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Abstract

Spatial-temporal trajectory data contains rich information about moving objects and phenomena, hence

have been widely used for a great number of real-world applications. However, the ubiquity and

complexity of spatial-temporal trajectory data has made it challenging to efficiently store, process,

and query such data. Furthermore, the increasing number of users also challenges the ability of

trajectory-based services and analytics to handle the query workload and response to multiple requests

in a satisfactory time.

Over the last few years, a new class of systems has emerged to handle large amounts of data in an

efficient manner, referred as distributed in-memory database systems. These systems were designed

to overcome the difficulties to scale traditional structured and unstructured data loads that some

applications have to handle. Spark has became the framework of choice for large-scale low-latency

data processing using distributed in-memory computation. However, Spark-based systems still lack the

ability to handle several trajectory database tasks in a memory-wise manner. Some desirable feature of

trajectory database systems include, data preparation and preprocessing, large-scale data storage and

retrieval, and multi-user concurrent query processing. Providing a full-fledged system architecture

supporting these features is challenging, and yet an issue. Firstly, trajectories are unstructured data

types, coupled with spatial and temporal attributes, and organized in a sequential manner, which

is hard to fit into traditional relational and spatial database systems; furthermore, trajectory data is

available in a myriad of formats, each of which contains its own data schema and attributes. Moreover,

trajectory datasets are highly skew and inaccurate, due to hotspots, transmission errors, and collecting

devices inaccuracy, for instance. In addition, since Spark is a distributed parallel framework, we must

account for data partitioning and load-balancing. In spatial and spatial-temporal databases, balanced

data partitioning structures are built in a dynamic fashion as the data is consumed, nevertheless,

Spark provides a read-only data structure that does not directly support adaptive partitioning after the

partitioning model is constructed. Finally, data storage and query processing on top of Spark should be

memory-wise, since the datasets may be too large to comfortably fit in the cluster memory; moreover,

memory space may be wasted by storing unnecessary data partitions. Optimizing load-balancing and

memory usage are essential to a good Spark application.

Therefore, driven by the increasing interest in scalable and efficient systems for trajectory-based

analytics, we propose a distributed in-memory database system for memory-wise storage and scalable

processing of spatial-temporal trajectory data, with low query latency and high throughput. We

build our system on top of the Spark MapReduce framework, which provides an in-memory and

fault-tolerant environment for distributed parallel processing of large-scale data. Existing works on

spatial data in MapReduce, however, either lack support for spatial-temporal trajectory data, or only

provide disk-based storage with costly I/O, which negatively affects query performance. Furthermore,

none of the state-of-the-art applications address the problem of memory-wise utilization, which is the

main drawback of in-memory based frameworks such as Spark. In this thesis we propose new features

to the Spark framework, in order to provide native support for spatial-temporal trajectory data, with



low latency, high throughput, and memory-wise storage.

Our architecture follows a complete framework for trajectory data storage and processing, with

trajectory data preparation, data preprocessing, data storage, and concurrent query processing. Firstly,

we provide a novel model for trajectory data representation, and a system for loading, parsing,

integration, and compression of trajectory data. Secondly, we introduce a novel framework for

trajectory preprocessing using map-matching on top of Spark, in order to achieve data quality by

means of data cleaning and simplification. Finally we introduce two novel approaches for data storage

and multi-user trajectory query processing on top of Spark. In the first approach, we proposed a novel

partitioning and storage methods focused on distance-based queries; in addition, we provide a system

for trajectory distance measures evaluation, due to the extensive number of techniques available. In the

second approach, we propose a novel memory-wise and workload-aware system for trajectory data

storage, focused on data retrieval and spatial-temporal queries over large scale trajectory data; a key

feature of our system is the ability to identify query hotspots, and exchange data between main-memory

and disk based on the query workload, yet leveraging the scalability, fault-tolerance, efficiency, and

concurrency control features of Spark.

Our extensive experiments demonstrate that our system architecture is efficient on integrating,

cleaning, and storing large-scale trajectory data on top of Spark, in a distributed and memory-wise

manner, addressing the Spark’s limitations. Furthermore, experiments demonstrates the superiority

of our approach in processing traditional and complex trajectory data queries, outperforming the

state-of-the-art systems in throughput and memory usage. Although the efforts of current techniques

provide a good starting point for trajectory data management on top of Spark, they are unable to

provide all the features of our work. The superiority of our architecture comes from the research

and development of both novel and state-of-the-art techniques for trajectory data management, using

a well established framework for large-scale data applications. We believe our system will support

scientists and professionals working with large-scale trajectory-based applications. For the best of

our knowledge, this is the first work to cover all this range of important functionalities for large-scale

trajectory data.
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Chapter 1

Introduction

1.1 Research Proposal

Due to the pervasiveness and high availability of GPS-equipped devices, the efficient and reliable

storage and processing of spatial-temporal trajectory data, are necessary, and play a key role in

trajectory data-driven applications, which often demand querying and processing complex algorithms

over large-scale datasets. Trajectory data contains rich information about moving objects, thus have

been used in several real-life applications, from recommendation systems to moving-objects pattern

analysis. Some applications include, routes recommendation based on the path use frequency in a

specified time period [97]; time prediction of public transportation by means of bus routes analysis in a

given area [34]; find points of interest (POI), such as touristic attractions, hotels or restaurants, and the

popular routes in a given spatial region [32] [196]; identify gathering patterns in specific urban areas

for recommendation systems [194]; support travelers to plan a trip itinerary to an given unfamiliar

location (trip recommendation) [197] [198]; predict the best transportation mode based on the time

taken and frequency of moving objects within a given area [196]; drivers pastern analysis, city traffic

planing, dynamic event identification, human interaction, and so on [33] [36] [58] [62] [198].

1.1.1 Motivation and Importance

Database systems dedicate their efforts towards reliable and efficient data storage and fast query

performance. The complexity of the query highly depends on the type of data in the database.

However, the massive amount of GPS data available, as well as the increasing number of users of

location-based services, challenge the efficiency and scalability of conventional centrally-disk-based

database systems, since they have been optimized for I/O, they face great performance deterioration as

the dataset grows [168]. For instance, one of our trajectory datasets contains over 250 billions GPS

records (over 1.2TB data) collected in only one month from three different cities in China. Therefore,

providing a scalable system for trajectory data management is important due to the increasing amount

of GPS data available, and the high value of information aggregated with trajectory data.

Furthermore, trajectory data are a complex and unstructured data types, coupled with spatial,
1
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temporal, and semantic data organized in a sequential manner, which makes it difficult for conventional

database systems to manage such data. Moreover, several data sources and collection devices are avail-

able, and they collect and store their data in many different formats; thus, this heterogeneity of formats

also makes it challenging for conventional database systems to model the data. In addition, trajectory

data is very susceptible to noise, due to errors and inaccuracy of collection devices. Consequently, to

model, manage, and query such large amount of heterogeneous and complex spatial-temporal data

is still a challenge. Therefore, since data quality can negatively affect data analytics, trajectory data

preprocessing is very important to improve the quality and add more value to data analytics and

trajectory data-based systems. Moreover, data representation and integration are necessary, since

trajectory data are available in a great number of sources and heterogeneous formats.

Moreover, with the increasing demand for low-latency services over large-scale data, as well as the

increasing number of users of spatially-aware services, a trajectory database system should be able to

serve multiple requests over large-scale datasets, providing good scalability, high throughput, and fast

query response. For instance, Google revealed that more than 1 Billion users access Google Maps every

month, and 30% of Google searches have local intent or geographic aspect 1. To address this important

problem, an alternative is to use distributed parallel computation, while storing data in main-memory

to reduce I/O cost, with reliability and fault-tolerance. However, distributed systems should account

for data partitioning and workload-balancing. Furthermore, a multi-user and in-memory database

system should be resource-wise, since memory availability can be a bottleneck, specially in commodity

hardwares. Load balancing and memory usage are key points in distributed in-memory applications

over multi-user environments.

1.1.2 State-of-the-art and Limitations

Existing distributed systems for spatial data employ balanced partitioning structures, such as Quadtree,

kd-Tree, and Rtree, to organize the data space into partitions of spatially close objects, in order

to support distributed storage and parallel processing, with workload balancing. However, current

distributed systems for spatial and spatial-temporal data are unable to provide all the features previously

discussed. For instance, SpatialHadoop [48], HadoopGIS [6], MD-HBase [103], ScalaGiST [94],

and AQWA [12] [11] are disk-based systems and do not support trajectory data. GeoSpark [175],

SparkGIS [16], and SpatialSpark [174] provide an in-memory-based system for spatial data on top

of Spark; however, they do not provide support for trajectory data. CloST [146], TRUSTER [172]

and PRADASE [98] provides support for trajectory data storage and query using spatial partitioning

(i.e. grid and quadtree), however they are disk-based systems thus do not address memory usage

and storage.OceanST [178] provides a distributed in-memory storage for trajectories on top of Spark,

however it does not consider the query workload (i.e. query hotspots), and assumes the entire data

fits in the cluster memory.Finally, Simba [168] is a Spark-based framework for spatial data analytics,

and supports spatial indexing and spatial operations natively, such as range query, k-NN, distance

1Source: Google Research, London, 2015
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join, and k-NN join. Simba extends the SQL grammar for spatial predicates so that users can express

spatial objects and operations in a SQL-like fashion (e.g. POINT, RANGE, KNN, DISTANCE

JOIN). However, Simba still does not provide native support for trajectory data. Furthermore, none of

the aforementioned systems address the problems of trajectory data integration, representation, and

preprocessing. Table 1.1 summarizes the related works and their main features and limitations. In the

literature review, Chapter 2, we provide a thorough review and comparison of these systems, as well as

a discussion on their contributions and limitations.

Table 1.1: Related systems and features.

System Memory Trajectory Workload Pre-
Based Data Aware processing

SpatialHadoop [48] × × × ×
Hadoop-GIS [6] × × × ×
MD-HBase [103] × × × ×

AQWA [12] × × X ×
ScalaGiST [94] × × X ×

Simba [168] X × × ×
GeoSpark [175] X × × ×

SpatialSpark [174] X × × ×
SparkGIS [16] X × × ×
OceanST [178] X X × ×

TRUSTER [172] × X × ×
PRADASE [98] × X × ×

CloST [146] × X × ×
Our Proposal X X X X

In summary, these are the main limitations of existing works, and the main desirable features we

identified for large-scale GPS trajectory data management system.

• Data Representation and Integration: Since raw GPS trajectory data are available in many

different sources and formats, a system should be able to load and integrate data from different

sources into a single data representation. Although conceptual models for trajectory data

exist [138], it is challenging to interpret and integrate trajectory data from the multitude of

textual formats and sensors available, and it is still an issue. Furthermore, some devices collect

data with high sampling rates, thus, trajectory data compression and simplification is also

necessary to reduce storage consumption.

• Trajectory Data Preprocessing: Raw trajectory data can be noisy and inaccurate, therefore

data preprocessing techniques, such as map-matching, are necessary to ensure good data quality.

Accuracy-driven algorithms such as [71] [92] [101] [164], can achieve high accuracy, but are

limited to small datasets, since they focus on the accuracy of the matching rather than its

performance and scalability. Performance-based algorithms such as [72] [147] [150] [167],

on the other hand, do not account for load balancing and memory usage, and are limited for

disk-based computation.
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• Resource-Wise and Reliable Storage: A database system for large-scale trajectory data should

support distributed in-memory storage of spatial-temporal data, with fault-tolerance and load-

balancing, in order to achieve scalability, efficiency, and reliability. Furthermore, the system

should provide workload-aware data storage, with resource-wise utilization, in order to reduce

memory consumption without considerably affecting the system’s performance. Existing dis-

tributed systems, however, either lack resources- and memory-wise utilization, or do not consider

memory storage.

• Efficient Query Processing: Furthermore, a system should provide high throughput and low

latency queries, by leveraging parallel and concurrent query processing for multi-user applica-

tions, due to the increasing demand for real-time systems with multiple requests. Existing works

on trajectory data management, however, either lack support for efficient trajectory data query

processing, since they employ centrally based-processing, which affects performance, and are

not scalable; or they do not consider multi-user environments and concurrency control.

We go beyond the state-of-the-art and propose a novel system that holds all mentioned features

for large-scale GPS trajectory data. We leverage the distributed in-memory properties of the Spark

framework, and introduce new features to Spark in order to achieve the aforementioned goals.

1.1.3 The Case for Spark

Spark [181] goes beyond distributed database systems, and can fill the gap between performance,

scalability, and fault-tolerance, as well as efficient resources allocation of concurrent jobs. Spark

provides a robust distributed data structure for MapReduce tasks in main-memory, and have been used

in a handful number of data-intensive analytics [14] [105] [182] [185], including spatial databases [168]

[175]. Spark also provides a SQL language engine to support relational data processing in a SQL-like

fashion [14]. However, storage and processing of trajectory data using Spark is challenging, since

Spark is not equipped for supporting sequential and spatial-temporal data in its core. Furthermore,

since Spark is a in-memory-based framework, data storage and query processing on top of Spark

should be memory-wise, for instance, the trajectory datasets may be too large to comfortably fit in

the cluster memory. However, even though Spark possesses both in-memory and on-disk storage,

the exchange of data from memory to disk is not based on the query workload, but in the memory

availability. Optimizing load-balancing and memory usage are essential to a good Spark application.

Performance: Performance can be measured as the response time for a given piece of work or task

submitted to the system. High performance systems are important in real-time applications in order to

improve the response time and resources utilization of tasks that are either computationally heavy; or

would spend large amounts of computational and hardware resources (e.g. CPU, memory network). In

our project, performance improvement is achieved using Spark for in-memory data storage, parallel

query processing, and spatial-aware partitioning in order to reduce the amount of data necessary to

process a single query, as well as reduce network data exchange in the Spark cluster. In addition, our
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Spark system uses a work-load aware storage to keep hot data in memory improving query response

time and saving Spark memory usage, which also improves query throughput by improving resources

availability.

System Throughput: Throughput can be measured as the maximum number of tasks (e.g. user

queries, operations) a system can execute within a time interval, in another words, it’s the processing

rate of the system, and account for the sum of the data and responses that are delivered to all terminals

in the cluster. Improving throughput plays a key role in multi-user system where large amount of

user queries need to be executes and large amount of data needs to be moved through the network.

In our system throughput enhancement is achieved using query scheduling and concurrency control,

in addition we ensure balanced data partitioning and resource-wise utilization in order to increase

resources availability in the Spark cluster, reducing memory usage and allowing more queries to be

executed concurrently.

1.2 Contributions

Motivated by the growing interest in scalable and efficient systems for spatial-temporal data, and the

high value of information aggregated to trajectory data, in this research project we extend the Spark

framework, and introduce new features to the system’s architecture in order to cover the state-of-the-art

limitations. The ultimate goal is to provide a robust Spark-based system for large-scale trajectory data

engineering and management. In summary, the main contributions and achievements of this research

project are the following:

• Trajectory Data Integration and Representation: We designed a new spatial-temporal data

loading and integration system. We propose a representation format for raw trajectory data (e.g.

spatial-temporal attributes), in order to integrate data from different sources into a single format.

The data loader is also responsible for data compression and to collect statistical information

about the input datasets (i.e. Metadata). Further details can be found at Section 3.1 of this thesis,

and in our published work [117].

• Trajectory Data Preprocessing using Map-Matching: We introduce a new trajectory pre-

processing framework using Map-Matching in order to improve data quality, and provide data

simplification. We provide an estimative of the distributed map-matching workload cost, in

order to tune the framework parameters. In addition, we employ a safe boundary threshold for

trajectory segmentation and replication to reduce uncertainty. Further details can be found at

Section 3.2 of this thesis, and in our published work [119].

• Workload-aware Trajectory Data Partitioning and Retrieval: We employ a hierarchical

Quadtree-based partitioning for load-balancing. We provide an estimative of the distributed

spatial-temporal query workload cost, in order to tune the system parameters and optimize both

data retrieval and sampling-based partitioning. In addition, we introduce a workload-aware
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Figure 1.1: Road network example.

storage controller to Spark in order to reduce memory usage. We provide an Active-Time Window

mechanism to adapt the data storage based on the query workload, such that only partitions

containing high density query areas (i.e. query hotspots) are kept in memory. Further details can

be found at Chapter 4 of this thesis, and in our published work [118].

• Trajectory Distance-Based Partitioning: We propose a second approach for data partitioning

using a Voronoi-diagram based approach, focusing on k-NN trajectory queries. We propose

a bulk-loading in-memory partitioning strategy based on Voronoi diagrams and time pages,

named Voronoi Pages, to support multiple k-NN trajectory query in MR, and a spatial-temporal

composite index, named VSI (Voronoi Spatial Index) and TPI (Time Page Index), to prune the

search space and speed up trajectory similarity search. Further details can be found at Chapter 5

of this thesis, and in our published work [115]. In addition,

Even though our work is done on top of the Spark framework, achieving a robust in-memory-based

system that provides all the aforementioned goals is not trivial, and demands significant research,

design, implementation, and experimentation efforts. For the best of our knowledge, this is the first

work to cover all this range of important functionalities for large-scale trajectory data.

1.2.1 Challenges

Trajectory data is difficult to fit into the Spark MapReduce computation model, since Spark does not

natively support sequential and spatial-temporal data. Following we present the main challenges of

trajectory data management on top of Spark.

• Data Complexity and Temporal Dimension: Since trajectory data are queried by both spatial

and temporal attributes, temporal dimension must be taken into account [163]; for instance,

consider the road network in Figure 1.1 connecting two spatial regions, there may be thousands

of trajectories passing thought the road Ti, however the application may be interested in retrieving

trajectories within a specific region and time period. However, a simply partitioning the data

space may not suffice for some queries, for instance, imagine three trajectories passing through

roads T1 : {p1, p2}, T2 : {p3, p4} and T3 : {p5, p6}, if we want to retrieve the Nearest-Neighbor
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trajectory to T1 within time t = [0,10], the application should return T3 instead of T2. Only

grouping trajectories by spatial region in that case is not strict enough.

• Skewness, Data Partitioning, and Load-Balancing: Furthermore, since Spark is a distributed

parallel framework, we must account for data partitioning and load-balancing. However, tra-

jectory datasets are highly skew, for instance, in Figure 1.1 the density of moving object’s

trajectories passing through Region 1 (city region) is much larger than in Region 2 (suburb

region). Therefore, we must provide a partitioning strategy as uniform as possible to avoid high

dense partitions and load imbalance, yet keeping spatial proximity, which is a key factor in

spatial data processing in MR [43]. However, balanced space partitioning structures should be

built in a dynamic fashion as the data is consumed, nevertheless, Spark’s RDD is a read-only data

structure that does not directly support adaptive partitioning after the RDD is constructed. Thus,

related works based on dynamic spatial partitioning such as [146] cannot be applied directly,

since we need to find the best partitioning schema beforehand.

• Query Workload and Memory Usage: Moreover, since Spark is a in-memory-based frame-

work, data storage and query processing on top of Spark should be memory-wise, for instance,

the GPS trajectory datasets may be too large to comfortably fit in the cluster memory; moreover,

as an effort to reduce main-memory consumption, the application should be able to react to

changes in the query workload efficiently, since some spatial regions, such as urban areas,

receive more query requests (hotspots), thus data records in such areas should receive priority

for in-memory storage over least requested data. Optimizing load-balancing and memory usage

are essential to a good Spark application.

1.3 System Architecture Overview

The main components of our system and their features, and how the components developed during this

research are interrelated, are shown in Figure 1.2.

Since our system build on top of Spark, and therefore inherits the frameworks’ functionalities.

Indexing and storage are done in-memory on top of Spark’s RDD structure. Least required data,

however, is stored on disk (HDFS). Both Spark-based querying and storage are done using the

MapReduce model. In order to fill the gaps previously described, we designed our system into four

components to support trajectory data management on top of Spark, namely, (1) data representation

and integration, (2) data preprocessing using map-matching, (3) workload-aware trajectory data storage

and retrieval, (4) distance-based storage and similarity query processing. The components are briefly

described in the next sections.

1.3.1 Trajectory Data Preparation and Preprocessing

Trajectory Data Loader: We designed a novel parallel system for trajectory data integration and

representation, with support for synthetic trajectory generation, and trajectory data compression
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Figure 1.2: System Main Features.

(lossless Delta compression). This system provides templates for trajectory data representation (e.g.

spatial-temporal attributes, textual attributes) providing a single data model for integration of different

input datasets. Furthermore, this module is responsible to manage the system metadata, such as system

and user information, and data statistics.

The application parses a given input data to a predefined output and compressed data format, and

stores the formated data into any of the provided primary storage platforms, i.e. Local directory,

MongoDB [100], and HDFS [68]. This allows our Spark system to process data from multiple

datasets in a single storage platform, without the need of re-implementation. In order to represent and

integrate trajectory data from different sources, models and schema, we introduce the Trajectory Data

Description Format (TDDF), a data description format for spatial-temporal trajectory data (Chapter 3

and [117]).

Map-Matching Framework We introduce a novel Spark-based framework to perform map-matching

on the integrated data, in order to enhance data quality. We combine a sampling-based Quadtree space

partitioning construction, and Spark-based computation in batches, to achieve horizontal scaling of

map-matching, as well as reduce cluster memory usage. We also employ a safe spatial-boundary

approach to preserve matching accuracy of boundary objects. In addition, a cost function for the

distributed map-matching workload is provided. Our extensive experiments demonstrate that our

framework is efficient and scalable to process map-matching on large-scale data (see Chapter 3.2

and [119]).

Figure 1.3 shows the workflow from the trajectory Data Loader system to the Map-Matching

Framework.
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Figure 1.3: Preparation and Preprocessing Workflow.

1.3.2 Workload-aware Trajectory Storage

We designed a Spark-based system for scalable and memory-wise storage of GPS trajectory data, and

low-latency workload-aware query processing with fault-tolerance. We exploit the in-memory nature

and distributed parallel properties of Spark for scalable and low-latency trajectory data storage and

processing (Chapter 4 and [118]).

We take advantage of the hierarchical partitioning of CloST [146] for trajectory data loading

efficiency, and extend CloST to allow a memory-wise and workload-aware data storage and query on

top of Spark. Since building a dynamic spatial index model from a large dataset can be cumbersome,

and a data partitioning model must be provided to Spark beforehand, we address this limitation by

providing a sampling-based quad-index construction using a cost-based model, and finally employ the

sample-based model to Spark RDD partitioning.

In addition, we add a workload-aware storage mechanism to CloST in order to reduce memory

usage. We provide an Active-Time mechanism to adapt the data storage based on the query workload,

such that only RDD partitions containing high density query areas are kept in memory.

Finally, we provide an estimative of the distributed spatial-temporal query workload cost, in order

to tune the system parameters and optimize both data retrieval and sampling-based partitioning.

1.3.3 Distance-Based Storage and Query

We proposed a novel parallel approach for the k-NN trajectories problem in a distributed and multi-user

environment using Spark. k-NN trajectory is a complex an expensive operation, therefore, we proposed

a space/time data partitioning based on Voronoi diagrams and time pages, named Voronoi Pages,

in order to provide both spatial-temporal data organization and process decentralization, so that we

are able to process multiple k-NN queries in parallel using Spark. We proposed a spatial-temporal

composite index, named Voronoi Spatial Index (VSI) and Time Page Index (TPI), to prune the search

space and speed up trajectory similarity search. Finally, we provide an algorithm to calculate the

k-NN using our spatial-temporal index on top of Spark, with high throughput and fast query response

(Chapter 5 and [115]).
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Trajectory Distance Techniques Evaluation: In addition, we accomplished a survey on trajectory

similarity measures, comparing and discussing the effectiveness of many classical algorithms to

identify the similarity between trajectories with different characteristics, such as: trajectories with

noise, trajectories with non-uniform sampling rate, trajectories with point shifting, different scales

and different speed. We developed a benchmarking system containing a wide range of trajectory

distance measure techniques, and a means to compare these techniques under different circumstances

and parameters (Appendix A and [116]).

1.4 Thesis Organization

The remainder chapters of this thesis are organized as follows.

In Chapter 2 we give some background knowledge to help the reader, and present the literature

review, including a thorough discussion and comparison of the related work, and a deep introduction

of the domains related to this thesis.

In Chapter 3 we address the problems of trajectory data preparation and preprocessing. Firstly,

we describe a novel system to represent and integrate trajectory data from different sources and

formats. We introduce the Trajectory Data Description Format (TDDF), a data description format for

spatial-temporal trajectory data representation. The TDDF was designed based on a survey on several

real GPS trajectory datasets, both public and private, accessible by our research groups. Then, based on

the user-provided TDDF, our application loads and parses the input data into the integrated format in a

compressed way. Our system also generates statistical information (Metadata) about the input datasets,

which are used in the Spark algorithms, and can also be used to generate synthetic data for experimental

purposes. Secondly, we introduce a novel framework for trajectory data preprocessing using parallel

map-matching on top of Spark, for scalable and fast processing of offline map-matching in a distributed

in-memory fashion. We provide an estimative of the distributed map-matching workload cost, in order

to tune the system parameters and optimize the sampling-based data partitioning. We employ Quadtree

partitioning for trajectory and map data. Our experiments demonstrates that Quadtree provides an

efficient and fairly uniform space partitioning when compared with other commonly used dynamic

structures, such as k-d Tree and STR-Tree, achieving better performance and scalability. Since building

a dynamic spatial index model from a large dataset can be cumbersome, and a data partitioning model

must be provided to Spark beforehand, we address this limitation by providing a sampling-based

quad-index construction using a cost-based model. Finally, we co-partition both map and trajectory

data using the quad-index model into the Spark’s RDD. Once the map data is loaded, trajectory records

can be matched independently, thus we provide a batch-based loading and processing of the input

trajectory dataset to reduce distributed memory consumption, specially in situations where the cluster

memory size is a constraint. Our experiments demonstrate that our approach can achieve efficient and

scalable map-matching processing.

In Chapter 4 we introduce our workload-aware system for trajectory data storage and retrieval, we

describe the features we developed in order to allow Spark to manage trajectory data in a memory-wise



1.4. THESIS ORGANIZATION 11

manner, and low-latency workload-aware search with fault-tolerance. Firstly, we provide an estimative

of the distributed spatial-temporal query cost, in order to tune the system parameters and optimize both

data retrieval and sampling-based partitioning. We employ a hierarchical Quadtree based partitioning

proposed in CloST [146], for it provides a fairly uniform partitioning of spatial-temporal trajectory

records. We extend the CloST index to store the status of the data partitions, so that we can efficiently

identify query hotspots. Since building a dynamic spatial index model from a large dataset can be

cumbersome, and a data partitioning model must be provided to Spark beforehand, we address this

limitation by providing a sampling-based quad-index construction, using a cost-based model, and

finally employ the sample-based model to Spark RDD partitioning. In addition, the system can react

to changes in the query workload in order to organize the storage level to reduce memory usage. We

provide an Active-Time Window mechanism to adapt the storage level based on the query workload,

such that only RDD partitions containing query hotspots are kept in memory. Finally, we provide an

efficient data retrieval module for concurrent queries; in this chapter we focus on spatial-temporal

range queries, for they are the most fundamental operations in trajectory databases.

In Chapter 5 we describe our contribution on trajectory data storage aiming distance-based queries

using Spark. We propose a parallel approach to the k-NN trajectories problem in a distributed and multi-

user environment using Spark. We propose a space/time data partitioning based on Voronoi diagrams

and time pages, named Voronoi Pages, in order to provide both spatial-temporal data organization

and process decentralization. In addition, we propose a spatial-temporal index to prune the search

space, improve query latency and system throughput. Briefly, we uniformly partition the space into

Voronoi cells using k-Means clustering, and each Voronoi cell into static temporal partitions (i.e.

pages). Trajectories are split into sub-trajectories according to their spatial-temporal extent, such

that each sub-trajectory is mapped to one Voronoi Page. We process a k-NN query in parallel in a

filter-and-refinement manner, first filtering candidate pages using our proposed spatial-temporal index,

and then running a precise check on each candidate page. Each process unit can manage a number of

pages within a Spark RDD in parallel, and multiple concurrent queries can be served by Spark over

its RDD. We perform extensive experiments to demonstrate the performance and scalability of our

approach.

Finally, In Chapter 6 we present the conclusions of this thesis. The Appendix sections contain

auxiliary material and additional research done during this thesis timeline.





Chapter 2

Literature Review

Our work is at the intersection of trajectory data management, distributed and parallel computation

using MapReduce framework, and in-memory data storage and processing using Spark framework.

This literature review is organized as follows. In Section 2.1 we firstly give a background knowledge

on trajectory data management, spatial partitioning, MapReduce, and Spark to help the reader. In

Sections 2.1 and 2.2 we introduce some related work in Spatial and Trajectory data management

respectively. In Section 2.4 we discuss the related work in distributed parallel computation, including a

background knowledge and related work in the MapReduce framework (Section 2.4.2). In Section 2.5

we discuss in-memory BigData management, including a background knowledge and literature using

the Spark MapReduce framework (Section 2.5.1). Finally, in Section 2.6 we introduce the related work

in spatial and trajectory data management using MapReduce and Spark.

2.1 Spatial Data Management

In recent years, the volume of spatial and spatial-temporal data available has grown exponentially, due

to the easy access to inexpensive location-aware sensors. Spatial data has great commercial and social

value; individuals and organizations rely on location-based services to make critical decisions every

day. Therefore, the management of the increasing volume of spatial and spatial-temporal data has

become an urgent issue.

A number of SQL and NoSQL GIS technologies have been developed with the purpose of collect,

store, process, and share spatial data, such as Spatial Data Warehouses (SDW) [17] [110], Spatial Data

Infrastructures (SDI) [60] [129], and Geographic DBMS (e.g. Oracle Spatial and PostGIS). However,

the huge amount of unstructured and semi-structured spatial data available have increased the interest

to incorporate spatial data into cloud environments and distributed databases, in order to maintain

large-scale spatial data and support efficient query processing. In this section we introduce the main

ideas on spatial data management.
13



14 CHAPTER 2. LITERATURE REVIEW

2.1.1 Spatial Queries

An important component of spatial databases and GIS applications is the ability to process spatial

operations and spatial queries. We can classify spatial operations and spatial queries into the main

following categories:

• Geometric Operations: [37] operations based on the geometry and spatial dimension of the

objects in the dataset (e.g. points, polygons, line segments). Usually return a number or create

new geometries from the existing ones. This category includes operations such as: line length,

objects distance, shortest-distance, farthest-distance, polygon area, polygon union, skyline,

convex hull, minimum bounding rectangle (MBR), etc. Figure 2.1 shows an example of three

geometric operations over points and polygons.
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Figure 2.1: Geometric operations example: (b) polygons union, (d) points set skyline, (e) points set
convex hull.

• Boolean Queries: receives a predicate as argument, and evaluates the spatial objects for the

given predicate. Usually returns one or many objects from the dataset. We divide this category

into the two main sub-groups.

– Topology Based Queries: [44] [122] evaluates the objects based on a spatial relationship

as predicate. This category includes: intersect, contains, disjoint, touch, overlap, etc.

Figure 2.2 shows an example of four topological queries over points, polygons and line

segments.

– Distance Based Queries: [95] [186] evaluate the objects based on proximity or spatial

distance as predicate. This category includes queries such as: nearest neighbors, reverse

nearest neighbors, distance join, farthest pair, closest pair, distance search, etc. Figure 2.3

shows an example of three distance-based queries over a points dataset.

Primitive queries such as Range Selection can be classified here as topology-based query, once the

goal is to select spatial objects that overlap with a given query region. Distance Join and k-NN Join,

on the other hand, can be classified as a distance-based queries.

