using transistors biased in the subthreshold 

region of operation. Similarities between the projects' system-level requirements and the po-

tential advantages of biologically-inspired or neuromorphic processing are explored, leading to 

a design framework combining the advantages of both. Finally, the contributions to knowledge 

in the form of novel system level algorithms are explained. 

Chapter two builds on the link between this research and the field of neuromorphic vision 

with a review of focal-plane approaches to spatial, temporal and hybrid spatio-temporal image 

processors implemented in CMOS technologies. Research of particular relevance to this project 

is explained in detail. The research described in this thesis could be included in the temporal 

processing section, as it deals only with the transient aspects of the light intensity. 

Chapter three expands on the software development of potential algorithms, ranging from a 

wavelet style decomposition of the incident intensity variation to the adopted pseudo-Fourier 

approach. The idea involves splitting the processing into two separate tasks, firstly finding the 

fundamental frequency before using this to place a series of band pass filters in the frequency 
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domain. This idea was tested with the creation of fundamental frequency maps, as well as sim-

ulations of fixed pattern and transient noise, both common in CMOS imager implementations. 

Chapter four details the development of the first test IC, which essentially converts the al-

gorithm developed in chapter three into a circuit-level equivalent. An OTA-C high pass filter 

is employed to strip the DC level from the logarithmic photocircuits output, superimposing the 

transient information on an external reference voltage. Due to the low frequency nature of the 

intensity variation, the filter is biased with a subthreshold current to pass the relevant temporal 

information, while suppressing the DC level. The filter's output is then applied to a comparator, 

whose reference corresponds directly to the HPF's reference, ensuring the comparator's output 

will switch. The result is a pulse train whose frequency directly corresponds to the fundamental 

frequency of the incident temporal light variation. Measured test results confirm that the sys-

tem can successfully extract the fundamental frequency over the input range of 1 Hz to 10 kHz, 

while benefiting from the low power consumption of circuits biased in the subthreshold region 

of operation. 

Improvements to the pixel processing unit implemented on test IC one are introduced in chapter 

five. The original high pass filter is replaced with a low pass version, in order to extract the DC 

level of the photocircuit's output for use as the reference voltage for the comparator. As before, 

measured test IC results confirm the correct operation of the algorithm, which successfully 

extracts the fundamental frequency from 1 Hz to 10 kHz depending on system parameters. 

Chapter six highlights the design of the minipix algorithm, essentially a miniaturised version of 

the self-referencing scheme proposed in chapter five. The system consumes an area of approx-

imately 60 ,um2  yet is capable of accurately extracting the fundamental frequency of temporal 

light variations. A simulated average current consumption of less than 14 nA is consumed by 

the minipix algorithm when operating at a 1 kHz input frequency. The minipix algorithm was 

conceived as a pixel processing unit that could be realistically included in a CMOS temporal 

frequency image processor. 

With two techniques capable of accurately extracting the fundamental frequency of the incid-

ent intensity variation, attention shifted to the second stage of the pseudo-Fourier algorithm 

developed in chapter three. Chapter seven introduces the automatically tuned BPF algorithm, 

which builds on the previous two test ICs to position an OTA-C BPF on the fundamental fre-

quency of the incident intensity variation. The approach uses a feedback system to tune the 
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band pass filter to the correct frequency, based on the phase difference between its input and 

output. A BPF with a 00  phase difference corresponding to its centre frequency is included in 

a negative feedback loop, which attempts to minimise the phase difference between its input 

and output. As a result, the filter's centre frequency will automatically tune to the fundamental 

frequency of any input signal. Measured test IC results confirm that the system operates, with a 

tuning range of 20 Hz to 10 kHz, maximum tuning speed of 9 kHz/s and an accuracy of within 

3 % of the desired centre frequency. Simulation results of the algorithm suggest a current con-

sumption of 4.5 ,uA when tuning to 250 Hz, giving a power consumption of approximately 22.5 

uW when operating from a 5 V supply voltage. The main characteristics of the automatically 

tuning BPF algorithm are summarised in table 8.1. 

Property Value 
Tuning Range 20 Hz - 10 kHz 
Tuning Rate 9 kHz/s 

Tuning Accuracy 3 % of centre freq. 
Simulated Current Consumption @ 250 Hz 4.5 MA 
Simulated Current Consumption @ 1 kHz 13.2 yA 

Table 8.1: Properties of the Automatically Tuned BPF Algorithm 

8.2 Conclusions 

In general, the research has proved the potential of creating a dedicated low-power image-

processor, capable of extracting temporal frequencies from visual data. Although not as power-

ful as combining an imager with some form of dedicated DSP, the advantages in terms of power 

consumption and size of implementation are clearly evident. The approach attempts to benefit 

from the advantages of neuromorphic vision systems in the form of parallel distributed, low 

power pixel processing units, while using traditional engineering circuit techniques. 

