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Abstract

In this paper, we present new mobile blockchain networks with the help of a mobile edge computing

(MEC) server, where all mobile users participate in the proof-of-work (PoW) mining process. To

maintain a stable block time of mobile blockchain networks, we formulate delay-limited computation

offloading strategies of PoW-based mining tasks as a non-cooperative game with maximizing the

individual revenue in the MEC-assisted mobile blockchain networks. Then we analyze specifically

the sub-game optimization problem and prove the existence of Nash equilibrium (NE) of this non-

cooperative game. Moreover, we design an alternating iterative algorithm based on continuous relaxation

and greedy rounding to acquire NE of this game. Given optimal computation offloading strategies, we

also derive the optimal transmission power for the individual user within the maximum mining delay

range. Our proposed algorithm can efficiently attain optimal delay-limited computation offloading and

transmit power strategies for all users. The individual transmission power extends accordingly with

the optimal computation resource allocation strategies for all users. Different parameters, such as the

number of users, block size, and CPU frequency of the MEC server, have great impacts on the system

performance of our proposed delay-limited mobile blockchain networks.
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I. INTRODUCTION

Essentially, blockchain is a distributed database [1]–[4], where transactions are connected by

blocks without the need for a third-party intermediary institution to justify securely legitimacy

of transaction information. Blockchain technology naturally has advantages of decentralization,

distributed, and tamper-proof. In recent years, scholars and industrial engineers pay great attention

to blockchain researches. Significantly, many researchers have done a large number of works on

the combination of blockchain and wireless communication technologies, for example, internet

of things (IoT) [5]–[7], spectrum allocation [8]–[10], and interference management [11].

In particular, the mining process of verifying transactional legitimacy requires a large amount

of intensive computing, which leads to some plights such as heavy equipment and fixed access

nodes in traditional blockchain systems. To break these barriers of traditional blockchain systems,

mobile blockchain networks deployed many mobile devices have been proposed in [12]–[14], so

that various mobile devices, such as mobile phones, iPads, and laptops, can all participate in the

blockchain mining process. This proposal of all devices joining mobile blockchain networks in

validating transactional legitimacy without any third-party intermediaries can accelerate transac-

tion data processing and ensure data privacy. In the mobile blockchain network, mobile devices

have low computation, storage, energy, and communication resources, while the mining task of

public blockchains is computation-intensive. Resource-limited mobile device is the bottleneck

problem of the development of mobile blockchain networks. Meanwhile, mobile edge computing

(MEC) is a computing model that provides computing capabilities for wireless access networks

by deploying cloud computing servers at the network edge [15]–[17]. The core idea of MEC is

to migrate storage and computation capabilities from cloud to edge of the network, resulting in

the consequence that mobile users’ computing tasks can be processed directly on their devices or

offloaded to nearby service nodes (such as BS and AP) over the wireless channel. As mentioned

above, we can see that MEC can solve the bottleneck problem in the mobile blockchain network

and provide storage and computation services for mobile devices. Motivated by this, the research

of MEC-assisted mobile blockchain networks have been investigated as a promising approach

for alleviating the resource limitation of mobile users [12]–[14].

Many existing kinds of research have studied that MEC servers aid mobile users to complete

computation-intensive mining tasks of mobile blockchains [12]–[14], [18]–[23]. The authors of
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[12] formulated the price-based computation resource allocation for offloading proof-of-work

(PoW) mining tasks to cloud/fog providers as a two-stage Stackelberg game model, which

jointly maximizes revenues of cloud/fog providers and utilities of each mobile user. In [13], to

effectively manage computation resources, the authors proposed an auction-based market model

to solve the social welfare optimization problem and design two auction mechanisms in the

constant-demand and multi-demand schemes for all mobile users. The work in [14] considered

a novel MEC-enabled wireless blockchain framework, where PoW mining tasks are offloaded to

nearby APs or a group of D2D devices and transactional content of block can be cached in the

MEC server. Resource-constrained mobile users cannot support the computation-intensive PoW

mining process, so the reputation-based consensus mechanism was presented to take place of

PoW in [18]. The MEC-assisted mobile blockchain was also applied to UAV caching for ultra-

reliable communication, and a novel neural-blockchain network was proposed in [19]. Especially,

the optimal resource allocation designs in [20] were obtained to minimize the delay of data

transmission and computation. Mobile blockchain ensures the authenticity of users’ priorities

in the MEC networks for healthcare applications. Note that, the simple combination of MEC

and mobile blockchain in [12]–[14], [18]–[20] may not yield optimal network performances. As

a consequence, some other works have considered deep reinforcement learning [21], [22] and

federated learning [23], [24] in the mobile MEC-assisted blockchain networks to obtain optimal

system performances.