The complexity of the query highly depends on the type of data in the dataset, for instance, in

geo-textual databases, where objects contains the location and a set of keywords as attributes, one

can use both textual and spatial predicates to process spatial keyword queries [22] [29] [192]. For
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Figure 2.2: Topological queries example: (a) spatial object O1 intersects with O2, (b) object O1
contains {O2,O3,O4}, (c) objects {O2,O3} touch O1, (d) objects {O1,O2,O3} are disjoint.
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Figure 2.3: Distance-based queries example: (a) the 5-Nearest-Neighbors (5-NN) of the query point
Q1, (b) distance d selection from query point Q2, (c) closest Q3 and farthest Q4 pairs in the input
dataset.

trajectory databases the problem is even more challenging, due to the temporal dimension, sequential

nature, and asynchronous sampling rate of trajectory points. We discuss trajectory queries in more

details in Section 2.2.2.

2.1.2 Spatial Partitioning and Indexing

Most queries over spatial data, such as spatial selection, spatial join and k-NN, can be performed

by simply looking at nearby objects, without the need to scan the entire dataset. Spatial partitioning

techniques, such as uniform Grid, K-d Tree, Quad Tree, and Voronoi Diagrams, are used to organize

spatial objects in terms of geographic proximity in order to prune the search space, hence reducing the

number of disk I/O and memory overhead [35] [166]. Furthermore, for distributed applications, each

partition becomes the unit for parallel processing, providing orders of magnitude speedup in system

latency and throughput [43]. Therefore, providing an efficient strategy to organize spatial data and

process queries over large datasets is a key point to build scalable systems.

In a good partitioning strategy for parallel computation the size of data per partition is fairly

uniform in order to achieve good load-balancing and avoid idle processes. The goal is to distribute

objects so that each process unit will perform roughly equal work. After partitioning the dataset, the

application can process a query in every group in a filter-and-refinement manner. In the filter step

we prune the search space – eliminate objects that cannot be part of the query result – and select

intermediate candidates. Finally, in the refinement step, candidate objects are checked with a precise

algorithm to select the objects satisfying the query [201].
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In this work we will focus on spatial partitioning techniques that have been recently applied

for distributed computation of spatial queries using MapReduce [12] [43] [168]; and extend these

techniques for spatial-temporal trajectories. These techniques have demonstrated to provide good load

balance and decentralization, essentials for MapReduce computation. Figure 2.4 shows some examples

of spatial partitioning techniques over a points dataset from [43].

Figure 2.4: Spatial partitioning techniques in SpatialHadoop [43].

Spatial-aware partitioning strategies in MR can achieve up to 10x faster performance than multi-

core divide-and-conquer by maintaining data locality [44] [48] [200], since only a smaller number of

partitions containing query candidates are selected for processing, reducing query latency and CPU

cost. Spatial-aware partitioning approaches are preferred for MR environments and concurrent threads;

first because the faster the query response time, the sooner it gives resources back to the application;

and secondly, location-based services and MR systems are often serving more than one application at

same time, e.g. Spark and Hadoop might be serving other applications through their wide set of tools,

or serving concurrent jobs on the same application. Hence, reducing query latency and resources use

allows the system to serve more concurrent requests, and permit our application to work with other

MR systems in a non-intrusive way.

2.2 Trajectory Data Management and Applications

In this section we introduce the main ideas, applications, challenges, and related work on spatial-

temporal trajectories. Trajectory data management aims the modeling, organization and storage of

trajectory data for efficient and scalable data retrieval and query processing.

Figure 2.5 shows a framework that summarizes a procedure of trajectory data management. Briefly,

raw trajectory data are available from several sources, such as electronic devices, maps, web, and

documents. From bottom to top, the first step on trajectory data management is to model and prepare

the raw data, by collecting and integrating the data into a single representation; trajectory data can

also be synthetic generated for experimental purposes. Next, the raw data must be preprocessed in

order to enhance data quality, and make the trajectory data more meaningful [55] [73] [195]. Next, the

integrated and preprocessed data is organized for storage; whether centralized or distributed, on-disk

or in-memory, storage systems for trajectory data employ spatial-temporal partitioning and indexing to

organize the data for efficient retrieval and querying [35] [93] [158]. Trajectory storage systems either

focus on storage and organization of data for a single and expensive query, such as k-nearest-neighbors
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(k-NN) join, or for efficient data retrieval, such as range search, historical search, topological-based,

and distance-based queries. Finally, the data and queries are ready to be used in trajectory data mining

and real-world applications [58] [195] [199].
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Figure 2.5: Trajectory data management and mining overview.

A trajectory describes the motion history of any kind of moving object, such as people, animals

and natural phenomena. Trajectories of moving objects are continuous in nature, but captured and

stored as a collection of spatial-temporal points.

Trajectories may also be defined as a position versus time continuous function (x,y) = f (t) in a

2D space, or (x,y,z) = f (t) in a 3D space; however, for the sake of simplicity, and without loss of

generality, trajectories discussed in this work are represented as in Definition 1.

Definition 1. (Trajectory) A trajectory T of a moving object is a sequence of spatial-temporal points,

where each point is described as a triple (x,y, t), where (x,y) are the spatial location of the moving ob-

ject, such as its latitude and longitude coordinates, at a time t, that is, T = [(x1,y1, t1),(x2,y2, t2), ...,(xn,yn, tn)]

in a two-dimensional space, where n is the number of sample points, and t1 < t2 < ... < tn.

Definition 2. (Trajectory Segment) A trajectory segment s is defined as any segment connecting two

consecutive GPS points pi to pi+1 of T , that is si = pi pi+1 ∈ T . Consequently, a trajectory with n

points has (n−1) segments.
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Notice that the focus of the database system proposed in this work is on the layers of trajectory

data management, briefly described in the next sessions. For the best of our knowledge, no system for

trajectory data management addresses all the described layers.

Applications: Because of its spatial and temporal features, trajectories of moving objects contain

rich information about people, locations, wild life and natural phenomena, for instance, and have

been widely used for a great number of real-world applications, such as best route suggestion based

on GPS trajectories of taxi drivers (i.e. route recommendation) [176] [177], or based on the path use

frequency in a specified time period [97]; time prediction of public transportation by means of bus

routes analysis [34]; find points of interest (POI) such as touristic attractions, hotels or restaurants, and

the popular routes among interesting locations using density of trajectory points [32] [196] [38] [96];

identify gathering patterns in urban areas for recommendation systems [194]; support travelers to plan

a trip itinerary to an unfamiliar location based on trajectory data (i.e. trip recommendation) [197] [198];

predict the best transportation mode between locations based on the time taken and frequency of

moving objects within a given area [196]; soccer team analysis and hurricane motion patterns by means

of clustering and pattern recognition techniques over trajectory data from soccer players and natural

phenomena respectively [61]; drivers pastern analysis, city traffic planing, dynamic event identification,

human interaction, and so on [33] [36] [58] [62] [198]. To facilitate human understanding of trajectories

data, some works have focused on semantic enrichment by associating meaningful annotations to the

raw data, in order to highlight significant behavior of the trajectories, such as the motion behaviors and

main locations a trajectory intersected [10] [138] [144] [145] [171].

When attached with textual information, trajectory databases also support keyword-based queries,

based on both their spatial-temporal attributes and the textual data attached, such as “suggest the most

popular Chinese restaurants” in a given region [190] [192]. An excellent book on trajectory data

processing and applications can be found at [199].

2.2.1 Trajectory Data Preparation and Preprocessing

Raw trajectories should go through a series of preprocessing steps before they become suitable

for indexing, querying, and mining. Trajectory data preparation and preprocessing are basic steps

performed once the raw data is gathered in order to improve data quality [55] [195].

Trajectory data preparation and preprocessing include several steps and techniques, such as:

cleaning, simplification, segmentation, compression, calibration, integration, semantic enrichment, and

map-matching. Trajectory data preprocessing mainly focus on improving data quality, or representing

trajectories in a more meaningful way for further processing [199]. In the section, we briefly introduce

some of the most common operations in trajectory data preprocessing [55] [195].

Cleaning: Since GPS records can be incomplete, inaccurate and noisy due to connection problems

and signal loss, urban canyons, sparse collection rates, and law restrictions, etc., GPS trajectories

may not accurately reflect the location of moving objects. Therefore, data cleaning is the process of
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discard impossible locations or trajectories exploiting some specific constraints, such as maximum

speed, coordinates distribution, unreachability constraints, for instance, in order to detect suspicious

moving objects, or to capture features of many abnormal trajectories. Map-matching (introduced

in Section 2.3) is one of the main techniques employed in trajectory data cleaning and data quality

enhancement.

Segmentation: In many applications a trajectory is partitioned into more meaningful and less

complex sub-trajectories, such as a path with multiple road segments, or according to behaviors of

moving objects [144]. Trajectories may as well be partitioned for storage and indexing purposed, for

instance, long trajectories can be divided into smaller sub-trajectories according with their intersections

spatial region, their speed, or divided by time intervals [35] [158]. This allows trajectories to be stored

and processed in a efficient manner, as well as extract sub-trajectories, regions, and period patterns.

Compression and Simplification: GPS sensors can collect data at high sampling rates, therefore,

huge amounts of data with density can be generated by such devices. However, many trajectory data-

driven application do not rely on such a precision of location. Furthermore, in data with high density

of sample points, several location points in a trajectory are often redundant. Therefore, trajectory

compression and simplification algorithms aim to reduce the size, density, or complexity of trajectory

data, by removing redundant information, i.e. remove redundant sample points or dimensions, hence

reducing storage requirements and communication costs. Trajectory data compression algorithms aims

to minimize the size of the data with a minimum of information loss.

Completion: Some devices, on the other hand, collect data in very low sampling rates, only providing

partial observations of actual trajectories. Data completion aims to infer missing coordinates in the

raw trajectories, in order to reduce uncertain.

Integration: Different devices record and store data using different formats. Even though GPS

data often contains the same spatial-temporal and semantic attributes, describing the moving object’s

trajectory, the integration of these datasets into a single format and storage platform is yet an issue.

Therefore, spatial-temporal trajectory data integration is significant to combine data from different

sources into a unified format for trajectory data-based applications.

In this work we focus on map-matching as our main preprocessing and quality enhancement

technique for trajectory data. Map-matching plays a key role on trajectory preprocessing by improving

data quality and reducing uncertainty.

2.2.2 Trajectory Data Queries

In trajectory database, where objects are a non-uniform series of spatial locations, attached with

temporal attributes, one must take sequentiality and the temporal dimension into account. For distance-

base queries, the problem is even more challenging, once we need a distance function to calculate the
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distance (i.e. similarity) between trajectories, which is not a trivial problem, due to the non-uniform

sequential nature and temporal dimension of trajectories. Nevertheless, tens of similarity distance

measures for trajectory data have been proposed in the literature [157] [162], we discuss trajectory

distance measures in more details in Section 2.2.4.

Formally, given an input trajectory dataset T with n records, for any two trajectories Ti,Tj ∈ T,

d(Ti,Tj) denotes the distance (or similarity) between them. In this work we consider the following

operations over trajectory datasets, due to their wide application in practice [31] [33] [35] [56] [130]

[153] [158] [172].

A spatial-temporal selection retrieve all trajectories within a given spatial region and time interval,

similar to a SELECT/FROM/WHERE clause in relational databases, where the predicate is the trajectory

overlapping with both the region area and time interval.

Definition 3. (Spatial-Temporal Selection) Given a trajectory dataset T, a spatial region R, and a

time interval from t0 to t1, a spatial-temporal selection, namely ST (T,R, t0, t1), finds all trajectory

segments si ∈ T active during [t0, t1] which intersects with the region of R, that is ST (T,R, t0, t1) =
{si ∈ T | si ⊂ (T∩R∩ [t0, t1])}.

Selection queries are useful to select a small sample of a big dataset for a given time interval

and spatial predicate (e.g. range selection, intersect, overlap), for example: “select all trajectories

from a given neighborhood in New York city, active yesterday during peak time”. An example of a

spatial-temporal selection query area R is given in Figure 2.6.

R [t0, t1]

Figure 2.6: Example of spatial-temporal selection, where given a query region R over the city of
Brisbane, we want to retrieve only those trajectories inside the area of R and active during a given time
interval [t0, t1].
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Definition 4. (Topological Selection) Given a trajectory dataset T, a query object Q (e.g. a polygon,

a trajectory, a circle), and a topological predicate ⊗ (e.g. intersect, touch, overlap), a topological

selection finds all trajectories Ti ∈ T, such that Ti⊗Q is true.

Definition 5. (Distance Selection) Given a trajectory dataset T, a query trajectory Q, a trajectory

distance function d(Ti,Tj), and a distance threshold τ , a distance selection finds all trajectories Ti ∈ T,

such that d(Ti,Q)≤ τ .

Definition 6. (Shortest Path) Given a trajectory dataset T (as a sequence of spatial points, or in map

representation), two query locations Qi and Q j, the Shortest-Path operation finds the trajectory Ti ∈ T
connecting Qi to Q j with the shortest distance.

The k-Nearest-Neighbors (k-NN)1 for trajectories is a distance-based query that returns the k

closest (i.e. most similar) trajectories from a given trajectory Q, in a given time interval t0 to t1.

Definition 7. (k-NN Trajectories) Given a trajectory dataset T, a query trajectory Q (Q might be a

series of query locations), a time interval from t0 to t1, a trajectory distance function d(Ti,Tj), and an

integer k ≥ 1, the k-Nearest-Neighbor trajectories of Q, denoted as k-NN(Q, t0, t1), is a subset of T,

such that for every trajectory Ti ∈ k-NN(Q, t0, t1), and for every trajectory Tj ∈ T – k-NN(Q, t0, t1),

d(Q,Ti)≤ d(Q,Tj), where Ti and Tj are active during [t0, t1], and |k-NN(Q, t0, t1)|= k.

Definition 8. (k-NN Trajectories Join) Given two trajectory datasets S and R, a time interval from

t0 to t1, and an integer k ≥ 1, the k-Nearest-Neighbor trajectories Join, denoted as S onkNN R, finds

in R the k-NN(si, t0, t1) for all trajectories si ∈ S. This problem is also known in the literature as

All-Nearest-Neighbors (ANN), when S= R.

The Nearest-Neighbor query (NN) is a special case of the k-NN for k = 1. The problem of

identifying similar (or close) trajectories, in particular, is useful for automatic classification and

recommendation systems, origin-destiny analysis, and identify objects that move in a same pattern,

for instance. As an illustrative example, suppose that in a big city a subway service has been under

construction; it would be of great assistance to the experts in the field to know the similarity between

the current public transportation services (e.g. bus lines) and the subway lines under construction;

in order to re-organize the public transportation routes, and propose timetables and metro stations,

for instance [56]. Another particular case of distance-based queries for trajectory dataset is Reverse-

Nearest-Neighbors (RNN).

Definition 9. (RNN Trajectories) Given a trajectory dataset T, a query trajectory Q, and a time

interval [t0, t1], the Reverse-Nearest-Neighbors of Q, denoted as RNN(Q, t0, t1) finds all trajectories

Ti ∈ T active during [t0, t1] which have Q as their Nearest-Neighbor (NN), that is, a trajectory Ti ∈ T
belongs to RNN(Q, t0, t1) iff 1-NN(Ti, t0, t1) = {Q}.

1The k-NN query for trajectories is also known in the literature as k-Most-Similar-Trajectories (k-MST).
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A similar problem to the k-NN trajectories introduced by Chen et al. [33] aims to search for the

k-Best-Connected trajectories (k-BCT) to a given set of query points (i.e. trajectories that are close to

all given locations); the k-BCT algorithm can be applied for trip planing, for instance.

Most approaches for trajectory data processing execute some sort of primitive query beforehand

over the entire dataset, or a combination with keyword-based queries [190] [192], for instance:

“Retrieve all trajectories in the city center of Brisbane, between March and April this year”, so that

one can identify points of interest in the city center for a given season [197] [198], and suggest

transportation modes [196].

Or nearest neighbor queries, for instance: “Given the trajectory T of a route between two locations,

retrieve the closest (most similar) trajectories from T ”, which can be used, for instance, in alternative

routes suggestion [176] [177], public transportation analysis [34], or outliers detection [20] [82].

2.2.3 Trajectory Data Storage and Indexing

The most used structure to index spatial data for single-threaded computation is R-Tree [66]; however

R-tree does not directly support moving object’s trajectories, once it is for spatial dimension only, index

structures for trajectories must be able to cope with both spatial and temporal dimensions. Therefore,

several solutions have been proposed to manage trajectory data, they either propose a tree-based index

structure to prune the search space and speed up the processing of a specific query, or propose a storage

system to organize trajectory data and optimize I/O.

General Index: TB-tree [124] index both space and time in a tree structure using bounding box

representation for trajectories; however, it does not handle long trajectories properly, which leads to

very large bounding boxes. TPR-tree [133] and TPR*-tree [148] extend R-trees to predictive queries,

indexing trajectories using a prediction model, based on time-parametrization and velocity vectors,

to predict the future location of a moving object; STRIPES [113] extend TPR-trees to reduce tree

updates and I/O cost on predictive queries. SETI [25] uses two index structure, where the space is

partitioned into cells and inside each cell a R-tree is used to index the temporal dimension, however

SETI does not describe the size or geometry of the cells, leading to a imbalanced partitioning strategy.

SEB-tree [137] splits space and time into zones and index spatial-temporal objects by the zone ID, but

it is not specifically designed for sequential spatial objects (i.e. moving object’s trajectory). Similarly

to SEB-tree, PIST [18] uses a tree structure to index spatial-temporal points only, rather than sequential

trajectories. Rasetic et al. [131] propose a splitting strategy for trajectories into sub-trajectories, and

index these sub-trajectories using R-tree, the model is proposed in order to minimize the I/O needed

for selection queries. Similarly, PPR-tree [67] present a trajectory splitting model for minimizing the

bounding rectangle representation of trajectories for small range queries. CSE-tree [161] partition the

space into a grid and index data using a probabilistic model on the data update frequency. Some works

proposed the use of polynomial approximations for trajectories [21] [102], even though they provide a

more tight representation of a trajectory than the MBR representation used in tree structures, they have
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the requirement that the trajectories should be of the same length (i.e. number of spatial points), and

provides a costly polynomial calculation and degrees approximation for large datasets.

The main drawbacks of these centrally-based structures is that they do not provide full decentral-

ization for parallel computation, and do not scale for large datasets, hence they cannot leverage the

benefits of the MR model. Furthermore, all aforementioned works are for disk-based computation

only, whereas our solution takes advantage of in-memory structure to speed up similarity search.

Storage Systems: Another set of works provide a full storage structure, on both main-memory and

disk, to organize and aid the access to trajectory data. SharkDB [158] is a storage architecture for

trajectories in column-oriented in-memory databases; SharkDB partitions the trajectory space into

time frames, in order to support general purpose trajectory operations, e.g. time window selection

and nearest neighbor. SharkDB also provides a system for data visualization [159]. However,

SharkDB uses only temporal partitioning of the dataset, and focus on column-oriented environments.

SECONDO [65] [64] is a extensible open-source DBMS into which a wide set of data structures and

algorithms for moving object’s trajectories have been implemented. TrajStore [35] provides an adaptive

disk-based storage system for trajectory data. TrajStore indexes trajectories on a quad-tree structure

and clustering methods to group spatially close objects, and uses a set of compression methods to

reduce storage overhead.

A MR-based environment, on the other hand, can provide a distributed and fault-tolerant solution

for massive datasets; by using Spark’s RDD structure, we can provide a reliable in-memory solution

for parallel and concurrent tasks on both in-memory and on-disk. We will introduce MapReduce and

Spark based works further in Section 2.6.

2.2.4 Trajectory Distance Measures

Unlike other simpler spatial objects, such as points and polygons, which the distance can be straightfor-

ward measured using Euclidean based metrics, the distance between trajectories needs to be carefully

defined in order to reflect the true underlying similarity. This is due to the fact that trajectories are

essentially non-uniform sequential data with variable length, attached with both spatial and temporal

attributes, which may or may not be considered for similarity measures; one may also need to consider

data uncertainty [191]. Besides, one must take into account other variants such as shape, time shifting,

non-uniform sampling rates, and rotation, for instance. Overall, trajectories are considered similar if

they follow a certain motion pattern, or move in a similar way (i.e. keep spatially close to each other)

for the majority of their time extent.

The problem of detecting similar trajectories is useful for decision making applications based on

moving objects analysis; for instance, one may be interested in planning a road network capacity,

planning municipal transportation or detect usual road paths in a city to avoid traffic jam. In this sort

of problem, trajectory similarity analysis and query processing, such as the top k-NN trajectories, play

an important role.
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Tens of similarity distance measures for trajectory data have been proposed in the literature [157];

every similarity measure claim an advantage over the others in a different aspect, and each one

provides its own index structure to prune the search space and speed up similarity search. The most

classics distance measures that have been widely cited in the literatures are briefly described below. A

benchmark comparing most of these distance measures can be found at [157] [162].

• Euclidean Distance: Euclidean distances for trajectories are easy to implement, they take the

average Euclidean distances between the two trajectories sample points, and can be indexed with

any access method; however, it demands the two trajectories to be on the same size (i.e. same

number of sample points).

– ED: Euclidean Distance for time-series [52] [128];

– EDSW: Euclidean Distance With Sliding Window [85];

• Dynamic Time Warping: DTW and its variants use a recursive search between the trajectories

sample points for those with minimum distance; thus if two trajectories vary in time or speed,

DTW can still detect their similarity; however, DTW is time-consuming and it is not a metric.

– DTW: Dynamic Time Warping [132] [173];

– PDTW: Piecewise Dynamic Time Warping [79];

• Edit Distance: Similar to the edit distance for string, Edit Distances for trajectories and its

variants calculate the minimum number of edits needed to transform one trajectory into the other,

by insertion, deletion, and substitution of points. Edit distances are invariant to scale and points

shifts. EDR and EDwP use L2Norm and are non-metric, EDR uses L1Norm and it is a metric,

but only applies for trajectories with uniform sampling rates and same size.

– EDR: Edit Distance on Real Sequence [31];

– ERP: Edit Distance With Real Penalty [30];

– EDwP: Edit Distance with Projections [130];

• Longest Common Subsequence: LCSS for trajectories search for points matching like in a

string’s characters, for this purpose a distance threshold ε is used; if the distance between two

points is smaller than ε , they are considered a match. LCSS is robust to noise; however, it is not

a metric and can be inaccurate if the value of ε is not carefully chosen.

– LCSS: Longest Common Subsequence [153];

Another group of distance measures for trajectories are line-based measures, which compare

trajectories by their shapes from lines generated from their sample points, instead comparing the points

directly. Some examples of this type of distance measures include DISSIM [56], OWD [91], and

LIP [120].
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2.3 Map-Matching

Map-matching plays a key role on trajectory preprocessing by improving data quality and reducing

uncertainty. Since GPS records can be incomplete, inaccurate and noisy due to connection problems

and signal loss, urban canyons, sparse collection rates, and law restrictions, etc., GPS trajectories may

not accurately reflect the location of moving objects. Therefore, map-matching is a process to ease the

uncertainty and improve the accuracy of trajectory data by matching the GPS records to the logical

model of the real world [193], such as the road network graph.

In general, the GPS errors are caused mainly by two reasons [123]: (1) Measurement Error, caused

by the inaccuracy of measurements due to device failure or imprecision; and (2) Sampling Error,

caused by the uncertainty of representing a vehicle trace. Therefore, map-matching algorithms are

introduced to reduce the GPS errors. By integrating the raw GPS data with the road network data, we

are able to align the deflected GPS points to the correct road segments.

There is no existing definition for map quality issue. However, a large amount of works addressed

some map-related problems, which can be classified into the following map quality issues:

• Accuracy. The map is required to be accurate, which means the map should represent the

real-world topological structure and geographical location precisely. In another words, for a

road map graph G, all the vertices in G should have the correct location information, and all

edges in G should have the corresponding real-work links between vertices, and the shape of the

links remain the same.

• Completeness. The map is required to have accurate and complete attributes. The elements in a

map require not only the geographical information, but also other attributes, like speed limit and

width of a road segment, turning restriction of a intersection, etc. All these attributes are useful

in many map-based applications so that their accuracy and completeness is very important.

• Recency. The map is required to be up-to-date. In fact, the change of the roads happen frequently

due to rapid constructions of roads, road maintenances and so on.

Map-matching algorithms assume that the road network is stable and precise, and all the running

vehicles are essentially constrained to the road network. This constraint holds for most circumstances

except when the vehicle drives into off-road areas, like casual parking, private land, etc. Intuitively,

this type of unusual traces should account for only a small portion of the entire data.

2.3.1 The Map-Matching Process

Following we formally describe the problem of Map Matching, firstly introducing some background

knowledge and definitions.

Definition 10. (Road Network) A road network is a directed graph G(V,E) representing the digital

map of streets and roads of a geographic region, where each edge e ∈ E represents a road segment in
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the graph, and each vertex v ∈V of the graph represents the intersections and end-points of the road

segments.

Definition 11. (Road Edge) A road segment e ∈ E is a directed edge from a starting vertex vi ∈V to

an ending vertex v j ∈V in a road network graph G(V,E), and associated with a list of intermediate

points that describes the road polyline.

In digital map representation, both edges and vertexes in the road network graph are associates

with an ID, and a set of semantic attributes, such as speed and length.

Definition 12. (Road Path) A road path P is a set of connected road edges, P = {ei, ...,e j} ∈G(V,E),

connecting two locations (vertices) vp to vq of G(V,E).

Definition 13. (Map-Matching) Given a trajectory T , and a road network graph G(V,E), map-

matching is the problem of how to match T to a path P of G(V,E).

Map matching has applications in satellite navigation, GPS tracking of freight, and transportation

engineering, for instance. The overall approach for map-matching is to take recorded serial location

points (e.g. GPS coordinates), and relate them to edges in an existing road network graph. However,

this approach can quickly became cumbersome for large trajectory and map datasets, since every GPS

point record has to be compared with every road edge.

There are two main algorithmic approaches for map matching in the literature, Local [8] [28] [81]

[165], and Global [19] [90] [92] [101] [125]. In short, the three main steps followed by map-matching

algorithms are: (1) identifying a set of candidate edges in the road graph within a given radius from the

location point, then (2) calculating the weight for each candidate edge (e.g. shortest distance between

the point and the edge), and finally (3) retrieving the edges that maximize the weight.

Local (or incremental) algorithms only consider the trajectory and the road network geometries to

relate a trajectory point to its nearest edge (point-to-edge) in the road map. This method is simpler and

faster, and more commonly used in on-line map matching, since they rely on the previous trajectory

points observations only, which makes it more difficult to use statistical models on the trajectory

topology. However, due to measurement errors and GPS inaccuracy, this approach is prone to error

(i.e. point mismatch). Wei et al. [164] provided a comparison between local and global map-matching

algorithms, and discovered that local algorithms performed poorly, specially due to Y-splits on road

networks. For instance, in Figure 2.7 while there are two possible matching candidates, e2 and e3, for

point p3, e3 is the most obvious edge to match, since its next connecting point p4 is better matched

with e3, and real moving objects are more likely to follow a direct path [92]. Therefore, the best match

for trajectory T is the path P = {e1,e3} connecting v1 to v3.

Global algorithms, on the other hand, take into account the geometry and other features of the

trajectories and the road network, such as speed, topology, the connectivity between points and edges,

and the road network speed limits, in order to find the best match of a trajectory on the road network,

thus easing the uncertainty. Global algorithms are mostly used in offline map matching, and use future

observations to better match the trajectories correctly. These methods make use of statistical models
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Figure 2.7: Example of road network graph G(V,E), with edges e[1..3] and vertexes v[1..4]; and a GPS
trajectory T (red dotted) with four coordinate points p[1..4] to be matched with the road network.

(e.g. Hidden Markov Model [101], and spatial-temporal analysis [92]), and sacrifice performance

to achieve better accuracy. Offline map-matching plays a key role on trajectory pre-processing by

improving data quality and reducing uncertainty when whole new trajectory data, or new and more

accurate map data, became available.

2.3.2 Map-Matching Techniques

Related work on map-matching can be divided into two main categories: (1) Serial map-matching

algorithms focusing on accuracy and match trajectories in a serial fashion; and (2) Parallel algorithms

use spatial partitioning and parallel computation to speed up map-matching. We also briefly discuss

related work on spatial data processing using Spark.

Serial Algorithms: Lou et al. [92] presented a spatial-temporal algorithm (ST-Matching) for match-

ing trajectories with low sampling rates (e.g. 2min gap between each point). Firstly, for every trajectory

sample point pi ∈ T ST-Matching retrieves all candidate points c j from the road network within a

radius r from pi – any candidate point farther from pi than r is taken as a impossible match. From the

candidates set they compute the projection of pi on each edge containing c j; the algorithm chooses

the best match first choosing the edges which contain the nearest points from pi (Spatial Analysis

Function), then choosing the edge on which the speed limit is closer to the trajectory speed (Temporal

Function). Newson et al. [101] proposed a Hidden Markov Model (HMM) based algorithm to find the

most likely road to match a trajectory. The algorithm models the connectivity of the road segments

into a HMM where each state is a road segment. The Emission Probability of every state transition is

calculated using the Gaussian distribution, where the input is the distance from a trajectory location pi

to a road segment e j, hence segments farther from pi are assigned with a lower probability. Finally, the

most likely matching road is found using Viterbi algorithm to compute the best path through the HMM

lattice. Similar to ST-Matching, the HMM algorithm is robust to noise and temporal sparseness, and

only considers matching edges within a 200m radius from the trajectory point. OHMM [59] extends

the HMM algorithm in [101] for incremental on-line map matching. OHMM uses Support Vector

Machines (SVM) classifier instead Gaussian model to calculate the transition probabilities of the
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HMM lattice, thus learning the best match based on the current trajectory state. Similarly, [125] uses a

Bayesian classifier, including the topological constraints of the road network, to calculate the transition

probabilities in the HMM model for local map-matching. IF-Matching [71] uses information fusion

to achieve more accurate map-matching. Along with the geometry and topology of the trajectories

IF-Matching also uses speed and direction to better describe the moving object. It also uses the speed

constraints of the road to find the best match, however, as the speed of the moving object on the

road can be limited at different times of the day due to heavy traffic, the IF-Matching algorithm also

applies a function to model the speed on the road network during different times of the day. In [19] the

authors present an approach using the Frechet Distance to calculate the most similar road to match

the trajectory; however, this method only takes into account the geometry of the trajectories, and it is

limited to records with very dense points distribution and low sampling error. [75] and [90] introduce a

new multi-track map-matching approach, by matching multiple trajectories to the road graph at same

time. The idea is to identify the regular patterns of a group of trajectories in order to find their best

match, assuming that all trajectories with same pattern belong to a same path in the road network.

Although achieving high accuracy, the main drawback of these serial algorithms is that they focus only

on the accuracy of the matching; processing one, or only a few, records at a time, in a single process

unit, and do not account for scalability.

