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Abstract
Spanners for low dimensional spaces (e.g. Euclidean space of constant dimension, or doubling
metrics) are well understood. This lies in contrast to the situation in high dimensional spaces,
where except for the work of Har-Peled, Indyk and Sidiropoulos (SODA 2013), who showed that
any n-point Euclidean metric has an O(t)-spanner with Õ(n1+1/t2 ) edges, little is known.

In this paper we study several aspects of spanners in high dimensional normed spaces. First,
we build spanners for finite subsets of `p with 1 < p ≤ 2. Second, our construction yields a
spanner which is both sparse and also light, i.e., its total weight is not much larger than that of
the minimum spanning tree. In particular, we show that any n-point subset of `p for 1 < p ≤ 2
has an O(t)-spanner with n1+Õ(1/tp) edges and lightness nÕ(1/tp).

In fact, our results are more general, and they apply to any metric space admitting a certain
low diameter stochastic decomposition. It is known that arbitrary metric spaces have an O(t)-
spanner with lightness O(n1/t). We exhibit the following tradeoff: metrics with decomposability
parameter ν = ν(t) admit an O(t)-spanner with lightness Õ(ν1/t). For example, n-point Euc-
lidean metrics have ν ≤ n1/t, metrics with doubling constant λ have ν ≤ λ, and graphs of genus
g have ν ≤ g. While these families do admit a (1 + ε)-spanner, its lightness depend exponentially
on the dimension (resp. log g). Our construction alleviates this exponential dependency, at the
cost of incurring larger stretch.
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1 Introduction

1.1 Spanners
Given a metric space (X, dX), a weighted graph H = (X,E) is a t-spanner of X, if for every
pair of points x, y ∈ X, dX(x, y) ≤ dH(x, y) ≤ t · dX(x, y) (where dH is the shortest path
metric in H). The factor t is called the stretch of the spanner. Two important parameters of
interest are: the sparsity of the spanner, i.e. the number of edges, and the lightness of the
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29:2 Light Spanners for High Dimensional Norms via Stochastic Decompositions

spanner, which is the ratio between the total weight of the spanner and the weight of the
minimum spanning tree (MST).

The tradeoff between stretch and sparsity/lightness of spanners is the focus of an intensive
research effort, and low stretch spanners were used in a plethora of applications, to name
a few: Efficient broadcast protocols [8, 9], network synchronization [6, 49, 8, 9, 48], data
gathering and dissemination tasks [14, 60, 22], routing [61, 49, 50, 57], distance oracles and
labeling schemes [47, 58, 53], and almost shortest paths [19, 52, 23, 25, 28].

Spanners for general metric spaces are well understood. The seminal paper of [4] showed
that for any parameter k ≥ 1, any metric admits a (2k − 1)-spanner with O(n1+1/k) edges,
which is conjectured to be best possible. For light spanners, improving [17, 24], it was shown
in [18] that for every constant ε > 0 there is a (2k− 1)(1 + ε)-spanner with lightness O(n1/k)
and at most O(n1+1/k) edges.

There is an extensive study of spanners for restricted classes of metric spaces, most
notably subsets of low dimensional Euclidean space, and more generally doubling metrics.3
For such low dimensional metrics, much better spanners can be obtained. Specifically, for n
points in d-dimensional Euclidean space, [54, 59, 21] showed that for any ε ∈ (0, 1

2 ) there is
a (1 + ε)-spanner with n · ε−O(d) edges and lightness ε−O(d) (further details on Euclidean
spanners could be found in [45]). This result was recently generalized to doubling metrics
by [12], with ε−O(ddim) lightness and n · ε−O(ddim) edges (improving [55, 30, 29]). Such
low stretch spanners were also devised for metrics arising from certain graph families. For
instance, [4] showed that any planar graph admits a (1 + ε)-spanner with lightness O(1/ε).
This was extended to graphs with small genus4 by [31], who showed that every graph with
genus g > 0 admits a spanner with stretch (1 + ε) and lightness O(g/ε). A long sequence
of works for other graph families, concluded recently with a result of [13], who showed
(1 + ε)-spanners for graphs excluding Kr as a minor, with lightness ≈ O(r/ε3).

In all these results there is an exponential dependence on a certain parameter of the input
metric space (the dimension, the logarithm of the genus/minor-size), which is unfortunately
unavoidable for small stretch (for all n-point metric spaces the dimension/parameter is at
most O(logn), while spanner with stretch better than 3 requires in general Ω(n2) edges
[58]). So when the relevant parameter is small, light spanners could be constructed with
stretch arbitrarily close to 1. However, in metrics arising from actual data, the parameter
of interest may be moderately large, and it is not known how to construct light spanners
avoiding the exponential dependence on it. In this paper, we devise a tradeoff between
stretch and sparsity/lightness that can diminish this exponential dependence. To the best of
our knowledge, the only such tradeoff is the recent work of [34], who showed that n-point
subsets of Euclidean space (in any dimension) admit a O(t)-spanner with Õ(n1+1/t2) edges
(without any bound on the lightness).

