2,335 research outputs found

    RouteKG: A knowledge graph-based framework for route prediction on road networks

    Full text link
    Short-term route prediction on road networks allows us to anticipate the future trajectories of road users, enabling a plethora of intelligent transportation applications such as dynamic traffic control or personalized route recommendation. Despite recent advances in this area, existing methods focus primarily on learning sequential transition patterns, neglecting the inherent spatial structural relations in road networks that can affect human routing decisions. To fill this gap, this paper introduces RouteKG, a novel Knowledge Graph-based framework for route prediction. Specifically, we construct a Knowledge Graph on the road network, thereby learning and leveraging spatial relations, especially moving directions, which are crucial for human navigation. Moreover, an n-ary tree-based algorithm is introduced to efficiently generate top-K routes in a batch mode, enhancing scalability and computational efficiency. To further optimize the prediction performance, a rank refinement module is incorporated to fine-tune the candidate route rankings. The model performance is evaluated using two real-world vehicle trajectory datasets from two Chinese cities, Chengdu and Shanghai, under various practical scenarios. The results demonstrate a significant improvement in accuracy over baseline methods.We further validate our model through a case study that utilizes the pre-trained model as a simulator for real-time traffic flow estimation at the link level. The proposed RouteKG promises wide-ranging applications in vehicle navigation, traffic management, and other intelligent transportation tasks

    112.social: Design and Evaluation of a Mobile Crisis App for Bidirectional Communication between Emergency Services and Citizens

    Get PDF
    Emergencies threaten human lives and overall societal continuity, whether or not the crises and disasters are induced by nature, such as earthquakes, floods and hurricanes, or by human beings, such as accidents, terror attacks and uprisings. In such situations, not only do citizens demand information about the damage and safe behaviour, but emergency services also require high quality information to improve situational awareness. For this purpose, there are currently two kinds of apps available: General-purpose apps, such as Facebook Safety Check or Twitter Alerts, already integrate safety features. Specific crisis apps, such as KATWARN in Germany or FEMA in the US, provide information on how to behave before, during and after emergencies, and capabilities for reporting incidents or receiving disaster warnings. In this paper, we analyse authorities’ and citizens’ information demands and features of crisis apps. Moreover, we present the concept, implementation and evaluation of a crisis app for incident reporting and bidirectional communication between authorities and citizens. Using the app, citizens may (1) report incidents by providing a category, description, location and multimedia files and (2) receive broadcasts and responses from authorities. Finally, we outline features, requirements and contextual factors for incident reporting and bidirectional communication via mobile app

    Crowdsourcing geospatial data for Earth and human observations: a review

    Get PDF
    The transformation from authoritative to user-generated data landscapes has garnered considerable attention, notably with the proliferation of crowdsourced geospatial data. Facilitated by advancements in digital technology and high-speed communication, this paradigm shift has democratized data collection, obliterating traditional barriers between data producers and users. While previous literature has compartmentalized this subject into distinct platforms and application domains, this review offers a holistic examination of crowdsourced geospatial data. Employing a narrative review approach due to the interdisciplinary nature of the topic, we investigate both human and Earth observations through crowdsourced initiatives. This review categorizes the diverse applications of these data and rigorously examines specific platforms and paradigms pertinent to data collection. Furthermore, it addresses salient challenges, encompassing data quality, inherent biases, and ethical dimensions. We contend that this thorough analysis will serve as an invaluable scholarly resource, encapsulating the current state-of-the-art in crowdsourced geospatial data, and offering strategic directions for future interdisciplinary research and applications across various sectors

    Evolving Clustering Algorithms And Their Application For Condition Monitoring, Diagnostics, & Prognostics

