25,851 research outputs found

    From access and integration to mining of secure genomic data sets across the grid

    Get PDF
    The UK Department of Trade and Industry (DTI) funded BRIDGES project (Biomedical Research Informatics Delivered by Grid Enabled Services) has developed a Grid infrastructure to support cardiovascular research. This includes the provision of a compute Grid and a data Grid infrastructure with security at its heart. In this paper we focus on the BRIDGES data Grid. A primary aim of the BRIDGES data Grid is to help control the complexity in access to and integration of a myriad of genomic data sets through simple Grid based tools. We outline these tools, how they are delivered to the end user scientists. We also describe how these tools are to be extended in the BBSRC funded Grid Enabled Microarray Expression Profile Search (GEMEPS) to support a richer vocabulary of search capabilities to support mining of microarray data sets. As with BRIDGES, fine grain Grid security underpins GEMEPS

    Application of Risk Metrics for Role Mining

    Get PDF
    Incorporating risk consideration in access control systems has recently become a popular research topic. Related to this is risk awareness which is needed to enable access control in an agile and dynamic way. While risk awareness is probably known for an established access control system, being aware of risk even before the access control system is defined can mean identification of users and permissions that are most likely to lead to dangerous or error-prone situations from an administration point of view. Having this information available during the role engineering phase allows data analysts and role engineers to highlight potentially risky users and permissions likely to be misused. While there has been much recent work on role mining, there has been little consideration of risk during the process. In this thesis, we propose to add risk awareness to role mining. We aggregate the various possible risk factors and categorize them into four general types, which we refer to as risk metrics, in the context of role mining. Next, we propose a framework that incorporates some specific examples of each of these risk metrics before and after role mining. We have implemented a proof-of-concept prototype, a Risk Awareness system for Role Mining (aRARM) based on this framework and applied it to two case studies: a small organizational project and a university database setting. The aRARM prototype is automatically able to detect different types of risk factors when we add different types of noise to this data. The results from the two case studies draw some correlation between the behavior of the different risk factors due to different types and amounts of noise. We also discuss the effect of the different types and amounts of noise on the different role mining algorithms implemented for this study. While the detection rating value for calculating the risk priority number has previously been calculated after role mining, we attempt to find an initial estimate of the detection rating before role mining

    Improving the Policy Specification for Practical Access Control Systems

    Get PDF
    Access control systems play a crucial role in protecting the security of information systems by ensuring that only authorized users are granted access to sensitive resources, and the protection is only as good as the access control policies. For enabling a security administrator to express her desired policy conveniently, it is paramount that a policy specification is expressive, comprehensible, and free of inconsistencies. In this dissertation, we study the policy specifications for three practical access control systems (i.e., obligation systems, firewalls, and Security-Enhanced Linux in Android) and improve their expressiveness, comprehensibility, and consistency. First, we improve the expressiveness of obligation policies for handling different types of obligations. We propose a language for specifying obligations as well as an architecture for handling access control policies with these obligations, by extending XACML (i.e., the de facto standard for specifying access control policies). We also implement our design into a prototype system named ExtXACML to handle various obligations. Second, we improve the comprehensibility of firewall policies enabling administrators to better understand and manage the policies. We introduce the tri-modularized design of firewall policies for elevating them from monolithic to modular. To support legacy firewall policies, we also define a five-step process and present algorithms for converting them into their modularized form. Finally, we improve the consistency of Security-Enhanced Linux in Android (SEAndroid) policies for reducing the attack surface in Android systems. We propose a systematic approach as well as a semiautomatic tool for uncovering three classes of policy misconfigurations. We also analyze SEAndroid policies from four Android versions and seven Android phone vendors, and in all of them we observe examples of potential policy misconfigurations

    Improving the Policy Specification for Practical Access Control Systems

    Get PDF
    Access control systems play a crucial role in protecting the security of information systems by ensuring that only authorized users are granted access to sensitive resources, and the protection is only as good as the access control policies. For enabling a security administrator to express her desired policy conveniently, it is paramount that a policy specification is expressive, comprehensible, and free of inconsistencies. In this dissertation, we study the policy specifications for three practical access control systems (i.e., obligation systems, firewalls, and Security-Enhanced Linux in Android) and improve their expressiveness, comprehensibility, and consistency. First, we improve the expressiveness of obligation policies for handling different types of obligations. We propose a language for specifying obligations as well as an architecture for handling access control policies with these obligations, by extending XACML (i.e., the de facto standard for specifying access control policies). We also implement our design into a prototype system named ExtXACML to handle various obligations. Second, we improve the comprehensibility of firewall policies enabling administrators to better understand and manage the policies. We introduce the tri-modularized design of firewall policies for elevating them from monolithic to modular. To support legacy firewall policies, we also define a five-step process and present algorithms for converting them into their modularized form. Finally, we improve the consistency of Security-Enhanced Linux in Android (SEAndroid) policies for reducing the attack surface in Android systems. We propose a systematic approach as well as a semiautomatic tool for uncovering three classes of policy misconfigurations. We also analyze SEAndroid policies from four Android versions and seven Android phone vendors, and in all of them we observe examples of potential policy misconfigurations
    • …
    corecore