1.2 Stochastic Decompositions
In a (stochastic) decomposition of a metric space, the goal is to find a partition of the
points into clusters of low diameter, such that the probability of nearby points to fall into
different clusters is small. More formally, for a metric space (X, dX) and parameters t ≥ 1

3 A metric space (X, d) has doubling constant λ if for every x ∈ X and radius r > 0, the ball B(x, 2r) can
be covered by λ balls of radius r. The doubling dimension is defined as ddim = log2 λ. A d-dimensional
`p space has ddim = Θ(d), and every n point metric has ddim = O(logn).

4 The genus of a graph is minimal integer g, such that the graph could be drawn on a surface with g
“handles”.



A. Filtser and O. Neiman 29:3

and δ = δ(|X|, t) ∈ [0, 1], we say that the metric is (t, δ)-decomposable, if for every ∆ > 0
there is a probability distribution over partitions of X into clusters of diameter at most t ·∆,
such that every two points of distance at most ∆ have probability at least δ to be in the
same cluster.

Such decompositions were introduced in the setting of distributed computing [7, 43], and
have played a major role in the theory of metric embedding [10, 51, 26, 38, 39, 1], distance
oracles and routing [44, 2], multi-commodity flow/sparsest cut gaps [41, 37] and also were
used in approximation algorithms and spectral methods [15, 36, 11]. We are not aware of any
direct connection of these decompositions to spanners (except spanners for general metrics
implicit in [44, 2]).

Note that our definition is slightly different than the standard one. The probability δ
that a pair x, y ∈ X is in the same cluster may depend on |X| and t, but unlike previous
definitions, it does not depend on the precise value of dX(x, y) (rather, only on the fact
that it is bounded by ∆). This simplification suits our needs, and it enables us to capture
more succinctly the situation for high dimensional normed spaces, where the dependence
of δ on dX(x, y) is non-linear. These stochastic decompositions are somewhat similar to
Locality Sensitive Hashing (LSH), that were used by [34] to construct spanners. The main
difference is that in LSH, far away points may be mapped to the same cluster with some
small probability, and more focus was given to efficient computation of the hash function. It
is implicit in [34] that existence of good LSH imply sparse spanners.

A classic tool for constructing spanners in normed and doubling spaces is WSPD (Well
Separated Pair Decomposition, see [16, 56, 35]). Given a set of points P , a WSPD is a set of
pairs {(Ai, Bi)}i of subsets of P , where the diameters of Ai and Bi are at most an ε-fraction
of d(Ai, Bi), and such that for every pair x, y ∈ P there is some i with (x, y) ∈ Ai ×Bi. A
WSPD is designed to create a (1 +O(ε))-spanner, by adding an arbitrary edge between a
point in Ai and a point in Bi for every i (as opposed to our construction, based on stochastic
decompositions, in which we added only inner-cluster edges). An exponential dependence on
the dimension is unavoidable with such a low stretch, thus it is not clear whether one can
use a WSPD to obtain very sparse or light spanners in high dimensions.

1.3 Our Results
Our main result is exhibiting a connection between stochastic decompositions of metric spaces,
and light spanners. Specifically, we show that if an n-point metric is (t, δ)-decomposable,
then for any constant ε > 0, it admits a (2 + ε) · t-spanner with Õ(n/δ) edges and lightness
Õ(1/δ). (Abusing notation, Õ hides polylog(n) factors.)

It can be shown that Euclidean metrics are (t, n−O(1/t2))-decomposable, thus our results
extends [34] by providing a smaller stretch (2 + ε) · t-spanner, which is both sparse – with
Õ(n1+O(1/t2)) edges – and has lightness Õ(nO(1/t2)). For d-dimensional Euclidean space,
where d = o(logn) we can obtain lightness Õ(2O(d/t2)) and Õ(n·2O(d/t2)) edges. We also show
that n-point subsets of `p spaces for any fixed 1 < p < 2 are (t, n−O(log2 t/tp))-decomposable,
which yields light spanners for such metrics as well.

In addition, metrics with doubling constant λ are (t, λ−O(1/t))-decomposable [33, 1], and
graphs with genus g are (t, g−O(1/t))-decomposable [40, 3], which enables us to alleviate the
exponential dependence on ddim and log g in the sparsity/lightness by increasing the stretch.
See Table 1 for more details. (We remark that for graphs excluding Kr as a minor, the
current best decomposition achieves probability only 2−O(r/t) [3]; if this will be improved to
the conjectured r−O(1/t), then our results would provide interesting spanners for this family
as well.)
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29:4 Light Spanners for High Dimensional Norms via Stochastic Decompositions

Table 1 In this table we summarize some corollaries of our main result. The metric spaces have
cardinality n, and Õ hides (mild) polylog(n) factors. The stretch t is a parameter ranging between 1
and logn.