Parallel Algorithms: Huang et al. [72] presented the MR-based algorithm HOM for map-matching

focus on performance rather than accuracy. HOM divides the data space into a grid, and assigns

each GPS point and road link to its corresponding grid; each grid partition is sent to a computing

node. Finally, map-matching is done in each partition in parallel using MR. HOM, however, used a

incremental algorithm to match points to its nearest road link, and do not consider boundary objects,

thus it is not robust to noise. Tiwari et al. [150] proposed a framework focus on scalability of map-

matching. The framework uses MR computation and Hadoop HBase as distributed storage to achieve

horizontal scalability. Similar to HOM, it uses grid partitioning and does not account for load balancing,

however, it uses ST-Matching [92] on each partition to compute map-matching rather than provide

a new algorithm. The main drawbacks of these MR-based approaches is that they do not consider

homogeneous distribution during the partitioning, which is essential in MR computation, and do not

account for boundary objects. [156] provides a parallel approach for streaming map-matching in-

memory for real-time processing using grid partitioning, however, the authors do not optimize memory

consumption and do not handle boundary objects. [167] addresses the problem of load balancing using

Quadtree space decomposition, similar to our approach the authors defined a 5km boundary threshold

for replication, so that points near partition boundaries are replicated to all nearby partitions; however,

it builds the quad-index using the entire dataset dynamically, which is not directly supported by Spark;

our work, on the other hand, applies a sampling-based approach to reduce the partitioning cost using

Spark. Furthermore, all the works presented to date use disk-based computation, which negatively

affects performance for large-scale data due to I/O overhead. Our work is similar to that in [167],

except we use a much smaller space boundary limit, and add one more condition to we make sure
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our spatial-partitions are no larger than the MR block size in the cluster configuration (i.e. 64MB by

default), so that every partition can be processed by a MR task, the MR block size can be adjusted

according to the cluster configurations. We also build our quad-index using a sampling-based approach

which can be combined with Spark.

Spatial Data on Spark: A number of existing works provide unified systems for spatial queries

using Spark, aiming to achieve better performance and scalability for spatial data. Simba [168] uses

Spark’s RDD to support spatial indexing and spatial operations natively. Simba adds spatial keywords

to SparkSQL grammar, so that users can express spatial operations in a SQL-like fashion. Similarly,

GeoSpark [175], SpatialSpark [174], and SparkGIS [16] have been proposed to process spatial data

on top of Spark. However, although achieving high performance and scalability for spatial queries,

none of these systems fully support trajectory data processing nor map-matching. OceanST [178] does

provide support for trajectory data on Spark, however, only for selection queries using uniform static

data partitioning. Our proposed framework, on the other hand, provides support for map-matching

using balanced space partitioning.

2.4 Distributed Parallel Computation

There is vast body of literature on large-scale data processing, wherein distributed-based solutions

outperforms centrally-based in aspects such as scalability, fault tolerance and I/O operations [1] [24]

[74] [114] [141] [170]. Distributed computation architectures are designed to share the data across

many CPU nodes in a cluster to be processed separately by parallel processes running on each node,

making the data processing faster, more efficient and scalable.

The two most popular paradigms for distributed computing on shared-nothing2 architectures are

Parallel Database Management Systems (Parallel DBMS) and MapReduce (MR).

2.4.1 Parallel DBMS

Parallel DBMSs extend common database systems by allowing the parallelization of many data-driven

tasks, while still supporting standard relational table schemas, SQL operations, and user-defined

functions (UDFs). In a parallel DBMS the data schema and query operations are shared across all the

data nodes. The systems architecture are generally designed to hide from users lower level system

details, such as data indexing options, storage schema, and join operations strategies [1] [114].

2.4.2 MapReduce Framework

MapReduce (MR) [39] is a open-source programming model proposed by Google for massive data

processing in a cluster-based environment, usually composed of inexpensive machines, assisting the

solution of many real-world problems in a distributed manner. A MR program is composed of a Map()
2Commodity machines that do not share CPU and other hardware resources, except network.
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a and Reduce() methods. The Map() method performs filtering, sorting, or other preprocessing

operations, and map each data input to a 〈key,value〉 pair. While the Reduce() method merge data

with same key, applying some operation or summary on the values. The MR library was built so

that programmers do not need to worry about hardware and network failures, resources allocation,

process communication and synchronization, data transfer between nodes, and other problems inherent

of distributed programming. MR is also more extensible and presents better capacity to deal with

unstructured and semi-structured data than parallel DBMS [1] [114] [170].
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Figure 2.8: MapReduce framework execution overview.

In the MR framework, Figure 2.8, a dataset is partition into M splits across nodes in a cluster. The

MR file system (GFS [57]) partition each input split into blocks (64 MB by default), and send each

data block to be processed in parallel by map tasks. The mapper read each input in the data block and

outputs a 〈key,value〉 pair for the input. When the map task is complete, the results are sorted and

grouped by key, this is the shuffle process, so that all the occurrences of the same key are processed by

the same reducer. Each reduce task receives a 〈key, list(value)〉, with a list of values for a certain key,

and outputs a 〈key,result〉 pair after processing the list of values. The number of map and reduce tasks,

as well as the data block size, can be controlled by the user; however, some cost-based parameters

optimizer exist [70].

Here is a simple example of the word-count problem that can be easily expressed as MR com-

putations from [39]. “Consider the problem of counting the number of occurrences of each word in

a large collection of documents. The user would write the MR functions similar to the Algorithm 1

pseudo-code.”

The map function emits each word plus an associated count of occurrences (just ‘1’ in this simple

example). The reduce function sums together all counts emitted for a particular word.

There may be hundreds or thousands of machine nodes in a MR cluster. There are Worker nodes,

which are responsible to process map and reduce tasks on each data block; and the Master node, which

is responsible to assign map and reduce tasks to the Workers, as well as allocate resources and manage

fault-tolerance. The file system manages fault-tolerance by replicating the data to different nodes, two

copies by default, so that if a Worker fails the master resets the failed tasks on another machine that
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Algorithm 1 MapReduce Word Count
Input: key: document name, value: document contents

1: function MAP(String key, String value)
2: for each word w in value do
3: EmitIntermediate(w,1)
4: end for
5: end function

Input: key: a word, values: a list of counts
1: function REDUCE(String key, Iterator values)
2: result ← 0
3: for each v in values do
4: result← result + v
5: end for
6: Emit(result)
7: end function

contains the data replication.

MR-based works developed strategies to optimize I/O and reduce the network and I/O cost of

sorting and grouping the data output from mappers to reducers (i.e. shuffle); and improve data locality

and grouping strategies, to keep data with same key fiscally close to one another. Large spatial database

applications this can be achieved by means of locality-aware partitioning, which can reduce the number

of data objects access, thus reducing network and I/O costs [184]. Surveys about applications and data

management using MapReduce can be find at [42] [88].

Hadoop: Apache Hadoop [68] is an open-source framework of tools built on top of MR that enables

the processing of massive amounts of data in a distributed parallel fashion; it makes the process of

developing solutions for large and distributed data easier for programmers, providing a set of tools

to abstract the complexity of writing programs over MR. Hadoop provides its own Distributed File

System (HDFS); similar to the GFS [57], the HDFS splits the whole dataset into smaller blocks

distributed throughout the cluster (blocks of 64 MB by default), so that each map and reduce functions

can be executed over smaller subsets of the whole dataset, providing the necessary scalability for

large-scale data processing.

Apart from that, Hadoop allows the processing of data streams using the framework Storm [143]

and can be integrated with Parallel DBMS [1] [170], providing both SQL (e.g. Hive [149]) and NoSQL

(e.g. Pig [107]) programming tools.

2.4.3 MapReduce vs. Parallel DBMS

Although both paradigms share many common features, such as high scalability, compressing op-

timization, and indexing optimization, they are complementary technologies [141] [170]. Parallel

DBMS, for instance, shows better performance, more indexing efficiency, and less code to implement

queries if compared to MR for large-scale data; whereas MR is more extensible and schema free,



32 CHAPTER 2. LITERATURE REVIEW

hence presents better capacity to deal with unstructured and semi-structured data; MR is also more

fault-tolerant and faster to load data than Parallel DBMS [114]; furthermore, MR scales better for

large numbers os nodes [1]. Frameworks like Hadoop [68] and Spark [139] can assist data scientists to

achieve a trade off between both technologies [1] [170].

2.5 In-Memory Big-Data Management

In-memory Database: An in-memory database system primarily relies on main memory for data

storage, contrasting with database management systems that employ disk storage mechanism. In-

memory databases are faster than their disk counterparts because disk access is much slower than

memory access, the internal optimization algorithms are simpler and execute fewer CPU instructions.

Accessing data in memory eliminates time for search when querying the data, which provides faster

and more predictable performance than disk.

A potential drawback with in-memory data storage is the volatility of RAM. Specifically, in the

event of a power loss, data stored in volatile RAM is lost. To address the fault-tolerance problem,

in-memory database systems uses data replication across multiple machines or maintain a copy of the

dataset on disk in case of system or hardware failure. Differently from memory and CPU caching,

in-memory datasets are designed to make the data stored in-memory persistent, and available at any

time.

Memory Caching: Caching is the process of storing data in a temporary storage area in the main-

memory for faster access. Cached data refers to data recently being processed by the CPU or accessed

by user applications, thus are readily available since the application can get the data from the cache

rather than the original server, saving disk I/O and network traffic. However, main-memory is volatile

and cache space is quite limited, and data is released shortly after the task using the data is completed.

In-memory Data Management: In-memory data management aims to store and process data in

main-memory to achieve low query latency, and it is more suitable for low-latency services and

real-time data analytics, including spatial queries [104] [168], trajectory data processing [27] [115],

distributed in-memory data storage [89], and on-line data processing [2]. In-memory storage is also

better for iterative MR processes, where it is necessary to apply a function repeatedly on the dataset,

since the MR framework reload the data from disk in every iteration, which incurs in a significant

performance loss [181], due to the costly load and write operations in a physical partition [187]. In

this section we briefly introduce some in-memory storage and analytics systems for Big Data, and the

Spark MR framework with more details; a complete survey can be found at [187].

H-Store [78] or its commercial version VoltDB [142], is a distributed main memory OLTP database;

H-Store is a row-based relational database, and achieves high performance and throughput by op-

timizing database operations such as logging and buffer management, which consumes substantial

amounts of time, but are unnecessary when storing data in main memory. Each partition in H-Base
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is controlled by a site, which is a single-threaded entity responsible to execute a transaction without

the need of concurrency control in most cases. Hekaton [40] is Microsoft’s main memory engine

fully integrated with SQL Server; Hekaton was designed for high concurrency, where each thread can

access any row in a in-memory table using lock-free data structures [84]. Tables and operations are

declared as in regular SQL style, providing effortless SQL Server usage. SAP HANA [54] [136] is

a in-memory database developed to integrate both OLTP and OLAP workloads in the same system;

SAP HANA support both row-oriented data storage, more beneficial for inserts and updates common

in OLTP, and column-oriented storage, more ideal for OLAP transactions which access all values in

a column. SAP HANA also provides a temporal indexing to support historical queries, which have

been exploited in trajectory databases [158]. MongoDB [100] is an open-source NoSQL database

application for documents, MongoDB supports distributed computation by providing atomicity at

the document level, allowing operations only within a single data collection, thus join operations are

not supported. MongoDB can work as a fully in-memory storage if the data fits in main-memory, or

partially in memory otherwise. Piccolo [126] is a in-memory data-centric programming model for

parallel data analytics in multiple nodes. Similar to Spark, Piccolo has a control daemon running

in a master node, and multiple kernel instances running on slave nodes; all nodes share state via

in-memory key-value tables; each kernel sends messages to read and modify table entries using put

and get functions.

Frameworks like Spark, on the other hand, provides a MapReduce solution for cluster-based

computation in main-memory and has been widely used to improve the performance of computing-

intensive and Big Data applications.

2.5.1 Spark Framework

Apache Spark [13] [181] is a MR open-source framework for cluster-based data analysis in main-

memory environment. Spark is highly scalable and shows faster processing of large-scale data in

memory if compared to other MR frameworks like Hadoop, for instance, in a benchmark experiment

Spark showed up to 5x faster performance for data-intensive analytics (e.g. page rank, k-Means)

than Hadoop [135]. The performance improvements comes from avoiding disk I/O and the smaller

cost on objects deserialization by storing the data in main memory, as well as RDD’s hash-based

aggregation [135] [180]. Spark is particularly suitable for iterative processes, where it is necessary

to apply a function repeatedly on the dataset, since the MR framework reload the data from the file

system in every iteration, which incurs in a significant performance loss [135] [181].

Figure 2.9shows a comparison of the performance (a) and iteration running time (b) between Spark

and Hadoop for the Logistic Regression and k-Means problems [181].

Spark is flexible and can read data from any sort of source and formats, and has being efficiently

applied for a range of machine learning problems and faster data analytics, for instance, graph

processing [169], data streams computation [182], relational data processing and SQL queries [14] [51],

Online Analytical Processing (OLAP) [185], statistical computing based on R language [151], and
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(a) Logistic regression performance in Hadoop and
Spark.

(b) Duration of iteration processes in Spark and Hadoop
for Logistic Regression and k-Means.

Figure 2.9: Hadoop vs Spark comparison. Source [181].

astronomy and bioinformatics applications [105].

Resilient Distributed Datasets (RDD): Spark provides its own fault-tolerant data structure, named

Resilient Distributed Datasets (RDD) [180], to organize data collections to be processed in parallel.

RDD is a read-only collection of objects partitioned across the cluster nodes, where the working set

of data can be reused across multiple parallel tasks [181]. Once RDDs are kept in main-memory,

query tasks can iterate over a RDD many times very efficiently. RDDs support transformation and

action operations over the dataset. Transformation operations create a new RDD from an existing one,

or from the input dataset, such as map, filter and groupBy functions, which return pointers to new

RDDs. Operations such as reduce, on the other hand, performs an Action on the existing RDD and

return values. RDDs allow the programmer to perform as many transformation operations as needed

before an action is executed. RDDs can be persisted at both main memory, for a faster access and data

processing, or on disk, which still performs up to 10x better than other MR frameworks.

The following script demonstrates how to compute the word-count problem on Spark, in Scala

language, as an example of use of Spark’s RDD data structure for distributed computation:

val textFileRDD = sc.textFile("data.txt").cache()

val countsRDD = textFileRDD

.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey((a,b) => a+b)

The sc variable represents the Spark Context, which tells Spark how to access the cluster. For more

information on Spark cluster configuration visit the Spark configuration guide3. The textFile function

read the data from the Spark Context environment into a RDD object and cache cache it into main

memory; a flatMap transformation splits each line of the file into words, which are further mapped to

〈key,value〉 pairs as 〈“word”,1〉. A reduceByKey action is finally performed on the new RDD from

3Spark Configuration Guide:
https://spark.apache.org/docs/latest/configuration.html
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the map phase, to sum the occurrences (1 values) of each word (key). The reduceByKey returns at the

end of the process a RDD of pairs 〈“word”,numberO f Occurrences〉.
Some more few examples of functions that can be performed on the new RDD are count, collect

and filter:

// Number of items in this RDD

val numItems = countsRDD.count()

// Return all elements in this RDD

val elements = countsRDD.collect()

// Filter words counted more than 10 times

val filterRDD = countsRDD.filter(word => word.value > 10)

Another useful functionality of Spark is Broadcasting. Spark broadcasting allows the application

to keep a read-only variable cached on each machine’s memory. They can be used, for example, to

give every node in the cluster a copy of a variable or dataset that will be used by all nodes in the Spark

context. An example in Scala language of Broadcast variable for an array of numbers is shown as

follows:

val broadcastVar = sc.broadcast(Array(1,2,3,4))

For a decent programming guide on how to use other Spark functions with Scala, Python and Java,

please visit the Spark programming guide4.

Spark SQL: To ease the process of writing relational data-based queries on Spark, Armbrust et

al. [14] developed SparkSQL, a new SQL-based module on Spark to perform relational operations and

optimizes query processing. SparkSQL integrates relational and procedural data processing on Spark

framework providing a new data structure (i.e. DataFrame), similar to a relational table in a DBMS, to

support relational operations (e.g. select, filter, join, groupby), and a relational query

optimizer (i.e. Catalyst), to speed up query processing using DataFrames, Catalyst supports both

rule-based and cost-based optimization. Representing a query plan as a tree and applying rules to

manipulate them. SparkSQL provides a new solution for a wide range of data-driven problems that

relies on relational data and relational query processing.

SparkSQL is built as a library on top of Spark, as shown in Figure 2.10, the DataFrame API

integrates relational SQL commands with procedural code within Spark, for instance, it is possible to

combine declarative SQL queries (from external data sources using JDBC/ODBC, or from existing

RDDs) with analytics methods in Spark (e.g. machine learning library). The following example shows

how to express a 10-nearest-neighbors query for the point p = (3.0,2.0) in a dataset named points

(containing 2D point objects), using the SparkSQL programing interface, source [168].

4Spark Programming Guide:
https://spark.apache.org/docs/latest/programming-guide.html
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Figure 2.10: SparkSQL Overview. Source [14].

SELECT ∗ FROM points

ORDERED BY (points.x - 3.0)*(points.x - 3.0) +

(points.y - 2.0)*(points.y - 2.0)

LIMIT 10

Discretized Streams (D-Streams): Discretized streams (D-Streams) [183] [182] is a fault-tolerant

programming model build on top of Spark framework for data streams processing. D-Streams unifies

batch and streaming processing by treating data streams as a series of batch computation within a

given time interval. D-Streams store results for each batch process in groups of RDD data structures,

so users can manipulate RDDs using transformation and actions functions of Spark.

DataFrame: A DataFrame is a Spark’s Dataset (distributed collection of data) organized into named

columns. It is equivalent to a table in a relational database, but with richer optimizations through the

Spark API. DataFrames can be constructed from a variety of sources such as: structured data files,

tables in Hive, external databases, or existing Spark RDDs. A DataFrame is represented by a set of

data row. As in relational databases, DataFrames were build to be used with structured and relational

data; trajectory data, however, is sequential and unstructured, each trajectory is different in length,

number of data records, time interval, sampling rate, and scale to name a few.

2.6 Spatial Data Processing in MapReduce

MapReduce can cope remarkably well with large amounts of data; however, spatial-temporal objects

are generally more complex than words and URL strings in common MR applications; thus, it is more

difficult to fit spatial and spatial-temporal data into the MR model due its nested and multi-dimensional

nature [4] [200]. Nevertheless, several scalable solutions have been proposed to support spatial

operations in MR. Existing research utilize either a multi-core divide-and-conquer strategy, where

each mapper is responsible to process a sub-query over a subset of the dataset, while the intermediate

results from the map are refined by the reducers; or utilize spatially-aware partitioning techniques (see
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Section 2.1.2), in order to organize the space into disjoint groups of spatially close objects, providing

both process decentralization and efficient space pruning; hence reducing I/O and minimizing data

transfer across nodes.

The main drawback of the plain divide-and-conquer approach is that computational resources

may be wasted by processing data blocks that does not contribute for the query result. On the other

hand, spatial-aware partitioning strategies in MR can achieve up to 10x faster performance than

divide-and-conquer by maintaining data locality [44] [48] [200], since only a smaller number of

partitions containing query candidates are selected for processing, reducing query latency and avoiding

unnecessary I/O. Therefore, most works propose MR algorithms for data partitioning and query

processing briefly described as follows:

Partitioning: the mapper reads a data record and outputs a key/value pair with a spatial object as

value and the partition containing the object as key, this step is done according to a previously chosen

partitioning techniques (e.g. Quadtree, Rtree). The reducers group data from the same partition key

into a final data structure to be stored on disk (e.g. Hadoop’s HDFS), or in-memory (e.g. Spark’s

RDD).

Query Processing: spatial queries are processed in a “filter-and-refinement” fashion, where in

the filter step candidate partitions are selected using a given spatial index during the map, and the

refinement is done by the reducers. For spatial operations that demand scanning the whole dataset

(e.g. join), a sub-set of the problem is computed by the mappers, while the global result is done by the

reducers.

In this section we discuss the related work on spatial data and trajectory data using MR. Re-

lated work can be divided into four main categories: (1) MR-based solutions for a specific spatial

query/problem, (2) unified frameworks/systems for spatial data in MapReduce (Hadoop-based), (3)

unified frameworks/systems for spatial data in Spark, and (4) MR-based solutions for trajectory data.

2.6.1 Spatial Queries and Operations in MapReduce

Zhang et at. [186] proposed a nested-loop-based algorithm for k-NN join in two MR phases; the

algorithm partitions the two input datasets to join into N equal-sized blocks during the map phase;

then the N2 block combinations are send to the reducers which perform a local nested loop k-NN

join; the second MR phase computes the global k-NN join result. Lu et al. [95] and Akdogan et

al. [7] use a Voronoi diagram-based approach to partition the space and index spatial objects based

on its closest pivots during the map phase, and processing k-NN and RNN queries [7], and k-NN

join [95] in iterative MR tasks; and outperforms similar MR works based on grid-based partitioning for

k-NN query [160] [200] and k-NN join [186]. Overall, Voronoi-based partitioning has been shown to

outperform other methods for nearest neighbors search [83] [86] [134].

Zhang et al. proposed a MR algorithm for selection queries using a “divide-and-conquer” ap-

proach [188], and spatial join using a grid-based space partitioning and Z-order curve [189], however,
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their work use spatial distance only and do not handle load balance. Similarly, VegaGiStore [200] use

grid partitioning and Hilbert-order curve in selection queries for better data locality preserving than

Z-order curves.

Gupta et al. [63] presents a grid-based approach to process overlap and range joins on MR, but only

for the spatial dimension of rectangular objects. Puri et al. [127] proposed a MR-based algorithm for

GIS polygonal overlay, with an improvement of the naive “divide-and-conquer” method by creating

a local R-Tree in each map task, in order to reduce the number of join candidates which are sent

to the final reduce phase. In [23] an approach is presented for R-tree construction using MR tasks;

nevertheless the work construct a separate R-tree for each data partition, without addressing any

type of query. CG Hadoop [44] implements various computational geometry operations in Hadoop,

i.e. polygon union, skyline, convex hull, farthest pair, and closest pair. CG Hadoop uses a three-

phase “divide-and-conquer” approach in MR; firtly, CG Hadoop uses a spatially-aware partitioning

to group spatial objects; secondly each partition is processed in parallel by MR tasks and a local

result is calculated; finally the local results are sent to a final MR phase to compute the global result;

Figure 2.11 illustrates the operations covered in CG Hadoop.

Figure 2.11: Computational Geometry operations covered by CG Hadoop. Source [44].

Park et al. [111] proposed a three-phase algorithms for Skyline and Reverse Skyline using MR; in

the first phase the algorithm builds a quad-tree from a sample of the dataset to filter out non skyline

points; in the second phase the dataset is partitioned according with the previously built quad-tree

and computes the local skyline for every candidate partition; the third phase calculates the global

skyline from the local results. In [112] the authors extended this approach for uncertain data using a

probabilistic function in the second phase.

However, all the aforementioned approaches only focus on the spatial dimension of the data, for

points and polygons on disk-based computation only, and do not apply for trajectory queries.

2.6.2 Unified Frameworks for Spatial Data in MapReduce

The second group of existing works provide unified frameworks for spatial queries using MR on top of

the Hadoop framework.
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SpatialHadoop: SpatialHadoop [48], an extension of Hadoop [68], was built in the core of the

Hadoop framework and extends its data types and query language to support and simplify spatial

queries [47], and adding new functions to support spatial analysis [46]. Algorithms to cope with

computational geometry operations in MR have been proposed and evaluated against traditional

algorithms and SpatialHadoop [44], wherein SpatialHadoop outperformed Hadoop and traditional

approaches for spatial queries and computational geometry problems by using an extensive set of

spatial partitioning structures to improve spatial queries throughput [43], as shown in Figure 2.12(a).

Figure 2.12(b) shows the main architecture of SpatialHadoop, the lowest level SpatialHadoop provides

data storage in the HDFS using spatial indexing; data partitioning and query processing are done using

MR in the MapReduce layer and Operations layers repectively. SpatialHadoop also provides its own

query language named Pigeon [47] based on Pig Latin [107] and in compliant with OGC standards;

Pigeon provides declarative data types (e.g. POINT, POLYGON, LINE) and spatial functions

(e.g. Overlaps(), Distance(), Centroid()). The open-source HadoopViz [45] [50] is

integrated with SpatialHadoop, and provides a framework for big spatial data visualization using

MapReduce. HadoopViz can generate images with giga-pixel resolution in various image formats.

(a) Space Patitioning in SpatialHadoop. (b) SpatialHadoop Architecture.

Figure 2.12: SpatialHadoop Overview. Source [48].

Similar to SpatialHadoop, Aji et al. proposed Hadoop-GIS [6] as another MR solution for spatial

query analysis and cost-efficient data indexing. Hadoop-GIS provides a real-time spatial query engine

(RESQUE), which index data on-demand during query processing. Hadoop-GIS is integrated into

Hive [149] data warehouse, hence it allows declarative spatial queries using the HiveQL language

(e.g. ST INTERSECT, ST UNION). Hadoop-GIS implements the framework SATO [155], which

provides heat map visualization and a set of skew-aware partitioning approaches (e.g. R-tree, Hillbert

curve, binary split) for load-balanced partitioning and scalable query processing. SATO finds the

optimal partitioning strategy by analyzing a small sample of the entire dataset, and then performing a

complete partitioning from the sample analysis. Hadoop-GIS have been more specifically used for

spatial analysis in medical systems [4] [5] [16], and GPU processing [3].

MD-HBase [103] is a storage system built on top of Hadoop’s HBase [69]. Both HBase and

MD-HBase are scalable and fault-tolerant key-value-based storage systems built based on Google’s
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BigTable [26], providing high insert and update throughputs and high availability. Furthermore,

MD-HBase also supports kd-Tree and Quadtree partitioning for spatial data, and range selection and

nearest-neighbor queries for location-based services.

SHAHED [49] is a MR-based framework for query processing and visualization of large-scale

satellite data. SHAHED deploys SpatialHadoop [48] to manage large-scale spatial data, and provides

four main functionalities: (1) data cleaning using map data interpolation, (2) quad-tree based partition-

ing for spatial-temporal satellite data, (3) support for selection and aggregate map queries, and (4) data

visualization.

However, all the aforementioned works are disk-based optimized for I/O efficiency, and only

support off-line static data partitioning, and does not consider the query-workload. Moreover, they do

not support spatial-temporal trajectory queries, since all systems were developed for operations on the

spatial dimension of points and polygonal objects only.

AQWA: Similarly, Aly et al. proposed AQWA [12], an adaptive spatial data partitioning based on

k-d Tree to support range selection and k-NN search in MR; unlike SpatialHadoop, AQWA provides a

dynamic space partitioning which reacts to changes on both the query workload and new incoming

data; in AQWA data repartitioning is done so that the cost Cost(L) of processing queries over a set of

spatial partitions L is reduced, the partitions may be updated as data is consumed by queries, or when

new batch of spatial points are append to the dataset. AQWA uses the cost function Cost(L) to decide

whether or not to re-partition the dataset. The cost model is based on the number of points a query has

to read N(p) and the number of queries Oq(p) executed over a given spatial partition p. AQWA also

provides a time-fading mechanism, giving lower weights to older queries in the cost model, this allows

AQWA to alleviate the cost of re-partitioning overhead corresponding to old queries.

Cost(L) = ∑
p∈L

Oq(p)∗N(p)

In [11], the authors presented Kangaroo, a query-workload-aware system built using AQWA’s cost

model for range queries. Similar to AQWA, ScalaGiST [94] presented a general purpose solution

for query processing and data indexing in MR. ScalaGiST supports B+-Tree and R-Tree like indexes

for different types of application, including multidimensional range queries and k-NN which can be

applied for spatial data. Although they provide on-line dynamic data partitioning, both AQWA and

ScalaGist are disk-based and do not provide support for trajectory data storage and query operations.

2.6.3 Unified Frameworks for Spatial Data in Spark

The third group of existing works provide unified in-memory-based frameworks for spatial queries

using Spark framework.

Simba: Simba [168] is a in-memory MR-based system build on top of SparkSQL [14] for spatial

Big Data analytics. Unlike disk-based systems such as SpatialHadoop, Simba focus on optimizing per-
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formance by extending Spark’s RDD to support spatial indexing and spatial operations natively. Simba

adds new features to SparkSQL’s architecture, as shown in Figure 2.13. Fistly, Simba implements a

wide range of popular spatial queries (e.g. range query, k-NN, distance join, and k-NN join), and adds

spatial keywords to SparkSQL grammar (e.g. POINT, RANGE, KNN, DISTANCE JOIN), so that

users can express spatial operations in a SQL-like fashion, or using the SparkSQL’s DataFrame API

language. Following, the authors exemplify how to write a 3-NN query of point (4,5) in the point data

dataset using Simba.

SELECT * FROM point data

WHERE POINT(x,y) IN KNN (POINT(4,5), 3)

Figure 2.13: Simba Architecture. Source [168].

Simba extends Spark’s RDD to support spatial indexing, it introduces a new abstraction, named

IndexRDD which is essentially an RDD of rows RDD[row] (like a table of records), to support user

specified indexing (i.e. R-Tree, hash tree, hash map) in order to reduce query latency and increase

throughput. IndexRDD supports all native RDD operations plus spatial ones.

Partitioning Optimization in Simba: Simba also uses a cost-model, to partition the input dataset

so that the data can fit into main-memory, and each partition has roughly same size, in order to provide

load-balancing. Simba determines the number of partitions as well as the partition size for different

dataset using a cost-function based on the available resources in the cluster. The cost-model is shown

as follows, where β is the partition size, λ is a system parameter (i.e. the percentage of available

memory allocated for storage, 80% by default), α is the memory reserved for Spark caching, M is the

total memory reserved for Spark on each slave node, and c is the number of cores in the cluster.

β = λ ((1−α))M/c)

Query Optimization in Simba: Furthermore, Simba extends the Spark SQL’s Catalyst optimizer

for spatial queries; when a select condition is submitted to the application, Simba transform the original

select condition to the Disjunctive Normal Form (DNF), for instance (A∧B)∨C∨ (D∧E ∧F), and

selects the predicates that can be optimized by index to form a new select condition θ ; then Simba

filters data with θ first using index-based operators, and finally applies the original condition to get the
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final answer. Index optimization may improve performance when the predicate is selective,however, it

may cause overhead if the selectivity is high. Therefore, if the selectivity of the predicate is higher

than a given threshold (80% default), Simba will scan the whole partition instead leverage indexing.

Simba makes an estimative of the predicate selectivity based on the partitions MBR whose boundary

intersects the query area, and the estimate number of records in the partitions.

However, despite its great contributions, Simba still not provides any support for spatial-temporal

trajectories.

Similar to Simba, GeoSpark [175] is another system build on top of Spark to process spatial

queries. GeoSpark provides an extension of RDDs for two-dimensional spatial objects, named Spatial

RDDs (SRDDS), and uses quad-tree and R-Tree indexing in the SRDD partitioning phase; GeoSpark

supports range selection, k-NN, and spatial join over its SRDDs of points and polygons (i.e. PointRDD,

PolygonRDD). Similarly, SpatialSpark [174] is a system to support range queries and spatial join over

points and polygons using Spark; SpatialPark uses uniform grid and k-d tree partitioning to improve

query performance over large datasets. Unlike Simba, GeoSpark and SpatialSpark implement few

spatial operations, and does not provides a query engine. SparkGIS [16] is another framework build on

top of Spark for in-memory distributed spatial data processing. SparkGIS combines Spark with the

RESQUE query engine of Hadoop-GIS [6] to support pathology image analysis.

However, none of the aforementioned frameworks consider the query-workload when storing the

data in-memory, thus they are not memory-wise, and they do not provide support for spatial-temporal

trajectory data.

2.6.4 Trajectory Data in MapReduce

Despite many efforts to process large-scale trajectory and time-series data in parallel, e.g. [27] [41]

[53] [73] [93] [121], trajectories of moving objects are difficult to fit into the MR model due to their

multi-dimensional and sequential nature. Furthermore, even for single thread processing applications,

trajectory management still pose a great challenge (recall Section 2.2). However, some efforts have

been done to deal with trajectories using MR.

Figure 2.14: Trajectory, partitioning and query in TRUSTER. Source [172].

