7,123 research outputs found

    Minor Excluded Network Families Admit Fast Distributed Algorithms

    Full text link
    Distributed network optimization algorithms, such as minimum spanning tree, minimum cut, and shortest path, are an active research area in distributed computing. This paper presents a fast distributed algorithm for such problems in the CONGEST model, on networks that exclude a fixed minor. On general graphs, many optimization problems, including the ones mentioned above, require Ω~(n)\tilde\Omega(\sqrt n) rounds of communication in the CONGEST model, even if the network graph has a much smaller diameter. Naturally, the next step in algorithm design is to design efficient algorithms which bypass this lower bound on a restricted class of graphs. Currently, the only known method of doing so uses the low-congestion shortcut framework of Ghaffari and Haeupler [SODA'16]. Building off of their work, this paper proves that excluded minor graphs admit high-quality shortcuts, leading to an O~(D2)\tilde O(D^2) round algorithm for the aforementioned problems, where DD is the diameter of the network graph. To work with excluded minor graph families, we utilize the Graph Structure Theorem of Robertson and Seymour. To the best of our knowledge, this is the first time the Graph Structure Theorem has been used for an algorithmic result in the distributed setting. Even though the proof is involved, merely showing the existence of good shortcuts is sufficient to obtain simple, efficient distributed algorithms. In particular, the shortcut framework can efficiently construct near-optimal shortcuts and then use them to solve the optimization problems. This, combined with the very general family of excluded minor graphs, which includes most other important graph classes, makes this result of significant interest

    Low-Congestion Shortcut and Graph Parameters

    Get PDF
    Distributed graph algorithms in the standard CONGEST model often exhibit the time-complexity lower bound of Omega~(sqrt{n} + D) rounds for many global problems, where n is the number of nodes and D is the diameter of the input graph. Since such a lower bound is derived from special "hard-core" instances, it does not necessarily apply to specific popular graph classes such as planar graphs. The concept of low-congestion shortcuts is initiated by Ghaffari and Haeupler [SODA2016] for addressing the design of CONGEST algorithms running fast in restricted network topologies. Specifically, given a specific graph class X, an f-round algorithm of constructing shortcuts of quality q for any instance in X results in O~(q + f)-round algorithms of solving several fundamental graph problems such as minimum spanning tree and minimum cut, for X. The main interest on this line is to identify the graph classes allowing the shortcuts which are efficient in the sense of breaking O~(sqrt{n}+D)-round general lower bounds. In this paper, we consider the relationship between the quality of low-congestion shortcuts and three major graph parameters, chordality, diameter, and clique-width. The main contribution of the paper is threefold: (1) We show an O(1)-round algorithm which constructs a low-congestion shortcut with quality O(kD) for any k-chordal graph, and prove that the quality and running time of this construction is nearly optimal up to polylogarithmic factors. (2) We present two algorithms, each of which constructs a low-congestion shortcut with quality O~(n^{1/4}) in O~(n^{1/4}) rounds for graphs of D=3, and that with quality O~(n^{1/3}) in O~(n^{1/3}) rounds for graphs of D=4 respectively. These results obviously deduce two MST algorithms running in O~(n^{1/4}) and O~(n^{1/3}) rounds for D=3 and 4 respectively, which almost close the long-standing complexity gap of the MST construction in small-diameter graphs originally posed by Lotker et al. [Distributed Computing 2006]. (3) We show that bounding clique-width does not help the construction of good shortcuts by presenting a network topology of clique-width six where the construction of MST is as expensive as the general case

    On Strong Diameter Padded Decompositions

    Get PDF
    Given a weighted graph G=(V,E,w), a partition of V is Delta-bounded if the diameter of each cluster is bounded by Delta. A distribution over Delta-bounded partitions is a beta-padded decomposition if every ball of radius gamma Delta is contained in a single cluster with probability at least e^{-beta * gamma}. The weak diameter of a cluster C is measured w.r.t. distances in G, while the strong diameter is measured w.r.t. distances in the induced graph G[C]. The decomposition is weak/strong according to the diameter guarantee. Formerly, it was proven that K_r free graphs admit weak decompositions with padding parameter O(r), while for strong decompositions only O(r^2) padding parameter was known. Furthermore, for the case of a graph G, for which the induced shortest path metric d_G has doubling dimension ddim, a weak O(ddim)-padded decomposition was constructed, which is also known to be tight. For the case of strong diameter, nothing was known. We construct strong O(r)-padded decompositions for K_r free graphs, matching the state of the art for weak decompositions. Similarly, for graphs with doubling dimension ddim we construct a strong O(ddim)-padded decomposition, which is also tight. We use this decomposition to construct (O(ddim),O~(ddim))-sparse cover scheme for such graphs. Our new decompositions and cover have implications to approximating unique games, the construction of light and sparse spanners, and for path reporting distance oracles

    Light Spanners for High Dimensional Norms via Stochastic Decompositions

    Get PDF
    Spanners for low dimensional spaces (e.g. Euclidean space of constant dimension, or doubling metrics) are well understood. This lies in contrast to the situation in high dimensional spaces, where except for the work of Har-Peled, Indyk and Sidiropoulos (SODA 2013), who showed that any n-point Euclidean metric has an O(t)-spanner with O~(n^{1+1/t^2}) edges, little is known. In this paper we study several aspects of spanners in high dimensional normed spaces. First, we build spanners for finite subsets of l_p with 1<p <=2. Second, our construction yields a spanner which is both sparse and also light, i.e., its total weight is not much larger than that of the minimum spanning tree. In particular, we show that any n-point subset of l_p for 1<p <=2 has an O(t)-spanner with n^{1+O~(1/t^p)} edges and lightness n^{O~(1/t^p)}. In fact, our results are more general, and they apply to any metric space admitting a certain low diameter stochastic decomposition. It is known that arbitrary metric spaces have an O(t)-spanner with lightness O(n^{1/t}). We exhibit the following tradeoff: metrics with decomposability parameter nu=nu(t) admit an O(t)-spanner with lightness O~(nu^{1/t}). For example, n-point Euclidean metrics have nu <=n^{1/t}, metrics with doubling constant lambda have nu <=lambda, and graphs of genus g have nu <=g. While these families do admit a (1+epsilon)-spanner, its lightness depend exponentially on the dimension (resp. log g). Our construction alleviates this exponential dependency, at the cost of incurring larger stretch

    Distributed distance-r covering problems on sparse high-girth graphs

    Get PDF
    We prove that the distance-r dominating set, distance-r connected dominating set, distance-r vertex cover, and distance-r connected vertex cover problems admit constant factor approximations in the CONGEST model of distributed computing in a constant number of rounds on classes of sparse high-girth graphs. In this paper, sparse means bounded expansion, and high-girth means girth at least 4r + 2. Our algorithm is quite simple; however, the proof of its approximation guarantee is non-trivial. To complement the algorithmic results, we show tightness of our approximation by providing a loosely matching lower bound on rings. Our result is the first to show the existence of constant-factor approximations in a constant number of rounds in non-trivial classes of graphs for distance-r covering problems
    • …
    corecore