Stretch Lightness Sparsity

Euclidean space O(t) Õ(n1/t2 ) Õ(n1+1/t2 ) Corollary 6
O(
√

logn) Õ(1) Õ(n)

`p space, 1 < p < 2 O(t) Õ(n log2 t/tp) Õ(n1+ log2 t/tp) Corollary 7
O((logn · log logn)1/p) Õ(1) Õ(n)

Doubling constant λ O(t) Õ(λ1/t) Õ(n · λ1/t) Corollary 8
O(log λ) Õ(1) Õ(n)

Graph with genus g O(t) Õ(g1/t) O(n+ g) Corollary 9
O(log g) Õ(1) O(n+ g)

Note that up to polylog(n) factors, our stretch-lightness tradeoff generalizes the [18]
spanner for general metrics, which has stretch (2t− 1)(1 + ε) and lightness O(n1/t). Define
for a (t, δ)-decomposable metric the parameter ν = 1/δt. Then we devise for such a metric a
(2t− 1)(1 + ε)-spanner with lightness O(ν1/t).

For example, consider an n-point metric with doubling constant λ = 2
√

logn. No spanner
with stretch o(logn/ log logn) and lightness Õ(1) for such a metric was known. Our result
implies such a spanner, with stretch O(

√
logn).

We also remark that the existence of light spanners does not imply decomposability.
For example, consider the shortest path metrics induced by bounded-degree expander
graphs. Even though these metrics have the (asymptotically) worst possible decomposability
parameters (they are only (t, n−Ω(1/t))-decomposable [42]), they nevertheless admit 1-spanners
with constant lightness (the spanner being the expander graph itself).

2 Preliminaries

Given a metric space (X, dX), let T denote its minimum spanning tree (MST) of weight L.
For a set A ⊆ X, the diameter of A is diam(A) = maxx,y∈A dX(x, y). Assume, as we may,
that the minimal distance in X is 1.

By Oε we denote asymptotic notation which hides polynomial factors of 1
ε , that is

Oε(f) = O(f) · poly( 1
ε ). Unless explicitly specified otherwise, all logarithms are in base 2.

Nets. For r > 0, a set N ⊆ X is an r-net, if (1) for every x ∈ X there is a point y ∈ N with
dX(x, y) ≤ r, and (2) every pair of net points y, z ∈ N satisfy dX(y, z) > r. It is well known
that nets can be constructed in a greedy manner. For 0 < r1 ≤ r2 ≤ · · · ≤ rs, a hierarchical
net is a collection of nested sets X ⊇ N1 ⊇ N2 ⊇ · · · ⊇ Ns, where each Ni is an ri-net. Since
Ni+1 satisfies the second condition of a net with respect to radius ri, one can obtain Ni from
Ni+1 by greedily adding points until the first condition is satisfied as well. In the following
claim we argue that nets are sparse sets with respect to the MST weight.

I Claim 1. Consider a metric space (X, dX) with MST of weight L, let N be an r-net, then
|N | ≤ 2L

r .

Proof. Let T be the MST of X, note that for every x, y ∈ N , dT (x, y) ≥ dX(x, y) > r. For a
point x ∈ N , BT (x, b) = {y ∈ X | dT (x, y) ≤ b} is the ball of radius b around x in the MST
metric. We say that an edge {y, z} of T is cut by the ball BT (x, b) if dT (x, y) < b < dT (x, z).
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Consider the set B of balls of radius r/2 around the points of N . We can subdivide5 the
edges of T until no edge is cut by any of the balls of B. Note that the subdivisions do not
change the total weight of T nor the distances between the original points of X.

If both the endpoints of an edge e belong to the ball B, we say that the edge e is internal
to B. By the second property of nets, and since BT (x, b) ⊆ BX(x, b), the set of internal
edges corresponding to the balls B are disjoint. On the other hand, as the tree is connected,
the weight of the internal edges in each ball must be at least r/2. As the total weight is
bounded by L, the claim follows. J

Stochastic Decompositions. Consider a partition P of X into disjoint clusters. For x ∈ X,
we denote by P(x) the cluster P ∈ P that contains x. A partition P is ∆-bounded if for every
P ∈ P, diam(P ) ≤ ∆. If a pair of points x, y belong to the same cluster, i.e. P(x) = P(y),
we say that they are clustered together by P.

I Definition 2. For metric space (X, dX) and parameters t ≥ 1, ∆ > 0 and δ ∈ [0, 1], a
distribution D over partitions of X is called a (t,∆, δ)-decomposition, if it fulfills the following
properties.

Every P ∈ supp(D) is t ·∆-bounded.
For every x, y ∈ X such that dX(x, y) ≤ ∆, PrD [P(x) = P(y)] ≥ δ.

A metric is (t, δ)-decomposable, where δ = δ(|X|, t), if it admits a (t,∆, δ)-decomposition for
any ∆ > 0. A family of metrics is (t, δ)-decomposable if each member (X, dX) in the family
is (t, δ)-decomposable.