    Get PDF
    Applications of Condition-Based Maintenance (CBM) technology requires effective yet generic data driven methods capable of carrying out diagnostics and prognostics tasks without detailed domain knowledge and human intervention. Improved system availability, operational safety, and enhanced logistics and supply chain performance could be achieved, with the widespread deployment of CBM, at a lower cost level. This dissertation focuses on the development of a Mutual Information based Recursive Gustafson-Kessel-Like (MIRGKL) clustering algorithm which operates recursively to identify underlying model structure and parameters from stream type data. Inspired by the Evolving Gustafson-Kessel-like Clustering (eGKL) algorithm, we applied the notion of mutual information to the well-known Mahalanobis distance as the governing similarity measure throughout. This is also a special case of the Kullback-Leibler (KL) Divergence where between-cluster shape information (governed by the determinant and trace of the covariance matrix) is omitted and is only applicable in the case of normally distributed data. In the cluster assignment and consolidation process, we proposed the use of the Chi-square statistic with the provision of having different probability thresholds. Due to the symmetry and boundedness property brought in by the mutual information formulation, we have shown with real-world data that the algorithm’s performance becomes less sensitive to the same range of probability thresholds which makes system tuning a simpler task in practice. As a result, improvement demonstrated by the proposed algorithm has implications in improving generic data driven methods for diagnostics, prognostics, generic function approximations and knowledge extractions for stream type of data. The work in this dissertation demonstrates MIRGKL’s effectiveness in clustering and knowledge representation and shows promising results in diagnostics and prognostics applications

    Urban Generative Intelligence (UGI): A Foundational Platform for Agents in Embodied City Environment

    Full text link
    Urban environments, characterized by their complex, multi-layered networks encompassing physical, social, economic, and environmental dimensions, face significant challenges in the face of rapid urbanization. These challenges, ranging from traffic congestion and pollution to social inequality, call for advanced technological interventions. Recent developments in big data, artificial intelligence, urban computing, and digital twins have laid the groundwork for sophisticated city modeling and simulation. However, a gap persists between these technological capabilities and their practical implementation in addressing urban challenges in an systemic-intelligent way. This paper proposes Urban Generative Intelligence (UGI), a novel foundational platform integrating Large Language Models (LLMs) into urban systems to foster a new paradigm of urban intelligence. UGI leverages CityGPT, a foundation model trained on city-specific multi-source data, to create embodied agents for various urban tasks. These agents, operating within a textual urban environment emulated by city simulator and urban knowledge graph, interact through a natural language interface, offering an open platform for diverse intelligent and embodied agent development. This platform not only addresses specific urban issues but also simulates complex urban systems, providing a multidisciplinary approach to understand and manage urban complexity. This work signifies a transformative step in city science and urban intelligence, harnessing the power of LLMs to unravel and address the intricate dynamics of urban systems. The code repository with demonstrations will soon be released here https://github.com/tsinghua-fib-lab/UGI