The adopted algorithm appears well suited to implementation in analogue VLSI, based on the 

simulations performed in chapter three. The approach is completely robust to fixed pattern 

noise, a common problem with CMOS imager arrays, yet is simple enough to allow a realistic-

ally sized pixel processing unit. The fundamental frequency maps demonstrate the potential of 

the algorithm for identifying pixels that contain temporal frequencies of interest, while ignoring 

those that do not. 
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The pixel processing units detailed in chapters four and five both accurately extract the fun-

damental frequency of the incident light intensity. Both techniques consume extremely low 

bias currents, with the comparator proving the limiting factor. For input frequencies less than 

approximately 3 kHz, the system can be solely biased in the subthreshold regime, producing 

current consumption in the low nA range. As the input frequencies increase, the comparator 

needs larger bias currents to cope with the increased slew rate requirements. The initial ap-

proach implemented on test IC one relies on an external reference, supplied to both high pass 

filter and comparator. Tests discovered that the system is extremely sensitive to this refer-

ence voltage, possibly due to attenuation through the high pass filter. An improved approach 

was conceived and implemented on the second test chip, using a low pass filter to extract the 

DC level of the photocircuit's output. This was then supplied to the comparator, producing a 

self-referencing system which could be more realistically implemented in a CMOS image pro-

cessor. The area of this self-referencing pixel processing unit was minimised by the creation 

of the minipix algorithm, which contains phototransistor, log photoreceptor, low pass filter and 

comparator in an area of approximately 60 ym.2, with a fill factor of 14.1 %. The perform-

ance of the minipix algorithm was comparable with the previous implementation, proving the 

potential of the approach for the creation of a CMOS fundamental frequency extraction image 

processor. 

The third and final test chip developed during this research built on the findings from the first 

two to produce a system capable of tuning a band pass filter onto the fundamental frequency of 

its input. From the measured test IC results detailed in chapter seven, it is clear that the system 

performs well. The tuning range of approximately 20 Hz to 10 kHz can be varied depending 

on system parameters, but is limited at the lower end by the performance of the band pass 

filter itself. Ideally, the system would be able to tune down to a centre frequency of 1 Hz, 

but it appears that the BPF is unable to operate at such low frequencies due to the extremely 

small subthreshold currents required. However, the band pass filter could be replaced with a 

better version in future implementations, with the only stipulation being a 00  phase difference 

corresponding to its centre frequency. 

The maximum tuning speed of the algorithm was measured at approximately 9 kHz/s. However, 

this parameter can be varied by changing the current available to charge or discharge the charge 

pump's capacitance. If the current is made too large, the system is unable to correctly tune to the 

correct frequency as the charge pump's output bounces around the correct value of BPF variable 
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control voltage. This suggests some trade-off between the speed of the algorithm's tuning 

and its corresponding accuracy. As suggested in chapter seven, the best approach may be a 

compromise between the two, utilising some form of dynamic charge pump biasing technique. 

By linking the charging or discharging current to the width of the system's 'up' or 'down' 

control pulses, the system will benefit from increased speed initially, giving way to increased 

accuracy as the filter fine-tunes to the desired centre frequency. 

The accuracy of the system is excellent, with a tuning error of no more than 3 % of the de 

sired centre frequency. Despite the subthreshold biasing of much of the analogue circuitry, the 

employed direct tuning method allow the band pass filter to be tuned with high accuracy. 

The power consumption of the automatically tuned band pass filter algorithm was simulated 

for two different target frequencies. The system consumes approximately 4.5 ,uA when tuning 

to 250 Hz, increasing to 13.2 pA at 1 kHz, resulting in a power consumption of 22.5 [LW and 

66 iW respectively when operating from a 5 V supply. This current is the combined value 

consumed from both analogue and digital supplies, as highlighted in figure 7.16. As the ana-

logue circuits are biased in the subthreshold regime, the current from the analogue supply is 

negligible compared to the digital equivalent. For example, when tuning to 1 kHz, the cur-

rent drawn from the analogue supply increases to a maximum of approximately 100 nA as the 

filter is tuned. It is clear from the lower plot in figure 7.16 that the digital current is domin-

ated by switching currents, caused primarily by the comparators and digital phase detector. As 

such, it can be concluded that the employed technique to limit switching currents in the phase 

detector is relatively unsuccessful. It is clear from the simulation results that the quoted val-

ues of current consumption are dominated by the digital switching currents. Therefore, future 

implementations may benefit from the inclusion of an analogue phase detector circuit. 

The physical size of the algorithm including support circuitry and test structures is approxim-

ately 1350 pm by 1180 ,um when implemented in a 0.6 pm process, with the dimensions of 

the band pass filter dominant. An estimate of the area consumed just by the algorithm itself is 

closer to 1000 irn by 600 tm, which is still larger than could be feasibly be included in a ded-

icated CMOS image processor. Despite this, it is clear form the physical layout of the algorithm 

depicted in figure 7.15 that little effort was made to minimise the area of implementation, with 

a heavy emphasis on proof of concept. As such, the area could be considerably reduced in 

future implementations, particularly if fewer guard structures are employed and the band pass 

filter is implemented with smaller capacitors. Despite the large implementation area, it can be 
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concluded that the phase derived feedback algorithm successfully tunes a band pass filter to the 

fundamental frequency of the incident light intensity. 