TRUSTER [172] is a system for trajectory data processing in MR. TRUSTER uses uniform grid
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cells for space partitioning, and a 1D tree to index time within each cell. During the partitioning

phase in MR, trajectories are split into segments and every segment is assigned to the partition it

overlaps with, if a segment spans for more than one grid cell the segment is split according to the cells

it overlaps with. During query processing the segments in the partitions containing the query range

are selected. However, TRUSTER uses a uniform grid cells partitioning, hence does not handle load

balancing. Figure 2.14 shows an example of partitioning and query in TRUSTER. In [98] the authors

presented PRADASE, an improvement of TRUSTER. PRADASE index both space and time using

a quad-tree-based structure for better load-balancing. PRADASE uses GFS [57] based data storage

for replication and dynamic partitioning of temporal dimension. Trajectories are indexed using two

spatial indexes to optimize trajectory queries, i.e. PMI and OOI. PMI provides a quad-tree-based space

partition with multiple assignment strategy for boundary objects, wheres OOI is used to associate

moving objects with their respective trajectories. However, both TRUSTER and PRADASE are

disk-based, and do not consider trajectory data preprocessing nor the query-workload.

CloST [146] is a Hadoop-based storage system for spatial-temporal range queries. CloST proposes

a new data model and file format to store trajectory data in HDFS. CloST uses a three-level hierarchical

partitioning in MR, where in the first level trajectories are grouped into coarse buckets according to the

moving objects OID; in the second level each bucket is partitioned into spatial regions using quad-tree;

in the third level each region is divided into fine-grained 1-D blocks of time. Figure 2.15 illustrates the

hierarchical partitioning in CloST. Input records from same moving object are grouped together and

stored in a table format into the HDFS using delta and running-length compression. The goal of CloST

is to support efficient single-object queries (i.e. spatial-temporal selection) and all-object queries (i.e.

selection by object OID). Although CloST also provides a dynamic partitioning according with the

data utilization ratio, it is a disk-based approach, and does not consider trajectory data preparation nor

preprocessing.

OceanST [178] is a Spark-based system designed for spatial-temporal Mobile Broadband (MBB)

data. OceanST adopts the same hierarchical partitioning of CloST, and provides an additional set of

inverted indexes to attributes associated with MBB data (e.g. textual information). OceanST uses

Spark to speed up exact and sampling-based aggregate queries over distributed data (e.g. count,

distinct, max, min, sum, avg). OceanST also includes an API with some basic spatial-

temporal analytics, such as frequent path identification, transportation mode prediction, and activities

prediction, for instance. However, OceanST only provides a static off-line data partitioning, hence

does not consider the query-workload and it’s not memory-wise, moreover, OceanST aims for MBB

data, and does not support indexing for similarity search over GPS trajectories, and does not consider

data preprocessing.

Another work by Li et. al [87] uses MR to calibrate bus trajectories and identify bus routes

directions using a k-NN query; however, they simply run a k-NN on the whole dataset using MR, and

do not use any index structure or data partitioning, which negatively affects the performance. Jinno et

al. [76] proposed a grid representation of trajectories, and a quad-tree-based search with MapReduce

for frequent movement pattern mining; the grid resolution can be modified to identify different types
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Figure 2.15: Hierarchical partitioning in CloST. Source [146].

of patterns, however they use a lossy representation of trajectories, and can only be applied for few

movement patterns identification.



Chapter 3

Trajectory Data Preparation and
Preprocessing

In this chapter we present our contribution on trajectory data preparation and preprocessing. In

Section 3.1 we introduce a novel script model for trajectory data representation, and designed a

system for trajectory data integration and compression. In Section 3.2 we introduce a framework for

trajectory data preprocessing using map-matching on top of Spark, in order to achieve data quality

with performance and scalability.

3.1 Trajectory Data Integration and

Representation

Raw trajectories should go through a series of preprocessing steps before they become suitable for

indexing and querying. This chapter introduces a novel parallel system for trajectory data integration

and representation, with support for lossless trajectory Delta compression, and synthetic trajectory data

generation. This system also provides templates for trajectory data representation (e.g. spatial-temporal

attributes, textual attributes) providing a single data model for integration of different input datasets.

Moreover, this application is responsible to collect statistics of the input dataset (i.e. metadata).

3.1.1 Trajectory Data Loader and Parser

Different GPS devices and transportation companies record and store their data using various formats.

Even though GPS data often contains the same spatial-temporal and semantic attributes, describing the

moving object’s trajectory, the integration of these datasets into a single format and storage platform is

yet an issue. Therefore, we deliver a data integration system for simplified loading and preprocessing

of trajectory data into a standard text platform; this facilitates data access and processing by any

trajectory application using multiple and heterogeneous datasets.
45
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With the increasing of GPS trajectory data volume and sources, large amount of spatial-temporal

trajectory data formats have emerged. Therefore, spatial-temporal trajectory data integration is

significant to combine data from different sources into a unified format and platform for trajectory

data-based applications [195] [199]. We introduce a novel system to represent and integrate spatial-

temporal trajectory data from different sources and formats. This system targets researchers and

professionals working on trajectory data-driven systems and applications, which often demands the

collection of data from several sources in order to perform experiments and trajectory-based analytics.

The application parses the input data to a predefined output and compressed CSV format, and stores the

formatted data into any of the provided primary storage platforms, i.e., MongoDB [100], HDFS [68], or

Local directory. This allows any trajectory-based system to process data from multiple heterogeneous

datasets in a user-provided storage platform, without the need of re-implementation.

Current spatial-temporal trajectory data sources generate and store data in a semi-structured textual

format, containing the latitude, longitude, and time-stamp of the trajectory coordinates points, along

with additional semantic information, which varies from one dataset to another. Furthermore, several

independent sensors may be used in different circumstances to collect data [77]. However, it is

challenging to interpret and integrate trajectory data from the multitude of textual formats and sensors

available, and it is still an issue [138]. Therefore, in order to represent and integrate data from different

formats, we firstly introduce the Trajectory Data Description Format (TDDF), a data description

format for spatial-temporal trajectory data representation. The TDDF was designed based on a survey

on several real GPS trajectory datasets, both public and private, accessible by our research group. Then,

based on the user-provided TDDF, our application loads and parses the input data into the selected

output data format using lossless Delta compression, in order to reduce the size of the stored data. Our

system also generates statistical information (Metadata) about the input datasets, which are used in the

Spark algorithms, and can also be used to generate synthetic data for experimental purposes. A data

parser was built to convert each data record from the input datasets to the output format provided.

Briefly, the main functionalities of this application are:

• Load GPS trajectory data from any traditional textual format, by means of a user-specified

Trajectory Data Description Format (TDDF).

• Parse the raw data based on the input TDDF to one of the system-provided Output Data Formats

(i.e. output TDDF).

• Generate synthetic trajectory data in the default Output Data Formats (i.e. output TDDF).

• Store the parsed data in a compressed format into any of the primary storage platforms provided,

i.e. Local directory, MongoDB, and HDFS.

A data parser was built to convert each data record from the input dataset to the output format

provided. Finally, we provide a platform independent GUI for data parsing. Figure 3.1 shows the

application GUI. The system can be accessed and download from the project repository 1

1https://github.com/douglasapeixoto/trajectory-data-loader
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Figure 3.1: Trajectory Data Loader application GUI.

3.1.2 Problem Statement

Due to the myriad of trajectory data formats available, our first goal is data preparation, by formating

and integrating a set of input trajectory dataset into a common and simplified format, that is.

Given a set of input trajectory datasets D = {T1,T2, ...,TN}, and a set of input trajectory data

formats { f1, f2, ..., fN}, where the format of Ti is fi, that is Ti→ fi. We want to represent and integrate

D using a predefined trajectory data format ft , such that, for every Ti ∈ D, Ti→ ft .

To solve this problem, first we need to define the data format ft that best represent the trajectories

in the datasets of D, then for every Ti ∈ D we must convert every trajectory in Ti from the format fi

into ft .

3.1.3 System Design

Figure 3.2 introduces the system workflow. Briefly, raw trajectory data is read and parsed based on

a user provided input data format, i.e. the Input TDDF. The parser identifies trajectory records and

attributes from the raw data, and parse the raw data to any of the system provided output data formats,

along with a metadata file and the description of the output data format, i.e.e the Output TDDF file.

The output data can be stored into any of the primary storage platforms provided.

Spatial-temporal trajectory datasets available are organized in basically three manners, (1) each

document in the dataset contains one trajectory record, (2) each document contains several records,

one per line, (3) each document contains several records in multiple lines separated by a delimiter.

Attribute values in a record are separated by a delimiter (such as a comma or semicolon). Attributes

are either atomic or multi-valued (i.e., list). We overcome the problem of reading different formats by

telling the parser how the records are organized in the dataset, that is, the format, type, and order of
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Figure 3.2: Trajectory Data Loader workflow.

each attribute in the trajectory records. In the next sections we describe the architecture, features, and

implementation of the proposed data loader and parser system.

3.1.4 Trajectory Data Description Format: TDDF

This application reads trajectory files from any source format; however, different GPS data sources

provide different data formats. Therefore, the core of our application implements a file interpreter to

extract attributes from the input data files containing GPS trajectory records. In order to do that, the

user must specify the format (fields/attributes) of the input data as they appear in the source files, these

specifications are provided through the TDDF.

We introduce a set of data description keywords to describe the input data format. The format

(fields/attributes) of the input data must be provided as they appear in the source files. The TDDF is a

user-specified script containing the descriptions of the input data files, similar to a Data Description

Language (DDL), assisting the parser to identify trajectory records and attributes. The TDDF scope

contains both attribute declarations, and commands to be executed while parsing the data. We

introduce a set of declarative keywords to the TDDF, for both attributes’ (Data Definition Keywords)

and command’s (Data Control Keywords) declarations. Identifiers and spatial-temporal attributes have

a special tag since they represent the core of trajectory data. The scope of the TDDF was designed

based on a survey of existing spatial-temporal trajectory formats, in order to cover a wide range of

trajectory datasets. Following we describe the Data Definition Keywords for attributes’ declaration,

and Data Control Keywords for command’s declaration, and give some examples.

TDDF Grammar

Predefined Keywords: Predefined keywords aid the parser to identify important parameters and

commands in the input data. Tables 3.1 and 3.2 introduce the list of predefined keywords and their

meanings.

Default Command Values: Although necessary for the data interpreter, some commands are

provided with a default parameter/value in case they are not provided by the user. Table 3.2 shows the
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Keyword Type Description
ID Attribute Name Trajectory Identifier
COORDINATES Attribute Name List of Trajectory Coordinates
X Attribute Name Coordinate X (or Longitude) value
Y Attribute Name Coordinate Y (or Latitude) value
LON Attribute Name Coordinate Longitude value
LAT Attribute Name Coordinate Latitude value
TIME Attribute Name Coordinate Time-Stamp

INTEGER Attribute Type Integer number
DECIMAL Attribute Type Decimal number
STRING Attribute Type String character
BOOLEAN Attribute Type Logic type (True/False)
CHAR Attribute Type Single character
DATETIME Attribute Type Date and time (Java DateTimeFormat)
DELTAINTEGER Attribute Type Integer delta compressed number
DELTADECIMAL Attribute Type Decimal delta compressed number
ARRAY Attribute Type Array type (List)
CARTESIAN Command Value Cartesian coordinates (x,y)
GEOGRAPHIC Command Value Geographic coordinates (longitude,latitude)
LN Command Value Line-break
LS Command Value Line-space
EOF Command Value End-of-File
SPATIAL TEMPORAL Output Format Outputs spatial-temporal attributes only
SPATIAL Output Format Outputs spatial attributes only
ALL Output Format Outputs all attributes
# Comment Marker Line comment symbol

Table 3.1: TDDF Data Definition Keywords.

Keyword Type Description Default Value
RECORDS DELIM Command Name Data Records Delimiter LN (Line-break)
IGNORE ATTR Command Name Ignore Input Attribute –
IGNORE LINES Command Name Ignore Input File Line(s) –
AUTO ID Command Name Auto generate ID attribute –
COORD SYSTEM Command Name Spatial coordinates system GEOGRAPHIC
DECIMAL PREC Command Name Precision for decimal numbers 5
SAMPLE Command Name Load a sample of the dataset 1.0 (100%)
OUTPUT FORMAT Command Name User-specified output format ALL

Table 3.2: TDDF Data Control Keywords.

command keywords and their respective default values. All keywords are case-sensitive.

TDDF Syntax and Semantic

For each attribute of the data record, one must provide the attributes’ NAME, TYPE and DELIMITER,

separated by space or tab.
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NAME: Name of the field/attribute.

TYPE: Type of the field/attribute to read.

DELIMITER: Field delimiter in the input file.

When providing the TDDF script, the user must declare one attribute per line in the exact order they

appear in the input files. The parser will read the attributes’ value until the given field DELIMITER is

reached. Attributes’ name must be unique in the TDDF.

Commands, on the other hand, are declared in the form NAME, and VALUE.

NAME: Name of the field/attribute.

VALUE: The command’s input parameter/value.

The attribute keyword ID describes the identifier field of each trajectory record. Since in our

research not all input datasets provide an ID for the trajectory records, the command AUTO ID to

generate the records’ IDs automatically. An example of the AUTO ID command syntax is given as

follows:

AUTO ID prefix

# Output the ID attribute as “String”: “prefix 1”, “prefix 2”, ...

AUTO ID 10

# Outputs the ID as attribute “Integer”, starting from the given number: 10, 11, 12, ...

Either the trajectory ID attribute field, or AUTO ID, should be provided in the input TDDF. If

both are omitted, the application will use “ AUTO ID 1” by default.

The attribute keyword COORDINATES is a mandatory field, and describes the list of coordinate

points of the trajectory records. The COORDINATES must be declared as an ARRAY type, followed

by the description of the spatial-temporal attributes – i.e. X, Y, TIME in CARTESIAN system,

or LON, LON, TIME in GEOGRAPHIC system – and any semantic attributes of the coordinate

points, in the same order they appear in the input data files. The spatial-temporal fields X, Y,

TIME, or LON, LAT, TIME, in a COORDINATES attribute declaration are mandatory.

The command RECORDS DELIM tells the parser the final of a data record. In most GPS trajectory

datasets in our research, data records are organized by either one trajectory record per file line, that

is RECORDS DELIM LN, one trajectory record per file, that is RECORDS DELIM EOF, or many

records per file separated by a delimiter character or word c, that is RECORDS DELIM c. The parser

will read a data record until the given delimiter is found.

The command IGNORE LINES tells the parser to ignore the given lines in all input data files.

For instance, the following command will ignore the lines 1 to 5 and 7 in the input data files.

IGNORE LINES [1-5,7]

The command IGNORE ATTR, on the other hand, ignores the attribute in the position of its

declaration in all data records, and it is followed by the attributer’s delimiter. Both IGNORE LINES
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and IGNORE ATTR commands are useful, for instance, when not all data records, file lines, or

attributes from the input dataset are necessary for the user application.

The command DECIMAL PREC tells the parser the number of decimal points d to consider in

decimal values, the default value is d = 5. Attributes declared as DECIMAL will be converted to a

integer number in the format value∗10d , and compressed using a lossless delta-compression to reduce

storage space.

The command SAMPLE tells the data loader to randomly select a sample the input dataset for

reading and parsing. The value for sampling must be in the range ]0.0,1.0] which specifies the

percentage of data records to read. The SAMPLE command is particularly useful for large datasets

and debugging purposes.

DATETIME values are declared and parsed using Java’s DateTimeFormatter2. DATETIME types

must be declared as DATETIME[‘‘pattern’’], where “pattern” describes the attribute using the

DateTimeFormatter format.

Array Type Syntax: Arrays (or lists) types are declared by specifying the attributes in the array, i.e.

attributes’ NAME, TYPE and DELIMITER, the general syntax Array declaration is:

ARRAY( NAME TYPE DELIMITER ... )

Arrays can be single-valued or multi-valued (e.g. objects) of any of the pre-defined data types, the

parser will read the parameters until the given field delimiter is reached. Attributes in the array are

specified in the exact order they appear in the source file, similar to any other attribute declaration.

Following are some examples of array type declaration for COORDINATES field.

Example 1: Trajectory coordinates as an array/list of spatial-temporal points, comma separated.

ARRAY( X DECIMAL ,

Y DECIMAL ,

TIME INTEGER , )

Example 2: Trajectory coordinates as an array/list of spatial-temporal points, with weight and

type attributes, one coordinate per file line, separated by semicolon.

ARRAY( X DECIMAL ;

Y DECIMAL ;

TIME INTEGER ;

weight DECIMAL ;

type STRING LN )

2https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
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3.1.5 Output Data Format

After the input data is parsed, the data in the new format is stored into any of our primary storage

platforms (i.e. Local directory, MongoDB [100], HDFS [68]), in the output format of choice, along

with the Output TDDF and a Metadata file, containing information and statistics about the input

trajectory dataset, such as number of records, statics about the speed, length, duration, sampling rate,

and coverage of the trajectory records. The system generated Output TDDF file, on the other hand,

contains the specifications of the output data, that is, the NAME and TYPE of all attributes in the output

data.

Three different output formats are provided, using a Feature Selection approach, namely SPATIAL,

SPATIAL-TEMPORAL, and ALL. The output formats follow a CSV (comma separated values) style.

Attribute values are separated by semicolon, and array items are separated by comma. The output

documents contain one trajectory record per line. Documents can also be output as BSON 3 documents

in MongoDB. Furthermore, to reduce storage consumption, the spatial-temporal attributes in the list of

coordinates are delta-compressed. The records’ attributes are always in the order:

ID; COORDINATES; OTHER ATTRIBUTES

Following we describe the system provided output data formats.

SPATIAL: In this output format, records contain the trajectory ID and the list of spatial attributes

of the COORDINATES only. This format is useful for applications that does not demand processing

over the temporal attributes of the trajectories.

SPATIAL-TEMPORAL: In this output format, records contain the trajectory ID and the list

of spatial-temporal attributes of the coordinates only. This output format contains the most basic

information of trajectories, commonly used in spatial-temporal queries and mining applications.

ALL: In this output format, records contain the complete set of attributes specified in the Input

TDDF, that is, the trajectory ID, the list of trajectory coordinate points (with all provides coordinate

attributes), and the list of semantic attributes of the trajectory. This is the default output format.

3.1.6 Primary Storage Platforms

Since our goal is to work over large-scale trajectory data, mainly on top of Spark, we employ two

widely known storage platforms for large-scale data in our application to store the parsed data, i.e.

MongoDB, and HDFS. All storage platforms are scalable and open-source, and provide easy data

access to Spark applications. Our system is can also output the parsed data to a local directory, if no

storage system is required by the user.

3https://www.mongodb.com/json-and-bson
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MongoDB: MongoDB [100] is a document-oriented database program for large-scale data. Mon-

goDB uses JSON-like documents with schemas. The document model maps to the objects in the

application code, making data easy to query. Furthermore, MongoDB is a distributed database at its

core, thus it provides high availability and horizontal scaling. Our application stores the parsed data in

MongoDB using CSV document format.

HDFS: HDFS is the Hadoop’s File System [68], it stores a distributed way to store data in blocks

shared across the cluster, and provided very high data read and write. HDFS makes it easy to store and

maintain large amounts of data in a distributed way, and provides fault-tolerance using replication, and

I/O in batches.

3.1.7 Case Study

We present a set of case studies using real GPS trajectory datasets. We demonstrate how our application

can be used to integrate data from different sources and formats into a single format. For each case,

we provide an overview of the input raw data, as well as the Input and Output TDDF scripts, and

the parsed data. The sources of the data files, as well as some attribute values, will be omitted for

privacy reasons. For the sake of simplicity, and to demonstrate how our system can be used to integrate

datasets into a common format, we output all datasets using the SPATIAL TEMPORAL output format.

CASE 1: This dataset contains one GPS trajectory record per file. The first six lines of each file

contains some descriptions about the source dataset, and can be ignored. The remainder lines contains

the list of trajectory coordinates, one coordinate per line. Coordinates contain both spatial-temporal

and semantic attributes. An overview of the dataset records and its corresponding TDDF are given

below.

Input Trajectory Data 1:

40.008304,116.319876,0,492,39745.0902662037,2008-10-24

40.008413,116.319962,0,491,39745.0903240741,2008-10-24

. . .

40.009209,116.321162,0,84,39745.1160416667,2008-10-24

Input TDDF Script 1:

# One record per file

RECORDS DELIM EOF

# Coordinates in Long/Lat

COORD SYSTEM GEOGRAPHIC

# Lines 1 to 6 of each file can be ignored
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IGNORE LINES [1-6]

# Auto generate ID with prefix ’db1 t’

AUTO ID db1 t

# The list of coordinates in each trajectory record.

# Field 1: Latitude in decimal degrees.

# Field 2: Longitude in decimal degrees.

# Field 3: All set to 0 for this dataset.

# Field 4: Altitude in feet.

# Field 5: Number of days since 12/30/1899, with fractional part.

# Field 6: Date as a string.

# Field 7: Time as a string.

COORDINATES ARRAY( LAT DECIMAL ,

LON DECIMAL ,

zeroVal INTEGER ,

alt INTEGER ,

timeFrac DECIMAL ,

TIME DATETIME("yyyy-MM-dd") LN) EOF

CASE 2: This dataset contains several GPS trajectory record per file, every record is delimited by the

character #. The first line of each record contains a set of semantic attributes of the trajectory, followed

by the list of trajectory coordinates, one coordinate per line. Coordinates contain both spatial-temporal

and semantic attributes. An overview of the dataset records and its corresponding TDDF are given

below.

Input Trajectory Data 2:

#,1,3/2/2009 9:23:12 AM,3/2/2009 10:02:17 AM,10.4217737338017 km

3/2/2009 9:23:12 AM,39.929961,116.355872,23570

3/2/2009 9:23:42 AM,39.926785,116.356007,23526

. . .

3/2/2009 10:02:17 AM,39.950725,116.295991,27942

#,2,3/2/2009 10:04:14 AM,3/2/2009 10:56:23 AM,13.1721183785493 km

3/2/2009 10:04:14 AM,39.969738,116.288209,32482

3/2/2009 10:04:44 AM,39.973138,116.288661,13208

. . .

3/2/2009 10:56:23 AM,39.99992,116.352966,37268

Input TDDF Script 2:

RECORDS DELIM #
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COORD SYSTEM GEOGRAPHIC

# Creates new IDs with prefix ’db2 t’

AUTO ID db2 t

# Ignore the first empty attribute, and the integer ID

IGNORE ATTR ,

IGNORE ATTR ,

timeIni STRING ,

timeEnd STRING ,

length STRING LN

COORDINATES ARRAY( TIME DATETIME("M/d/yyyy HH:mm:ss a") ,

LAT DECIMAL ,

LON DECIMAL ,

alt INTEGER LN) #

CASE 3: This dataset contains several GPS trajectory records per file, one record per file line. The

dataset contains trajectories from cars, with the list of trajectory coordinates, and a set of semantic

attributes. This dataset had been used for map-matching, hence the coordinate points also contain

semantic attributes regarding map-matching. A record in this dataset, corresponding to a single line in

the input file, and its corresponding TDDF are given below.

Input Trajectory Data:

10000018 1427933750,10000018,1,27|27|27|19,3639865:0:57:114.33708:

30.50130:1427933750|3639862:6:59:114.33715:30.50128:1427933759|3624382:

46:33:114.33728:30.50168:1427933759|3624382:98:12:114.33742:30.50213:

1427933772|3624382:131:17:114.33752:30.50242:1427933778|3630066:0:35:

114.33752:30.50242:1427933772|3630066:0:17:114.33752:30.50242:1427933778

Input TDDF Script:

RECORDS DELIM LN

COORD SYSTEM GEOGRAPHIC

ID STRING ,

# The moving object which generated this trajectory

sourceId INTEGER ,

# Car type: personal car=1, taxis=2, others=0

carType INTEGER ,

citySequence ARRAY(cityId INTEGER |) ,

# Information of each mapped points to each link, including linkID,
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# the distance between each mapped point, the distance of mapping,

# longitude, latitude, time

COORDINATES ARRAY(linkID INTEGER :

oDistance INTEGER :

mDistance INTEGER :

LON DECIMAL :

LAT DECIMAL :

TIME INTEGER |) LN

For all three cases, the output TDDF is the following, since in all cases the input datasets have

been parsed to the same output format.

Output TDDF Script:

OUTPUT FORMAT SPATIAL TEMPORAL

COORD SYSTEM GEOGRAPHIC

DECIMAL PREC 5

ID STRING

COORDINATES ARRAY( LON DECIMAL LAT DECIMAL TIME INTEGER)

The output formated data, in CSV and BSON documents, for the three datasets is the following.

Notice that now all datasets are in the same format SPATIAL TEMPORAL.

Output Trajectory Data (.csv):

db1 t 1;11631987,4000830,1224814199000,8,10,5000

db2 t 1;11635587,3992996,1235985792000,13,-318,30000

db2 t 2;11628820,3996973,1235988254000,46,340,30000

1018 1450,11433708,3050130,1427933750,7,-2,9

Output Trajectory Data (.bson):

{ id : "db1 t 1", coordinates : [11631987,4000830,1224814199000,

8,10,5000]}
{ id : "db2 t 1", coordinates : [11635587,3992996,1235985792000,

13,-317,30000]}
{ id : "db2 t 2", coordinates : [11628820,3996973,1235988254000,

46,340,30000]}
{ id : "1018 1450", coordinates : [11433708,3050130,1427933750,

7,-2,9]}
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Notice that the output format for attributes is slightly different than that in the input format. Since

the output data is always in a CSV-like style, where all attributes are semicolon-separated, and array

items as comma-separated by default, the delimiters in the output TDDF are therefore omitted. The

output TDDF can be used by any trajectory data reader implementation as the common format of all

parsed datasets.

CASE 4 (Unsupported formats): Despite our efforts to provide a universal parser, we understand

that some data formats may still not fit perfectly in our parser. However, some painless data prepro-

cessing can be done in the raw data to make it fits our model, and thus be integrated into a common

format. For instance, our research group had access to a dataset collected by a private bus company,

which collected the GPS locations of all their buses after certain time interval, and stored all GPS

coordinates collected at the same time together in a text file. Consequently, the GPS coordinates for a

given bus trip were spread across multiple files. Since the GPS records also contained the buses IDs

and trip IDs, we simply had to perform a quick sort-and-aggregate algorithm to group coordinates of a

same bus and trip into the same file sorted by time-stamp. After that, the trajectory records could be

easily parsed by our application.

3.1.8 Metadata

While parsing the data, the application generate statistical information about the dataset. The complete

set of dataset attributes in the output Metadata file is shown in Table 3.3:

3.1.9 Summary

In this section we introduced a novel model for spatial-temporal trajectory data integration and

representation; in addition, a system using our proposed model was developed. Our application

interprets and integrates trajectory data from several textual formats into a standard format, using a

novel Trajectory Data Description Format (TDDF) designed from a research on real-world datasets; our

system outputs the integrated data into a user-specified storage platform, in order to assist researchers

and developers working on trajectory data-driven applications.
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Metadata Description
NUM FILES Number of files in the input dataset
NUM ATTRIBUTES Number of attributes in the input trajectories
NUM COORD ATTRIBUTES Number of coordinates’ attributes
NUM TRAJECTORIES Total number of trajectories in the input dataset
NUM POINTS Total number of points/coordinates in the input dataset
MIN PTS PER TRAJECTORY Minimum number of points per trajectory
MAX PTS PER TRAJECTORY Maximum number of points per trajectory
AVG PTS PER TRAJECTORY Average number of points per trajectory
STD PTS PER TRAJECTORY Standard Deviation of the number of points per trajectory
MIN TRAJECTORY LENGTH Minimum trajectory length in the dataset
MAX TRAJECTORY LENGTH Maximum trajectory length in the dataset
AVG TRAJECTORY LENGTH Average trajectories length in the dataset
STD TRAJECTORY LENGTH Standard Deviation of the trajectories length
MIN TRAJECTORY DURATION Minimum trajectory duration in the dataset
MAX TRAJECTORY DURATION Maximum trajectory duration in the dataset
AVG TRAJECTORY DURATION Average trajectories duration in the dataset
STD TRAJECTORY DURATION Standard Deviation of the trajectories duration
MIN TRAJECTORY SPEED Minimum trajectory speed in the dataset
MAX TRAJECTORY SPEED Maximum trajectory speed in the dataset
AVG TRAJECTORY SPEED Average trajectories speed in the dataset
STD TRAJECTORY SPEED Standard Deviation of the trajectories speed
MIN SAMPLING RATE Minimum trajectory sampling rate in the dataset
MAX SAMPLING RATE Maximum trajectory sampling rate in the dataset
AVG SAMPLING RATE Average trajectories sampling rate in the dataset
STD SAMPLING RATE Standard Deviation of the trajectories sampling rate
MIN X Minimum value of X/Longitude in the dataset (coverage)
MIN Y Minimum value of Y/Latitude in the dataset (coverage)
MIN T Minimum value of Time-Stamp in the dataset (coverage)
MAX X Maximum value of X/Longitude in the dataset (coverage)
MAX Y Maximum value of Y/Latitude in the dataset (coverage)
MAX T Maximum value of X/Longitude in the dataset (coverage)

Table 3.3: Metadata Descripion.
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3.2 Parallel Map-Matching at Scale

Map-matching is a problem of matching recorded GPS trajectories to a digital representation of the

road network. GPS data may be inaccurate and heterogeneous, due to limitations or error on electronic

sensors., as well as law restrictions. How to accurately match trajectories to the road map is an

important preprocessing step for many real-world applications, such as trajectory data mining, traffic

analysis, Smart cities and rout,es prediction. However, the high availability of GPS trajectories and

map data challenges the scalability of current map-matching algorithms, which are limited for small

datasets since they focus only on the accuracy of the matching rather than scalability. Therefore, we

propose a distributed parallel framework for efficient and scalable offline map-matching on top of the

Spark framework. Spark uses distributed in-memory data storage and the MapReduce paradigm to

achieve horizontal scaling and fast computation of large datasets. Spark, however, is still limited for

dynamic map-matching, and memory consumption in Spark can be an issue for very large datasets. We

develop a framework to allow map-matching on top os Spark, while achieving horizontal scalability,

memory-wise usage, and maintaining the accuracy of state-of-the-art matching algorithms by: (1) We

combine a sampling-based Quadtree spatial partitioning construction and batch-based computation

to achieve horizontal scalability of map-matching, as well as reduce cluster memory usage. (2) We

employ a safe spatial-boundary approach to preserve matching accuracy of boundary objects. (3)

In addition, a cost function for the distributed map-matching workload is provided in order to tune

the framework parameters. Our extensive experiments demonstrate that our framework is efficient

and scalable to process map-matching on large-scale data, while keeping matching accuracy and low

memory usage.

3.2.1 Introduction

Map-matching is the process of matching recorded GPS trajectory observations to road segments on

a digital map. This process is useful in applications such as intelligent transportation systems (ITS),

traffic analysis, smart cities, and routes recommendation, to name a few. Since GPS records can be

incomplete, inaccurate and noisy due to connection problems and signal loss, urban canyons, sparse

collection rates, and law restrictions, etc., GPS trajectories may not accurately reflect the location of

moving objects. Therefore, map-matching is a process to ease the uncertainty and improve the accuracy

of trajectory data analysis by matching the GPS records to the logical model of the real world [193].

The large amount of GPS trajectory data available, however, has introduced a new problem of how to

match massive amounts of both map and trajectory data in an efficient manner, since traditional map-

matching algorithms focus on the accuracy of the matching rather than performance and scalability.

Moreover, map data availability has also increased, for example, the OpenStreetMap (OSM) [108]

releases a weekly version of the Map of the World, currently with over 700GB of uncompressed data.