In these previous works, many pieces of research treated the mining task as a general com-

puting demand, which cannot really reflect the characteristics of the blockchain mining task.

Moreover, the traditional blockchain network adjusts the difficulty target value to meet the

demand for keeping the block time stable [25]. For mobile blockchain networks, the adjusted

difficulty value needs to be widely advertised to every mobile device, which results in too

much communication costs. To the best of authors’ knowledge, few works focus on the problem

mentioned above. To tackle this problem, we consider the mining delay characteristic when

designing a new MEC-assisted mobile blockchain system to avoid frequently adjusting the

difficulty target value. Different from previous works, this paper jointly optimizes the individual

user’s nonce length strategy and offloading ratio to the MEC server and analyzes the computation

offloading and transmit power allocation in the MEC-aided mobile blockchain networks. Our

main contributions of this paper are listed as follows.
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• We propose a new MEC-assisted mobile blockchain system and derive the individual delay

and revenue of mining a new block for three computation offloading schemes, which are

local computation scheme, full computation offloading scheme, and hybrid computation

offloading scheme. The analysis of the individual delay and revenue shows that there is a

trade-off problem between the individual delay and revenue.

• We formulate computation resource management strategies as a non-cooperative game with

maximizing the individual revenue and considering the mining delay limitation. Then we

analyze the sub-game optimization problem and prove the existence of Nash equilibrium

(NE) of this game. In addition, we propose an alternating iterative algorithm based on con-

tinuous relaxation and greedy rounding (CRGR) to obtain optimal computation offloading

strategies for all mobile users and derive the optimal individual transmission power within

the maximum mining delay range.

• We provide numerical results to validate the convergence performance of our proposed

CRGR-based alternating iterative algorithm. Then we demonstrate the effects of different

system parameters on the computation resource and transmit power allocation strategies

in our proposed MEC-assisted mobile blockchain networks. Numerical results validate

the feasibility of our proposed new systems for computational offloading and resource

management.

The rest of the paper is organized as follows. Section II represents the MEC-assisted mobile

blockchain system model and analyzes the individual delay and revenue of mining a new block

in three computation offloading schemes. In Section III, we discuss a trade-off problem between

the individual delay and revenue and formulate computation offloading strategies as a non-

cooperative game in the MEC-assisted mobile blockchain networks. In Section IV, we prove

the existence of NE of the non-cooperative game, propose a CRGR-based alternating iterative

algorithm to obtain NE of this game, and derive the optimal individual transmitted power.

Simulations are presented in Section V to confirm the analytical results. At last, we conclude

the main results of the work in Section VI.

II. SYSTEM MODEL

In this section, we first introduce the system model of MEC-assisted mobile blockchain.

Then we present the individual delay and revenue of mining a new block in three computation
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offloading schemes.

A. MEC-assisted Mobile Blockchain Network

In this paper, we consider a MEC-aided mobile blockchain framework, where computation-

intensive PoW mining tasks of mobile users are offloaded to the MEC server. As shown in Fig. 1,

we assume that there are one MEC server and N mobile users running blockchain application

denoted by N = {1, 2, ..., N} in the network. Furthermore, we consider that the MEC server not

only has powerful computing capability, but also has storage capacity. Then each mobile user

has certain computing capabilities locally. In Fig. 1, we see that the mobile user n offloads own

computation-intensive PoW mining tasks of public blockchains and transmits own block header

content to the MEC server for n ∈ N . For simplicity, let H (·)denote the hash function, and

MEC Server

User 2

User 1 User N

Blockchain

Computation Offloading

Transmit Block Header

Fig. 1. Computation offloading for MEC-assisted mobile blockchain networks

X denotes the candidate block header information except nonce. The hash value of the block

header bh, which concatenates X and nonce, is smaller than the difficulty target value V (h)

bh = H (X||nonce) ≤ V (h) , (1)

then we have

V (h) = 2L−h =
2L

D (h)
, (2)
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where L denotes the fixed length of bits, determining the searching space of the hash function,

i.e., all nonce ∈
[
0, 2L − 1

]
, and D(h) is the blockchain’s difficulty value. If the obtained hash

value of the block header is smaller than the difficulty target value, the PoW mining is successful.