8.3 Contributions 

The novelty in this thesis stems from the underlying subject matter, extracting temporal fre-

quency signatures from visual data. More precisely, the algorithm's investigated in chapter 

three are novel with regards to their application in this research. In particular, the flashing pixel 

algorithm and the two subsequent versions that it inspired, the half Laplacian HP? and no mask 

algorithms are original. 

The subsequent realisation of the no mask algorithm in analogue VLSI is novel, culminating in 

the creation of the minipix algorithm. Finally, the phase-derived feedback algorithm developed 

to automatically tune a BPF to the fundamental frequency of the input signal is original. 

8.4 	Critical Evaluation 

The adopted approach of analogue, focal plane processing was decided upon by the require-

ments of the sponsor company. The need for low power processing led to an emphasis on tran-

sistors operating in the weak inversion regime. From a system perspective, a major advantage 

of the employed pseudo-Fourier algorithm is the fact that the parallel processing capabilities 

of the employed focal plane processing techniques minimise the potential problems of sub-

threshold current mismatch. The strength of the algorithm lies in each pixel operating as an 

independent fundamental frequency extraction unit. A common problem with biasing analogue 

circuits in weak inversion is mismatch between subthreshold currents. Research has shown 

that the variation can be as high as 20 % depending on device dimensions[94]. Circuits biased 

in subthreshold are also strongly dependent on ambient temperature variations. The algorithm 

presented here was developed to reduce the impact of such variations, by not relying on well 

matched current ratios. With each pixel acting independently, the need for strongly correlated 

subthreshold currents is reduced. The subthreshold current mismatch simulations performed 

on the minipix algorithm prove the robustness of the approach to variation in low pass filter 

cutoff frequency variation. Similarly, the direct frequency tuning applied to the band pass filter 

provides high filter accuracy of within 3 % of the desired centre frequency, despite subthreshold 
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biasing. By developing custom system level algorithms, it is possible to minimise the potential 

inadequacies of analogue signal processing when biased in the subthreshold regime. 

By utilising transistors biased in the weak inversion region of operation, a considerable sav-

ing in power consumption is achieved. As previously stated, it is estimated that the minipix 

algorithm consumes a mere 14 nA when operating at 1 kHz, resulting in a power consumption 

of 70 nW when operating from a 5 V supply. Similarly, the analogue processing blocks of the 

phase derived feedback algorithm are biased with subthreshold currents, producing simulated 

average current consumptions of approximately 60 nA when tuning to 1 kHz, with a peak cur-

rent of 100 nA. The digital switching currents increase this average considerably, as highlighted 

in tables 7.5 and 7.6. 

This increase in the power consumption caused by digital switching currents is one area that 

could be improved upon. The fact that the system converts the BPF's input and output signals 

into pulse trains, which are subsequently compared for phase difference, means that the system 

will always produce such switching currents. The reason for producing the pulse trains is the 

ease with which any phase difference can be measured, producing a relatively robust system. 

However, it may be possible to produce a fully analogue system, less reliant on transistors 

switching between the power rails. 

Another potential weakness of both the minipix and automatically tuning BPF algorithms is the 

choice of a logarithmic compression photocircuit as the means of converting the photocurrent 

to a voltage signal. The major difficulty with circuit level image processing algorithms is the 

extremely wide range of possible inputs, from bright sunlight to almost complete darkness. 

Such conditions place great strains on the circuitry employed to condition the photocurrent 

into a voltage signal that can realistically be processed by the subsequent stages. An industry 

standard CMOS pixel uses a variable integration period to allow for this input range, but the 

temporal aspects of the light intensity variation are compromised. The logarithmic photore-

ceptor operates by biasing diode connected load transistors in the weak inversion region of 

operation with the photocurrent, producing a voltage that is logarithmically compressed. This 

has the advantage of shrinking the huge input range of photocurrents into a more manageable 

range of output voltages, as highlighted by the simulated DC transfer characteristics in figure 

4.3. The circuit was adopted in this research because of this property, combined with its sim-

plicity and relatively compact size. However, it is severely limited in certain crucial aspects. 

The fact that the circuit logarithmically compresses the input signal means that large transient 
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input swings may become distorted. The ultimate aim is to analyse the frequency content of 

the temporal intensity variations, which becomes almost impossible if the photocircuit itself 

introduces distortion. The logarithmic compression may also result in the converse situation of 

small transient changes being missed, as the change in output voltage is too small to be detec-

ted. It is clear from the measured test IC results in chapter five that the self referencing pixel 

processing unit works better for some LED control voltages than others, probably due to the 

poor performance of the employed photocircuit. The logarithmic photocircuit also suffers from 

limited bandwidth, as highlighted in chapter four. Despite its strengths, all these reasons sug-

gest that the employed photocircuit could be improved. A potential candidate is the adaptive 

photoreceptor developed by Delbruck[12], which is described in chapter two. However, it is 

interesting that Kramer et al[75] who employed Delbruck's photoreceptor as the input for their 

token based motion detection algorithm suggest that the major limitation of such circuitry is the 

difficulty in detecting temporal tokens over a wide range of input illumination. It is clear that 

the problems of creating continuous time circuitry to accurately condition photocurrent into a 

corresponding voltage are yet to be met. 