Offline map-matching methods use the knowledge of the complete trajectory geometry and its

semantic attributes (e.g. speed, direction) to find its best match on the road network, and commonly

needs to be performed only once for the entire dataset [193]; unless a whole new set of trajectory data
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is acquired for elsewhere; or there is a need for re-processing the original data when more accurate

algorithms become available, or most commonly, when a new and updated version of the road map is

available. Therefore, offline map-matching plays a key role on trajectory pre-processing by improving

data quality and reducing uncertainty.

The overall approach for map-matching is to take recorded serial location points (e.g. GPS

coordinates), and relate them to edges in an existing road network graph. However, this approach

can quickly became cumbersome for large trajectory and map datasets, since every GPS point record

has to be compared with every road edge. Nevertheless, map-matching computation is intrinsically

parallelizable. For instance, [72] [147] [150] [167] decompose the data space using spatial data

structures (i.e. Grid, Quadtree), then co-group both map and trajectory data by containing spatial

partitions, and perform the matching in each spatial partition in a parallel fashion, achieving orders of

magnitude speed up. Besides, with the increasing demand for low-latency services over large scale

data, a trajectory-based system should provide good scalability and fast response for map-matching.

To address this important issue, an alternative is to partition both trajectory and map data into self-

contained partitions that can be processed in a fault-tolerant distributed manner, while storing data in

main-memory to reduce I/O cost, therefore improving map-matching performance and scalability [156].

In this work, we leverage the parallelizable property of map-matching computation with Spark and

Quadtree space partitioning to achieve both scalability and performance speed up. The proposed

framework was built to achieve both speed up, by means of parallel computation and in-memory data

storage, and scalability using spatial-aware partitioning and distributed data storage and computation.

We also focus on memory usage, since the framework is developed on top of an in-memory data

structure (i.e. Spark RDD).

Existing works focus either on the matching accuracy or its performance. Accuracy-driven

algorithms such as [71] [92] [101] [164], can achieve high accuracy, but are limited to small datasets,

since they focus on the accuracy of the matching rather than its performance and scalability, iterating

through the entire dataset to find the best match, thus facing performance deterioration as the dataset

grows. Performance-based algorithms such as [72] [147] [150] [167], on the other hand, consider

spatial partitioning and parallel processing to speed up map matching computation, but do not account

for load balancing and memory usage, and are limited for disk-based computation. Furthermore, due

to different density of trajectory data distribution in urban areas, we must account for load-balancing

when partitioning the data space for parallel processing.

Frameworks like Spark [181] can fill the gap between performance and scalability, since Spark is

an in-memory based framework, and supports distributed parallel computation. Spark have been used

in a handful number of data-intensive analytics, including large-scale spatial databases [168] [175].

We implement our solution on top of Spark’s RDD, which provides a robust distributed data structure

for MapReduce tasks in main-memory. However, since Spark is a distributed and in-memory storage

based framework, we must account for workload balancing and main-memory usage. Existing systems

for spatial data using Spark and MapReduce [6] [48] [168] employ balanced partitioning structures,

such as Quadtree, k-d Tree, and STR-Tree, to provide workload balancing. Optimizing load-balancing
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and memory usage are essential to a good Spark algorithm. The main limitations and challenges of

large-scale map-matching using Spark include:

• Load Balancing and Dynamic Spatial Data Partitioning: Since Spark is designed for parallel

distributed computation, we must account for data partitioning and load balancing, which

are not directly supported for spatial data in Spark. Existing works for map-matching using

MapReduce [72] [150] employ uniform Grid space partitioning to organize the dataset into self

contained partitions.However, they do not account for load balancing, which is essential in Spark

to reduce contention and communication cost. Workload balancing can greatly reduce the cost

of map-matching in Spark, as we demonstrate in our experiments. However, balanced space

partitioning structures should be built in a dynamic fashion as the data is consumed. In a parallel

distributed environment, such as Hadoop, the processes need to exchange data through the

network after the shuffle phase, to aggregate data in the same partition, which increases network

cost. With spark the problem is even more challenging, since the Spark’s RDD data structure

is read-only, which means that to create a dynamic data structure with spark using the entire

dataset would demand to build a new RDD on every iteration of the dynamic process, which is

both memory and computationally expensive. Thus, related works based on dynamic spatial

partitioning such as [167] cannot be applied directly, since we need to find the best partitioning

schema beforehand.

• Memory Consumption and Replication of Boundary Objects: Since Spark is an in-memory

storage framework, mainly for commodity hardwares, the amount of memory available in the

cluster may be limited, and hence does not comfortably fit the entire map and trajectory datasets.

For instance, the fastest storage level of Spark stores the dataset in memory with replication

to speed up data recovery in case of node failure; this can quickly exhaust the cluster memory

available. Hence, memory consumption must be taken into account. Furthermore, both trajectory

and road map segments can extend for multiple spatial regions, thus we must account for

boundary objects when partitioning the datasets. The easiest solution is to replicate boundary

objects to all intersecting partition; for in-memory frameworks like Spark, however, this is

undesirable, since replication will increase in-memory storage. To avoid replication, existing

work split line segments according to their intersecting partitions, however, due to temporal

sparseness of record points and GPS noise, this approach is prone to boundary points mismatch.

Contributions and Novelty: In this chapter we propose a Spark-based framework for large-scale

map-matching. We leverage the distributed in-memory nature of Spark for scalable and fast processing

of offline map-matching. We provide a sampling-based Quadtree partitioning for load-balancing

using a cost-model to allow Spark to use a dynamic spatial data structure. Furthermore, we apply

a batch-based data loading and processing to reduce memory consumption. In addition, we employ

boundary extension using an empirical evaluation for accuracy maintenance as well as replication
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reduction. Finally, we provide experimental evaluation and study of parameters of the proposed

framework. The key contributions can be summarize as follows:

1. Cost-Function: We provide an estimative of the distributed map-matching workload cost, in

order to tune the system parameters and optimize the sampling-based data partitioning.

2. Cost-based Spatial Partitioning: We employ Quadtree partitioning for trajectory and map

data. Quadtree has been previously applied for parallel map-matching with good performance

outcomes [167]; moreover, our experiments demonstrates that Quadtree provides an efficient and

fairly uniform space partitioning when compared with other commonly used dynamic structures,

such as k-d Tree and STR-Tree, achieving better performance and scalability. Since building a

dynamic spatial index model from a large dataset can be cumbersome, and a data partitioning

model must be provided to Spark beforehand, we address this limitation by providing a sampling-

based quad-index construction using a cost-based model. Finally we co-partition both map and

trajectory data using the quad-index model into the Spark’s RDD.

3. Batch Loading and Map-Matching: Once the map data is loaded, trajectory records can be

matched independently, thus we provide a batch-based loading and processing of the input

trajectory dataset to reduce distributed memory consumption, specially in situations where the

cluster memory size is a constraint.

4. Empirical Boundary Replication: In addition, we employ a safe boundary threshold for

segmentation and replication as proposed in [167] to reduce uncertainty. However, previous

works did not evaluate the choice of the threshold value. Therefore, we conduct a set of

experiments to find the appropriate boundary threshold which does not affect map-matching

accuracy, yet reduce the number of replication, hence memory consumption.

5. Experimental Evaluation: Finally we provide an evaluation study on the accuracy of our

approach, and the performance and scalability of spatial-aware map-matching using different

spatial data structures on top of Spark, and comparing our work with a state-of-the-art technique.

Our experiments demonstrate that our approach can achieve efficient and scalable map-matching

processing.

3.2.2 Map-Matching Algorithms

There are two main algorithmic approaches for map matching in the literature, Local [8] [28] [81] [165],

and Global [19] [90] [92] [101] [125]. In short, the three main steps followed by map-matching

algorithms are: (1) identifying a set of candidate edges in the road graph within a given radius from the

location point, then (2) calculating the weight for each candidate edge (e.g. shortest distance between

the point and the edge), and finally (3) retrieving the edges that maximize the weight.

Local (or incremental) algorithms only consider the trajectory and the road network geometries to

relate a trajectory point to its nearest edge (point-to-edge) in the road map. This method is simpler and
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faster, and more commonly used in on-line map matching, since they rely on the previous trajectory

points observations only, which makes it more difficult to use statistical models on the trajectory

topology. However, due to measurement errors and GPS inaccuracy, this approach is prone to error

(i.e. point mismatch). Wei et al. [164] provided a comparison between local and global map-matching

algorithms, and discovered that local algorithms performed poorly, specially due to Y-splits on road

networks. For instance, in Figure 3.3 while there are two possible matching candidates, e2 and e3, for

point p3, e3 is the most obvious edge to match, since its next connecting point p4 is better matched

with e3, and real moving objects are more likely to follow a direct path [92]. Therefore, the best match

for trajectory T is the path P = {e1,e3} connecting v1 to v3.
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Figure 3.3: Example of road network graph G(V,E), with edges e[1..3] and vertexes v[1..4]; and a GPS
trajectory T (red dotted) with four coordinate points p[1..4] to be matched with the road network.

Global algorithms, on the other hand, take into account the geometry and other features of the

trajectories and the road network, such as speed, topology, the connectivity between points and edges,

and the road network speed limits, in order to find the best match of a trajectory on the road network,

thus easing the uncertainty. Global algorithms are mostly used in offline map matching, and use future

observations to better match the trajectories correctly. . These methods make use of statistical models

(e.g. Hidden Markov Model [101], and spatial-temporal analysis [92]), and sacrifice performance

to achieve better accuracy. Offline map-matching plays a key role on trajectory pre-processing by

improving data quality and reducing uncertainty when whole new trajectory data, or new and more

accurate map data, became available.

3.2.3 Problem Statement

In this section we formally describe the problem of Map Matching, firstly introducing some background

knowledge.

(Trajectory) A trajectory T of a moving object is a sequence of spatial-temporal points, where

each point is described as a triple (x,y, t), where (x,y) are the spatial location of the moving object, such

as its latitude and longitude coordinates, at a time t, that is, T = [(x1,y1, t1),(x2,y2, t2), ...,(xn,yn, tn)]

in a two-dimensional space, where n is the number of sample points, and t1 < t2 < ... < tn.

A trajectory describes the motion history of any kind of moving object, such as people, animals

and natural phenomena. Trajectories of moving objects are continuous in nature, but captured and
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stored as a collection of spatial-temporal points by GPS devices. A discrete representation of trajectory

is shown in Figure 3.4.
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Figure 3.4: Example of trajectory as a discrete sequence of spatial-temporal points.

(Road Network) A road network is a directed graph G(V,E) representing the digital map of streets

and roads of a geographic region, where each edge e ∈ E represents a road segment in the graph, and

each vertex v ∈V of the graph represents the intersections and end-points of the road segments.

(Road Edge) A road segment e ∈ E is a directed edge from a starting vertex vi ∈V to an ending

vertex v j ∈V in a road network graph G(V,E), and associated with a list of intermediate points that

describes the road polyline.

In digital map representation, both edges and vertexes in the road network graph are associates

with an ID, and a set of semantic attributes, such as speed and length.

(Road Path) A road path P is a set of connected road edges, P = {ei, ...,e j} ∈G(V,E), connecting

two locations vp to vq of G(V,E).

(Map-Matching) Given a trajectory T , and a road network graph G(V,E), map-matching is the

problem of how to match T to a path P of G(V,E).

In this work we focus on large scale map-matching.

Large-Scale Map-Matching: Given a large set of GPS trajectories T, and large road network graph

G(V,E), our goal is to match every trajectory Ti ∈ T to a path P of G(V,E) in an efficient, scalable,

and memory-wise manner; that is, we want to maximize performance and scalability of large-scale

map-matching, and minimize memory consumption at the same time.

We perform large-scale map-matching on top of Spark in order to achieve high performance and

scalability. However, since Spark is an in-memory-based framework, performing any operation on

top of Spark should be memory-wise, for instance, for map-matching both datasets may be too large

to comfortably fit in the cluster memory. Furthermore, we should account for load balancing and

communication cost, since a good data partitioning is a key point in distributed computation. Moreover,

both trajectory and map data are difficult to fit into the Spark MapReduce computation model, since

Spark does not natively support spatial data indexing and partitioning.

Map-Matching in Spark: Most of existing Spark-based systems, such as [168] [175], only deal

with points and polygons queries; furthermore, those works do not focus on memory usage. In this

work we exploit the in-memory nature and distributed parallel properties of Spark for scalable offline
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map-matching. In addition, we employ a sampling-based partitioning using on a cost model to cover

the Spark limitation on dynamic partitioning.

3.2.4 Map-Matching Workload

We provide an estimative of the workload for the distributed map-matching problem based on the

following observations:

Execution time and Partitioning: In a nutshell, the baseline cost CM of map-matching for a

given matching algorithm of function f , can be estimated as the number of trajectory points m against

the number of road edges n to match, i.e. CM = f (m∗n), since for every trajectory point one must

find the best match node. Notice that the function f refers to the map-matching algorithm employed;

our framework was built to use state-of-the-art map-matching algorithms as “blackbox”, however,

every map-matching algorithm has it own computational cost/complexity based on the number of data

records to process, which is expressed by the function f .

Nevertheless, since map-matching computation is intrinsically paralellizable, we can greatly

decrease the computational cost CM and improve scalability by co-partitioning the input map and

trajectory dataset using some spatial partitioning method, and perform map-matching in each partition

in parallel. Equation (3.1) depicts the estimate cost for spatial-aware map-matching CP
M in parallel,

CP
M =Cindex +

f (m∗n)
(B∗U)

+Cpos (3.1)

where B is the number of data partitions/blocks, and U is the number of processing units (supposing

all units with same computational power).

Cindex is the cost of building the spatial index model, and partitioning the input datasets. The cost

of building the spatial index depends on both the index strategy employed (e.g. balanced or static

index), and the number of data records used to build the index model. The data partitioning accounts

for the cost to partition the entire datasets, both map and trajectory, using the spatial index model. For

instance, in the case of our Spark framework, a quad-index is constructed in the master node from a

sample S of the input trajectory dataset; the data partitioning, on the other hand, is done for the entire

datasets in the Spark cluster. Therefore, in this scenario Cindex is the cost to build a quad-index with B

spatial partitions from S in the master node, plus the cost to partition the map and trajectory datasets

into B spatial partitions in the Spark cluster.

Furthermore, there is a post-processing step to merge records from trajectories that have been split

across multiple partitions; this step also adds a cost Cpos to the final workload. Notice that the cost

Cpos depends on how we handle boundary records, as well as the partitioning granularity. For instance,

Figure 3.5 shows an example of space decomposition using Quadtree. If we decide to assign boundary

crossing trajectories to all intersecting partitions (i.e. multiple assignments), then Cpos is simply the

cost of choosing the best match from the result copies. If we decide, however, to split boundary

trajectories into sub-trajectories according to their containing spatial partitions (i.e. single assignment),

then Cpos is the cost of merging the resultant sub-paths at the end of the processing. For both strategies
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Cpos also depends on the partitioning granularity, for instance, in Figure 3.5 increasing the partitioning

granularity would either increase the number of replications for multiple assignments, or increase

the number of splits for single assignment, thus increasing the post-processing cost. Overall, we can

estimate Cpos on either the number of replicated trajectories on multiple assignment policy, or the

number of sub-trajectories to merge in single assignment.
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Figure 3.5: Example of Quadtree space partitioning for trajectories.

Load balancing and Communication cost: In Equation (3.1) we suppose B as a set of disjoint

and homogeneous spatial partitions. However, real life spatial datasets are not uniformly distributed,

for instance, the density of data records in a city center is much larger than in the suburbs. In

distributed parallel applications, a poorly partitioned dataset can lead to contention, and increase

communication and data transfer between the computing nodes. Therefore, we must make sure we

employ a partitioning strategy that takes the data distribution into account for better load balancing.

Although dynamic partitioning structures, such as Quadtree and k-d Tree, have a higher partitioning

cost Cindex compared to static structures such as Grids, this cost is small compared to the gains in load

balancing (see Section 3.2.6).

Furthermore, global map-matching algorithms use a distance threshold to select candidate edges/nodes

for matching. Therefore we must ensure that records within the candidates threshold are assigned to

the correct partition. Given that a matching algorithm uses a candidate’s distance threshold of size β ,

if the distance from a record to the partition boundary is smaller than β this will cause the matching

algorithm miss some candidates in adjacent partitions. The simplest solution is to replicate points and

edges within a distance β from the partitions boundary; however, for regions with high density of

boundary records, replication will negatively affect the computation cost by increasing the number

of data records (i.e. m and n in Equation (3.1)) (see Section 3.2.6); moreover, for in-memory storage

frameworks, such as Spark, replication will also increase memory usage. In Equation (3.2) we estimate

CD
M the cost of distributed map-matching,

CD
M =Cindex +

f ((m+ rm)∗ (n+ rn))

(B∗U)
+Cnet +Cpos (3.2)
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where rm and rn are respectively the total number of replication of trajectory points and road nodes,

and Cnet is the network cost of communications and data transfers between the nodes. In MR-based

systems, such as Spark, Cnet is basically the cost of the distributed shuffle operation to send data from

mappers to reducers [39], and it is dependent of the network configurations, such as bandwidth, and

both data locality and load balancing. For instance, in the MR model the slave nodes redistribute

data based on the output keys (e.g. partition ID), such that all data belonging to one key (partition)

is located on the same slave node, furthermore, MR always try to assign work to idle notes to best

use the cluster resources, which means that a poorly distributed dataset would cause the slave nodes

to shuffle more data, increasing networking cost. Therefore, for Spark map-matching Cnet is highly

dependent on the space partitioning strategy.

Bearing that in mind, our goal is to propose a framework for efficient and scalable map-matching

in a distributed fashion, by reducing the cost CD
M according to Equation (3.2).

3.2.5 Map-Matching Framework
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Figure 3.6: Spark map-matching framework overview.

Our goal is to reduce the overall cost of distributed map-matching according to Equation 3.2. In

addition, we aim to reduce cluster memory consumption with Spark. The following steps summarize

our proposed framework in Spark, as shown in Figure 3.6. In the next sections we provide a detailed

description of our framework.

1. Sampling-based index construction: We select a small sample of the input trajectory dataset

to build a quad-index in the master node. After that, the index is broadcast to the memory of all

slave nodes.

2. Data reading and partitioning: We read both map and trajectory datasets as a Spark’s RDD and

assign every trajectory segment and map edge to its intersecting partition using the quad-index,

and accounting for boundary objects.

3. Co-grouping: We co-group partitions containing both map edges and trajectory segment by

spatial index into a single co-partition RDD.

4. Map-matching computation: We perform map-matching in each RDD co-partition in a parallel

fashion using Spark.
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5. Post-processing: A final post-processing step is performed to group the match results by

trajectory key.

By building our quad-index from a sample of the input data we aim to reduce the Cindex in

Equation 3.2, since it accounts for the cost of building the spatial index and partitioning the dataset

afterward, and also allow this model to be used in Spark. By co-grouping both map and trajectory

data into balanced partitions, we aim to reduce the cost of map-matching processing by increasing

parallelization and reducing the communication cost Cnet . By wisely replicating boundary segments,

we aim to reduce both the number of replications rm and rn, and the post-processing cost Cpos, without

affecting accuracy.

Sample-based Space Decomposition

Since we need to provide Spark with a data partitioning model, before it can load and partition both

map and trajectory data, we select a sample of the input trajectory dataset to build a quad-index in the

master node. We employ a Quadtree space decomposition for both map and trajectory records, for it

provides a fairly uniform partitioning of spatial records.

Firstly, we must estimate the best number of spatial partitions in the quad-model, this can be

calculated by taking the maximum between the number of processing units available in the cluster, and

the dataset size to load over the Spark’s RDD block size, as in the following Equation (3.3):

N = max
(
|T |+ |M|
|RDDBlock|

,U
)

(3.3)

where N is number of partitions, |T | and |M| are the trajectory and map datasets size respectively

in bytes, and |RDDBlock| is the RDD data block size (64MB by default), and U is the number of

processing units (e.g. CPU cores).

Given the number of partitions N, we build our Quadtree model using Spark as follows: We select

a sample of the dataset S of size |S| to build the quad-index I by the driver program (i.e. master node).

We decide to split a partition Ni in the Quadtree when the number of records ri in the partition is

ri ≥ 4∗ (|S|/N), this is to ensure that each partition will have roughly the same quantity of data record,

since |S| is the size of the input sample dataset, and N is the number of desired partitions, we want

each partition to have (|S|/N), since in quadtree partitioning a spatial partition is divided into 4 once

it reaches a certain limit, we set this limit to 4∗ (|S|/N). After its construction, the index model I is

broadcast to the memory of all slave nodes.

Data Partitioning

Given the quad-index model I, we partition the input datasets using MapReduce [181] on top of

Spark’s RDD, so that the number of data records in each partition is roughly uniform for load

balancing. Furthermore, to allow parallel map-matching we must ensure that both map and trajectory

records in a same spatial region are assigned to the same partition, so that there is no need to look for
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matching paths in other partitions. Therefore, we load both map and trajectory datasets into Spark’s

RDD in main-memory, and assign every trajectory segment and map edge to its intersecting spatial

partition using I. Finally we co-group all records mapped to the same spatial partition into the same

data block to be processed in parallel, as shown in Figure 3.6.

Batch Processing: In order to reduce memory usage, we partition and match trajectories in batches.

Once building the quad-index and partitioning the map data, the map-matching process is independent

for every trajectory, that is, once a trajectory Ti is assigned to its intersecting partitions, we can match

Ti independently of the remainder records. Therefore, to reduce cluster memory consumption, we split

and load the trajectory dataset into RDD in smaller chunks. We load trajectories into our application in

batches of roughly (U ∗ |RDDBlock| ∗α) in size. Where U is the number of processing units, so that we

use all available cores, and α is the Spark’s RDD in-memory storage fraction (0.8 by default). In this

scenario we assume the cluster memory can comfortably fit the map data and at least one trajectory

data batch in-memory.

For the best of our knowledge, no other related work has applied batch processing for map-matching.

Furthermore, as in Spark batch processing is not spatially-aware, the data batches are partitions of the

input dataset read from disk or memory. Using the proposed framework, however, we can control the

partitions load to memory in each batch, and make sure that each data batch (both map and trajectory)

contains the data in a same spatial region, hence the distributed processing is fully decentralized, thus

no other regions need to be loaded/searched for candidate matches.

Boundary objects and Replication: When assigning data records to partitions, however, we expect

some trajectories and road segments to overlap with more than one partition, in this case we split the

segments according with its intersecting partitions. However, during the map matching computation

some boundary points can be mismatched, thus we replicate both road segments and trajectory segments

within a certain distance threshold from the partition boundary in order to reduce both replication and

uncertainty. Our empirical study performed in Section 3.2.6 demonstrated that boundary extensions

β greater than 500m did not affect the map-matching accuracy, therefore we employ a β = 500m

threshold in our spatial partitions.

In addition, the metadata about the whole trajectory (e.g. speed, length, sampling rate, etc.) is

stored along with its sub-trajectories during the partitioning, to be used by global map matching

algorithms when necessary.

Map-Matching Computation

Parallel Matching using MapReduce: Given a map-matching algorithm M(), each data partition

Ni, containing both map and trajectory data, is sent to be processed in parallel in the Spark cluster

using MapReduce with M() as follows: For every sub-trajectory subT
j in Ni – where subT

j refers to the

j-th sub-trajectory of a parent trajectory T – the map() function outputs a 〈key,value〉 pair containing

the parent-trajectory identifier T as key, and the path PT
j that best matches subT

j with regards to M() as
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value, that is, the mapper outputs 〈T,PT
j 〉. We employ the a nearest-neighbor and HMM map-matching

algorithm [101] in our framework; however, any map matching algorithm from the state-of-the-art can

be used in our framework.

Post-Processing: The reduce() function groups sub-paths by parent-trajectory key T (i.e. the post-

processing Cpos step) and outputs the final results. The purpose of the post-processing step if to merge

sub-paths of trajectories which might have been split and sent to separated spatial partitions due to their

large extension. This post-processing step is not covered by related work which use spatial partitioning,

they either assume the entire trajectory fits in the partition, or don’t merge the sub-trajectories in the

final step.

User Interface

Additionally, we provide an easy-to-use user interface with our framework, shown in Figure 3.7.

Users are able to setup the Spark and partitioning parameters, load data, extract OSM map data from

the Internet, as well as choose the matching technique to apply. The application was built using a

component-based design, thus it allows easy plug in of additional map-matching algorithms inside the

framework. The application is available to download in the project repository 4.

3.2.6 Experiments

We present a set of highlighted experiments on a real trajectory dataset to evaluate the performance,

accuracy, and scalability of our approach.

Experimental Setup

We provide two different implementations to perform the experiment as follows:

1. Firstly we implemented our proposed batch-based framework, where after loading and partition-

ing the entire map data, we load and partition the input trajectory dataset in batches to reduce

distributed memory consumption.

2. In the second implementation, we bulk load and co-partition the entire datasets (map and

trajectory) into main-memory to speed up map-matching at the cost of cluster memory usage.

We use a 54GB trajectory dataset collected throughout China, and a 6GB OSM map from the

Chinese road network. The trajectory dataset contains around 22 million heterogeneous trajectories

from taxis and personal vehicles in a period of five days; while the OSM data contains around 1.5

million nodes. The data is initially stored in HDFS, we use the default MR block size of 64MB.

All algorithms are implemented in the Spark Java library version 2.0.1. Experiments are conducted

on a cluster with 16 physical nodes (1 master and 15 slaves). Each node has eight cores and 64GB of
4https://github.com/douglasapeixoto/map-matching-framework
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Figure 3.7: Application User Interface.

memory – in our experiments we configured Spark to use 7 cores and 60GB of memory in each slave

node.

We evaluate our framework’s performance and scalability by varying both the dataset size and the

number of nodes in the cluster. We evaluate our work using three different adaptive spatial partitioning

structures, i.e. Quatree, k-d Tree, and STR-Tree, and the HOM method proposed in [72] for MapReduce

using grid partitioning. We adapt our framework for all aforementioned spatial structures using Spark.

Adaptive spatial indexes were built using one million sample trajectories. Figure 3.8 illustrates the

spatial structures used in our evaluation, including the spatial boundary extension β as described in

Section 3.2.5. We evaluate our framework by employing the incremental nearest-neighbor matching

algorithm, and the global HMM algorithm [101], which demonstrated better accuracy over sparse and

noisy trajectory datasets.

Study of Parameters

In this section we study the effect of the number of partitions, as well as the boundary threshold size β ,

on the number of data replications, and in the overall performance. In this experiment we selected
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Quadtree k-d Tree STR-Tree Grid

Figure 3.8: Spatial partitioning structures used in the comparative study, with their respective boundary
extensions (dotted lines).

1,000 trajectories with high density of sample points (i.e. average sampling rate of one second, and

a minimum of 100 points per trajectory), the total number of sample points is 320,000. Table 3.4

demonstrates the number of records and the map-matching accuracy as β grows. We fixed the number

of spatial partitions N to 1,000 in this experiment. We evaluate the accuracy by comparing the results of

our distributed framework with the original implementation of two map-matching algorithms, iterative

and HMM, running in a single machine in a greedy manner (i.e. without parallelization or partitioning).

From the results in Table 3.4 we use a boundary threshold of β = 500m in our framework.

Boundary (β ) # of Records Iterative HMM
0m 320,000 94.5% 86.9%

100m 326,785 97.4% 92.5%
200m 334,596 98.8% 96.3%
300m 335,598 99.7% 98.4%
500m 336,714 100.0% 100.0%

Table 3.4: Effect of the boundary extension threshold (in meters) on data replication and map-matching
accuracy, with N = 1,000.

Boundary replication is necessary to reduce uncertainty, as demonstrated in Table 3.4, however,

replication will also increase memory usage and the computation cost CD
M, by increasing the number

of data records to match, as given in Equation 3.2. Figure 3.9 show the overall running time of the

framework varying the boundary threshold, this experiment was performed using the entire map and

trajectory datasets. As expected, the overall running time is proportional to the number of records in

the partitions, which increases with higher boundary values due to replication, and also increased the

cost of the post-processing phase to find the best match in the duplicated records.

Similarly, the spatial partitioning granularity (i.e. number of spatial partitions N) will affect the

number of replications, as shown in Table 3.5 (with boundary extension fixed in β = 500m). Even

though a large number of partitions N can reduce the overall cost of a distributed map-matching CD
M,

as given in Equation 3.2, it will also increase the number of replications rm and rn. This is due to the
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Figure 3.9: Running time varying the boundary extension threshold. Using 54GB trajectory data and
6GB OSM data.

increasing number of boundary point in partitions of small granularity. Therefore, in our framework

we choose the number of spatial partitions N according to Equation 3.3 based on the Spark data block

size and the available cluster resources.

# of Partitions (N) # of Records
1,000 336,714
2,000 401,430
5,000 581,491

10,000 914,012

Table 3.5: Effect of the number of partitions on data replication. Partitions with a boundary threshold
of 500m.

Performance and Scalability Study

Dataset size: Figure 3.10 compares the running time for each phase of the map-matching computation

as we increase the dataset size. We use one to four times the input trajectory dataset to evaluate

scalability. The partitioning phase accounts for the Cindex cost of the quad-index model construction,

and Spark data partitioning with all the dataset stored in-memory.

The balanced spatial structures (i.e. Quadtree, k-d Tree, and STR-Tree) had a better overall

performance due to their more homogeneous distribution of the spatial data across the partitions, thus

providing better load-balancing, which plays a key role in Spark performance. Uniform Grid, on the

other hand, performed poorly executing over 17k seconds for 4x the dataset, this is mainly due to
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high density of data in some spatial partitions as the dataset grows, this lead to contention in some

processing units, as well as an increase in cluster communication and shuffle, i.e. data transfer cost

Cnet .
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Figure 3.10: Spatial-aware map-matching execution time comparison (in seconds) on Spark, using
multiple spatial partitioning methods as the dataset grows.

In Figure 3.10, ReadData accounts for the time to read both trajectory and map data from HDFS

into Spark. We noticed that, even though the size of the map dataset is smaller than the trajectory, the

time to read and parse the OSM data to our application was considerably higher using the Spark XML

library, thus, the time taken to read additional copies of the input trajectory dataset was not significant

to increase the overall read time.

The IndexBuild accounts for the time taken to read a sample of the trajectory dataset from the

HDFS, and build the dynamic spatial index in the master node. Indexes were built with the same

number of sample trajectories in all experiments. Even though a static grid can be constructed in

basically zero time, our experiments demonstrated that using sample-based index construction was

sufficient to improve performance compared to static Grid with no sampling.

The Partitioning accounts for the time taken to co-partition both map and trajectory data with

regards to the spatial index. Boundary objects handling is also performed in this phase. As observed,

the co-partitioning was the most demanding phase for balanced spatial structures, however, this cost

was compensated by the gains in map-matching performance. The poor data distribution on static Grid,

however, resulted in a much higher map-matching cost.

Finally, the MapMatching phase accounts for the execution time to process map-matching algorithm

in the co-partitions, as well as perform the post-processing phase to merge resulting sub-paths by

trajectory. Overall, our Quadtree based approach demonstrated better tread-off between the partitioning

and the map-matching phases.

Batch processing: Figure 3.11 shows the average execution time of map-matching in batches as the
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dataset grows. Based on our cluster configurations, i.e. U = 105 cores, |RDDBlock|= 64MB, we split

our trajectory dataset into 10 batches of roughly 5.4GB. Each batch is loaded into our framework

and processed by Spark in FIFO mode. We could optimize the process by overlapping the batches

computation to a full use of the cluster resources, however, our goal with this approach is to reduce

memory storage usage, therefore we do not overlap neither the batches loading nor the batches

computation. Again the dynamic spatial models demonstrated better performance over uniform Grid

partitioning. In this scenario, our Quadtree method outperformed the remainder methods showing a

slight linear increase as the dataset grows.
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Figure 3.11: Average batch processing time comparison (in seconds) by multiple spatial partitioning
methods as the dataset grows. Execution time accounts for the average time to read, partition, and
process map-matching on each data batch using Spark.