Otherwise, the nonce is incremented by 1, and the above PoW mining process is repeated until

the correct nonce is found.

Due to different transaction contents of the block header for all mobile users, each user

independently selects nonces for hash computing. Even though each user chooses the same

nonce, the corresponding hash is different. For mobile users, the computation-intensive PoW

mining demands of public blockchains are too high (if the SHA-256 hash function is used, then

all nonce ∈ [0, 232]), and given the cost of renting MEC’s service and mining delay, the final

user’s revenue can be reduced or even negative. Thus, we assume that each user only chooses

some nonces to do hash computing. We consider a nonce ordering mechanism in the untrusted

MEC PoW scheme [25] in this paper to guarantee fairer MEC resource allocation for all mobile

users. Each user transmits their own block header content and selected nonce sequence to the

MEC server. Then the block header content is stored in the MEC server and N nonce sequences

for all mobile users will be mapped into a merged sequence. After preprocessing, the MEC

server provides nonce hash computing services for the merged nonce sequence.

The MEC-aided mobile blockchain system discussed in this paper has only one MEC server,

where the fork and orphaning probabilities will not be considered. We represent the block size

vector by s = (s1, ..., sN), which is the number of transactions packaged into the block. The first

user, which successfully mines a block and achieves agreement in the whole network, can get

a reward. The reward is composed of a fixed bonus B $ for mining a new block, and a flexible

transaction fee determined by the size of its collected transactions s and the transaction fee rate

r $. Therefore, the n-th mobile user’s expected reward regardless of cost can be expressed by

Fn = (B + rsn) Mn

MN
, ∀n ∈ N , (3)

then the total number of nonces for all mobile users is given by

MN =
∑
n∈N

Mn, (4)

where Mn is the selected nonce number/length of user n. However, equation (3) does not reflect

the effect of blockchain’s target difficulty on the PoW mining process. Even though the MEC
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server provides all selected nonces with hash computing services, all mobile users may fail to

mine a new block. Nonce hash computing is a memoryless searching process, and the searching

probability is only related to the target difficulty value D(h), regardless of the size of this

searching space. For a given difficulty value D(h), each nonce hash computing is i.i.d. Bernoulli

trial with a successful probability as

PD = 2−h. (5)

With this effect in mind, the n-th user’s expected reward without considering cost gets discounted

by PD, becoming

Fn= (B + rsn) 2−h
Mn

MN
, ∀n ∈ N . (6)

B. Local Computation Scheme

In the following scheme, mobile user n only performs hash computing of PoW mining tasks

locally. We assume that the CPU frequency of user n is fn (cycles/s). The number of nonces

selected by user n is Mn and the corresponding CPU cycles required for hash computing are

α1Mn (cycles), where α1 is a fixed constant, which is CPU cycles required for once nonce hash

computing. Consequently, the total mining delay of performing hash computing locally for user

n is

TLtotal,n =
α1Mn

fn
, ∀n ∈ N . (7)

Then the revenue of only performing hash computing locally for user n is

FL
n = (B + rsn) 2−h

Mn

MN
, ∀n ∈ N . (8)

C. Full Computation Offloading Scheme

In this full computation offloading scheme, mobile user n offloads the full computation-

intensive mining tasks to the MEC server. Firstly, we consider that the time of transmitting the

block header content and nonces selected by user n to the MEC server. By Shannon theorem,

we will obtain the transmit rate of user n as

Rn = W log2

(
1 +

pnhn
N0

)
, ∀n ∈ N , (9)

where W is the amount of wireless bandwidth, pn represents the transmission power of user n,

hn denotes the channel gain of user n, and N0 is the noise power. We assume the data size of



8

the block header except nonce is denoted as S and the data size of a nonce is denoted as a. As

a result, the transmission time required to transfer the block header content and selected nonces

to the MEC server is given by

TEt,n =
S + aMn

W log2

(
1 + pnhn

N0

) ,∀n ∈ N . (10)

Secondly, we assume that the CPU frequency of the MEC server is fE (cycles/s) and fE � fn.