We observe that if a metric (X, dX) is (t, δ(|X|, t))-decomposable, then also every
sub-metric Y ⊆ X is (t, δ(|X|, t))-decomposable. In some cases Y is also (t, δ(|Y |, t))-
decomposable (we will exploit these improved decompositions for subsets of `p). The
following claim argues that sampling O( logn

δ ) partitions suffices to guarantee that every pair
is clustered at least once.

I Claim 3. Let (X, dX) be a metric space which admits a (t,∆, δ)-decomposition, and let
N ⊆ X be of size |N | = n. Then there is a set {P1, . . . ,Pϕ} of t ·∆-bounded partitions of N ,
where ϕ = 2 lnn

δ , such that every pair x, y ∈ N at distance at most ∆ is clustered together by
at least one of the Pi.

Proof. Let {P1, . . . ,Pϕ} be i.i.d partitions drawn from the (t,∆, δ)-decomposition of X.
Consider a pair x, y ∈ N at distance at most ∆. The probability that x, y are not clustered
in any of the partitions is bounded by

Pr [∀i, Pi(x) 6= Pi(y)] ≤ (1− δ)(2 lnn)/δ ≤ 1
n2 .

The claim now follows by the union bound. J

3 Light Spanner Construction

In this section we present a generalized version of the algorithm of [34], depicted in Algorithm 1.
The differences in execution and analysis are: (1) Our construction applies to general
decomposable metric spaces – we use decompositions rather than LSH schemes. (2) We

5 To subdivide an edge e = {x, y} of weight w the following steps are taken: (1) Delete the edge e. (2)
Add a new vertex ve. (3) Add two new edges {x, ve}, {ve, y} with weights α ·w and (1−α) ·w for some
α ∈ (0, 1).

ESA 2018



29:6 Light Spanners for High Dimensional Norms via Stochastic Decompositions

Algorithm 1 H = Spanner-From-Decompositions((X, dX), t, ε).
1: Let N0 ⊇ N1 ⊇ · · · ⊇ Nlog1+ε L be a hierarchical net, where Ni is ε ·∆i = ε · (1 + ε)i-net

of (X, dX).
2: for i ∈

{
0, 1, . . . , log1+ε L

}
do

3: For parameters ∆ = (1 + 2ε)∆i and t, let P1, . . . ,Pϕi be the set of t · ∆-bounded
partitions guaranteed by Claim 3 on the set Ni.

4: for j ∈ {1, . . . , ϕi} and P ∈ Pj do
5: Let vP ∈ P be an arbitrarily point.
6: Add to H an edge from every point x ∈ P \ {vP } to vP .
7: end for
8: end for
9: return H.

analyze the lightness of the resulting spanners. (3) We achieve stretch t · (2 + ε) rather than
O(t).

The basic idea is as follows. For every weight scale ∆i = (1 + ε)i, construct a sequence
of t ·∆i-bounded partitions P1, . . . ,Pϕ such that every pair x, y at distance ≤ ∆i will be
clustered together at least once. Then, for each j ∈ [ϕ] and every cluster P ∈ Pj , we pick an
arbitrary root vertex vP ∈ P , and add to our spanner edges from vP to all the points in P .
This ensures stretch 2t · (1 + ε) for all pairs with dX(x, y) ∈ [(1− ε)∆i,∆i]. Thus, repeating
this procedure on all scales i = 1, 2, . . . provides a spanner with stretch 2t · (1 + ε).

However, the weight of the spanner described above is unbounded. In order to address
this problem at scale ∆i, instead of taking the partitions over all points, we partition only
the points of an ε∆i-net. The stretch is still small: x, y at distance ∆i will have nearby net
points x̃, ỹ. Then, a combination of newly added edges with older ones will produce a short
path between x to y. The bound on the lightness will follow from the observation that the
number of net points is bounded with respect to the MST weight.

I Theorem 4. Let (X, dX) be a (t, δ)-decomposable n-point metric space. Then for every ε ∈
(0, 1/8), there is a t·(2+ε)-spanner for X with lightness Oε

(
t
δ · log2 n

)
and Oε

(
n
δ · logn · log t

)
edges.

Proof. We will prove stretch t · (2 +O(ε)) instead of t · (2 + ε). This is good enough, as post
factum we can scale ε accordingly.