Figure 3.12 compares the execution time between the two approaches to process the entire dataset.

Although storing all the data in-memory had a better performance gain for most approaches – due

to a better process and resources allocation by Spark – batch loading has a better trade-off between

performance and memory usage.

Figure 3.13 shows the memory consumption using batch loading for each individual batch, against

storing the entire trajectory dataset in-memory. As in the previous experiment, the trajectory dataset

was split into 10 batches of roughly 5.4GB each. The batch approach has an overall gain of 5.2x in

memory consumption against storing the entire dataset in memory; however, the number of batches

can be adjusted to fit the available resources. One would expect a gain close to number of batches (i.e.

10x), however, this was not achieved mainly due to the map data being entirely stored in-memory in

our framework.

Number of nodes: Similarly, Figures 3.14 and 3.15 depict the results when we vary the number of

slaves nodes in the cluster. We compare the previous methods using one copy of the dataset. We use 5,
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Figure 3.12: Batch loading vs. all dataset loading, performance comparison.
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Figure 3.13: Memory consumption comparison (in GB), using batch loading (individual batches) and
all-data loading.

10, and 15 slave nodes respectively to evaluate the effect of the number of nodes on each method’s

execution time.

As in the previous experiments, the balanced spatial structures performed better in all scenarios,

with our Quadtree-based method performing better in all phases as show in Figure 3.14. Also for

batch processing, Figure 3.15, our Quadtree method had the best performance gains and scalability,

demonstrating near linear performance improvement as the number of nodes increases.
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Figure 3.14: Spatial-aware map-matching execution time comparison (in seconds) on Spark, using
multiple spatial partitioning methods by increasing the number of computing nodes.
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Figure 3.15: Average batch processing time comparison (in seconds) by number of nodes. Execution
time accounts for the average time to read, partition, and process map-matching on each data batch
using Spark.

3.2.7 Summary

Map-matching is an important pre-processing step to improve trajectory data quality and reduce

uncertainty, due to inaccuracy of raw GPS data. The large amount of digital data available, however,

has introduced a new problem of how to match massive amounts of both map and trajectory data in an

efficient manner. In this chapter we introduced a Spark-based framework for the problem of large-scale

offline map-matching. We introduced new features on top of Spark to allow efficient, scalable, and

memory-wise processing of large-scale map-matching. First, we introduced a cost function for the

distributed map-matching problem. Secondly, we use a sample-based quad-index construction, and
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Quadtree co-partition of map and trajectory data to allow parallel and load-balanced map-matching.

We build our partitions on top of Spark’s RDD to achieve efficiency and scalability. We employ a safe

boundary threshold, and wise split strategy to reduce replication. Finally we proposed a batch-based

method for large-scale map-matching, using data loading and processing in smaller batches to reduce

memory usage. A comparative study and experiments demonstrate that our framework achieved good

efficiency and scalability on map-matching processing with lower memory consumption.



Chapter 4

Workload-aware and Memory-wise
Trajectory Data Storage

4.1 Introduction

Trajectory data has become ubiquitous, and have been generated in unprecedented rates. Spatial-

temporal trajectory data contains rich information about moving objects and phenomena; hence

scientists, industry, and the community have been using trajectory data for a great number of appli-

cations, such as routes recommendation [97]; time prediction of public transportation [34]; finding

points of interest (POI) in a given spatial region [32] [196]; identifying gathering patterns [194]; trip

recommendation [197] [198]; transportation mode prediction [196]; drivers pastern analysis, city

traffic planing, dynamic event identification, human interaction, and so on [195] [199]. In the mean

time, in-memory distributed systems like Spark [181] have been used in several application domains to

achieve efficiency and scalability, such as graph processing [169], relational database and SQL [14],

data streams computation [182], and Spatial databases [168] [178] [175]. Spark [181] provides a

robust distributed in-memory data structure, and can fill the gap between performance, scalability, and

fault-tolerance, as well as efficient resources allocation of parallel and concurrent jobs.

Database systems dedicate their efforts towards reliable and efficient data storage and fast query

performance. The complexity of the query highly depends on the type of data in the dataset. Spatial-

temporal selection is the most fundamental query operation in trajectory databases, thus has received

plenty of attention, e.g. [35] [158] [172]. Spatial-temporal selection queries are useful to select a small

sample of a big dataset for a given time interval and spatial predicate, for example:

“Retrieve all trajectories in the city centre of Brisbane, between 09:00AM and 18:00PM of the

current date.”.

Furthermore, with the increasing demand for low-latency services over large-scale data, a trajec-

tory database system should be able to serve multiple requests over large-scale datasets, providing

good scalability, high throughput, and fast query response. A common approach for achieving high

throughput and efficient query processing over large datasets is by means of in-memory data storage
79
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on distributed environments, where large datasets are partitioned and distributed across the memory

of a cluster of computers. In spatial and spatial-temporal databases this is done using dynamic and

adaptative data structures, such as Quadtree, k-d tree, and Rtree for load-balancing. However, storage

and processing of spatial-temporal trajectory data using Spark is challenging, since Spark is not

equipped for supporting sequential and spatial-temporal data in its core. Furthermore, data partitioning

and storage in Spark is done using a read-only static data structure (i.e. RDD); therefore, adaptative

partitioning is not directly supported. Moreover, since Spark is a in-memory-based framework, data

storage and query processing on top of Spark should be memory-wise, for instance, the trajectory

datasets may be too large to comfortably fit in the cluster memory. A solution to reduce memory

consumption is to react to changes in the query workload efficiently, since some spatial regions, such

as urban areas, and time intervals, such as working hours, receive more query requests (hotspots),

thus data records in such regions and intervals should receive priority for in-memory storage over

least requested data, which can be stored on disk to safe memory space. However, even though Spark

possesses both in-memory and on-disk storage, the exchange of data from memory to disk is not

based on the query workload, but in the memory availability. however. Optimizing load-balancing and

memory usage are essential to a good Spark application.

Existing works for spatial data using Spark and MapReduce [6] [48] [103] [168] [12] employ

balanced partitioning structures, such as Quadtree, k-d Tree, and STR-Tree, to provide workload

balancing, and prune the search space at query time. However, current distributed systems for

spatial and spatial-temporal data are unable to provide all the mentioned features. For instance,

AQWA [12] [11], MD-HBase [103], SpatialHadoop [48], ScalaGiST [94], and HadoopGIS [6] are disk-

based systems and do not provide support trajectory data. Simba [168], GeoSpark [175], SparkGIS [16],

and SpatialSpark [174] provide an in-memory-based system for spatial data on top of Spark; however,

they do not provide support for trajectory data storage and query. CloST [146], TRUSTER [172]

and PRADASE [98] provides support for trajectory data storage and query using spatial partitioning

(i.e. grid and quadtree), however they are disk-based systems thus do not address memory usage and

storage. OceanST [178] provides a distributed in-memory storage for trajectories on top of Spark,

however it does not consider the query workload (i.e. query hotspots), and assumes the entire data

fits in the cluster memory. CloST [146] is a Hadoop-based spatial-temporal storage system. CloST

proposes a new data model and file format to store trajectory data in HDFS. CloST uses a three-level

hierarchical partitioning in MR, where in the first level trajectories are grouped into coarse buckets

according to the moving objects OID; in the second level each bucket is partitioned into spatial regions

using Quadtree; in the third level each region is divided into fine-grained 1-D blocks of time. The goal

of CloST is to support efficient single-object queries (i.e. spatial-temporal selection) and all-object

queries (i.e. selection by object OID), however, CloST is a disk-based storage system, and does not

account for memory usage and query workload.

In this chapter we introduce an architecture for large-scale trajectory storage and querying, and

formalize the requirements for effective in-memory trajectory data management using Spark as two

problems: adaptative data partitioning for spatial-temporal trajectories, and memory-wise storage
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based on the query workload, and present solutions for them.

We approach the problem of adaptative data partitioning on Spark by combining a cost driven ap-

proach with sampling-based partitioning. We employ a hierarchical Quadtree-based partitioning [146],

since it provides a fairly uniform partitioning of spatial-temporal trajectory records. Since building a

dynamic spatial index model from a large dataset can be cumbersome, and a data partitioning model

must be provided to Spark beforehand, we address this limitation by providing a sampling-based

quad-index construction using a cost model, and finally employ the sampling-based model to Spark.

Our solution for memory-wise storage uses a reactive technique, to organize the data partitions into

different storage levels (i.e. memory and disk) based on the query-workload. Firstly, we extend the

adaptative Quadtree index to store the status of the data partitions, so that we can efficiently identify

query hotspots. Then, we introduce the Active-Time Window mechanism, which reacts to changes in

the query-workload, and controls the storage level of each data partition in real-time, such that only

RDD partitions containing query hotspots are kept in memory, thus reducing memory usage. We apply

this new feature to the core of the Spark’s RDD so that data exchange between memory and disk in

Spark is now based on the query workload.

Least-Recently-Used LRU: In Spark, when memory space is not sufficient for RDD caching, data

partitions will be evicted, if these partitions are used again further, they will be reproduced by the

Lineage information and cached in memory again. Cached datasets that do not fit in memory are either

spilled to disk or recomputed on the fly when needed, as determined by the RDD’s storage level.

Spark’s gives in-memory storage priority for the latest data partitions used in case the memory

available is not enough to store all data partitions (LRU least-recently-used). Although our approach

aims to achieve the same goal, Spark’s LRU is not spatial-temporal aware, which means when partitions

are build for storage in Spark they are not organised based on their spatial-temporal proximity, which

means data from a same spatial region may be sent to different physical partitions. Hence, when a query

request data for execution, the number of partitions loaded from disk may be too large, with several

false positives, since if a partition contains only one record necessary for the query execution, the

entire partition will be loaded. In our approach, on the other hand, we make sure the spatial-temporal

relationship between the data is known and kept during the partitioning, so that the data in a same

spatial-temporal region is put together in a same physical partition. Therefore, when a query requests

data for execution, the number of data records loaded will be smaller than in the former approach.

In sum, this chapter makes the following contributions.

• Section 4.2: Firstly we formally describe the background of our work in terms of spatial-temporal

trajectory data storage and query for Spark, then we introduce the requirements for an effective

architecture for in-memory large-scale trajectory data management.

• Section 4.3: We define the problem of large-scale trajectory data management in terms of data

partitioning, storage, and retrieval. We provide an estimative of the distributed spatial-temporal
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search query cost, in order to optimize data retrieval, in-memory storage, and sampling-based

partitioning.

• Section 4.4: Based on the requirements and the cost model, we introduce an workload-aware

architecture for trajectory data management on top of Spark, to support multi-user queries

and analytics over large-scale trajectory data with memory-wise utilization. Based on the

architecture we developed a system that can react to changes in the query workload in order to

reduce resources utilization. We exploit the in-memory nature and distributed parallel properties

of Spark for scalable and low-latency trajectory data storage and processing. Finally, we provide

an efficient data retrieval module for concurrent queries; we focus on spatial-temporal data

retrieval, since it is the most fundamental operation in trajectory databases.

• Section 4.5: We evaluate our Spark architecture using real-world trajectory datasets with billions

of records, showing that our technique scales for large datasets, and it is memory efficient. We

achieved similar performance and throughput in data retrieval, yet with up to 3.5x gains in

memory consumption compared with the related work.

4.2 In-memory Large-scale Trajectory Data Management

In this work we focus on large-scale trajectory data storage and query for multi-user applications.

Data partitioning and data storage play a key role in any distributed database application. We must

account for load-balancing when partitioning a dataset for distributed parallel storage and computation.

In spatial database, this is achieved by using spatial data structures to partition the data space, such as

R-tree, Quadtree, and kd-Tree, for instance. For spatial-temporal trajectories, we must also account for

sequentiality and the temporal dimension.

Given a large trajectory dataset T, a spatial partitioning model M, and a query workload composed

of a set of input queries (i.e. data access requests) Q, we want to partition T using M, and w.r.t. Q,

such that both the process time of every query request Qi ∈ Q and the memory store cost of T are

minimized, that is, we want to find a trade-off between throughput and memory consumption.

To solve this problem, first we must choose the best partitioning model M to partition the data

space of T taking into account load balancing, then choose the best memory storage strategy w.r.t. the

query workload T.

In this work we focus on large-scale trajectory data storage and spatial-temporal search for multi-

user applications, that is, for a batch of k user queries Q= [Q1,Q2, ...,Qk], where Qi = (Ri, t i
1, t

i
0), we

want to find ST (S,Ri, t i
0, t

i
1) for every query Qi ∈Q. We address the problem spatial-temporal selection

over large-scale trajectory data on top of Spark, in order to achieve low query latency, high throughput,

and scalability with fault-tolerance.

In summary, these are the main requirements for an effective architecture for large-scale trajectory

data management using Spark.

• Efficient, reliable, and scalable storage of spatial-temporal trajectory data, with fault-tolerance.
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• Multi-user query processing environment, with high throughput and low latency queries.

• Resource-wise utilization, in order to reduce memory consumption without affecting the system’s

performance.

4.3 Search Query Workload Estimative

We provide an estimative of the workload for a single spatial-temporal (ST) search query, in a

distributed parallel fashion using space partitioning based on the following observations:

4.3.1 Distributed ST-Search Cost

Given a list of user input queries Q= [Q1,Q2, ...,Qk], where Qi = (Ri, t i
1, t

i
0), the cost Ci

st of a single

search query Qi for a given trajectory dataset S, spatial query region Ri, and time interval [t i
0, t

i
1], can

be estimated on the total number of trajectory segments n in S, i.e. Ci
st = O(n), since we simply need

to check for segments intersecting Ri during [t i
0, t

i
1].
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Figure 4.1: Example of Quadtree space partitioning for trajectories.

Since ST-Search is intrinsically parallelizable using space decomposition, we can greatly decrease

the computational cost Ci
st by partitioning the input dataset using some space partitioning method, then

select only the partitions containing candidate trajectories, that is, the partitions intersecting the query

region Ri during [t i
0, t

i
1]. For instance, Figure 4.1 shows an example of space decomposition using

Quadtree with three query regions R1, R2, and R3. To process R1 we just need to consider data in the

three spatial partitions the query region intersects with. Finally, we perform a precise search in each

candidate partition in parallel. Equation (4.1) depicts the estimate cost for spatial-aware ST-Selection
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query Cpi
st in parallel with space partitioning,

Cpi
st =Cio +

n
argmin(B,U)

+Cpos (4.1)

where n is the number of data records in the candidate partitions, B is the number of candidate

partitions/blocks, and U is the number of processing units available to process the query i (supposing

all units with same computational power).

Cio is the I/O cost to load the candidate partitions from the file system, and it is relative to the total

number of records to read in the candidate partitions. Notice that, if the data partitions are stored in

main-memory, then Cio = 0.

Furthermore, there is a post-processing step to merge segments from trajectories that have been

split across multiple partitions; this step also adds a cost Cpos to the final workload. Notice that the cost

Cpos depends on how we handle boundary records, as well as the partitioning granularity. For instance,

in Figure 4.1 notice that the query region R1 intersects trajectories in multiple spatial partitions. If we

decide to assign boundary crossing trajectories to all intersecting partitions (i.e. multiple assignments),

then Cpos is simply the cost of removing duplicated results. If, however, we decide to split boundary

trajectories into sub-trajectories according to their containing spatial partitions (i.e. single assignment),

then Cpos is the cost of merging the sub-trajectories at the end of the processing. If we decide, however,

to split boundary trajectories into sub-trajectories according to their containing spatial partitions

(i.e. single assignment), then Cpos is the cost of merging the resultant sub-paths at the end of the

processing. For both strategies Cpos also depends on the partitioning granularity, for instance, in

Figure 4.1 increasing the partitioning granularity would either increase the number of replications

for multiple assignments, or increase the number of splits for single assignment, thus increasing the

post-processing cost. Overall, we can estimate Cpos on either the number of replicated trajectories on

multiple assignment policy, or the number of sub-trajectories to merge in single assignment.

In Equation (4.1) we suppose B as a set of disjoint and homogeneous spatial partitions. However,

real life trajectory and spatial datasets are not uniformly distributed, for instance, the density of data

records in a city center is much larger than in the suburbs. In distributed parallel applications, a poorly

partitioned dataset can lead to contention, and increase communication and data transfer between the

computing nodes. Furthermore, a unbalanced partitioning will increase the number of False Positives

(FP), that is, records in the candidate partitions that are not part of the query result, hence increasing

Cio and the overall cost. Therefore, we must make sure we employ a partitioning strategy that takes

the data distribution into account for better load balancing.

In addition, when partitioning the data space, we must account for boundary objects, once both

trajectories can intersect with more than one spatial partition. The simplest solution is to replicate

boundary segments, however, for regions with high density of boundary records, replication will

negatively affect the computation cost by increasing the number of data records; moreover, for

in-memory storage frameworks, such as Spark, replication will also increase memory usage. In

Equation (4.2) we estimate Cdi
st the cost of distributed ST-Selection query,

Cdi
st =Cio +

(n+ rn)

argmin(B,U)
+Cpos +Cnet (4.2)
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where rn is the total number of replication of trajectory segments, and Cnet is the network cost of

communications and data transfers between the nodes. In MR-based systems, such as Spark, Cnet

is basically the cost of the distributed shuffle operation to send data from mappers to reducers [39],

and it is dependent of the network configurations, such as bandwidth, and both data locality and load

balancing. For instance, in the MR model the slave nodes redistribute data based on the output keys

(e.g. partition ID), such that all data belonging to one key (partition) is located on the same slave

node, furthermore, MR always try to assign work to idle notes to best use the cluster resources, which

means that a poorly distributed dataset would cause the slave nodes to shuffle more data, increasing

networking cost. Therefore, for Spark ST-Selection query Cnet is highly dependent on the space

partitioning strategy.

4.3.2 Spatial Partitioning and Indexing Cost

Although partitioning the data space can reduce the query workload cost, by pruning the search space

and allowing parallelization, partition the entire dataset adds a cost Cindex to the system. Cindex is the

cost of building the spatial index model, and partitioning the input dataset after data loading. The cost

of building the spatial index depends on both the index strategy employed (e.g. balanced or static

index), and the number of data records used to build the index model. The data partitioning accounts

for the cost to partition the entire dataset using the spatial index model. For instance, in the case of our

Spark system, a quad-index is constructed in the master node from a sample P of the input trajectory

dataset; the data partitioning, on the other hand, is done for the entire datasets in the Spark cluster.

Therefore, in this scenario Cindex is the cost to build a quad-index with B spatial partitions from P in the

master node, plus the cost to partition the trajectory dataset into B spatial partitions in the Spark cluster.

Although dynamic partitioning structures, such as Quadtree and k-d Tree, have a higher partitioning

cost Cindex compared to static structures such as Grids, this cost is small compared to the gains in load

balancing.

Bearing that in mind, our goal is to propose a storage architecture for efficient and scalable query

search in a distributed fashion, by reducing the individual cost Cdi
st according to Equation (4.2). Ideally,

for a list of k user input queries, we expect:

Cindex +
k

∑
i=1

Cdi
st �

k

∑
i=1

Ci
st

by optimizing the cost Cdi
st of each individual query qi. In addition, we want to reduce the system’s

main memory storage consumption.

4.4 Storage System Architecture

We propose a Spark-based architecture for scalable and memory-wise storage of GPS trajectory

data, and low-latency query processing with fault-tolerance and high throughput. An overview of

our architecture with its main components is given in Figure 4.2. Together, the Data Manager and
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Distributed Storage System compose the Data Layer of our architecture. While the Query Manager

and Task Scheduler compose the Query Layer of our architecture. Both layers are build on top the

Spark framework. We describe the components in the next sub-sections.
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Figure 4.2: System architecture overview.

4.4.1 Data Manager

Together, the Data Manager and the Distributed Storage System are responsible for data storage and

management. The Data Manager is a independent component responsible for the partitioning, indexing,

organization, and retrieval of trajectory data. In another words, its main job is to manage the data

partitions in the distributed file system. The Data Manager is composed by two main sub-components,

the Physical Planner and the Storage controller.

Physical Planner

The Physical Planner is responsible for raw trajectory data loading, partitioning, index construction,

and physical planning in the distributed file system. An overview of the physical planner is given in

Figure 4.3.
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Figure 4.3: Physical planner overview.

Our architecture is build on top of Spark’s RDD and HDFS, which both provide a reliable and

fault-tolerant distributed storage for large datasets. Since building a dynamic spatial index model

from a large dataset can be cumbersome, the physical planner employs a sampling-based hierarchical

spatial-temporal index construction, using a extended version of the quad-tree model CloST [146]
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for load balancing and storage level control. Once the hierarchical model is built, we broadcast the

model to all nodes. Finally, we read the entire trajectory dataset and employ the model to Spark for

data partitioning.

Since a data partitioning model must be provided to Spark before it can load and partition the

trajectory data, the Physical Planner selects a sample of the input dataset to build a spatial-temporal

quad-index in the master node.

By building our quad-index from a sample of the input data we aim to reduce the Cindex in

Equation 4.2, since it accounts for the cost of building the spatial-temporal index and partitioning the

dataset afterward, and also allow this model to be used in Spark. By grouping trajectory data into

balanced partitions, we aim to reduce the cost of query processing by increasing parallelization and

reducing the communication cost Cnet .

Firstly, we must estimate the best number of spatial-temporal partitions, this can be calculated by

taking the maximum between the number of processing units available in the cluster, and the dataset

size to load over the Spark’s RDD block size, as in the following Equation (4.3):

N = max
(

|T |
|RDDBlock|

,U
)

(4.3)

where N is number of spatial-temporal partitions, |T | is the trajectory dataset size in bytes, and

|RDDBlock| is the RDD data block size (64MB by default), and U is the number of processing units

(e.g. CPU cores). However, in the CloST partition, each spatial partition is divided into time slices

of size ϑ , therefore, we can calculate the number of spatial partitions (i.e. quadtree partitions) using

Equation (4.4):

B =

(
N

θ/ϑ

)
(4.4)

where θ the total time extent of the trajectories in the dataset, and ϑ is the time slice size.

Given the number of spatial partitions B, we build our Quadtree model using Spark as follows: We

select a sample of the dataset S of size |S| to build the quad-index I by the driver program (i.e. master

node). We decide to split a partition Ni in the Quadtree when the number of records ri in the partition

is ri ≥ 4 ∗ (|S|/N), this is to ensure that each partition will have roughly the same quantity of data

record, since |S| is the size of the input sample dataset, and N is the number of desired spatial-temporal

partitions, we want each partition to have (|S|/N), since in quadtree partitioning a spatial partition is

divided into 4 once it reaches a certain limit, we set this limit to 4∗ (|S|/N). An additional variable

is created to keep the current storage level of each partition (i.e. in-memory or on-disk). After its

construction, the index model I is broadcast to the memory of all slave nodes.

The Physical Planner does not assume any prior knowledge of the query-workload, and therefore

has two starting modes: namely Hot and Cold. The former will consider all partitions as Hot, and

store all data partitions in memory when the application starts; while the latter will initially consider

all partitions as Cold, thus starting with all partitions on-disk. In the Hot mode we consider the entire

dataset fits in the main-memory.
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Storage Controller

The Storage controller is a workload-aware caching component, responsible to manage the storage

level of the data partitions in the distributed file system, that is, it controls which data partitions

are stored in main-memory (RDD) and which partitions are stored on disk (HDFS). Data partitions

are exchanged between memory and disk on request of the Storage Controller based on the query

workload.

Our system architecture can react to changes in the query workload in order to reduce memory

usage. Some spatial regions and time intervals, such as urban areas during working hours, are

more likely to be accessed frequently, namely query hotspots, we introduce the Active-Time Window

mechanism inside the Storage Controller to adapt the data storage based on the query workload. We

do so by adding one more level in the CloST index, to keep information about query requests on

each partition, such as the number of queries performed, and the last time the partition was requested

(“active-time”), as well as the partition status, i.e. Hot or Cold. Based on that information, after a

given time interval ϕ if a partition is not requested, then it becomes “cold”, and is therefore stored

in the distributed file system on disk (i.e. HDFS) on request of the Storage Controller. On the other

hand, if a cold partition is requested, the Storage Controller load it back to main-memory, and its

status is updated to “hot”. Loading cold partitions from disk to main-memory increases the system’s

I/O cost, however, our goal is to achieve a better tread-off between query performance and caching.

Furthermore, the threshold value ϕ can be adjusted to fit the system needs and the resources available

in the cluster.

4.4.2 Query Manager

Together, the Task Scheduler and the Query Manager are responsible for user’s requests handling, query

processing, and concurrency control. The Data Manager is composed by two main sub-components,

the Query Planner and the Query Processor. Figure 4.4 shows the architecture’s query workflow.

Briefly, queries are performed in a filter-and-refinement fashion using a MapReduce algorithm.

First we prune the search space by filtering spatial-temporal partitions containing candidate trajectory

segments, according to the queries parameters in the Query Planner. If any candidate partition is not

in-memory, the Storage Controller signals the Distributed Storage System to load the partitions from

disk into main-memory. The status of each partition selected in the filter step is updated at this phase

by the Storage Controller. Finally, a precise check is done by the Query Processor, and the query

results are returned to the users. We describe the query workflow, and main query components in the

following sections.

Query Planner

The Query Planner uses the knowledge of the logical data storage plan to identify candidate partitions

based on the M requests from the Task Scheduler. In another words, the Query Planner is responsible

for the filter step of the queries processing. It identifies the partitions intersecting with the queries
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Figure 4.4: Query workflow.

using the extended CloST index from the Physical Planner, and requests those partitions from the

Data Manager.

For instance, taken the example of Figure 4.1, suppose the Task Scheduler receives three requests

on the query regions R1, R2, and R3, that is N = 3 , and submits the first two queries in R1 and R2 to

the Query Manager, that is M = 2; to process R1 the Query Planner only considers data in the three

spatial partitions the query region intersects with. If any requested partition is Cold, then they are

loaded into main-memory by the Storage Controller, and their status is updated.

Query Processor

The Query Processor performs the final stage of the queries processing and post-processing. In another

words, the Query Processor is responsible for the refinement step on the candidate partitions from

the Data Manager, by running a precise check in each partition to collect segments/sub-trajectories

satisfying each of the M queries. Finally, a post-processing step is performed to merge segments/sub-

trajectories by trajectory ID.

4.4.3 Task Scheduler

The Task Scheduler, illustrated in Figure 4.5, is responsible for receiving requests and scheduling the

execution of user queries. The Task Scheduler determines how to move user requests between the Job

and Ready queues, and then to the application for execution.
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Figure 4.5: Task Scheduler Overview.

The Task Scheduler maintains two separated queues, the Job Queue and the Ready Queue. In

summary, the Job Queue keeps all the user requests in the application. The Ready Queue keeps a

priority queue with the user jobs ready and waiting to execute.

Job Queue: The Job Queue receives and queues a number of N user requests as soon as they arrive

in the application. Upon request of the Task Scheduler it sends up to M jobs waiting in the head of the

queue in FIFO order the Ready Queue for execution.

The goal of the Job Queue is to ensure that jobs are sent to the Ready Queue as they arrive, and

thus avoid user queries to wait indefinitely for execution. The order in which the query jobs are sent

for execution in the cluster, however, is determined in the Ready Queue.

Ready Queue: The Ready Queue receives up to M queries from the Job Queue and constructs

a spatial-temporal-aware priority queue for execution. It gives priority to queries which intersect

with one another in time and space. This is to ensure that queries requesting data from the same

spatial-temporal partitions are executed first, because the larger the number of queries accessing a

same spatial-temporal region the more likely they are to be accessing a query hotspot, hence it is

more likely that the required partitions for execution of those queries are already in memory; therefore

those queries executions are more likely to finish sooner since the data is in-memory, this will release

computation resources sooner for the next queries. On the contrary, if queries requesting data from

cold partitions were to be sent first, they would cause a longer wait in the process queue, since data

from cold partitions need to be loaded from disk, thus holding computational resources for longer and

delaying the remainder queries in the queue. Therefore, we ensure that queries which are more likely

to finish first, i.e. accessing query hotspots, are given priority for execution.

The degree d of priority in the queue is calculated based on the number of intersections, for

instance, in Figure 4.6 seven queries Q1 to Q7 are submitted to the application and queued in Job

Queue as they arrive; if M = 5 then the first five queries in the queue are moved to the Ready Queue

upon request. Now suppose the queries Q1, Q3, and Q5 intersect, that is d{1,3,5} = 3, and that Q2 and

Q2 intersect, that is d{2,4} = 2, hence the first set of queries are given higher priority for execution

over the second. For instance, in Figure 4.1, if M = 3 then the queries R1 and R2 are given priority of

execution over R3, since they intersect.

No more than M queries can be running at same time. The number of queries M submitted by the

Task Scheduler can be adjusted, and depends on the cluster capabilities (i.e. resources availability and

computational power). After submission, the M queries are executed in a “round-robin” fashion using
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Figure 4.6: Query Scheduling Example, for M = 5.

Spark’s FAIR job scheduling, so that all queries get a roughly equal share of the cluster resources, and

also to avoid a query with low priority to wait indefinitely in to complete execution. When one query

execution is completed, other from the head of the Job Queue is moved to the Ready Queue.

4.4.4 User Interface

Figure 4.7 shows the system’s user interface prototype. System administrators are able to setup the

cluster configurations, as well as the parameters for data partitioning, physical planning, storage

controlling, and the number of concurrent tasks supported by the cluster. Users are able to select a

spatial region (e.g. rectangle, circle, polygon) using the system’s map interface, and choose the query’s

time interval, and submit spatial-temporal query request to the Task Scheduler.

Figure 4.7: System user interface.

Our system is distributed as an open source, which allows contributors to further extend its

functionalities. Documentation and download links can be found at the systems repository 1. We

expect that our system will be refined and improved by the research community and developers. The

system is built upon a component-based architecture, in which new operations, query predicates, and

features can be easily plugged in. While researchers can use our system for experimentation and

benchmarking, professionals working on low-latency trajectory-based systems, and where memory is

a constraint, can apply its components in the core of their applications and analytics.

1https://github.com/douglasapeixoto/spark-trajectory-system



92 CHAPTER 4. WORKLOAD-AWARE AND MEMORY-WISE TRAJECTORY DATA STORAGE

4.5 Experimental Results

We present a set of comprehensive experiments on a real and synthetic trajectory datasets to evaluate

the throughput, scalability, and memory usage of our approach.

4.5.1 Experimental Setup

We use a 64GB dataset containing real trajectory data collected throughout China, the dataset contains

around 65 million heterogeneous trajectories from taxis and personal vehicles in a period of five days.

The dataset is initially stored in HDFS, we use the default MR block size of 64MB.

We implemented a system using our architecture to perform the experiments. The system was

implemented using the Spark Java library version 2.0.1. Experiments are conducted on a cluster with

16 physical nodes (1 master and 15 slaves). Each node has eight cores and 64GB of memory – in our

experiments we configured Spark to use 7 cores and 60GB of memory in each slave node.

We compare the scalability, throughput, and memory usage of our system against OceanST [178],

another state-of-the-art system for trajectory data storage using Spark. We evaluate the scalability of

our work by varying the dataset size and the number of nodes in the cluster; throughput is evaluated

based on the number of user queries executed within a time frame. We evaluate memory usage by

comparing the total memory used by the system as the time passes, and versus the number of input

queries in both Hot and Cold modes.