CPU cycles required for KL divergence between two N -element vectors are α2N , where α2 is

a fixed constant, and CPU cycles for nonce ordering by the nonce ordering mechanism in our

previous work [25] are α2N
2MN . Hence, we consider the ordering time of all nonces on the

MEC server as

TEo,n =
α2N

2MN
fE

,∀n ∈ N . (11)

Finally, we consider the execution time required to offload to the MEC server for hash computing

is

TEe,n =
α1Mn

fE
,∀n ∈ N . (12)

The total mining delay of offloading to the MEC server, including the transmission time of block

header data, the ordering time of nonces, and the execution time of hash computing, is given by

TEtotal,n

= TEt,n + TEo,n + TEe,n

= S+aMn

W log2

(
1+ pnhn

N0

) + α2N2MN
fE

+ α1Mn

fE
,∀n ∈ N .

(13)

Here, the communication of downlink is just MEC server publishing PoW mining results to all

mobile users, where the delay is too small to be ignored. Then the revenue of offloading all

PoW mining tasks to the MEC server for user n is

FE
n = (B + rsn) 2−h

Mn

MN
− cMn,∀n ∈ N , (14)

where c is the unit price for once hash computing service and cMn is the computation service

cost paid by user n to the MEC server.



9

D. Hybrid Computation Offloading Scheme

In the following scheme, mobile user n partially has hash computing locally and partially

offloads to the MEC server. The mining delay in this scheme is defined as the maximum spending

time under two computation offloading schemes of partially local and offloading to the MEC

server. Then the total hybrid mining delay is obtained as

THtotal,n

= max
{
T
H/L
total,n, T

H/E
total,n

}
= max

{
α1(1−βn)Mn

fn
, S+aβnMn

W log2

(
1+ pnhn

N0

) + α2N2(βnMn+
∑
β−nM−n)

fE
+ α1βnMn

fE

}
,∀n ∈ N ,

(15)

where βn is the proportion of offloading hash computing tasks to MEC server for user n, β−n and

M−n are the other users’ offloading ratio and selected nonce length, respectively, and
∑
β−nM−n

is the summation of nonce length, which is offloaded to the MEC server for all users except

user n. Then the revenue of partially doing hash computing locally and partially offloading to

the MEC server is given by

FH
n = (B + rsn) 2−h

Mn

MN
− cβnMn,∀n ∈ N . (16)

III. NON-COOPERATIVE GAME FORMULATION

In this section, we first discuss a trade-off problem between the individual delay and revenue

in our proposed MEC-assisted mobile blockchain networks. Then we formulate computation

resource allocation strategies as a non-cooperative game. Moreover, we represent the sub-game

optimization problem to jointly optimize nonce length selection and offloading ratio to the MEC

server with the objective of maximizing revenue for each user and considering the limitation

of the mining delay. Note that, we only analyze the system performance under the hybrid

computation offloading scheme, because the other two computation offloading schemes are

special cases of the hybrid scheme.

First of all, we analyze the properties of the delay and revenue of the individual user in three

computation offloading schemes, as shown in the following Remark 1 and Remark 2, respectively.

Remark 1 (Properties of delay): From the mining delay in three computation offloading schemes

described as (7), (13), and (15), a few observations are in order.
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• From (7), we can see that TLtotal,n expands with Mn and decreases with fn. That is, the

larger the number of nonces and smaller CPU frequency of user n, the more mining delay

of user n can be obtained in the local computation scheme.

• If all mining tasks are offloaded to the MEC server, we easily see that TEtotal,n ascends

not only with Mn but also with
∑
M−n, and descends with fE and pn. Namely, other

users’ strategies also effect on the mining delay of user n in the full computation offloading

scheme. Note that, different from TLtotal,n in (7), TEtotal,n in (13) also considers the transmit

delay between user n and MEC server, and nonce ordering delay.

• If user n and MEC server complete mining tasks together, from (15), we shall see that

T
H/L
total,n decreases and T

H/E
total,n increases with the increment of βn, which means that the

mining delay in the hybrid computation offloading scheme does not change linearly with

βn.