Stretch Bound. Let c > 1 be a constant (to be determined later). Consider a pair x, y ∈ X
such that (1 + ε)i−1 < dX(x, y) ≤ (1 + ε)i. We will assume by induction that every pair x′, y′
at distance at most (1 + ε)i−1 already enjoys stretch at most α = t · (2 + c · ε) in H. Set
∆i = (1 + ε)i, and let x̃, ỹ ∈ Ni be net points such that dX(x, x̃), dX(y, ỹ) ≤ ε ·∆i. By the
triangle inequality dX(x̃, ỹ) ≤ (1 + 2ε) ·∆i = ∆. Therefore there is a t ·∆-bounded partition
P constructed at round i such that P(x̃) = P(ỹ). In particular, there is a center vertex
v = vP(x̃) such that both {x̃, v} , {ỹ, v} were added to the spanner H. Using the induction
hypothesis on the pairs {x, x̃} and {y, ỹ}, we conclude

dH (x, y) ≤ dH (x, x̃) + dH (x̃, v) + dH (v, ỹ) + dH (ỹ, y)
≤ α · ε∆i + (1 + 2ε)t∆i + (1 + 2ε)t∆i + α · ε∆i

(∗)
<

α

1 + ε
·∆i ≤ α · dX (x, y) ,

where the inequality (∗) follows as 2(1 + 2ε)t < α( 1
1+ε − 2ε) for large enough constant c,

using that ε < 1/8.
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Sparsity bound. For a point x ∈ X, let sx be the maximal index such that x ∈ Nsx . Note
that the number of edges in our spanner is not affected by the choice of “cluster centers” in
line 5 in Algorithm 1. Therefore, the edge count will be still valid if we assume that vP ∈ P
is the vertex y with maximal value sy among all vertices in P .

Consider an edge {x, y} added during the i’s phase of the algorithm. Necessarily x, y ∈ Ni,
and x, y belong to the same cluster P of a partition Pj . W.l.o.g, y = vP , in particular
sx ≤ sy. The edge {x, y} will be charged upon x. Since the partitions at level i are t ·∆
bounded, we have that dX(x, y) ≤ t · ∆ = t · (1 + 2ε) · (1 + ε)i. Hence, for i′ such that
ε · (1 + ε)i′ > t · (1 + 2ε) · (1 + ε)i, i.e. i′ > i+Oε(log t), the points x, y cannot both belong to
Ni′ . As sx ≤ sy, it must be that x /∈ Ni′ . We conclude that x can be charged in at most
Oε (log t) different levels. As in level i each vertex is charged for at most ϕi ≤ O( logn

δ ) edges,
the total charge for each vertex is bounded by Oε( logn·log t

δ ).

Lightness bound. Consider the scale ∆i = (1 + ε)i. As Ni is an ε ·∆i-net, Claim 1 implies
that Ni has size ni ≤ 2L

ε·∆i
, and in any case at most n. In that scale, we constructed

ϕi = 2
δ logni ≤ 2

δ logn partitions, adding at most ni edges per partition. The weight of each
edge added in this scale is bounded by O(t ·∆i).

Let H1 consist of all the edges added in scales i ∈ {log1+ε
L
n , . . . , log1+ε L}, while H2

consist of edges added in the lower scales. Note that H = H1 ∪H2.

w (H1) ≤
∑

i∈{log1+ε
L
n ,...,log1+ε L}

O (t ·∆i) · ni · ϕi

= O

 t

δ
· logn ·

∑
i∈{log1+ε

L
n ,...,log1+ε L}

∆i ·
L

ε ·∆i

 = Oε

(
t

δ
· log2 n

)
· L .

w (H2) ≤
∑

∆i∈Ln ·{(1+ε)−1,(1+ε)−2,...,}

O (t ·∆i) · ni · ϕi

= O

 t

δ
· logn ·

∑
i≥1

1
(1 + ε)i

 · L = Oε

(
t

δ
· logn

)
· L .

The bound on the lightness follows. J

4 Corollaries and Extensions

In this section we describe some corollaries of Theorem 4 for certain metric spaces, and show
some extensions, such as improved lightness bound for normed spaces, and discuss graph
spanners.

4.1 High Dimensional Normed Spaces
Here we consider the case that the given metric space (X, d) satisfies that every sub-metric
Y ⊆ X of size |Y | = n is (t, δ)-decomposable for δ = n−β , where β = β(t) ∈ (0, 1) is a
function of t. In such a case we are able to shave a logn factor in the lightness.

I Theorem 5. Let (X, dX) be an n-point metric space such that every Y ⊆ X is (t, |Y |−β)-
decomposable. Then for every ε ∈ (0, 1/8), there is a t · (2 + ε)-spanner for X with lightness
Oε

(
t
β · n

β · logn
)
and sparsity Oε

(
n1+β · logn · log t

)
.

ESA 2018
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Proof. Using the same Algorithm 1, the analysis of the stretch and sparsity from Theorem 4
is still valid, since the number partitions taken in each scale is smaller than in Theorem 4.
Recall that in scale i we set ∆i = (1+ε)i, and the size of the ε ·∆i-net Ni is ni ≤ max{ 2L

ε∆i
, n}.