8.5 Future Work 

The ultimate aim of the project is to produce a dedicated, low-power image processor capable 

of extracting the fundamental frequency of the temporal light intensity variation, together with 

the relative strength of the first four harmonics. The circuitry developed so far extracts only the 

fundamental frequency, in the form of the output of the automatically tuned BPF. By simply 

integrating this signal, it should be possible to extract information regarding the energy present 

in this particular frequency band. 

Shifting the BPF to tune to integer multiples of the fundamental frequency is a more complex 

problem. From a system perspective, there are two potential techniques for achieving this. The 

first involves implementing a separate band pass filter for each of the required harmonics, all 

tuned by a single charge pump. By ratioing the bias currents of the OTAs in each BPF, it should 

be possible to position each filter on a different integer multiple of the fundamental. Provid-

ing the BPFs operate in the subthreshold region of operation, the linear relationship between 

bias current and frequency should allow such a system to operate successfully. Potential ad-

vantages of this approach include the fact that each component of the frequency signature will 

be available at the same time, in the form of the output from each band pass filter. However, 
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the required implementation area of such an approach may limit its feasible integration into a 

dedicated image processor. Another potential problem with such an approach is the accuracy 

with which the filters would be positioned in the frequency domain. As reported, subthreshold 

mismatch is such that an indirect tuning method such as this may exhibit large variations in bias 

currents, resulting in poorly positioned filters. 

A better approach involves simply tuning a single band pass filter to different multiples of the 

input frequency. This could be achieved by multiplying the frequency at some point in the 

phase-derived feedback algorithm. Possibilities include placing an analogue multiplier con-

nected as a frequency doubler[107] before the band pass filter. In keeping with the low power 

requirements of the project, this multiplier could potentially be biased with subthreshold cur-

rents. However, the multiplier may introduce harmonic distortion which could corrupt the 

resultant frequency signature. Another approach involves doubling the frequency of one of the 

comparators' output pulse trains, forcing the system to tune to twice the input. Both approaches 

benefit from a reduction in area, coupled with an increase in accuracy as the band pass filter is 

tuned directly. However, a major disadvantage is that the system could only place the band pass 

filter at twice, four times, eight times etc the fundamental frequency, thus not performing the 

required Fourier decomposition of the input signal. This may be sufficient for certain applic-

ations, but remains a trade-off between processing power and circuit-level complexity. Such a 

system will also produce a delay in the calculation of the frequency signature, with the band 

pass filter tuned to a particular frequency before 'jumping' to double that frequency. 

Another area for future consideration is the implementation area of the automatically tuned 

BPF algorithm. As previously mentioned, the total area including support and test circuitry 

is approximately 1350 um by 1180 ym when implemented in a 0.6 ym process. However, 

this includes a second BPF together with output buffer circuits, which are included only for 

test purposes. An estimate of the area consumed by essential circuitry is approximately 1000 

,um by 600 Mm. Little effort was made to minimise the area, with guard structures and large 

gaps evident in the layout in figure 7.15. The ultimate aim for such a processor, including 

circuitry to facilitate harmonic tuning, is its inclusion in a dedicated CMOS frequency signature 

extraction image-processor. The aim is one processor per column of the pixel array, which will 

require a significant reduction in implementation area. Nevertheless, it should be possible to 

achieve such a reduction with better layout techniques and a resizing of certain key elements. 

For instance, the aspect ratios of the transistors in the OTA are relatively large, in an effort 
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to improve matching. However, the direct tuning method applied here may compensate for 

mismatch, allowing the use of minimum sized transistors. 

The minipix algorithm has proved the potential of a fundamental frequency extraction pixel 

processing unit with a pitch size conducive to inclusion in an image-processor with reasonable 

resolution. Further work may involve the creation of an imager capable of producing funda-

mental frequency maps similar to those created with software in chapter three. By placing an 

integrator or some form of digital timing circuitry at the side of the minipix array, a DC level 

corresponding to the fundamental frequency of the visual stimulus may be extracted. Such an 

imager could be used as an early warning technique for a system containing the automatically 

tuning BPF algorithm, or as a standalone image processor in its own right. 

8.6 Final Comments 

This thesis has documented research into the design of an image processor capable of extracting 

frequency signatures from visual data. From its inception, an emphasis on low power, focal-

plane processing techniques led the research away from powerful but costly combinations of 

standard imagers with dedicated DSP, towards analogue signal processing techniques with tran-

sistors biased in the weak inversion region of operation. A trade-off between the power of the 

solution and its corresponding power consumption has resulted in a phase derived feedback 

algorithm, consuming an estimated average current of 4.5 A when tuning to a 250 Hz input 

signal. Despite the complexity of the required processing, the measured IC test results appear 

promising, suggesting that this is the first step in the creation of a low power pseudo-Fourier 

temporal light intensity image-processor. 
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Appendix A 
Dyadic Tree Algorithm 

The purpose of this section is to explain in detail the dyadic tree algorithm, along with its 

potential application and subsequent simulation regarding the extraction of temporal frequency 

signatures from visual data. 