Remark 2 (Properties of revenue): From the revenue of the individual user in three compu-

tation offloading schemes described as (8), (14), and (16), we easily see that revenues in three

schemes, i.e., FL
n , FE

n , and FH
n , are all concave functions of Mn, which implies that we can

take optimal nonce selection strategies of user n to achieve maximum individual revenue. In

addition, the revenue of user n decreases with βn.

Fig. 2 plots the individual delay and revenue of user 1 versus the number of nonces. From

Fig. 2(a), we can see that the individual delay extends with the number of nonces and the

individual delay in the local computation scheme is two to three orders of magnitude greater

than that of full computation offloading scheme. The individual delay in the hybrid computation

offloading scheme is between the other two schemes. As shown in Fig. 2(b), the individual

revenue is a concave function of the number of nonces, and the revenue of the local scheme is

higher than that of the other two computation offloading schemes. Combining with Fig. 2(a), we

can conclude that more individual revenue needs more delay. Consequently, we need to consider

a trade-off problem between the individual delay and revenue. Within the specified mining delay

range, how to solve the computation resource allocation problem is the focus of the discussion

and analysis below.

The interaction between mobile users can be modeled as a non-cooperative game for computa-

tion resource allocation of each mobile user in the MEC-aided mobile blockchain networks. The
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Fig. 2. Individual delay and revenue versus the number of nonce. N = 2, M2 = 1000, β1 = 0.8,

β2 = 1, s1 = s2 = 1000, f1 = f2 = 0.5GHz and p1 = p2 = 0.1W . The settings of other

parameters are consistent with Table I. Here, we only choose two mobile users in the system,

and given the computation resource allocation of user 2, then we compare the delay and revenue

of user 1 with the number of nonce in three computation offloading schemes.

mobile users compete with each other to maximize their own utility by choosing their individual

computation offloading demand An, which includes nonce length selection Mn and offloading

ratio to the MEC server βn. The non-cooperative game G =
{
N, (An)n∈N , (un)n∈N

}
is described

as follows:

Players: Each user is one player and there are N mobile users selecting the nonce length and

offloading ratio;

Strategies: The computation resource allocation An = {Mn, βn} is the strategy of user n,

A = (A1, A2, · · · , AN) is the computation resource allocation profile for all mobile users;

Utility function: The utility function un in (17) is denoted as the revenue of user n.

Given the fee charged by the MEC server for once nonce hash computing c and other users’

computation resource allocation strategies, the expected utility un is given as

un (An,A−n)

= un (Mn,M−n, βn,β−n) ,
(17)

where A−n = {A1, · · · , An−1, An+1, · · · , AN}, M−n = {M1, · · · ,Mn−1,Mn+1, · · · ,MN} and
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β−n = {β1, · · · , βn−1, βn+1, · · · , βN} are denoted as the computation resource allocation strategy

profile, nonce length selection strategy profile, and offloading ratio strategy profile for all other

mobile users except user n, respectively. By substituting (16) into (17), the expected utility un

is rewritten as follows

un (An,A−n)

= (B + rsn) 2−h Mn

Mn+
∑
M−n
− cβnMn,∀n ∈ N .

(18)

Given a maximum mining delay T̄ , we formulate the sub-game optimization problem to jointly

optimize nonce length selection and offloading ratio to the MEC server with the objective of

maximizing revenue of user n for n ∈ N . This sub-game optimization problem of user n can

be expressed as follows

P1 : max
Mn,βn

un= (B + rsn) 2−h Mn

Mn+
∑
M−n
− cβnMn

s.t. C1 : Mn ≥ 0

C2 : 0 ≤ βn ≤ 1

C3 : (B + rsn) 2−h Mn
N∑
n=1

Mn

− cβnMn ≥ 0

C4 : max

{
α1(1−βn)Mn

fn
, S+aβnMn

W log2

(
1+ pnhn

N0

) + α2N2(βnMn+
∑
β−nM−n)

fE
+ α1βnMn

fE

}
≤ T̄ ,

(19)

where constraint C1 guarantees the non-negativity of nonce length for user n. Constraint C2

means the change range of the offloading ratio to the MEC server. Constraint C3 ensures the non-

negativity of the individual revenue for user n. In order to meet the delay requirement, constraint

C4 makes sure that the mining delay for hash computing cannot exceed the maximum mining

delay limit T̄ . Our proposed non-cooperative game problem will be divided into N sub-game

optimization problems to obtain final solutions for all users. Here, the sub-game optimization

problem can be formulated as P1 under certain mining delay constraints, which maximizes the

revenue function of the individual revenue and wants to find the optimal computing resource

allocation strategy of user n for n ∈ N .