    Searching and mining in enriched geo-spatial data

    Get PDF
    The emergence of new data collection mechanisms in geo-spatial applications paired with a heightened tendency of users to volunteer information provides an ever-increasing flow of data of high volume, complex nature, and often associated with inherent uncertainty. Such mechanisms include crowdsourcing, automated knowledge inference, tracking, and social media data repositories. Such data bearing additional information from multiple sources like probability distributions, text or numerical attributes, social context, or multimedia content can be called multi-enriched. Searching and mining this abundance of information holds many challenges, if all of the data's potential is to be released. This thesis addresses several major issues arising in that field, namely path queries using multi-enriched data, trend mining in social media data, and handling uncertainty in geo-spatial data. In all cases, the developed methods have made significant contributions and have appeared in or were accepted into various renowned international peer-reviewed venues. A common use of geo-spatial data is path queries in road networks where traditional methods optimise results based on absolute and ofttimes singular metrics, i.e., finding the shortest paths based on distance or the best trade-off between distance and travel time. Integrating additional aspects like qualitative or social data by enriching the data model with knowledge derived from sources as mentioned above allows for queries that can be issued to fit a broader scope of needs or preferences. This thesis presents two implementations of incorporating multi-enriched data into road networks. In one case, a range of qualitative data sources is evaluated to gain knowledge about user preferences which is subsequently matched with locations represented in a road network and integrated into its components. Several methods are presented for highly customisable path queries that incorporate a wide spectrum of data. In a second case, a framework is described for resource distribution with reappearance in road networks to serve one or more clients, resulting in paths that provide maximum gain based on a probabilistic evaluation of available resources. Applications for this include finding parking spots. Social media trends are an emerging research area giving insight in user sentiment and important topics. Such trends consist of bursts of messages concerning a certain topic within a time frame, significantly deviating from the average appearance frequency of the same topic. By investigating the dissemination of such trends in space and time, this thesis presents methods to classify trend archetypes to predict future dissemination of a trend. Processing and querying uncertain data is particularly demanding given the additional knowledge required to yield results with probabilistic guarantees. Since such knowledge is not always available and queries are not easily scaled to larger datasets due to the #P-complete nature of the problem, many existing approaches reduce the data to a deterministic representation of its underlying model to eliminate uncertainty. However, data uncertainty can also provide valuable insight into the nature of the data that cannot be represented in a deterministic manner. This thesis presents techniques for clustering uncertain data as well as query processing, that take the additional information from uncertainty models into account while preserving scalability using a sampling-based approach, while previous approaches could only provide one of the two. The given solutions enable the application of various existing clustering techniques or query types to a framework that manages the uncertainty.Das Erscheinen neuer Methoden zur Datenerhebung in räumlichen