Data Manager Configurations: The spatial model was built from 100,000 sample trajectories

randomly selected. Spatial partitions were divided into 10 time pages, that is, θ/ϑ = 10. The Active-

Time window ϕ , i.e. the time in which the partitions are allowed to be stored in main memory without

been queried until they are considered as Cold, was set as 10s, 30s, 60s, 120s respectively in the

experiments.

Query Manager Configurations: We simulate 3,000 spatial-temporal user queries generated

randomly to cover the dataset area, where in 90% are placed in the same spatial-temporal region,

covering a total of 20% of the map area, in order to simulate hotspots; 10% were randomly generated

throughout the entire spatial-temporal region of the input dataset. User queries are submitted to the

Task Scheduler in batches of 105 concurrent queries (one per available slave core).

We compared four different configurations of our system with the state of the art, in order to

demonstrate the saves in memory usage of our system, yet keep nearly same throughput as the

state-of-the-art system.

4.5.2 System Throughput and Scalability

In this section we evaluate the system throughput under different circumstances in both Hot and

Cold modes. We submit 3,000 queries in batches of 105 concurrent queries in the same order in all

experiments, and measure the throughput (number of completed queries) every 10 seconds; the results

are displayed in clusters of 1 minutes.
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Effect of the Active-Time Window

Figure 4.8(a) shows the system throughput during a period of 8 minutes in Hot-mode. There is a

sharper increase in throughput in the first minutes due to the fact that all partitions are initially stored

in memory; the throughput, however, decreases with time once cold partitions send to be stored on

disk. The decrease in throughput is more evident with lower Active-Time windows, since performance

is affected by higher I/O operation with lower Active-time Windows. For higher Active-time Windows,

however, the tendency is to throughput stabilize near CloST. Valleys in the throughput are caused by

queries on cold areas being executed, which also affects performance due to I/O, this is more evident

with lower time windows, since partitions become cold faster.

Figure 4.8(b) shows the total number of queries completed after a period of 8 minutes in Hot-mode.

As the figures demonstrate, our architecture achieved near same throughput as CloST. Although the

system throughput decreases with the Active-Time Window, this is justified by high gains in memory

usage, as we show in the next experiments.
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Figure 4.8: System throughput for different Active-time windows in Hot-Mode (all the dataset initially
stored in Memory).

Similarly, Figures 4.9(a) and (b) show the same experiments, now with the system starting in

Cold-Mode. In contrast with the previous experiment, the system throughput increases with time, since

the first queries to be executed need to read the necessary partitions from disk. As the time passes,

the number of hot partitions loaded to memory increase, so does the performance of future queries

and consequently the overall system throughput. As shown in Figure 4.9(b), the total throughput

in Cold-Mode in inferior than that in Hot-Mode, this is due to the heavier load on the first queries,

since they are executed with partitions on disk. However, as the time passes the throughput of both

approaches tends to stabilizes in the same values as expected.

In conclusion, starting the application in Hot-Mode conducts to a higher overall throughput;

however, the throughput in both modes tends to converge as the system stabilizes. In addition, smaller

Active-Time windows tends to negatively affect the overall system throughput, due to the increase
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Figure 4.9: System throughput for different Active-time windows in Cold-Mode (all the dataset initially
stored on Disk).

in I/O and decrease in the number of partitions in memory. However, in Cold-Mode the system

achieved higher gains in memory usage, the same happened for smaller Active-Time windows, as we

demonstrate in further experiments.

Effect of the Dataset Size:

In this experiment we evaluate the scalability of our system, and investigate how the throughput

varies with datasets of different sizes. We perform the previous experiment using 1x, 2x, 4x, and

8x the size of the original input dataset. We fix the Active-Time window to 120s in this experiment,

since it showed better outcome in previous experiments. Figure 4.10(a) shows the system throughput

during a period of 8 minutes in Hot-mode using multiple copies of the input dataset against CloST.

In all experiments the throughput varied with same pattern, with larger datasets presenting smaller

throughput as we expected; this is due to the fact that query performance is affected with larger datasets

since partitions become larger, which affect the I/O and the time the partitions are kept in-memory,

consequently affecting the overall throughput. However, as Figure 4.10(b) shows the total number of

queries completed after 8 minutes, the decrease in throughput is linear, and smaller than the order of

increase in the dataset size, which proves the scalability of our approach.

Similarly, Figures 4.11(a) and (b) show the same experiments, now with the system starting in

Cold-Mode. Performance and throughput increased in the same pattern in all experiments as data

partitions are loaded to main memory and become hot; however, as in the previous experiment, due

to delays in query processing for larger datasets, some partitions tend to become idle in the memory

for longer, and are more likely to become cold, hence sent to disk, thus the decrease in both query

performance and throughput. However, as in Hot-Mode, although more accentuated, the decrease in

performance and throughput are linear, and smaller than the order of increase in the dataset size, which

proves the scalability of our approach even in Cold-Mode.



4.5. EXPERIMENTAL RESULTS 95

150

200

250

300

350

400

1m 2m 3m 4m 5m 6m 7m 8m

Q
u
er

ie
s 

C
o
m

p
le

te
d

Time Passed

OceanST 1x 2x 4x 8x

(a) System throughput as the time passes.

2947

2752

2456

2126

1733

0

500

1000

1500

2000

2500

3000

OceanST 1x 2x 4x 8x

T
o
ta

l 
Q

u
er

ie
s 

C
o
m

p
le

te
d

Dataset Size

(b) Total system throughput after 8 minutes.

Figure 4.10: System throughput for different dataset sizes in Hot-Mode (all the dataset initially stored
in Memory).
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Figure 4.11: System throughput for different dataset sizes in Cold-Mode (all the dataset initially stored
on Disk).

In conclusion, starting the application in Hot-Mode conducts to a higher overall throughput in

all experiments; however, the throughput in both modes tends to converge to the same values as the

system stabilizes. Again, the total throughput in Cold-Mode is inferior than that in Hot-Mode, due to

the heavier load on the first queries, since they are executed with partitions on disk. In addition, larger

dataset tends to negatively affect the overall system throughput, due to the increase in I/O, this is more

evident with larger dataset, firstly because the queries refinement step is affected with larger data in the

filtered partitions, and secondary because partitions become cold more often, increasing both query

execution time and disk I/O. However, as in previous experiment, in Cold-Mode the system achieved

higher gains in memory usage, as we demonstrate in further experiments.
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Effect of the Number of Nodes:

In this experiment we evaluate the scalability investigating the throughput variation with the number

of nodes in the cluster. We perform the previous experiment using 1, 2, 4, 8, 12, and 16 nodes. We

fix the Active-Time window to 120s in this experiment. Figure 4.12(a) shows the system throughput

during a period of 8 minutes in Hot-Mode. As with the dataset size, the throughput varied with same

pattern for most experiments as the number of nodes in the cluster increases, with exception for 2

nodes where the system reached the peak of memory available in in the cluster. As expected, the

greater the number of nodes in the cluster, the better the throughput, this is mostly due to the more

cores are available the more queries can be executed concurrently; since up to 4 node the cluster was

able to fit the entire dataset in-memory comfortably, memory did not have a much negative effect here.

Near 2 nodes, however, performance is jeopardized with not enough memory to store the entire dataset.

However, as queries are executed, cold partitions are send to disk, and the performance increases

sharply. Figure 4.12(b) shows the total number of queries completed after 8 minutes. As expected

the increase in throughput is linear with the number of node available, which also demonstrated the

scalability of our approach.

100

150

200

250

300

350

400

1m 2m 3m 4m 5m 6m 7m 8m

Q
u
er

ie
s 

C
o
m

p
le

te
d

Time Passed

2x 4x 8x 12x 16x

(a) System throughput as the time passes.

1424

2122

2277

2580

2752

0

500

1000

1500

2000

2500

3000

2x 4x 8x 12x 16x

T
o
ta

l 
Q

u
er

ie
s 

C
o
m

p
le

te
d

Number of Nodes

(b) Total system throughput after 8 minutes.

Figure 4.12: System throughput for different number of nodes in the cluster in Hot-Mode (all the
dataset initially stored in Memory).

Similarly, Figures 4.13(a) and (b) show the same experiments, now with the system starting in

Cold-Mode. Performance and throughput increased with the number of nodes in all experiments.

In addition, throughput increased more sharply as queries are executed, since memory availability

increases due to cold partitions being sent to disk. Similar to Hot-Mode, with 2 nodes the performance

is jeopardized by memory availability, leading to higher disk I/O, longer query response time, and

delays in the scheduling queues. However, even though the overall throughput in Cold-Mode was

smaller than in its Hot-Mode counterpart, as shown in Figure 4.13(b), the increase in throughput with

the number of nodes is linear in a same degree as in the former experiment, which also demonstrates

the scalability of our approach in Cold-Mode.
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Figure 4.13: System throughput for different number of nodes in the cluster in Cold-Mode (all the
dataset initially stored on Disk).

In conclusion, as in previous experiments, starting the application in Hot-Mode conducted to a

higher overall throughput in all experiments. However, the throughput in both modes tends to converge

to the same values as the system stabilizes; the exception is for 2 nodes, where the cluster reaches

the memory availability. In summary, if memory availability is not a constraint, performance and

throughput are affected by the number of processing units, which becomes the bottleneck for larger

numbers of concurrent queries. On the other hand, with small numbers of node in the cluster, memory

becomes the bottleneck, nevertheless, throughput tends to increase and stabilizes with time as cold

partitions are released from memory.

4.5.3 Memory Consumption

In this experiment we evaluate the effect of the Active-Time Window in the memory usage. Since

measure the exact amount of memory used in the cluster by Spark is challenging, we evaluate the

consumption based on the number of Hot partitions loaded to memory as queries are executed.

Using a dataset of 64GB raw data with 10 time pages per spatial partition, the total number of

spatial-temporal partitions in the dataset after the partitioning phase is equals to 1280, which is in

accordance with Equation 4.3, the size of each partition in memory is roughly 60MB (which also

accounts for Java objects serialization, thus the total amount is greater than 64GB). We compare the

memory usage of our system against CloST using different Active-Time windows in both Hot and

Cold modes. We measured the number of partition in memory after every 150 out of 3,000 queries are

completed.

Figure 4.14(a) shows the number of partitions in memory as queries as completed. Using CloST

all data is stored in main memory, thus the number of partitions in memory is always a constant. With

our system in Hot-Mode, however, all partitions are stored in memory only when the application starts;

as queries are being submitted the number of partitions in memory decreases with cold partitions being
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sent to disk. This is more evident at the beginning of the application runtime, where the system is

still learning from the query workload which partitions to keep in memory. In all experiments the

number of partitions in memory tends to stabilize with a few small variations due to cold queries being

executed. The smaller the time windows the smoother is the learning process, since cold partitions are

identified and sent to disk faster, this also explain the lower memory consumption with smaller time

windows. For higher time windows, on the oder hand, partitions are kept for longer in memory, and

cold partitions take longer to be identified, this also leads to partitions requested by cold queries to

stay longer in memory, what explains the more skewed curve in higher time windows.

Figure 4.8(b) shows the average number of partitions in memory after all queries are complete.

As mentioned in previous experiments, although the system demonstrated a inferior throughput for

smaller time windows, the average memory consumption improves with smaller Active-Time windows,

achieving up to 3x gain in memory usage. However even for higher time windows, our system used 2x

less memory in Hot-Mode then the other system.
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Figure 4.14: System memory usage (number of partitions stored in memory) in Hot-Mode (all the
dataset initially stored in Memory).

Similarly, Figures 4.15(a) and (b) show the memory consumption now with the system starting in

Cold-Mode, where all partitions are initially stored on disk after partitioning. As queries are executed,

partitions are loaded to main memory and become hot. Similarly to Hot-Mode, the number of partitions

in memory converges to an optimum while the system learns from the query workload and identifies

the hotspots, with increase in memory usage being smoother for smaller Active-Time windows for the

same reasons previously described. In both Hot and Cold modes, however, the number of partitions in

memory converge to the same figures as expected. The main difference between Hot and Cold modes

are in the average memory consumption, as shown on Figure 4.15(b), where the system achieved a

smaller average memory consumption in Cold mode due to the entire data being initially stored in

memory, therefore partitions that are never requested by user queries, are not stored in memory at any

time.
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Figure 4.15: System memory usage (number of partitions stored in memory) in Cold-Mode (all the
dataset initially stored on Disk).

In conclusion, in both Hot and Cold modes the memory consumption converges to the same figures

as the system learns the query hotspots form the workload, with the learning process being smoother

for smaller Active-Time windows. The trade-off between memory consumption and throughput is,

therefore, achieved based on the Active-Time window size that best fits the memory available in the

cluster.

4.5.4 Query Diversity

In this experiment we evaluate the throughput variation as we increase the number of cold queries

submitted. We perform this experiment with 1%, 5%, 10%, and 20% of the queries in cold regions

respectively, to demonstrate the effects of query diversity on the system’s throughput and compared

the results with the benchmark system. We fix the Active-Time window to 120s in this experiment.

Figure 4.16(a) shows the average system throughput (queries per minute) as we vary the number of

cold queries in Hot-Mode. In the benchmark system the throughput remains constant due to all data

bein stored in-memory all the time, thus any query, either hot or cold, will have access to the requested

data partitions readily in-memory. We noticed a light decrease in throughput as the percentage of query

coldspots increased using our approach, this was due to more data being loaded to main-memory due to

a larger number of cold queries, which increases disk I/O. However, the decrease in query throughput

was very small compared to the increase in the number of query coldspots, furthermore, the memory

savings of our approach justify these results, as we previously demonstrated. Figure 4.12(b) shows the

same experiment with the system starting in cold mode; here the overall throughput decreased due to

more data being loaded from disk; the effects of query variety, however, are similar to the previous

experiment, and as such are justified by the savings in memory consumption.

In conclusion, in both Hot and Cold modes our system achieved good throughput, close to the

benchmark, with little decrease in throughput as the number of cold queries submitted increases. The
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(a) Throughput in Hot-Mode.
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(b) Throughput in Cold-Mode.

Figure 4.16: System throughput (queries per minutes) varying the number of cold queries.

savings in memory consumption of our approach, however, justify these results.

4.5.5 Summary

In this chapter we proposed a trajectory storage architecture on top of the Spark framework with

resource-wise utilization, and concurrency control for multi-user environments. We exploit the in-

memory nature and distributed parallel properties of Spark for scalable and low-latency trajectory

data storage and processing. A key feature of our architecture is the ability to identify query hotspots,

and exchange data between main-memory and disk based on the query workload, yet leveraging

the scalability, fault-tolerance, efficiency, and concurrency control features of Spark. We developed

a system on top of our proposed architecture, where administrators are able to setup the cluster

configurations, as well as the parameters for data partitioning, physical planning, storage controlling,

and the number of concurrent tasks supported by the cluster. Users are able to submit spatial-temporal

queries for parallel concurrent processing. We developed a prototype of our system, and demonstrated

its ability to process multiple concurrent requests over a large-scale data, yet maintaining steady

performance and wise memory consumption, under different query workloads and configurations. Our

experiments demonstrated that our system architecture achieved high throughput compared to the

state-of-the-art, yet achieving up to 3.5x gain in memory usage. We believe our system will support

scientists and professionals working with large-scale trajectory-based applications.



Chapter 5

Top-k Most Similar Trajectories using Spark

5.1 Introduction

Top-k most similar trajectories search (k-NN) is frequently used as classification algorithm and

recommendation systems in spatial-temporal trajectory databases. The problem is useful for automatic

classification, origin-destiny analysis, and identify objects that move in a same pattern, for instance.

However, k-NN trajectories is a complex operation, and a multi-user application should be able to

process multiple k-NN trajectories search concurrently in large-scale data in an efficient manner.

The k-NN trajectories problem has received plenty of attention, however, state-of-the-art works

neither consider parallel processing of k-NN trajectories search nor concurrent queries in distributed

environments, or consider parallelization of k-NN search for simpler spatial objects (i.e. 2D points)

using MapReduce, but ignore the temporal dimension of more complex data, such as spatial-temporal

trajectories. In this work we propose a parallel approach to the k-NN trajectories problem in a

distributed and multi-user environment using the Spark framework. We propose a space/time data

partitioning based on Voronoi diagrams and time pages, named Voronoi Pages, in order to provide

both spatial-temporal data organization and process decentralization. In addition, we propose a

spatial-temporal index for our partitions to efficiently prune the search space, improve query latency

and system throughput. We implemented our solution on top of Spark’s RDD data structure, which

provides a thread-safe environment for concurrent MapReduce tasks in main-memory databases. We

perform extensive experiments to demonstrate the performance and scalability of our approach.

Motivation and Applications: Given a query trajectory T , a constant k, a time interval [t0, t1], and

a trajectory dataset S, the top-k nearest neighbor trajectories problem (k-NN), (k-NN, also know in the

literature as k-most-similar trajectories), is to find in S the k closest (or most similar) trajectories from

T active during [t0, t1]. k-NN trajectories is one of the most traditional query operations in trajectory

databases, and has received plenty of attention, e.g [31], [56], [130], [153], [158]. Applications include,

for example, to identify the top-k vehicle’s trajectories in a frequent path in order to calculate their

average fuel consumption during a certain period of time (e.g. peak hours with more traffic jam),
101
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in order to optimize gas stations placement or logistics optimization. Other applications include

identifying seasonal pattens in natural phenomena, such as hurricanes and tornadoes; determine

migration patterns of certain groups of animals along the year; and sport research to aid coaches to

identify movement patterns of top players. However, processing k-NN trajectories in a multi-user

environment is challenging; the application may be serving hundreds of requests over the network, and

k-NN search in general demands extensive use of computational resources. Furthermore, k-NN search

for trajectories is a complex operation, unlike other simpler spatial objects, trajectories are essentially

non-uniform sequential data with variable length, attached with both spatial and temporal attributes;

one may also need to consider data uncertainty [191]. Overall, trajectories are considered similar if

they follow a certain motion pattern, or move in a similar way (i.e. keep spatially close to each other)

for the majority of their time extent.

The Case for Spark: The massive amount of GPS data available, as well as the increasing number of

trajectory data application users, demands more robust, reliable and scalable solutions, since real-world

location-based service should be able to serve multiple requests over large-scale datasets. Therefore, a

typical solution is to consider distributed parallel computation with frameworks such as MapReduce

(MR) [39], which provides an abstraction for parallel computation and efficient resources allocation

of concurrent threads. MR has became very popular with the increasing interest in moving data

into cloud-based systems, multi-core servers, and commodity clusters. Spark [181], on the other

hand, provides a MR solution with the goal of speeding up data processing by storing data in main-

memory [14], [105], [182], [185]; furthermore, Spark is particularly suitable for iterative algorithms,

such as k-NN search.

5.1.1 State-of-the-art

Current state-of-the-art for k-NN trajectories, however, mainly focus on centrally-based computation

in single user environments, and cannot be easily tailored to the MR paradigm [31] [56] [130] [153].

Existing research to support spatial queries using MR, e.g. [4] [6] [12] [48] [95], utilize either a

multi-core divide-and-conquer strategy, where each mapper is responsible to process a sub-query over

a subset of the dataset, while the intermediate results from the map are refined by the reducers; or

utilize spatially-aware partitioning techniques, such as Grid cells, Quadtrees, and Voronoi diagrams,

in order to organize the space into disjoint groups of spatially close objects, providing both process

decentralization and efficient space pruning; hence reducing I/O and minimizing data transfer across

nodes.

The main drawback of the divide-and-conquer approach is that computational resources may

be wasted by processing data blocks that does not contribute for the query result. On the other

hand, spatial-aware partitioning strategies in MR can achieve up to 10x faster performance than

divide-and-conquer by maintaining data locality [44], [48], [200], since only a smaller number of

partitions containing query candidates are selected for processing, reducing query latency and avoiding

unnecessary I/O. The later approach is preferred for MR environments and concurrent threads; first
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because the faster the query response time, the sooner it gives resources back to the application; and

secondly, location-based services and MR systems are often serving more than one application at

same time, e.g. Spark and Hadoop might be serving other applications through their wide set of tools,

or serving concurrent jobs on the same application, e.g. multiple k-NN queries. Hence, reducing

query latency and resources use allows the system to serve more concurrent requests, and permit our

application to work with other MR systems in a non-intrusive way.

The current MR works on k-NN, however, either apply for the spatial dimension only, ignoring the

sequential nature and temporal dimension of trajectory data, i.e. k-NN of points [7] [86] [95] [186]; or

consider the temporal dimension of trajectories, but does not support similarity-based search [98] [172].

Lu et al. [95] and Akdogan et al. [7] use a Voronoi diagram-based approach to partition the space

and index spatial objects based on its closest pivots during the map phase, and processing k-NN and

RNN queries [7] and k-NN join [95] in iterative MR tasks; and outperforms similar MR works based

on grid-based partitioning for k-NN query [160], [200] and k-NN join [186]. Overall, Voronoi-based

partitioning has been shown to outperform other methods for nearest neighbors search [86], [83], [134].

Our partitioning method is closely related to that in [7], [95], except we extend Voronoi diagrams for

spatial-temporal dimension of trajectories in order to support trajectory similarity search, we also use

RDD to support in-memory based computation and concurrent queries.

5.1.2 Our Proposal

Our goal is to improve performance and throughput of k-NN trajectory query using MR, and allow

concurrent k-NN queries in multi-user servers. Thus, we propose a bulk-loading in-memory partitioning

strategy based on Voronoi diagrams and time pages, named Voronoi Pages, to support multiple k-

NN trajectories query in MR, and a spatial-temporal composite index, named Voronoi Spatial Index

(VSI) and Time Page Index (TPI), to prune the search space and speed up trajectory similarity search.

Voronoi-based partitioning have been successfully used for spatial queries processing in MapReduce,

in special distance-based search [7], [86], [95].

Briefly, we uniformly partition the space into Voronoi cells using k-Means clustering, and each

Voronoi cell into static temporal partitions (i.e. pages). Trajectories are split into sub-trajectories

according to their spatial-temporal extent, such that each sub-trajectory is mapped to one Voronoi Page.

We build our Voronoi Pages partitions on top of RDDs to speed up query processing. We process

a k-NN query in parallel in a filter-and-refinement manner, first filtering candidate pages using our

proposed spatial-temporal index, and then running a precise check on each candidate page. Each

process unit can manage a number of pages within a RDD in parallel, and multiple concurrent queries

can be served by Spark over its RDD. For the best of our knowledge, this is the first work to address

similarity-based search for trajectory data using Spark.
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5.2 Problem Statement

A k-NN trajectory query retrieve the k closest, or most similar, trajectories from a given query trajectory

T . k-NN trajectory queries are useful in pattern recognition, classification, and recommendation

systems.

Given a large set of GPS trajectories T, a trajectory distance function d(Ta,Tb), a set of n user

specified queries Q= {Q1,Q2, ...,Qn}, where Qi = (Ti,ki, t i
0, t

i
1), for every Qi ∈Q we want to find in

T the ki-NN(Ti, tia, tib), that is, the ki closest (or most similar) trajectories from Ti w.r.t. d(Ta,Tb), and

active during [t i
0, t

i
1].

We are interested in large-scale k-NN in multi-user applications. Our goal is to improve perfor-

mance and throughput of k-NN trajectory search using MR in-memory, and allow concurrent queries

in multi-user servers.

A naive way to perform the k-NN trajectories in MapReduce is to randomly partition the dataset

into blocks, and let each map() function calculate the k-NN in each data block in parallel, while the

reduce() function receives from each mapper the k-NN candidates, and finally calculates the final

outcome from those candidates.

The main drawback with this approach is that the map() may be processing data blocks that does

not contribute to the query result, which means a waste of computational resources that should be used

in other processes, and expensive shuffle cost of sending intermediate results from mappers to reducer.

An efficient way is to partition the dataset in a spatial-temporal aware manner (i.e. cluster

trajectories based on their spatial and temporal proximity – more likely to share neighborhood), such

that the amount of data processed by each query is minimized, avoiding unnecessary I/O and use of

CPU; hence improving query latency and throughput.

Distance measure: We need a distance function d(Ti,Tj) to calculate the distance between two

trajectories [157]. In this work, we adopt an edit distance based measure (i.e. EDwP) as trajectory

similarity function. Edit Distance with Projections (EDwP) [130] uses dynamic interpolation to match

sample points and calculate how far two trajectories are based on their edit-distances, that is, how many

projections must be done to make the trajectories similar to each other; the cost of the projections

is calculated on the Euclidean distance over the segments being edited. EDwP can cope with local

time shifts and non-uniform sampling rates, which are essential in real-world trajectory datasets.

Furthermore, EDwP is threshold-free.

In addition, a good way to choose an appropriate distance measure for a particular application is to

use our tool for evaluation of trajectory distance measures, discussed in Appendix A. Tens of similarity

measures for trajectory data have been proposed; every technique claim an advantage over the others

in a different aspect. Hence, it’s difficult for users to choose the best-suited technique, as well as

the appropriate parameter values, since each technique has distinct performance and characteristics

depending on various factors. Therefore, we develop an application that allows to evaluate several

techniques in different aspects (accuracy, sensitivity to trajectory features, performance, etc.). Each
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technique has distinct capabilities. This tool will serve as a practical guideline for how to select

well-suited trajectory distance measure on particular application scenarios. Users are allowed to

vary configurable parameters and visualize their effects. Through empirical observations, users can

select the appropriate parameter configuration for their applications. Our tool comes with a library

containing all described distance measures and transformations, and makes it easy to add new features

and visualize the results. Therefore, using our tool as a reusable framework, developers can reduce

development effort.

5.3 Preliminaries

5.3.1 The Case for k-NN using Spark

Spark is particularly suitable for iterative processes, where it is necessary to apply a function repeatedly

on the dataset (e.g. gradient descent, k-means, k-NN), since the MR framework reload the data from

the file system in every iteration, which incurs in a significant performance loss [135], [181]. Some

spatial operation, such as k-NN, demand an iterative neighborhood search in order to process the query

answer (see Section 5.6.3). With Spark we can perform iterative MR processing faster by storing data

in main-memory.

5.3.2 Spatial Partitioning

Most MR-based works developed strategies to optimize I/O and reduce the network and I/O cost of

sorting and grouping the data output from mapper to reducer (i.e. shuffle). In large spatial database

applications this can be achieved by means of locality-aware partitioning, which can reduce the number

of data objects access, thus reducing network and I/O costs [184].

The cost of executing a k-NN query can be measured by the number of input records it has to

read and process [12]. Spatial-aware partitioning strategies, such as Grid cells and Voronoi Diagrams

(VD), aim to organize multidimensional data into smaller partitions of spatially close objects to

reduce the number of query candidates, hence reducing network and I/O costs [184], [201]. In this

work we extend a VD data partitioning for spatial-temporal trajectories in MR, for it maintains data

proximity and provides uniform distribution for skewed datasets. VD is particularly suitable for

distance-based search [7], [83], [86], [95], where grid partitioning suffer from a significant loss of

pruning power [95], [102].

5.3.3 Voronoi-based Space Partitioning

Given n generator pivot elements (e.g. spatial points), a Voronoi diagram partitions the space into n

disjoint polygons, where every object in the dataset space is associated with its closest pivot element.

Each pivot has a Voronoi polygon (VP) consisting of all spatial elements associated with the pivot.

The set of all VPs and their associated elements is called a Voronoi Diagram (VD). An example of
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Voronoi diagram is shown in Figure 5.1. The main properties of Voronoi diagrams useful for this work

are enlisted as follow. The proof of these properties can be found at [106].

1. The Voronoi diagram of a given set of generator pivots PV is unique.

2. Let n and ne be respectively the number of pivots and the number of edges in a Voronoi diagram,

then ne ≤ 3n−6.

3. The nearest generator pivot p j from another generator pivot pi is among the pivots whose

Voronoi polygons share edges with V P(pi) (locality preserving property).

4. From property 2, and given that every edge in a Voronoi diagram is shared by exactly two

polygons, then the average number of edges per Voronoi polygon is less equal than six, i.e.,

2(3n−6)/n = 6−12/n≤ 6.

P1
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P4
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P6

b

b

b

b

b

b

b
P7

Figure 5.1: Example of Voronoi diagram with seven generator pivots.

5.4 Voronoi Pages Overview

Given an input trajectory dataset, we read and split each trajectory into a set of sub-trajectories,

according to its spatial and temporal extent, such that each sub-trajectory is assigned to only one

spatial-temporal partition.

Space Partitioning: Given a set of n generator pivots in the dataset space, PV = {p1, p2, ..., pn},
where pi = (xi,yi), we partition the dataset space into m disjoint spatial partitions, where each trajectory

sample point is assigned to its closest pivot (i.e. Voronoi polygon), by computing the Euclidean distance

between the trajectory sample points and each pi ∈ PV . Figure 5.2 illustrates eight trajectories, T1 to

T8, partitioned across seven Voronoi polygons, P1 to P7. Boundary trajectories, e.g. T1 and T4, are split

into sub-trajectories, where each sub-trajectory is assigned to its overlapping polygon. Section 5.4.1

explains how we address boundary trajectories more precisely. In Section 5.4.2 we discuss how we

choose n and PV .
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Figure 5.2: Trajectories partitioned across Voronoi polygons, and overview of Voronoi Pages.
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Figure 5.3: Sub-trajectory partitioning into Voronoi Pages, TW = 3 sec. Each page contains
sub-trajectories that overlap with both the Voronoi polygon area and time window.

Time Partitioning: Given a time window size TW we split the time space of each Voronoi polygon

into static time pages of size = TW , and assign each sub-trajectory sample point inside a polygon to a

time page according to its time-stamp. Figure 5.3 illustrates a sub-trajectory in a given Voronoi cell

split into time pages. For the sake of simplicity we assume that each sub-trajectory sample point in

Figure 5.3 was uniformly collected once every one second, that is ti = [0,6]sec; however, this approach

is for both uniform and non-uniform samples.

Voronoi Page: Each time page for a given Voronoi polygon is called a Voronoi Page (VPage),

identified by a spatial-temporal index 〈V SI,T PI〉, where VSI (Voronoi Spatial Index) is the page’s

polygon identifier, and TPI (Time Page Index) is the page’s time window identifier. In this manner,

each sub-trajectory is assigned to a spatial-temporal structure. Each VPage is composed of two

structures: (1) a local R-Tree of sub-trajectories in the page, and (2) a list containing the IDs of the

trajectories in the page (i.e. the parent’s identifier). In our implementation, we use simple R-Tree of

sub-trajectory bounding boxes. However, any other index access method for sub-trajectories can be

used within a VPage.
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5.4.1 Handling Boundary Trajectories

While partitioning both space and time, we expect some trajectories to intersect more than one VPage.

The number of intersections highly depends on both the number of spatial partition and the time

window size. Tight polygons and small windows size are more likely to have a greater number of

intersections. To minimize replication, we split boundary trajectories and replicate only the boundary

segments, that is, if a trajectory segment pi pi+1 crosses any polygon boundaries (i.e. segment endpoints

pi and pi+1 assigned to different polygons), we split the trajectory and assign the boundary segment

to both sub-trajectories; each sub-trajectory is assigned to its overlapping polygon. For the temporal

dimension the situation is likewise.

5.4.2 Generator Pivots

We choose the number of generator pivots n based on the size of the dataset and the default RDD

block size (i.e. 64 MB), so that each task can process data blocks with roughly the same number of

polygonal partitions. We study the effect of n for the k-NN performance in Section 5.7.3.

In addition, we must choose the pivots in order to break the space into uniform clusters to avoid load

imbalance. Therefore, we use the parallel k-Means++ heuristic [15], provided in the Spark machine

learning library (MLlib) [99], which provides a fair approximation of the deterministic k-Means.

k-Means partition the dataset into k clusters, in which each spatial object belongs to the cluster with

the nearest mean, this results in a partitioning of the space into a Voronoi diagram.