IV. DELAY-LIMITED COMPUTATION OFFLOADING AND TRANSMIT POWER ANALYSIS

In this section, we first simplify the sub-game optimization problem P1 by using continuous

relaxation and variable substitution. Then we prove the existence of NE of the non-cooperative

game. Furthermore, we propose a CRGR-based alternating iterative algorithm to achieve the
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optimal nonce length selection and offloading ratio for all users. In the end, we derive the

optimal transmission power allocation for each mobile user, which is based on the above optimal

computation resource allocation.

A. NE Analysis for Computation Resource Allocation

For simplicity, we define the feasible solution set of P1 as J (J 6= 0). We consider NE as

the solution for this non-cooperative game model G =
{
N, (An)n∈N , (un)n∈N

}
, the definition

of NE is denoted as:

Definition 1: Let M ∗ and β∗ denote the optimal nonce length selection and offloading ratio

vectors to the MEC server of all mobile users, respectively. Then a strategy profile A∗ =

(M ∗,β∗) is a NE if the following conditions

un
(
M∗

n,M
∗
−n, β

∗
n,β

∗
−n
)
≥ un

(
Mn,M

∗
−n, βn,β

∗
−n
)
,∀ (Mn, βn) ∈ J ,∀n ∈ N , (20)

is satisfied, where M ∗
−n and β∗−n are the best response nonce length selection and offloading

ratio vectors to the MEC server for all mobile users except user n.

From the above NE definition, we can see that NE has self-stability property. When other

players’ strategies are given, no player has the incentive to deviate to another strategy. This

property is critical to the non-cooperative computation resource allocation problem, since each

mobile user is selfish to mine new blocks in their own interests. Observing P1, we can find that

the n-th user’s computation resource allocation strategy {Mn, βn} is associated with other users’

strategies {M−n,β−n}. As such, we first investigate the sub-game optimization problem P1,

and then iteratively solve the sub-game problem to obtain the NE of the entire game G. Next,

we will analyze the sub-game problem first. Sub-game optimization problem P1 is difficulty to

tackle due to the following two aspects:

• Since Mn has the non-negative integer constraint and βn is a continuous variable, making

the problem P1 become a mixed integer programming problem.

• The inequality function of constraint C4 is a non-smooth function and non-convex function

with regards to variables (Mn, βn), so the feasible set of P1 is not convex.

In brief, P1 is a mixed discrete and non-convex optimization problem, which is also well

known as NP-hard problem. As a result, some transformation and simplification of the original
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sub-game optimization problem are necessary. To tackle the difficulty of the original optimization

problem, we can make the following transformation and relaxation:

1) Continuous Relaxation of Target Variable

We first continuously relax the target variable Mn and find the optimal solution of this

continuous variable. Then we can get the optimal nonce length strategies of user n by

rounding this continuous solution.

2) Constraint Relaxation

In order to solve the non-smoothness of the inequality function of constraint C4, we relax

the constraint C4 to make the inequality function smooth. Constraint C4 can be relaxed to

the following two inequality constraints C4′−1 : α1(1−βn)Mn

fn
≤ T̄ ,∀n ∈ N ,

C4′−2 : S+aβnMn

W log2

(
1+ pnhn

N0

) + α2N2(βnMn+
∑
β−nM−n)

fE
+ α1βnMn

fE
≤ T̄ ,∀n ∈ N .