Applikationen gepaart mit einer erhöhten Bereitschaft der Nutzer, Daten über sich preiszugeben, generiert einen stetig steigenden Fluss von Daten in großer Menge, komplexer Natur, und oft gepaart mit inhärenter Unsicherheit. Beispiele für solche Mechanismen sind Crowdsourcing, automatisierte Wissensinferenz, Tracking, und Daten aus sozialen Medien. Derartige Daten, angereichert mit mit zusätzlichen Informationen aus verschiedenen Quellen wie Wahrscheinlichkeitsverteilungen, Text- oder numerische Attribute, sozialem Kontext, oder Multimediainhalten, werden als multi-enriched bezeichnet. Suche und Datamining in dieser weiten Datenmenge hält viele Herausforderungen bereit, wenn das gesamte Potenzial der Daten genutzt werden soll. Diese Arbeit geht auf mehrere große Fragestellungen in diesem Feld ein, insbesondere Pfadanfragen in multi-enriched Daten, Trend-mining in Daten aus sozialen Netzwerken, und die Beherrschung von Unsicherheit in räumlichen Daten. In all diesen Fällen haben die entwickelten Methoden signifikante Forschungsbeiträge geleistet und wurden veröffentlicht oder angenommen zu diversen renommierten internationalen, von Experten begutachteten Konferenzen und Journals. Ein gängiges Anwendungsgebiet räumlicher Daten sind Pfadanfragen in Straßennetzwerken, wo traditionelle Methoden die Resultate anhand absoluter und oft auch singulärer Maße optimieren, d.h., der kürzeste Pfad in Bezug auf die Distanz oder der beste Kompromiss zwischen Distanz und Reisezeit. Durch die Integration zusätzlicher Aspekte wie qualitativer Daten oder Daten aus sozialen Netzwerken als Anreicherung des Datenmodells mit aus diesen Quellen abgeleitetem Wissen werden Anfragen möglich, die ein breiteres Spektrum an Anforderungen oder Präferenzen erfüllen. Diese Arbeit präsentiert zwei Ansätze, solche multi-enriched Daten in Straßennetze einzufügen. Zum einen wird eine Reihe qualitativer Datenquellen ausgewertet, um Wissen über Nutzerpräferenzen zu generieren, welches darauf mit Örtlichkeiten im Straßennetz abgeglichen und in das Netz integriert wird. Diverse Methoden werden präsentiert, die stark personalisierbare Pfadanfragen ermöglichen, die ein weites Spektrum an Daten mit einbeziehen. Im zweiten Fall wird ein Framework präsentiert, das eine Ressourcenverteilung im Straßennetzwerk modelliert, bei der einmal verbrauchte Ressourcen erneut auftauchen können. Resultierende Pfade ergeben einen maximalen Ertrag basieren auf einer probabilistischen Evaluation der verfügbaren Ressourcen. Eine Anwendung ist die Suche nach Parkplätzen. Trends in sozialen Medien sind ein entstehendes Forscchungsgebiet, das Einblicke in Benutzerverhalten und wichtige Themen zulässt. Solche Trends bestehen aus großen Mengen an Nachrichten zu einem bestimmten Thema innerhalb eines Zeitfensters, so dass die Auftrittsfrequenz signifikant über den durchschnittlichen Level liegt. Durch die Untersuchung der Fortpflanzung solcher Trends in Raum und Zeit präsentiert diese Arbeit Methoden, um Trends nach Archetypen zu klassifizieren und ihren zukünftigen Weg vorherzusagen. Die Anfragebearbeitung und Datamining in unsicheren Daten ist besonders herausfordernd, insbesondere im Hinblick auf das notwendige Zusatzwissen, um Resultate mit probabilistischen Garantien zu erzielen. Solches Wissen ist nicht immer verfügbar und Anfragen lassen sich aufgrund der \P-Vollständigkeit des Problems nicht ohne Weiteres auf größere Datensätze skalieren. Dennoch kann Datenunsicherheit wertvollen Einblick in die Struktur der Daten liefern, der mit deterministischen Methoden nicht erreichbar wäre. Diese Arbeit präsentiert Techniken zum Clustering unsicherer Daten sowie zur Anfragebearbeitung, die die Zusatzinformation aus dem Unsicherheitsmodell in Betracht ziehen, jedoch gleichzeitig die Skalierbarkeit des Ansatzes auf große Datenmengen sicherstellen