The difference from the previous proof is that Ni is (t, n−βi )-decomposable, so the number of
partitions taken is ϕi = O(nβi logni). In each partition we might add at most one edge per
net point, and the weight of this edge is O(t ·∆i). We divide the edges of H to H1 and H2,
and bound the weight of H2 as above (using that ni ≤ n). For H1 we get,

w (H1) ≤
∑

i∈{log1+ε
L
n ,...,log1+ε L}

O (t ·∆i) · ni · ϕi

= O

t · ∑
i∈{log1+ε

L
n ,...,log1+ε L}

∆i ·
L

ε ·∆i
·
(

L

ε ·∆i

)β
log L

ε ·∆i


= Oε

t · ∑
i∈{log1+ε

L
n ,...,log1+ε L}

(
L

∆i

)β
· log L

∆i

 · L
= Oε

t · ∑
i∈{0,...,log1+ε n}

(i+ 1) ·
(

(1 + ε)β
)i · L .

Set the function f(x) =
∑k
i=0 (i+ 1) ·xi, on the domain (1,∞), with parameter k = log1+ε n.

Then,

f(x) =
(∫

fdx

)′
=
(

k∑
i=0

xi+1

)′
=
(
xk+2 − x
x− 1

)′
=
(
(k + 2)xk+1 − 1

)
(x− 1)−

(
xk+2 − x

)
(x− 1)2 ≤ (k + 2)xk+1

x− 1 .

Hence,

w (H1) = Oε
(
t · f

(
(1 + ε)β

))
· L

= Oε

t · log1+ε n ·
(

(1 + ε)β
)log1+ε n

(1 + ε)β − 1

 · L = Oε

(
t

β
· nβ · logn

)
· L .

We conclude that the lightness of H is bounded by Oε
(
t
β · n

β · logn
)
. J

In Section 5 we will show that any n-point Euclidean metric is (t, n−O(1/t2))-decomposable,
and that for fixed p ∈ (1, 2), any n-point subset of `p is (t, n−O( log2 t/tp))-decomposable. The
following corollaries are implied by Theorem 5 (rescaling t by a constant factor allows us to
remove the O(·) term in the exponent of n, while obtaining stretch O(t)).

I Corollary 6. For a set X of n points in Euclidean space, t > 1, there is an O(t)-spanner
with lightness O

(
t3 · n1/t2 · logn

)
and O

(
n1+1/t2 · logn · log t

)
edges.

I Corollary 7. For a constant p ∈ (1, 2) and a set X of n points in `p space, there is an
O(t)-spanner with lightness O

(
t1+p

log2 t
· n log2 t/tp · logn

)
and O

(
n1+ log2 t/tp · logn · log t

)
edges.



A. Filtser and O. Neiman 29:9

I Remark. Corollary 6 applies for a set of points X ⊆ Rd, where the dimension d is
arbitrarily large. If d = o(logn) we can obtain improved spanners. Specifically, n-point
subsets of d-dimensional Euclidean space are (O(t), 2−d/t2 )-decomposable (see Section 6).
Applying Theorem 4 we obtain an O(t)-spanner with lightness Oε

(
t · 2d/t2 · log2 n

)
and

Oε
(
n · 2d/t2 · logn · log t

)
edges.

4.2 Doubling Metrics
It was shown in [1] that metrics with doubling constant λ are (t, λ−O(1/t))-decomposable (the
case t = Θ(log λ) was given by [33]). Therefore, Theorem 4 implies:

I Corollary 8. For every metric space (X, dX) with doubling constant λ, and t ≥ 1, there
exist an O(t)-spanner with lightness O

(
t · log2 n · λ1/t

)
and O

(
n · λ1/t · logn · log t

)
edges.

4.3 Graph Spanners
In the case where the input is a graph G, it is natural to require that the spanner will
be a graph-spanner, i.e., a subgraph of G. Given a (metric) spanner H, one can define a
graph-spanner H ′ by replacing every edge {x, y} ∈ H with the shortest path from x to y
in G. It is straightforward to verify that the stretch and lightness of H ′ are no larger than
those of H (however, the number of edges may increase).

Consider a graph G with genus g. In [3] it was shown that (the shortest path metric of)
G is

(
t, g−O(1/t))-decomposable. Furthermore, graphs with genus g have O(n+ g) edges [32],

so any graph-spanner will have at most so many edges. By Theorem 4 we have:

I Corollary 9. Let G be a weighted graph on n vertices with genus g. Given a parameter
t ≥ 1, there exist an O(t)-graph-spanner of G with lightness O

(
t · log2 n · g1/t

)
and O(n+ g)

edges.

For general graphs, the transformation to graph-spanners described above may arbitrarily
increase the number of edges (in fact, it will be bounded by O(

√
|EH | ·n), [20]). Nevertheless,

if we have a strong-decomposition, we can modify Algorithm 1 to produce a sparse spanner. In
a graph G = (X,E), the strong-diameter of a cluster A ⊆ X is maxv,u∈A dG[A](v, u), where
G[A] is the induced graph by A (as opposed to weak diameter, which is computed w.r.t the
original metric distances). A partition P of X is ∆-strongly-bounded if the strong diameter
of every P ∈ P is at most ∆. A distribution D over partitions of X is (t,∆, δ)-strong-
decomposition, if it is (t,∆, δ)-decomposition and in addition every partition P ∈ supp(D) is
∆-strongly-bounded. A graph G is (t, δ)-strongly-decomposable, if for every ∆ > 0, the graph
admits a (∆, t ·∆, δ)-strong-decomposition.