(21)

The reason is that the maximum delay function is less than or equal to the maximum mining

delay threshold T̄ , which is equivalent to each value in the maximum function (i.e., TH/Ltotal,n

and TH/Etotal,n) being less than or equal to this threshold. The original sub-game optimization

problem of user n for n ∈ N can be transformed into

P2 : max
Mn,βn

un= (B + rsn) 2−h Mn

Mn+
∑
M−n
− cβnMn

s.t. C1 : Mn ≥ 0

C2 : 0 ≤ βn ≤ 1

C3 : (B + rsn) 2−h Mn
N∑
n=1

Mn

− cβnMn ≥ 0

C4′−1 : α1(1−βn)Mn

fn
≤ T̄

C4′−2 : S+aβnMn

W log2

(
1+ pnhn

N0

) + α2N2(βnMn+
∑
β−nM−n)

fE
+ α1βnMn

fE
≤ T̄

(22)

3) Variable Substitution

After the relaxation of target variable Mn and constraint C4, the objective function of the

optimization problem P2 is a concave function. Then constraints of C1−C3 and C4′−2 are

convex sets with respect to all the target variables Mn and βn. However, constraint C4′−1

is concave set to the optimization variables Mn and βn, so the transformed P2 problem is

still a non-convex problem, which is a difference of convex programming problem. Here,
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we introduce an auxiliary variable Zn = 1 − βn, which is the proportion of computation-

intensive PoW mining tasks on the mobile user n locally. Then we reformulate constraint

C4′−1 as follows

C4′′−1 :
α1ZnMn

fn
≤ T̄ ,∀n ∈ N . (23)

Combining the above target variable relaxation, constraint relaxation, and the auxiliary

variable Zn, the original sub-game optimization problem of user n for n ∈ N can be

equivalent to

P3 : max
Mn,βn,Zn

un= (B + rsn) 2−h Mn

Mn+
∑
M−n
− cβnMn

s.t. C1 : Mn ≥ 0

C2 : 0 ≤ βn ≤ 1

C3 : (B + rsn) 2−h Mn

Mn+
∑
M−n
− cβnMn ≥ 0

C4′′−1 : α1ZnMn

fn
≤ T̄

C4′−2 : S+aβnMn

W log2

(
1+ pnhn

N0

) + α2N2(βnMn+
∑
β−nM−n)

fE
+ α1βnMn

fE
≤ T̄

C5 : Zn + βn = 1,

(24)

where constraint C5 ensures that the sum of the proportion of the n-th user’s mining tasks

offloaded to the MEC server and user n is 1. The original sub-game optimization problem

P1 is ultimately equivalent to the optimization problem P3.

Next, we will analyze the existence of NE in the non-cooperative game G =
{
N, (An)n∈N , (un)n∈N

}
,

which is described by the following theorem.

Theorem 1: The non-cooperative game G =
{
N, (An)n∈N , (un)n∈N

}
has at least one pure-

strategy NE, i.e., the existence of NE.

Proof: After the above target variable relaxation, constraint relaxation, and variable substi-

tution, constraint C5 is a closed set, constraint C3 is a convex set, and all other constraints are

linear with regards to variables Mn, βn, and Zn. Obviously, the utility function un (Mn, βn) is

a continuous function in convex sets of constraints C1 − C5. Then we take the second order

derivatives of (24) with respect to Mn and βn to obtain the Hessian matrix, which can be written

as follows

Hn =

 ∂u2
n

∂M2
n

∂u2
n

∂Mnβn

∂u2
n

∂βnMn

∂u2
n

∂β2
n

 =

 (B + rsn) 2−h −2
∑
M−n

(Mn+
∑
M−n)

3 −c

−c 0

 � 0,∀n ∈ N . (25)
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Therefore, we proved the objective function un is a concave function with respect to variables

Mn and βn. Thus, problem P3 is a convex optimization problem. Accordingly, the NE exists

(see [26]-Theorem 3.2) in the non-cooperative game G =
{
N, (An)n∈N , (un)n∈N

}
. The proof is

now completed.

At this time, the sub-game optimization problem P3 is a convex optimization problem of

all optimization variables Mn, βn, and Zn. The traditional optimization methods, such as the

interior point method and standard gradient projection method, can be used to find the n-th

user’s optimal solution of P3. Based on Theorem 1, we can propose an effective algorithm,

which achieves optimal computing resource allocation strategies for all mobile users as shown

in the following subsection.

B. Algorithm Proposal for Delay-limited Computation Resource Allocation

In this subsection, we design an alternating iterative algorithm to achieve optimal numeri-

cal solutions of computation resource allocation strategies for all mobile users in the MEC-

assisted mobile blockchain networks. In our proposed alternating iterative algorithm, a greedy

rounding method is applied. Specifically, for each sub-game optimization problem P3, the

optimal solution {M+
n , β

+
n , Z

+
n } is rounded down greedily to

{
M∗

n,d, β
∗
n,d, Z

∗
n,d

}
and rounded

up to
{
M∗

n,u, β
∗
n,u, Z

∗
n,u

}
. Then we compare revenues of these two rounded solutions and take

the one with the larger revenue as the optimal solution with the integer constraint. For the

detailed process, our proposed CRGR-based alternating iterative algorithm to obtain NE of the

non-cooperative game G is summarized in Algorithm 1.