5.5 Voronoi Pages in MapReduce

We assume each input file contains one trajectory per line, as a sequence of spatial-temporal points.

We build our VPages structure as a RDD with a map() and reduce() functions on the input split.

The partitioning process returns a RDD of Voronoi Pages.

Map: The mapper reads and splits a trajectory T into m sub-trajectories, according to its spatial-

temporal dimension, and emits a list of 〈(V SI,T PI),T sub
i 〉 with m pairs, i ∈ [1, ..,m], consisting of a

sub-trajectory T sub
i as value, and the spatial-temporal index of the VPage containing T sub

i as key.

Reduce: The reducer receives a list of sub-trajectories (values), and groups them by VPage index

(key), adding each sub-trajectory to the VPage R-Tree. At the end of the parallel process, the reduce

returns a RDD of 〈(V SI,T PI),V Page〉 pairs, consisting of the spatial-temporal VPage index, and the

final VPage.

The pseudo-code for the partitioning function in Spark MR is shown in Algorithm 2. The Spark

context variable sc reads a dataset from local or HDFS file system, then map each line of the files to

a trajectory object; next each trajectory is mapped to a list of 〈(V SI,T PI),T sub
i 〉 w.r.t. V D and TW .
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Algorithm 2 Pages RDD Construction (Steps)
1: function PARTITIONING(data: Dataset, VD: VoronoiDigram, TW: TimeWindow)
2: Ppages

RDD ← sc.textFile(“data”)
3: .map(Line⇒ Trajectory)
4: .flatMapToPair(V D,TW )(Trajectory⇒ list[(VSI,TPI), T sub

i ])
5: .aggregateByKey(Page)(Page.add(T sub

i ))
6: .cache()
7: return Ppages

RDD
8: end function

The result Ppages
RDD is a read-only RDD structure containing the Voronoi Pages for the input parameters.

Finally, the Ppages
RDD is cached in-memory with the cache() command.

5.5.1 Trajectory Track Table (TTT)

We must keep track of sub-trajectories across VPages, so that we can retrieve and rebuild a trajectory

when processing a k-NN query. For this purpose, we propose a table-like structure, named Trajectory
Track Table (TTT). The TTT is a in-memory structure, where each tuple of the table is a pair composed

of a trajectory ID and a set of references to VPage (page index hash) containing the pages a trajectory

intersects with. The TTT is constructed as an RDD (i.e. Ttable
RDD) so that all nodes have access to it

without the need of replication. We build the Ttable
RDD with MR as follows.

Map: The mapper reads and map each input trajectory to a list of pairs 〈Tid,(V SI,T PI)〉, containing

the trajectory identifier for each VPage index Tid overlaps with.

Reduce: The reducer groups VPage indexes by trajectory key into a set of 〈Tid,Set{(V SI,T PI)}〉
page indexes . Each pair 〈Tid,Set{(V SI,T PI)}〉 is henceforth called a table tuple.

5.6 k-NN Trajectories Overview

Given a query trajectory Q, and a time interval [t0, t1], we want to retrieve the k-NN of Q within

the time interval [t0, t1]. By using a VD-based approach we focus on the spatial proximity to the

specified query location. Let V P(Q) be the set of Voronoi polygons covered by Q, and V PN(Q) be

the set of neighbor polygons of V P(Q), to process k-NN trajectory queries we take advantage of the

neighborhood properties of Voronoi diagrams as follows.

5.6.1 NN Trajectory Search Overview

From property 3, the nearest neighbor NN(Q) of a query object Q is either in V P(pi), where pi is the

nearest pivot from object Q, or among the Voronoi neighbors of V P(pi), for Q might be a boundary

object. However, because our query object Q is a trajectory, we must check all polygons intersecting

with Q and their neighbors. For instance, if our query trajectory is T4 in Figure 5.2, we must search
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for NN(T4) inside P5 and P6, and their neighbors P2, P4 and P7. Moreover, we are interested in a

spatial-temporal k-NN, thus we have to look in the specific time pages inside each partition. More

precisely, assuming our query object is T4, and we are interested in a time interval [t0, t1], we search

for the NN(T4, t0, t1) inside the Voronoi Pages set F= {(2, [t0, t1]), (4, [t0, t1]), (5, [t0, t1]), (6, [t0, t1]),
(7, [t0, t1])}. Nevertheless, trajectories in F may span to other spatial-temporal partitions depending on

their spatial and temporal extent, for instance, T1 in P7 also spans to P1. We must ensure that the whole

trajectories are returned from the previous step in order to evaluate their distances. Thus, from this

point we visit the TTT to retrieve the index of other VPages containing the trajectories in F (if there

is any). We filter from the Ppages
RDD the sub-trajectories in the VPages returned from the Ttable

RDD – except

those previously retrieved – and append the remainder sub-trajectories to F. A post-processing step is

done to merge sub-trajectories in F, and finally compute the NN(Q, t0, t1).

5.6.2 k-NN Trajectories Search Overview

To calculate the remainder (k-1)-NN of Q we use an approach similar to that in [7]. Suppose both Q

and NN(Q) are inside P3, Q = T5 and NN(T5) = T6 for instance, thus we also look for the second NN

of Q in pages inside the neighborhood of P3, that is P1, P2 and P4. The remainder NNs are retrieved in

the same recursive process; the search stops at the kth iteration if the number of candidates c is c≥ k,

or continues the search until c≥ k. From property 2, the number of neighbor partitions we have to

look for time pages in every iteration is at most six for every partition containing the current candidate.

5.6.3 k-NN Trajectories in MR

The VPages containing the k-NN result are unknown until the query is executed, thus, we calculate

k-NN(Q, t0, t1) with k iterative filter-and-refinement MR jobs, so that in every ith iteration we have the

ith-NN(Q, t0, t1) result. Iterative MR processes are better performed by choosing the RDD in-memory

storage level [180], [181], thus we run our k-NN algorithm by persisting the Ppages
RDD in main-memory

only.

First Filter: In the first filter we select all pages in the interval [t0, t1], for every polygon Pi ∈
(V P(Q) ∪ V PN(Q)) (lines 1–6 in Algorithm 3). Finally, we perform a whole selection using the

Ttable
RDD to collect all trajectories inside the filtered VPages, and active during [t0,t1] (lines 8–12), as

stated in Section 5.6. Algorithm 3 contains the steps for the filter task in Spark, and returns a RDD of

candidate trajectories Tcandidates
RDD within the candidate VPage Fpages

RDD ⊂ Ppages
RDD . Algorithm 3 uses the

RDD’s filter() function, which returns a subset from a parent RDD with objects checked against

a given predicate (e.g. VPage index, trajectory id).

First Refinement: The first refinement receives the RDD of candidate trajectories Tcandidates
RDD from

the filter step, and returns a list of trajectories sorted by distance to Q. The pseudo-code for the

NN refinement step is in Algorithm 4, it sets the distance from every trajectory T in the candidate



5.6. K-NN TRAJECTORIES OVERVIEW 111

Algorithm 3 NN Trajectory Filter (Steps)
1: function QUERYFILTER(Q: QueryTrajectory, [t0, t1] : TimeInterval, TW: TimeWindow)

/* (1) get candidate pages index */
2: V SIlist ← V P(Q)∪V PN(Q)
3: T PI0← (t0/TW )+1
4: T PI1← (t1/TW )+1

/* (2) filter pages by index */
5: Fpages

RDD ← Ppages
RDD .filter(

6: Page⇒ Page.index.VSI in V SIlist and
7: Page.index.TPI in [T PI0,T PI1])

/* (3) the ids of the trajectories in Fpages
RDD */

8: T id
set ← Fpages

RDD .getTrajectoryIdSet()
/* (4) filter from the TTT tuples w.r.t. T id

set */
9: Iindex

set ← Ttable
RDD.filter(Tuple⇒ T id

set .contains(Tuple.key))
/* (5) filter other pages w.r.t. Iindex

set */
10: Fpages

RDD ← Fpages
RDD ∪P

pages
RDD .filter(Page⇒ Iindex

set .contains(Page.index))
/* (6) collect w.r.t. T id

list and post-process */
11: Tcandidates

RDD ← Fpages
RDD

12: .flatMapToPair(T id
list)(Page⇒ pairsList(Tid ,T sub

i ))
13: .reduceByKey((T sub

i , T sub
j )⇒ postProcess(T sub

i , T sub
j ))

14: return Tcandidates
RDD

15: end function

partitions to Q. If one is interested in the 1-NN(Q, t0, t1) only, the application returns the first element

in NN(Q, t0, t1)candidates list as the 1-NN(Q, t0, t1) result.

Algorithm 4 NN Trajectory Refinement (Steps)
1: function QUERYREFINEMENT(Q: QueryTrajectory, [t0, t1] : TimeInterval, Tcandidates

RDD : Candi-
datePartitions)

2: NN(Q, t0, t1)candidates← Tcandidates
RDD

3: .map(T⇒ T.setDistance(d(T,Q)))
4: .sort().collect()
5: return NN(Q, t0, t1)candidates
6: end function

Next Filter-Refinement: For every ith-NN of Q remaining, we perform a filter-and-refinement

process in a fashion as similar as before. More precisely, taking the example on Figure 5.2, suppose

Q = T5, and the first element in NN(Q, t0, t1)candidates list is 1-NN(T5) = T6, in the same Voronoi Page

of T5. The second NN of Q is found by adding to the candidates list the trajectories in the neighborhood

of 1-NN(Q), that is, pages in the interval [t0, t1] inside V PN(T6) = {P1,P2,P4}. However, V PN(T6)

are already known from the previous step, so we can return the first and second elements from the

candidates list as the result of 2-NN(Q, t0, t1). Now, assuming the second NN of Q is inside P4, the

third NN is found by adding to the candidates list the trajectories covered by pages in the interval

[t0, t1] inside V PN(T4) = {P2,P5}; P2 is already known, so we only filter pages inside P5. The process is
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Table 5.1: Trajectory dataset information. Time, speed, and length columns are the average values.

#Trajectories #Points Time Speed Length
4,000,000 354,294,752 543 s 37 km/h 6.5 km

repeated for every ith-NN remaining. At the end of each ith stage the intermediate results are collected

and the candidates list is updated in the application master.

5.7 Experiments

We conduct a set of experiments on a real trajectory dataset to evaluate the performance and scalability

of our approach. We compare the performance and scalability of our prosed VD based approach against

a Grid-cell based approach, also commonly used in spatial MR works, e.g. [48], [172]. The grid-based

approach is similar to the VD one, except the space is partitioned into a uniform grid. Throughout this

section we refer to the VD approach and Grid cells approach as VPages and GPages respectively. To

process k-NN queries in GPages we employ a technique similar to that in SpatialHadoop [48] to prune

the search space, except we use the trajectories’ centroid distances to select candidate trajectories. To

a fair comparison, both VPages and GPages have same spatial partitioning granularity, and same time

window size; we also apply the same trajectory splitting strategy on both approaches. We perform our

experiments with RDDs in main-memory storage level only.

5.7.1 Experimental Setup

We use a 16GB trajectory dataset collected from Shanghai and southern region of China. The dataset

contains 4 million heterogeneous trajectories from taxis and personal vehicles in a period of five days.

The data is initially stored in HDFS. More information about the dataset is given in Table 5.1. Each

input file contains one trajectory per line in the format: trajectory identifier, and a list of (x coordinate,

y coordinate, and time-stamp).

All algorithms are implemented in the Spark Java library version 1.5.1. Experiments are conducted

on a cluster with 30 nodes. Each node is a Ubuntu 14.04 LTS with dual-core processor and 3GB of

memory, all nodes are connected through gigabit Ethernet. We employ Spark-JobServer [140] to allow

multiple concurrent jobs in our application (i.e. concurrent queries over the VPages/GPages RDDs),

we set 0.6 as Spark’s default data cache value (i.e. 60% of RAM for cache data, and 40% for shuffle).

Table 5.2 shows the default values and the range of each parameter using during the experiments.

We evaluate our method for both NN and k-NN trajectory queries. We set k = 10 by default. The time

window size was also fixed at 1,200sec (based on the mean µ = 543s and standard deviation σ = 700s

of trajectories duration), so most trajectories fit into one time page. We chose the number of Voronoi

cells as 250, 500, 1,000 and 2,000, so that the RDD contains roughly 8,4,2 and 1 polygonal partitions

per block respectively. We also noticed that with less than 15 nodes we were not able to cache the

entire dataset into main-memory and perform concurrent queries with our limited cluster resources,
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Table 5.2: Parameters Settings.

Parameter Default Range
# of Polygons/Cells 1,000 250-2,000
Time Window Size 1,200 sec -

Dataset Size 16GB 4GB-16GB
# of Nodes 30 15-30

# of Concurrent Queries 5 5-30
# of Neighbors (k) 1 & 10 1 & 10-40
# of Input Queries 100 -
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Figure 5.4: Index construction evaluation.

thus we set 15 as the minimum number of nodes. As query input value, we randomly selected 100

trajectories from the dataset, the query time was set as the beginning and ending time of each query

trajectory; we perform the queries in batches of 5 concurrent threads by default. We evaluate the

performance on building the VPages partitions, and the scalability and throughput of our approach on

processing concurrent queries for different parameters.

5.7.2 VPages Construction Evaluation

In this section we evaluate the performance to create the VPages with different numbers of generator

pivots, and the scalability against GPages. Figure 5.4 shows the overall results of this experiment.

Index Construction Scalability: Figure 5.4 (a) demonstrates the execution time for reading the data

from HDFS and building both VPages and GPages RDDs for different dataset sizes, i.e. from 1/4x to

1x the original dataset. GPages outperformed VPages on index construction time on all scenarios due

to the one-to-one complexity of parsing trajectory data points to a uniform grid, against the O(n∗ k)

complexity of Voronoi diagram construction. This is also true for different numbers of computing

nodes as shown in Figure 5.4 (b). Overall, GPages demonstrated to be 10%–50% more scalable than

VPages on index construction, however, VPages outperformed GPages in query latency and throughput

as we will discuss on next sections.
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Table 5.3: Trajectories distribution across VPages by number of pivots. The #Splits column contains
the average values.

#Pivots #VPages #Sub-Trajectories #Splits Latency (s)
250 78,715 6,045,863 1.51 247.5
500 146,479 6,276,712 1.57 301.5

1,000 265,700 6,538,746 1.63 385.0
2,000 464,912 6,949,443 1.74 497.0

Effect of the Number of Pivots: Table 5.3 gives statistical information about trajectories distribution

across VPages and the execution time on building the VPages RDD for different numbers of Voronoi

cells. As expected, the execution time tends to increase with the number of cells, this is due the

increasing number of comparisons during the map phase. The number of trajectories’ splits increase

with the spatial partitioning granularity, this is due to increasing number of boundary trajectories in

more tight partitions. However, query throughput increases for larger numbers of Voronoi cells as we

will discuss in the next sections.

5.7.3 System Performance and Scalability

In this experiment we study the system performance and scalability to process NN and k-NN trajectory

queries on both VPages and GPages. We measure the system throughput by the number of queries

completed per minute for each approach. Figure 5.5 shows the overall results for this section.
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Figure 5.5: System throughput evaluation.

Scalability Evaluation: Figure 5.5 (a) shows the system throughput for NN and 10-NN queries on

both VPages and GPages RDDs. Overall, VPages performed up to 10x better than GPages for both

NN and k-NN queries as the dataset grows. This is mainly due to two reasons: first the filter step

of VPages is more accurate than its GPages counterpart on filtering candidate trajectories; secondly,

VPages presented a more uniform data distribution across partition using k-Means clustering than

the grid-based approach, which caused the load imbalance in GPages. However, for dataset smaller
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Figure 5.6: System throughput by number of pivots and by number of concurrent queries.

than 16GB, GPages performed k-NN search slightly better than VPages; this is due to the iterative

neighborhood search on VPages, which seeks for the query result on neighbor cells even for small

input datasets. This difference, however, disappears as the dataset grows due to the most homogeneous

data distribution of VPages.

Near 16GB for GPages, however, the cluster resources utilization reaches its limits for the default

parameters, once each concurrent query needs to cache and process its own copy of the filtered RDD

partitions, which causes Spark to shuffle more data and spill some data to disk for larger input datasets,

causing both network and I/O bottleneck, thus the performance deterioration on GPages. Therefore,

VPages outperformed GPages in 10x for 16GB, i.e. 40.0 throughput in VPages versus 4.0 in GPages.

Overall, VPages demonstrates to be more scalable than GPages for both NN and k-NN and the dataset

grows. The situation is likewise with number of nodes smaller than 20 nodes, as shown in Figure 5.4

(b), where VPages outperformed GPages in all scenarios up to 25x in NN search and up to 10x in

k-NN search.

Effect of the Number of Pivots

Figure 5.6 (a) gives the system throughput using VPages for different numbers of Voronoi cells. Overall,

finer-grained partitions tends to positively affect query latency and throughput, this is due to the filter

step to be more precise when retrieving candidate trajectories. In other words, more polygons leads

to less false positives in the filter step, hence a faster refinement. This improvement in query latency

increases the resources availability in the cluster, hence increasing parallelism and system throughput.

Concurrency Evaluation

Here we evaluate the effect of the number of concurrent queries to the system throughput. We submit

queries to the application in batches of 5 to 30, and start one thread per query job using the Spark-

JobServer [140] framework. Queries are executed in a “round-robin” fashion using Spark’s FAIR job
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scheduling, so that all queries get a roughly equal share of cluster resources, which is the indicated

mode for multi-user applications in Spark1. Figure 5.6 (b) gives the overall results for this experiment.

For VPages on both NN and k-NN queries the system throughput increased from 5 to 10 concurrent

queries, this is due to the best use of our cluster resources. We noticed that with fewer than 10 concur-

rent queries the cluster resources were not at full use with some idle nodes. Near 10 concurrent queries,

however, the resources utilization reaches its peak, hence its maximum throughput. Furthermore, even

with dataset in main-memory the overhead of managing large numbers of concurrent jobs can lead

to more contentions and strongly limit the system scalability [109]. For the default parameters our

cluster was unable to support greater numbers of concurrent queries, which caused the performance

deterioration due to network and I/O bottleneck. For GPages the situation was much worse, with its

peak near 5 concurrent jobs. In summary, VPages demonstrated to be up to 15x better on handling

multi-user application and concurrent jobs at the cluster resources utilization peak. The maximum

batch size can adjusted accordingly based on the cluster’s memory available.

Effect of Number of Neighbors (k)

Here we evaluate how the cardinality of the number of neighbors k affects the system throughput for

k-NN trajectories search. Figure 5.7 gives a comparative on the system throughput as k grows in both

VPages and GPages.
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On both VPages and GPages approaches the partitions containing the k-NN are unknown until the

query is executed; however, spatial locality is not always preserved in grid-based, which means we

need to extent the search space in GPages further than in VPages to retrieve the candidate trajectories,

which negatively impacts the performance of GPages for all values of k. Recalling Section 5.6, in each

iteration on VPages the current i-NN is retrieved, along with its neighbor trajectories; however, due to

the locally preserving property of VDs, most neighbors of a given object are in the nearby polygons,
1Spark Job Scheduling: https://spark.apache.org/docs/1.3.0/job-scheduling.html
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thus are retrieved in the first iterations; and due to the homogeneous distribution of the data in the

diagram, the number of trajectories in the neighbor partitions to retrieve are roughly the same, which

leads to near linear effect on query latency as k increases; the system throughput, therefore, is directly

affected by queries latency. Although the throughput of approaches decrease near linearly as k grows,

VPages demonstrates to be more sensitive to k than GPages, i.e. by linear regression αv = −0.38

and αg =−0.04, where αv and αg are the angular coefficients for VPages and GPages respectively.

However, VPages is only as poor as GPages for very big values of k, where a great number of partitions

need to be track.

5.8 Summary

In this section we present a multi-user system to process concurrent k-Most-Similar trajectories (k-NN)

search using Spark’s RDD, a thread-safe and resilient distributed data structured for large-scale data

processing in main-memory using the MapReduce model. We introduced a novel spatial-temporal data

partitioning approach, named Voronoi Pages, built on top of RDD to a scalable and fast processing of

multiple k-NN trajectories search in MR. Voronoi Pages provides both homogeneous data partitioning

and spatial-temporal locality preserving, essentials for MR-based systems. Our experimental results

based on a real trajectory dataset demonstrates the superiority in performance and scalability of our

approach against another common approach used in MR for spatial data.





Chapter 6

Conclusion

In this thesis we proposed a novel database system for trajectory data management on top of the Spark

framework. We developed a wide range of techniques and applications for large-scale spatial-temporal

trajectory data management, aiming three important aspects of large-scale trajectory data management,

(1) data preparation and preprocessing; (2) scalable, reliable, and resource-wise storage; and (3)

efficient and accurate query processing. For the best of our knowledge, this is the first work to cover

all this range of important features for large-scale trajectory data. In summary, the main contributions

and achievements of this thesis are:

Trajectory Data Representation and Integration

We developed a novel parallel system for trajectory data integration and representation, with support

for lossless trajectory data compression, and synthetic trajectory data generation. This system also

provides templates for trajectory data representation (e.g. spatial-temporal attributes, textual attributes)

providing a single data model for integration of different input datasets. In addition, in order to represent

and integrate data from different formats, we introduced the Trajectory Data Description Format

(TDDF), a data description format for spatial-temporal trajectory data. Moreover, this application is

responsible to collect statistics of the input dataset (i.e. metadata). Finally, our application has been

published in the DASFAA conference [117].

Efficient Map-Matching at Scale

Map-matching is an important pre-processing step to improve trajectory data quality and reduce

uncertainty, due to inaccuracy of raw GPS data. The large amount of digital data available, however,

has introduced a new problem of how to match massive amounts of both map and trajectory data in a

efficient manner. In this thesis we proposed a Spark-based framework for the problem of large-scale

offline map-matching. We introduced new features on top of Spark to allow efficient, scalable, and

memory-wise processing of large-scale map-matching. First, we introduced a cost function for the

distributed map-matching problem. Secondly, we use a sample-based quad-index construction, and
119
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Quadtree co-partition of map and trajectory data to allow parallel and load-balanced map-matching.

We build our partitions on top of Spark’s RDD to achieve efficiency and scalability. We employ a safe

boundary threshold, and wise split strategy to reduce replication. Finally we proposed a batch-based

method for large-scale map-matching, using data loading and processing in smaller batches to reduce

memory usage. A comparative study and experiments demonstrated that our framework achieved good

efficiency and scalability on map-matching processing with low memory consumption. Finally, the

results of our work have been accepted for publication in the DAPD journal [119].

Workload-Aware Trajectory Data Storage and Retrieval

With the increasing demand for low-latency services over large-scale trajectory data, a database system

should be able to serve multiple requests over large-scale datasets, providing good scalability, high

throughput, and fast query response. In this thesis we proposed a trajectory storage architecture on

top of the Spark framework with resource-wise utilization, and concurrency control for multi-user

environments. We exploit the in-memory nature and distributed parallel properties of Spark for scalable

and low-latency trajectory data storage and processing. Our architecture was designed to react to

changes in the query workload efficiently, since some spatial regions, such as urban areas, receive

more query requests (hotspots), thus data records in such areas receive priority for in-memory storage

over least requested data. In addition, we used a hierarchical partitioning for trajectory data loading

efficiency. We developed a system on top of our proposed architecture, where administrators are able

to setup the cluster configurations, as well as the parameters for data partitioning, physical planning,

storage controlling, and the number of concurrent tasks supported by the cluster. Users are able to

submit spatial-temporal queries for parallel concurrent processing. Our experiments demonstrated that

our system architecture achieved high throughput compared to the state-of-the-art, yet achieving up to

3.5x gain in memory usage.

Distance-based Trajectory Data Storage and Processing

In this thesis we proposed a multi-user system to process concurrent k-Most-Similar trajectories

(k-NN) search using Spark’s RDD, a thread-safe and resilient distributed data structured for large-

scale data processing in main-memory using the MapReduce model. We introduced a novel spatial-

temporal data partitioning approach, named Voronoi Pages, built on top of Spark’s RDD to scalable

and fast processing of k-NN trajectories search in MR. Voronoi Pages provided both homogeneous

data partitioning and spatial-temporal locality preserving, essentials for Spark-based systems. Our

experimental results based on a real trajectory dataset demonstrated the performance and good

scalability of our approach against another common approach used in MapReduce for spatial data.

Finally, the results of our work have been publish in the ADC conference [115].
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Trajectory Distance Measures Evaluation

Measuring the similarity (or distance) between trajectories of moving objects is a common procedure

taken by most trajectory data-driven applications. However, tens of similarity measures for trajectory

data have been proposed; every technique claim an advantage over the others in a different aspect.

Hence, it’s difficult for users to choose the best-suited technique, as well as the appropriate parameter

values, since each technique has distinct performance and characteristics depending on various factors.

Therefore, in this thesis we developed an application to evaluate trajectory distance measures. The

target users (researchers and developers) can use our tool to configure and evaluate state-of-the-art

algorithms for a potential application. This tool is built upon a component-based architecture, in which

new techniques can be easily plugged in. We believe that this tool will serve as a practical guideline

for both researchers and developers. While researchers can use our tool to assess existing or new

techniques, developers can reuse its components to reduce the development complexity. Our tool has

been submitted for demonstration in MDM [116].

Final Considerations

Range query and k-NN query are the two most fundamental query operations in trajectory databases.

Our system architecture was designed to support both operations, in addition to data integration and

pre-processing. Due to the nature and complicity of each operation, two different approaches were

designed to solve and optimize each query. Each approach provides its own data partitioning technique

and query workflow. However, users can access both functionalities together in the system, since both

approached were designed on top of the Spark’s RDD. Users can use one single dataset in the system to

perform any of these queries, since an RDD can be built separately to solve each problem; furthermore,

each approach was designed to reduce memory usage, which reduces the weight of storing the same

dataset into two different RDDs in-memory. Therefore, both approaches can be used intertwined in the

same distributed environment, since every approach has its own storage controller and query processor

component.

For the best of our knowledge, this is the first work to cover all this range of important functionalities

for large-scale trajectory data. Furthermore, our system was built using a component based design, and

it’s well documented, therefore its easy to include new features and components into our application.

We believe our system will serve as the API of choice for trajectory data management and analytics.

Since our system is provided as open-source, we expect the scientific and industrial community to

contribute and extend our system, including more features and functionalities for trajectory data

management, mining and analytics.





Appendix A

Concept for Evaluation of Techniques for
Trajectory Distance Measures

A.1 Introduction

Measuring the similarity (or distance) between trajectories of moving objects is a common procedure

taken by most trajectory data-driven applications. One of the biggest challenges of trajectory distances

measurement is that the distance needs to be carefully defined in order to reflect the true underlying

similarity. This is due to the fact that trajectories are essentially non-uniform sequential data with

variable length, attached with both spatial and temporal attributes, which may or may not be considered

for similarity measures. Therefore, tens of similarity measures for trajectory data have been proposed;

every technique claim an advantage over the others in a different aspect. Hence, it’s difficult for users

to choose the best-suited technique, as well as the appropriate parameter values, since each technique

has distinct performance and characteristics depending on various factors. Therefore, we develop

an application that allows to evaluate several techniques in different aspects (accuracy, sensitivity to

trajectory features, performance, etc.). We believe that this tool will be able to serve as a practical

guideline for both researchers and developers. While researchers can use our tool to assess existing or

new techniques, developers can reuse its components to reduce the development complexity.

Motivation and Applications: The problem of detecting similar trajectories is useful for decision

making applications based on moving objects analysis; for instance, one may be interested in planning

a road network capacity, planning municipal transportation or detect usual road paths in a city to avoid

traffic jam. In this sort of problem, trajectory similarity analysis and query processing, such as the

k-NN trajectories [115], play an important role.

However, trajectory distance measurement is challenging due to the nature and complexity of

trajectory data. Besides, one must take into account other variants such as shape, time shifting, non-

uniform sampling rates, and rotation, for instance. Overall, trajectories are considered similar if they

follow a certain motion pattern, or move in a similar way for the majority of their time extent.
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To fully tackle this challenge, dozens of similarity measures for trajectory data have been proposed

in the literature [162] [157]. For example, there are similarity measures only considering the spatial

dimension, such as Euclidean distance, DTW [173], EDR [31], ERP [30], LCSS [153], DISSIM [56],

LIP [120], EDwP [130], TID [152], OWD [91], and PDTW [80]; whereas there are trajectory similarity

measure for both spatial and temporal dimensions, such as STED [179], STLIP [120], Frechet [9], and

STLCSS [154]. Many of these works, and their extensions, have been widely cited in the literature and

applied to facilitate the processing and mining of trajectory data.

However, each work claim superiority in identifying similar trajectories under different circum-

stances, such as noisy data, different sampling rates or scale, or under rotation and translation. As a

result, understanding the capability of these techniques, for a given type of application, is difficult

to comprehend. Therefore, we present an Application for Evaluation of Techniques for Trajectory

Similarity/Distance Measures with the following functionalities:

• Choose well-suited techniques. Each technique has distinct capabilities. This tool will serve

as a practical guideline for how to select well-suited trajectory distance measure on particular

application scenarios.

• Guide to select appropriate parameters. Allow users to vary configurable parameters and

visualize their effects. Through empirical observations, users can select the appropriate parameter

configuration for their applications.

• Reduce development complexity. Due to the number and complexity of approaches, it can be

challenging and time-consuming for users to understand and implement all techniques. Our tool

comes with a library containing all described distance measures and transformations, and makes

it easy to add new features and visualize the results. Therefore, using our tool as a reusable

framework, developers can reduce development effort.

To support these functionalities, we design our tool with three main features: (i) trajectory data

transformation module, (ii) re-implement state-of-the-art trajectory distance measures within a common

framework, (iii) a mean to evaluate these techniques with different parameters using a GUI. To the

best of our understanding, this is the first system to provide these attractive features.

A.2 System Design

Figure A.1 illustrates the application GUI, which is built upon three modules:

1. Transformation module: is responsible to load the datasets and perform a set of transformations

on the second dataset as per user specification. The supported trajectory transformations are: add

noise, shift points, add or remove points, change sampling rate or scale, time shifting, rotation,

and translation.
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2. Distances Computing module: for a given user-specified trajectory distance function, and two

input trajectory datasets A and B, this module computes the distances between every trajectory

in A to every trajectory in B (i.e. distance join) after the required transformations.

3. Visualization module: Once the results from every experiment has been completed, users are

able to load the results for visualization and analysis.

Figure A.1: User Interface.

The project is available to the public at our repository 1.

A.3 Demonstration

Load and transformation: Users are able to load two trajectory datasets A and B, and choose any of

the provided transformations to be performed on the dataset B. Users are free to set the parameters of

each transformation.

Distance computation: Users are able to choose among 15 different techniques for trajectory

distance measure. Since every technique has its own distinct set of parameters, user are able to

configure every technique individually once the function is selected.

Normalization: Since there is no consent about the values, or range of values, returned from each

distance technique, the application is able to output the results using either Min-Max or Mean-Std

normalization, as per user specification.

Output results: After computation, results are saved in a CSV format containing the list of

distances for every trajectory in the dataset A to every trajectory in the dataset B, after the required

1https://github.com/douglasapeixoto/trajectory-distance-benchmark
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transformation and for the specified distance measure. Results can be sorted either by the trajectories

IDs or by distance, which is useful for k-NN computation, for instance.

Results visualization: Users are able to load the result files into the application for visualization,

as illustrated in Figure A.2.

Figure A.2: Trajectory Distances Comparison Chart.
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