A.1 	Wavelet Transforms 

Wavelet transforms are similar to Fourier analysis in that the original signal is divided into fre-

quency components using underlying basis functions[1 12]. In Fourier analysis, the employed 

basis functions are sines and cosines of different frequencies and different magnitudes, which 

combine to produce the original signal. Wavelet transforms use more complex basis functions, 

aimed at improving the performance of signal transformation, particularly regarding signals that 

exhibit spikes and discontinuities. The underlying idea behind the use of wavelets is to change 

the scale of the basis function, providing more detailed analysis. If a signal is non-periodic, the 

windowed Fourier transform (WFT) can be employed, where the signal is split into separate 

sections, termed windows, with each section analysed individually for frequency content. This 

windowing procedure splits the signal into separate time intervals, but, crucially, the size of the 

window remains constant. This means that there is the danger of too little information for low 

frequency variations, or too much data for high frequency variations. Of more use would be the 

ability to change the size of the sampling window, so that high and low frequency components 

can be discerned. The wavelet transform achieves this by using short, high frequency basis 

functions coupled with long, low frequency ones. The difference between Fourier and wavelet 

transforms are highlighted in figure A. 1(a) and (b) respectively. The Fourier time-frequency 

map highlights the fact that the same sized window is used for both low and high frequencies, 

with potential loss of data as a result. The multi-resolution approach of the wavelet transform 

means that, at the time highlighted in red, there are four differently scaled basis functions, each 

providing different information about the signal's frequency content. 
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Figure A.!: Time-Frequency Plots for Fourier and Wavelet Transforms: (a) Fourier transform: 
at the selected time, highlighted in red, each frequency window has the same scale. 
(b) Wavelet Transform: at the selected time, there are four different windows, each 
of different size. For low frequency, there are long time windows while for high 
frequency there are short time windows. Adapted from[113] 

From a circuit level perspective, wavelet transforms can be viewed as a bank of logarithmically 

placed bandpass filters, dividing the frequency domain into bands. The bandwidth of each 

filter is proportional to its centre frequency, with the higher the frequency, the wider the filter's 

response. The Fourier transform can be thought of as a similar dissection of the frequency 

plane, but each filter has the same bandwidth and is uniformly located on the frequency axis. 

The differences are highlighted in figure A.2. 

Implementations of wavelet transforms using analogue VLSI circuit techniques have been pre-

viously attempted, for a number of applications including cochlear sound processing[ 115], 

audio frequency decomposition [116-118] and radar analysis[119]. Many rely on switched-

capacitor implementations of bandpass filter banks, allowing precise control of the filter time 

constants. 

A.2 Wavelet Processing with the Dyadic Tree Filterbank 

The wavelet filterbank depicted in figure A.2 (b) can be implemented with a dyadic tree filterb-

ank[120]. The technique uses low and high pass filters to segment the input signal into different 

frequency bins, as depicted in figure A.3. The signal is effectively split in two regarding the 
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Figure A.2: Comparison of Fourier and Wavelet Transform Frequency Domain Division: (a) 
Fourier: Uses uniformly placed BPFs, with similar bandwidth. (b) Wavelet: Uses 
logarithmically placed BPFs, whose bandwidth is proportional to the centre fre-
quency. Adapted from[1 14]. 

respective frequency content, with the operation then repeated on the low frequency band in 

the subsequent filtering stages. The three stage dyadic tree depicted here assumes sampled data 

filters and makes use of downsampling techniques to ease the required filter specifications. By 

downsampling each signal after a filtering stage, the output signal occupies the same frequency 

range as the original input, meaning the same filter specification can be used for subsequent flu-

ter steps. The differences between a dyadic tree with and without downsampling can be found 

in figure A.4. Without downsampling, the requirements for the filters in the latter stages of the 

tree become more and more demanding, resulting in large circuit level implementations. 

For the purposes of this research, it was felt that a simple three stage dyadic tree filterbank may 

be sufficient to tell the difference between objects. Although not providing a true frequency 

domain representation of the input signal, an estimate of the energy within each of the fre-

quency bands may allow different objects to be distinguished from each other. This trade-off 

between the power of the achievable processing with the requirements for simple, low power 
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circuit techniques is a key feature of the research described in this thesis. Subsequent filtering 

stages could have been added, but the increased silicon area required made this an unrealistic 

option. Note also that the dyadic tree assumes the use of sampled data filter structures, contrary 

to the requirements specified by QinetiQ. The purpose of the software simulation phases of the 

research was to define and then test potential candidate algorithms for the extraction of fre-

quency signatures. As such, the algorithm was tested in software to ascertain its utility in this 

application. Despite the use of sampled data filtering, it was felt the benefits of the approach in 

terms of solving the problem outweighed the potential drawbacks. 
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Figure A.3: Dyadic Tree Filterbank: A wavelet style decomposition of the input signal is 
achieved with a combination offiltering and down-sampling 