I Theorem 10. Let G = (V,E,w) be a (t, δ)-strongly-decomposable, n-vertex graph with
aspect ratio Λ = maxe∈E w(e)

mine∈E w(e) . Then for every ε ∈ (0, 1), there is a t · (2 + ε)-graph-spanner
for G with lightness Oε

(
t
δ · log2 n

)
and Oε(nδ · logn · log Λ) edges.

Proof. We will execute Algorithm 1 with several modifications:
1. The for loop (in Line 2) will go over scales i ∈ {0, . . . , log1+ε Λ} (instead {0, . . . , log1+ε L}).
2. We will use strong-decompositions instead of regular (weak) decompositions.
3. The partitions created in Line 3 will be over the set of all vertices V , rather then only

net points Ni (as otherwise it will be impossible to get strong diameter).
However, the requirement from close pairs to be clustered together (at least once), is still
applied to net points only. Similarly to Claim 3, ϕi = (2 lnni)/δ repetitions will suffice.

ESA 2018
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4. In Line 6, we will no longer add edges from vP to all the net points in P ∈ Pj . Instead,
for every net point x ∈ P ∩Ni, we will add a shortest path in G[P ] from vP to x. Note
that all the edges added in all the clusters constitute a forest. Thus we add at most n
edges per partition.

We now prove the stretch, sparsity and lightness of the resulting spanner.

Stretch. By the triangle inequality, it is enough to show small stretch guarantee only
for edges (that is, only for x, y ∈ V s.t. {x, y} ∈ E.) As we assumed that the minimal
distance is 1, all the weights are within [1,Λ]. In particular, every edge {x, y} ∈ E has
weight (1 + ε)i−1 < w ≤ (1 + ε)i for i ∈ {0, . . . , log1+ε Λ}. The rest of the analysis is similar
to Theorem 4, with the only difference being that we use a path from vP to x̃ rather than
the edge {x̃, vP }. This is fine since we only require that the length of this path is at most
(t · (1 + 2ε) ·∆), which is guaranteed by the strong diameter of clusters.

Sparsity. We have Oε(log Λ) scales. In each scale we had at most ϕi ≤ 2
δ logn partitions,

where for each partition we added at most n edges. The bound on the sparsity follows.

Lightness. Consider scale i. We have ni net points. For each net point we added at most
one shortest path of weight at most O(t ·∆i) (as each cluster is O(t ·∆i)-strongly bounded).
As the number of partitions is ϕi, the total weight of all edges added at scale i is bounded
by O(t ·∆i) · ni · ϕi. The rest of the analysis follows by similar lines to Theorem 4 (noting
that Λ < L). J

5 LSH Induces Decompositions

In this section, we prove that LSH (locality sensitive hashing) induces decompositions. In
particular, using the LSH schemes of [5, 46], we will get decompositions for `2 and `p spaces,
1 < p < 2.

I Definition 11. (Locality-Sensitive-Hashing) Let H be a family of hash functions mapping
a metric (X, dX) to some universe U . We say that H is (r, cr, p1, p2)-sensitive if for every
pair of points x, y ∈ X, the following properties are satisfied:
1. If dX(x, y) ≤ r then Prh∈H [h(x) = h(y)] ≥ p1.
2. If dX(x, y) > cr then Prh∈H [h(x) = h(y)] ≤ p2.

Given an LSH, its parameter is γ = log 1/p1

log 1/p2
. We will implicitly always assume that

p1 ≥ n−γ (n = |X|), as indeed will occur in all the discussed settings. Andoni and Indyk [5]
showed that for Euclidean space (`2), and large enough t > 1, there is an LSH with parameter
γ = O

( 1
t2

)
. Nguyen [46], showed that for constant p ∈ (1, 2), and large enough t > 1, there

is an LSH for `p, with parameter γ = O
(

log2 t
tp

)
. We start with the following claim.

I Claim 12. Let (X, dX) be a metric space, such that for every r > 0, there is an (r, t·r, p1, p2)-
sensitive LSH family with parameter γ. Then there is an

(
r, t · r, n−O(γ), n−2)-sensitive LSH

family for X.

Proof. Set k =
⌈
log 1

p2
n2
⌉
≤ O(logn)

log 1
p2

, and let H be the promised (r, t ·r, p1, p2)-sensitive LSH
family. We define an LSH family H ′ as follows. In order to sample h ∈ H ′, pick h1, . . . , hk
uniformly and independently at random from H. The hash function h is defined as the
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concatenation of h1, . . . , hk. That is, h(x) = (h1(x), . . . , hk(x)).
For x, y ∈ X such that dX(x, y) ≥ t · r it holds that

Pr [h(x) = h(y)] = Πi Pr [hi(x) = hi(y)] ≤ pk2 ≤ n−2 .