    Uncertain voronoi cell computation based on space decomposition

    Get PDF
    LNCS v. 9239 entitled: Advances in Spatial and Temporal Databases: 14th International Symposium, SSTD 2015 ... ProceedingsThe problem of computing Voronoi cells for spatial objects whose locations are not certain has been recently studied. In this work, we propose a new approach to compute Voronoi cells for the case of objects having rectangular uncertainty regions. Since exact computation of Voronoi cells is hard, we propose an approximate solution. The main idea of this solution is to apply hierarchical access methods for both data and object space. Our space index is used to efficiently find spatial regions which must (not) be inside a Voronoi cell. Our object index is used to efficiently identify Delauny relations, i.e., data objects which affect the shape of a Voronoi cell. We develop three algorithms to explore index structures and show that the approach that descends both index structures in parallel yields fast query processing times. Our experiments show that we are able to approximate uncertain Voronoi cells much more effectively than the state-of-the-art, and at the same time, improve run-time performance.postprin

    A Data-driven Methodology Towards Mobility- and Traffic-related Big Spatiotemporal Data Frameworks

    Get PDF
    Human population is increasing at unprecedented rates, particularly in urban areas. This increase, along with the rise of a more economically empowered middle class, brings new and complex challenges to the mobility of people within urban areas. To tackle such challenges, transportation and mobility authorities and operators are trying to adopt innovative Big Data-driven Mobility- and Traffic-related solutions. Such solutions will help decision-making processes that aim to ease the load on an already overloaded transport infrastructure. The information collected from day-to-day mobility and traffic can help to mitigate some of such mobility challenges in urban areas. Road infrastructure and traffic management operators (RITMOs) face several limitations to effectively extract value from the exponentially growing volumes of mobility- and traffic-related Big Spatiotemporal Data (MobiTrafficBD) that are being acquired and gathered. Research about the topics of Big Data, Spatiotemporal Data and specially MobiTrafficBD is scattered, and existing literature does not offer a concrete, common methodological approach to setup, configure, deploy and use a complete Big Data-based framework to manage the lifecycle of mobility-related spatiotemporal data, mainly focused on geo-referenced time series (GRTS) and spatiotemporal events (ST Events), extract value from it and support decision-making processes of RITMOs. This doctoral thesis proposes a data-driven, prescriptive methodological approach towards the design, development and deployment of MobiTrafficBD Frameworks focused on GRTS and ST Events. Besides a thorough literature review on Spatiotemporal Data, Big Data and the merging of these two fields through MobiTraffiBD, the methodological approach comprises a set of general characteristics, technical requirements, logical components, data flows and technological infrastructure models, as well as guidelines and best practices that aim to guide researchers, practitioners and stakeholders, such as RITMOs, throughout the design, development and deployment phases of any MobiTrafficBD Framework. This work is intended to be a supporting methodological guide, based on widely used Reference Architectures and guidelines for Big Data, but enriched with inherent characteristics and concerns brought about by Big Spatiotemporal Data, such as in the case of GRTS and ST Events. The proposed methodology was evaluated and demonstrated in various real-world use cases that deployed MobiTrafficBD-based Data Management, Processing, Analytics and Visualisation methods, tools and technologies, under the umbrella of several research projects funded by the European Commission and the Portuguese Government.A população humana cresce a um ritmo sem precedentes, particularmente nas áreas urbanas. Este aumento, aliado ao robustecimento de uma classe média com maior poder económico, introduzem novos e complexos desafios na mobilidade de pessoas em áreas urbanas. Para abordar estes desafios, autoridades e operadores de transportes e mobilidade estão a adotar soluções inovadoras no domínio dos sistemas de Dados em Larga Escala nos domínios da Mobilidade e Tráfego. Estas soluções irão apoiar os processos de decisão com o intuito de libertar uma infraestrutura de estradas e transportes já sobrecarregada. A informação colecionada da mobilidade diária e da utilização da infraestrutura de estradas pode ajudar na mitigação de alguns dos desafios da mobilidade urbana. Os operadores de gestão de trânsito e de infraestruturas de estradas (em inglês, road infrastructure and traffic management operators — RITMOs) estão limitados no que toca a extrair valor de um sempre crescente volume de Dados Espaciotemporais em Larga Escala no domínio da Mobilidade e Tráfego (em inglês, Mobility- and Traffic-related Big Spatiotemporal Data —MobiTrafficBD) que estão a ser colecionados e recolhidos. Os trabalhos de investigação sobre os tópicos de Big Data, Dados Espaciotemporais e, especialmente, de MobiTrafficBD, estão dispersos, e a literatura existente não oferece uma metodologia comum e concreta para preparar, configurar, implementar e usar uma plataforma (framework) baseada em tecnologias Big Data para gerir o ciclo de vida de dados espaciotemporais em larga escala, com ênfase nas série temporais georreferenciadas (em inglês, geo-referenced time series — GRTS) e eventos espacio- temporais (em inglês, spatiotemporal events — ST Events), extrair valor destes dados e apoiar os RITMOs nos seus processos de decisão. Esta dissertação doutoral propõe uma metodologia prescritiva orientada a dados, para o design, desenvolvimento e implementação de plataformas de MobiTrafficBD, focadas em GRTS e ST Events. Além de uma revisão de literatura completa nas áreas de Dados Espaciotemporais, Big Data e na junção destas áreas através do conceito de MobiTrafficBD, a metodologia proposta contem um conjunto de características gerais, requisitos técnicos, componentes lógicos, fluxos de dados e modelos de infraestrutura tecnológica, bem como diretrizes e boas práticas para investigadores, profissionais e outras partes interessadas, como RITMOs, com o objetivo de guiá-los pelas fases de design, desenvolvimento e implementação de qualquer pla- taforma MobiTrafficBD. Este trabalho deve ser visto como um guia metodológico de suporte, baseado em Arqui- teturas de Referência e diretrizes amplamente utilizadas, mas enriquecido com as característi- cas e assuntos implícitos relacionados com Dados Espaciotemporais em Larga Escala, como no caso de GRTS e ST Events. A metodologia proposta foi avaliada e demonstrada em vários cenários reais no âmbito de projetos de investigação financiados pela Comissão Europeia e pelo Governo português, nos quais foram implementados métodos, ferramentas e tecnologias nas áreas de Gestão de Dados, Processamento de Dados e Ciência e Visualização de Dados em plataformas MobiTrafficB
    corecore