A.3 	Software Simulation of the Dyadic Tree Filterbank 

The aim of developing a dyadic tree filterbank is to see how it performs in classifying the 

transient visual stimulae that appear in the field of vision. To this end, a series of MATLAB 

simulations were developed to see how powerful the tree filterbank is at distinguishing between 

different frequency inputs. Simulations were performed using the fan data sets, as they con-

tains both a variable frequency (the luminescence device) and a stationary control frequency 

(the fan). The adopted approach was to select the same 50 frames from each of the stimulus 
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Figure A.4: Comparison of Dyadic Tree Filterbank with and without Downsampling: (a) 
Without downsampling: the latter filtering stages pace strict demands on the fil-
tering circuitry, increasing the area and cost of implementation. (b) With down-
sampling: The effective frequency range after each downsampling stage is halved, 
allowing the same filter specification to be used for each stage. 

files and use this value as a pseudo sampling frequency for the simulations. Due to the diffi-

culties in linking this computer simulation to real time, all frequency values are measured in 

so-called 'pseudo-frequency'. This corresponds to the number of repetitions of the intensity 

waveform within the 50 frames subset. Table A. 1 shows the translation from real frequency 

to pseudo-frequency. The pseudo-frequency values are approximate and were obtained from 

visual inspection of the intensity waveforms. Figure A.5 shows the two pixels that were ob-

served as the test stimulus advances in 'pseudo-time', from the first frame to the fiftieth. Pixel 

A corresponds to the negative luminescence device, while Pixel B represents the change in 

intensity caused by the fan. 
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I 

Figure A.5: Selected Pixels from the 'Fan' Data Sequence used to Test the Dyadic Tree Al-
gorithm: (A) corresponds to the negative luminescence device, while (B) repres-
ents the fan itself. 

Test 
Stimulus 

Frequency 
of Lumines- 
cence 

Pseudo-
Frequenc 

TESTI0 10Hz 1 units 
TEST20 20 Hz 2 units 
TEST30 30 Hz 3 units 
TEST40 40 Hz 4 units 
TEST50 50 Hz 5 units 
TEST70 70 Hz 7 units 
TEST90 90 Hz 9 units 

Table A.1: Mapping of Pseudo-Frequencies to Real Frequencies 

For the purposes of this simulation the maximum possible pseudo input frequency to avoid au-

asing was 25 units, corresponding to a real frequency of 250 Hz, half the camera's sampling fre-

quency. A three stage dyadic tree was implemented, with first stage cutoff frequency 20 units, 

second stage cutoff 10 units and final stage 5 units. A 'loose' range of filter cutoff frequencies 

was deliberately chosen, as this best reflects the likely eventuality in real-life applications. To 

ease the complexity of the code, downsampling was not implemented as it does not effect the 

simulation results, merely the ease of circuit-level implementation. 

A.3.1 Dyadic Tree Sim Results: Luminescence Flashing at 20 Hz. 

The results of applying the dyadic tree to the fan data sequence containing a luminescence 

flashing frequency of 20 Hz can be seen in figure A.6. The first row corresponds to the on- 
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Figure A.6: Selected Time and Frequency Domain Signals from Three Stage Dyadic Tree Sim-
ulation when Tested with the 20 Hz Negative Luminescence Device: The original 
input and each of the four dyadic tree outputs are depicted for both pixels A and 
B, highlighting the decomposition of the signal into frequency bands. 

ginal, unfiltered input signal formed from the intensity change through time of the test stimu-

lus. Columns one and two show the time domain and frequency domain representations of the 

negative luminescence device (pixel A in figure A.5), whilst columns three and four show the 

same for the fan (pixel B). The input from the negative luminescence device appears to be a 

square wave with a pseudo-frequency of 2 units. The frequency domain representation agrees 

with this, showing a fundamental at 2 frequency units and then every odd harmonic as would 

be expected from a square wave. The fan data appears more random, at a frequency of roughly 

9 units and a first harmonic at about 20. The second row corresponds to the LLL output from 

the dyadic tree. Notice that the filtering has isolated the fundamental frequency of the negative 

luminescence input signal, with the frequency domain dominated by the two frequency unit 

pulse. The fan produces little at the LLL output, although the low frequency pulse shown on 

the original frequency domain trace does appear. As we advance down the rows, more and 

more high frequency detail is added until the final row, corresponding to the H output. The 
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frequency domain representation of the transient output signals highlights the splitting of the 

frequency content into different frequency bands. Taking the negative luminescence device as 

an example, row two (LLL) shows only the fundamental at the output. Row three (LLH) shows 

the third harmonic and an attenuated version of the fifth harmonic, with row four (LH) depict-

ing the fifth and seventh harmonics. The high frequency output band in row five shows only the 

ninth and highest frequency harmonic. It is this decomposition of the transient input signal that 

may provide a solution to the problem of classification. 

A.3.2 Dyadic Tree Sim Results: Luminescence Flashing at 90 Hz. 