On the other hand, for x, y ∈ X such that dX(x, y) ≤ r, it holds that

Pr [h(x) = h(y)] = Πi Pr [hi(x) = hi(y)] ≥ pk1 = 2
− log 1

p1
·O(logn)

log 1
p2 = n−O(γ) . J

I Lemma 13. Let (X, dX) be a metric space, such that for every r > 0, there is a (r, t ·
r, p1, p2)-sensitive LSH family with parameter γ. Then (X, dX) is (t, n−O(γ))-decomposable.

Proof. Let H ′ be an
(
r, tr, n−O(γ), n−2)-sensitive LSH family, given by Claim 12. We will use

H ′ in order to construct a decomposition forX. Each hash function h ∈ H ′ induces a partition
Ph, by clustering all points with the same hash value, i.e. Ph(x) = Ph(y) ⇐⇒ h(x) = h(y).
However, in order to ensure that our partition will be t · r-bounded, we modify it slightly.
For x ∈ X, if there is a y ∈ Ph(x) with dX(x, y) > t · r, remove x from Ph(x), and create
a new cluster {x}. Denote by P ′h the resulting partition. P ′h is clearly t · r-bounded, and
we argue that every pair x, y at distance at most r is clustered together with probability at
least n−O(γ). Denote by χx (resp., χy) the probability that x (resp., y) was removed from
Ph(x) (resp., Ph(y)). By the union bound on the at most n points in Ph(x), we have that
both χx, χy ≤ 1/n. We conclude

Pr
P′
h

[P ′h(x) = P ′h(y)] ≥ Pr
h∼H

[h(x) = h(y)]− Pr
h

[χx ∨ χy] ≥ n−O(γ) − 2
n

= n−O(γ) . J

Using [5], Lemma 13 implies that `2 is (t, n−O(1/t2))-decomposable. Moreover, using [46]
for constant p ∈ (1, 2), Lemma 13 implies that `p is (t, n−O( log2 t/tp))-decomposable.

6 Decomposition for d-Dimensional Euclidean Space

In Section 5, using a reduction from LSH, we showed that `2 is (t, n−O(1/t2))-decomposable.
Here, we will show that for dimension d = o(logn), using a direct approach, better decom-
position could be constructed.

Denote by Bd(x, r) the d dimensional ball of radius r around x (w.r.t `2 norm). Vd(r)
denotes the volume of Bd(x, r) (note that the center here is irrelevant). Denote by Cd(u, r)
the volume of the intersection of two balls of radius r, the centers of which are at distance u
(i.e. for ‖x− y‖2 = u, Cd(u, r) denotes the volume of Bd(x, r) ∩Bd(y, r)). We will use the
following lemma which was proved in [5] (based on a lemma from [27]).

I Lemma 14. ([5]) For any d ≥ 2 and 0 ≤ u ≤ r

Ω
(

1√
d

)
·
(

1−
(u
r

)2
) d

2

≤ Cd(u, r)
Vd(r)

≤
(

1−
(u
r

)2
) d

2

.

Using Lemma 14, we can construct better decompositions:

I Lemma 15. For every d ≥ 2 and 2 ≤ t ≤
√

2d/ln d, `d2 is O(t, 2−O( d
t2

))-decomposable.

Proof. Consider a set X of n points in `d2, and fix r > 0. Let B be some box which includes all
of X and such that each x ∈ X is at distance at least t ·r from the boundary of B. We sample
points s1, s2 . . . uniformly at random from B. Set Pi = BX(si, t·r2 ) \

⋃i−1
j=1BX

(
sj ,

t·r
2
)
. We
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sample points until X =
⋃
i≥1 Pi. Then, the partition will be P = {P1, P2, . . . .} (dropping

empty clusters).
It is straightforward that P is t·r-bounded. Thus it will be enough to prove that every pair

x, y at distance at most r, has high enough probability to be clustered together. Let si be the
first point sampled in Bd

(
x, t·r2

)
∪Bd

(
y, t·r2

)
. By the minimality of i, x, y /∈

⋃i−1
j=1Bd

(
sj ,

t·r
2
)

and thus both are yet un-clustered. If si ∈ Bd
(
x, t·r2

)
∩ Bd

(
y, t·r2

)
then both x, y join Pi

and thus clustered together. Using Lemma 14 we conclude,

Pr
P

[P(x) = P(y)] = Pr
[
si ∈ Bd

(
x,
t · r
2

)
∩Bd

(
y,
t · r
2

)
∣∣∣si is first in Bd(x, t · r2

)
∪Bd

(
y,
t · r
2

)]

≥
Cd(‖x− y‖2, t·r2 )

2 · Vd( t·r2 )

= Ω
(

1√
d

)(
1−

(
‖x− y‖2

t·r
2

)2
) d

2

= Ω
(

1√
d

)(
1− 4

t2

) d
2

= Ω
(
e−

2d
t2
− 1

2 ln d
)

= 2−O(d/t2) . J
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