240 research outputs found

    Mobile Edge Computing

    Get PDF
    This is an open access book. It offers comprehensive, self-contained knowledge on Mobile Edge Computing (MEC), which is a very promising technology for achieving intelligence in the next-generation wireless communications and computing networks. The book starts with the basic concepts, key techniques and network architectures of MEC. Then, we present the wide applications of MEC, including edge caching, 6G networks, Internet of Vehicles, and UAVs. In the last part, we present new opportunities when MEC meets blockchain, Artificial Intelligence, and distributed machine learning (e.g., federated learning). We also identify the emerging applications of MEC in pandemic, industrial Internet of Things and disaster management. The book allows an easy cross-reference owing to the broad coverage on both the principle and applications of MEC. The book is written for people interested in communications and computer networks at all levels. The primary audience includes senior undergraduates, postgraduates, educators, scientists, researchers, developers, engineers, innovators and research strategists

    Secure Communication Model for Dynamic Task Offloading in Multi-Cloud Environment

    Get PDF
    As the data is increasing day-by-day, the mobile device storage space is not sufficient to store the complete information and also the computation capacity also is a limited resource which is not sufficient for performing all the required computations. Hence, cloud computing technology is used to overcome these limitations of the mobile device. But security is the main concern in the cloud server. Hence, secure communication model for dynamic task offloading in multi-cloud environment is proposed in this paper. Cloudlet also is used in this model. Triple DES with 2 keys is used during the communication process between the mobile device and cloudlet. Triple DES with 3 keys is used by the cloudlet while offloading the data to cloud server. AES is used by the mobile device while offloading the data to the cloud server. Computation time, communication time, average running time, and energy consumed by the mobile device are the parameters which are used to evaluate the performance of the proposed system, SCM_DTO. The performance of the proposed system, SCM_DTO is compared with ECDH-SAHE and is proved to be performing better

    Delay-limited Computation Offloading for MEC-assisted Mobile Blockchain Networks

    Get PDF
    The proof-of-work (PoW) mining process requires a large amount of intensive computing, which leads to some plights such as heavy equipment and fixed access nodes in traditional blockchain networks. A novel mobile blockchain network with the help of a mobile edge computing (MEC) server is presented, where all mobile users participate in the PoW mining process. The traditional Bitcoin network adjusts the target difficulty value to ensure a stable block time. However, for MEC-assisted mobile blockchain networks, the adjusted difficulty value needs to be broadcast to all mobile users, which results in expensive communication costs. To maintain a stable block time of mobile blockchain networks, we formulate the delay-limited computation offloading strategy of the PoW-based mining task as a non-cooperative game that maximizes an individual revenue in the MEC-assisted mobile blockchain network. Specifically, the non-cooperative game problem can be divided into multiple sub-game optimization problems to obtain final solutions for all users. We analyze the sub-game optimization problem and prove the existence of Nash equilibrium (NE) of the non-cooperative game. Moreover, we design an alternating iterative algorithm based on the continuous relaxation and greedy rounding (CRGR) to achieve the NE of this game. Given the sub-optimal delay-limited computation offloading results, we also derive the optimal transmit power for an individual user within the maximum mining delay range. From the analytical results, we can see that the proposed CRGR-based alternating iterative algorithm can efficiently attain the sub-optimal delay-limited computation offloading strategies of all mobile users in the polynomial time. The individual transmit power increases accordingly with the delay-limited computation offloading strategies of all users. Numerical results demonstrate that the proposed CRGR-based alternating iterative algorithm has fast convergence and good stability

    Blockchain-Empowered Mobile Edge Intelligence, Machine Learning and Secure Data Sharing

    Get PDF
    Driven by recent advancements in machine learning, mobile edge computing (MEC) and the Internet of things (IoT), artificial intelligence (AI) has become an emerging technology. Traditional machine learning approaches require the training data to be collected and processed in centralized servers. With the advent of new decentralized machine learning approaches and mobile edge computing, the IoT on-device data training has now become possible. To realize AI at the edge of the network, IoT devices can offload training tasks to MEC servers. However, those distributed frameworks of edge intelligence also introduce some new challenges, such as user privacy and data security. To handle these problems, blockchain has been considered as a promising solution. As a distributed smart ledger, blockchain is renowned for high scalability, privacy-preserving, and decentralization. This technology is also featured with automated script execution and immutable data records in a trusted manner. In recent years, as quantum computers become more and more promising, blockchain is also facing potential threats from quantum algorithms. In this chapter, we provide an overview of the current state-of-the-art in these cutting-edge technologies by summarizing the available literature in the research field of blockchain-based MEC, machine learning, secure data sharing, and basic introduction of post-quantum blockchain. We also discuss the real-world use cases and outline the challenges of blockchain-empowered intelligence

    A distributed deep learning approach with mobile edge computing for next generation IoT networks security

    Get PDF
    Along with recent development in Next Generation IoT, the Deep Learning (DL) has become a promising paradigm to perform various tasks such as computation and analysis. Many security researchers have proposed distributed DL supporting DL task at the IoT device level to deliver low latency and high accuracy. However, due to limited computing capabilities of IoT devices, distributed DL is failed to maintain Quality-of-service demand in practical IoT applications. To this end, BlockDeepEdge, a Blockchain-based Distributed DL with Mobile Edge Computing (MEC) is proposed where MEC supports the lightweight IoT devices by delivering computing operations to them at the edge of the network. The blockchain provide a secure, decentralized and P2P interaction among IoT devices and MEC server to carryout distributed DL operation

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure
    • …
    corecore