A similar plot for a negative luminescence frequency of 90 Hz is shown in figure A.7. This 

time, the frequency of the luminescence device is similar to the fan at roughly 9 units. 

Time Domain 
	

Freq Domain 
	

Time Domain 
	

Freq Domain 

Original 
Signal 

LLL 
Output 

LLH 
Output 

LH 
Output 

H 
Output 

Negative Luminescence 
	

Fan 
Device 

Figure A.7: Selected Time and Frequency Domain Signals from Three Stage Dyadic Tree Sim-
ulation when Tested with the 90 Hz Negative Luminescence Device: Once again, 
the input signal and four dyadic output signals are depicted. 

The outputs from the dyadic tree show similar traces for both luminescence device and fan, 
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resulting in a truer test of the algorithm than figure A.6. With two inputs at similar frequencies, 

it is necessary to look at the harmonic content of the inputs if a positive identification is to be 

made. 

A.3.3 Dyadic Tree Simulations: Frequency Band Energy Content for Lumines-

cence Device Flashing at 20 Hz and 90 Hz 

Despite showing clearly how the original signals are split into different frequency bands, the 

simulation results in figures A.6 and A.7 do not allow clear discrimination between the fan and 

the negative luminescence device. To achieve this end, an estimate of the energy within each 

of the dyadic tree's outputs could be calculated, effectively producing a frequency signature. 

A simple way of doing this within the simulation environment is to calculate the integral of 

the rectified transient signal in each band. This was done for the input data described earlier, 

with the negative luminescence device at 20 Hz and 90 Hz. Figure A.8 (a) shows the 20 Hz 

bar chart, whilst (b) shows the values for the luminescence flashing at 90 Hz. As expected, the 

majority of the energy for the 20 Hz stimulus appears in the LLL band as this contains pseudo-

frequencies zero to five units. The energy levels drop as we proceed through the bands, with 

the H band showing there is very little high frequency information in the signal. The 90 Hz 

signal corresponds to a pseudo-frequency of roughly 9 units. Figure A.8 (b) shows the energy 

levels for this signal, with the majority appearing in the LLH and LH bands. The fact that the 

20 Hz and 90 Hz signals produce different energy signatures allows us to differentiate between 

the two transient inputs. 

Although the method produces different integral values for different frequency inputs, another 

consideration is how it performs for similar inputs. In each stimulus file, the fan rotates at a 

constant frequency, corresponding to about 9 pseudo-frequency units. The bar charts for the 

fan should be similar no matter which input stimulus is used. Figure A.9 shows the outputs 

for the test stimulus corresponding to negative luminescence frequencies 20 Hz and 90 Hz. As 

expected, a comparison with the energy bands from figure A.8, shows that the fan produces 

a similar energy signature regardless of which test stimulus is used. It would appear that this 

algorithm has the ability to 'recognise' the fan whilst still providing different energy bands for 

the luminescence device. It is this talent that may allow us to classify particular visual stimulae 

from the transient signals that they produce. 
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Figure A.8: Energy within Dyadic Tree Output Bands for Luminescence Flashing at: (a) 20Hz, 
(b) 90Hz. The difference in the frequency signatures allows clear discrimination 
between the two. 

A.3.4 Dyadic Tree Simulations: Frequency Band Energy Content for All Avail-

able Luminescence Device Frequencies, 10 Hz to 90 Hz 

To further test the algorithm, the process was repeated with all the available stimulae, with the 

results depicted in figure A.10. This shows the integrated values of the dyadic tree outputs 

for all of the 'fan' test sequences that were supplied. It should be stressed that it is only the 

luminescence device that varies in frequency, from 10 Hz to 90 Hz. The fan that appears in all 

of the stimulae rotates with a constant frequency. This means that the outputs in figure A.10 

(b) should appear constant whereas those in figure A. 10 (a) should reflect the changing nature 

of the input frequency. The general trend highlighted in figure A.10 (a) and (b) shows that it 

is possible to differentiate between transient signals at different frequencies with a dyadic tree 

structure. By sampling the transient signals on the focal plane, AC-coupling them to remove 

the DC level and then passing them through a dyadic tree, we are provided with a series of 

transient signals whose frequency contents exist in a particular band. If these signals are then 

rectified before being integrated in an effort to calculate the energy in each band, it is possible to 

produce a 'signature' of the input signal. It is then possible to identify one particular signature 

from another, thus identifying one transient input signal from another. 
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Figure A.9: Energy within Dyadic Tree Output Bands for Fan at a Luminescence Frequency of 
(a) 20Hz, (b) 90Hz. The fan's frequency remains constant throughout the diffu rent 
test stimulus, reflected in the similarity of thefrequency signatures. 

A.4 Comments on the Dyadic Tree Algorithm 

At first glance, the results in figure A. 10 appear promising. It is clear from (a) that the dif-

ferent frequencies of the negative luminescence device produce different frequency signatures, 

allowing successful discrimination. However, the results from figure A. 10 (b), showing the 

frequency signatures for the fan, are less impressive. The fan acts as a control frequency for 

the series of seven 'fan' data sequences. As such, its frequency signature should remain con-

stant throughout, despite the change in frequency of the luminescence device. While the fan's 

frequency signatures appear similar, there is still considerable variation in the energy at each 

dyadic tree output, particularly in the higher frequency bands. This is probably due to the lack 

of filter resolution in the dyadic tree filterbank, with only the lower frequency sections subject 

to more filtering stages. The variation in frequency signature for the fan data suggests a limit-

ation to the usefulness of the device for this application. If the same object produce different 

frequency signatures then any attempt at classification becomes extremely difficult. 

In an effort to improve the high frequency resolution of the system, a full-tree filterbank was 

implemented. This is similar to the dyadic tree in figure A.3 but has both halves of the tree 

expanded, such that the frequency domain is split into equal bands. In effect, this implements a 

simple Fourier processor, providing higher resolution for the high frequency bands, at the cost 
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Figure A.10: Comparison of Dyadic Tree Output Integrals: (a) Luminescence Device, (b) Fan. 
The frequency signature from the fan remains relatively constant, while that of 
the negative luminescence device varies as expected. 

of more complex processing. The same simulation setup as was used to test the dyadic tree 

was applied to the full tree filterbank, with the results depicted in figure A. II. The results are 

an improvement, but the variation in fan frequency signature is still evident. It was felt that 

any improvement in performance was offset by the increased size of the filterbank, particularly 

regarding a circuit level implementation 

Another area for consideration is the frequency range of the input signals as well as the min-

imum frequency difference between two similar visual stimulae. If it is the case that many 

stimulae exhibit similar frequency characteristics, it will be necessary to have a tree with close 

cutoff frequencies in order to successfully differentiate between them. On the other hand, if the 

stimulae exist over a very wide range of input frequencies then the tree's cutoffs must be well-

spaced. A possible way round this problem is to construct a tunable dyadic tree that can have 

variable cutoff frequencies. This would allow both widely and narrowly spaced stimulae to be 

detected, although at a cost of higher complexity and silicon area. Other possibilities include 

increasing the number of stages of the tree, from three to four or five levels. This would increase 
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Figure A.11: Comparison of Full Tree Output Integrals: (a) Luminescence Device, (b) Fan. 
With higher resolution in the upper frequency bands, it was hoped the full tree 
would improve on the results for the dyadic tree. The different frequencies of 
the luminescence device produce differing frequency signatures, but the fan also 
shows slight variation. 

the resolution of the system but would once again cost extra in terms of silicon implementation. 

The fact that the dyadic tree algorithm also relies on sampled data circuit techniques is another 

potential problem. The sponsor company stressed an emphasis on real-time processing, with 

the sampling of signals on the focal plane contrary to this requirement. It may be possible to use 

continuous time circuit techniques to implement the filterbank, but as figure A.4 highlights, the 

requirements for the latter filter stages are particularly strict. The size of the circuitry required 

to implement the dyadic tree suggested a processor per column, with each pixel supplying 

samples in a time-multiplexing system. 

For all these reasons, the dyadic tree algorithm was deemed an interesting approach, but ulti-

mately not suitable for this application. 
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Appendix B 
Analogue Buffer Circuitry 

In order to 'see' AC signals that are generated within test chips, it is essential to buffer the 

sensitive nodes before they are attached to external pad circuitry. Pads contain protection diodes 

that exhibit large capacitances, effectively creating a low pass filter that can severely attenuate 

or load the signals of interest. As much of the research described in this thesis is concerned 

with measuring the amplitude of AC signals, this document describes a simple buffer circuit 

that was employed for all test chips. 

B.1 Differential Stage 

The employed buffer was a simple differential stage, connected as a voltage follower as de-

picted in figure B.1(a). The frequency response and common mode range for the actual buffer 

implemented on the chip can be seen in figure B.1(b) and (c) respectively. The effect of buffer 

control voltage on frequency response can be seen in figure B.l(b), with the cutoff frequency 

reducing from about 100kHz to 10kHz as the control voltage is reduced from 2.5V to IV. The 

passband for all values of control voltages is relatively flat at 0 dB attenuation, suggesting the 

buffer will be effective in passing the signals of interest in this research. The common mode 

range of the buffer can be seen in figure B.1(c), with the positive CMR increasing as the bias 

current is reduced. 

B.2 DC Offset 

The buffer circuit will exhibit some difference in the DC level between its input and output 

signals, commonly termed the DC offset voltage. This is due to process variations introducing 

mismatch between the transistors in the circuit. An effort to measure the offset through the 

buffer circuit when biased with a typical control voltage of 1 V. By ramping the input DC level 

and measuring the resultant output voltage, the results in figure B.2 were produced. It appears 
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Figure B.1: CMOS Buffer Implementation: Circuit Topology and Measured IC Test Results 
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that the buffer's offset increases slightly with the input DC level, from 32mV at 1V to 91mV at 

4.5V. 
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Figure B.2: Measured Test IC Results-DC Offset of the CMOS Buffer 
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