Our proposed algorithm is based on alternating iterations, and its core idea is to achieve

optimal delay-limited computation offloading strategy of the individual user in a distributed

method when other users’ computation resource allocation strategies remain fixed. Since the NE

of the non-cooperative game G =
{
N, (An)n∈N , (un)n∈N

}
exists, which enables each user can

reach a relatively stable state. As such, our proposed CRGR-based alternating iterative algorithm

is convergent. The computing pressure of Algorithm 1 is primarily engrossed in line 3 and line 12,

and the other parts are only some basic algorithm operations. At line 3, we require to calculate the

optimal solution {M+
n , β

+
n , Z

+
n } of user n for n ∈ N . Specifically, the computational complexity

of one iteration using the interior point method is O (max {K3
1 , K

2
1K2}) [27], where K1 = 3

and K2 = 7 are numbers of optimization variables and constraints of the sub-game optimization
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Algorithm 1 Alternating Iterative Algorithm Based on Continuous Relaxation and Greedy

Rounding (CRGR) of the non-cooperative game G
1: Initialization: input data (N,α1, α2, fE,S, a,W,N0) , set (fn, hn) for all users, n = 1 and

choose M−1= [2000, 2000, · · · , 2000]1×(N−1),β−1 = [0.8, 0.8 · · · 0.8]1×(N−1).

2: repeat

3: Fix other users’ nonce lengths and offloading ratios M−n =

(M1,M2, · · · ,Mn−1,Mn+1, · · · ,MN), β−n = (β1, β2, · · · , βn−1, βn+1, · · · , βN), and

solve sub-game optimization problem P3 using the interior point method to obtain the

optimal solution {M+
n , β

+
n , Z

+
n }.

4: Let M∗
n,d = bM+

n c, β∗n,d =
bβ+

nM
+
n c

bM+
n c , and Z∗n,d = 1− β∗n,d.

5: Let M∗
n,u = dM+

n e, β∗n,u =
dβ+

nM
+
n e

dM+
n e , and Z∗n,u = 1− β∗n,u.

6: if un
(
M∗

n,d, β
∗
n,d, Z

∗
n,d

)
≥ un

(
M∗

n,u, β
∗
n,u, Z

∗
n,u

)
then

7: The optimal solution is {M∗
n, β

∗
n, Z

∗
n} =

{
M∗

n,d, β
∗
n,d, Z

∗
n,d

}
8: else

9: The optimal solution is {M∗
n, β

∗
n, Z

∗
n} =

{
M∗

n,u, β
∗
n,u, Z

∗
n,u

}
10: end if

11: n← n+ 1

12: Then update other users’ sets M−n =(M1,M2, ...,M
∗
n−1, Mn+1, ...,MN) and β−n =(

β1, β2, · · · , β∗n−1, βn+1, · · · , βN
)
, then go to line 3.

13: until the optimal vectors M ∗ = {M∗
1 ,M

∗
2 , ...,M

∗
N}, β∗ = (β∗1 , β

∗
2 , · · · , β∗N), and Z∗ =

(Z∗1 , Z
∗
2 , · · · , Z∗N) are obtained.

problem P3, respectively. As a result, we can easily attain the computational complexity of the

entire Algorithm 1 as O (IIIO max {K3
1 , K

2
1K2}), where II represents the number of iterations

required for the convergence of the interior point method in the inner loop, which is usually

relatively small, such as II ≤ 100. And IO = N + 1 indicates the number of iterations of

the outer loop, later numerical experiments will also prove that Algorithm 1 only needs N + 1

iterations to achieve good convergence performance. As a result, our proposed alternating iterative

algorithm described in Algorithm 1 can acquire the NE point of the non-cooperative game G in

the polynomial time.
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C. Transmission Power Allocation

By using Algorithm 1, the proposed non-cooperative game G =
{
N, (An)n∈N , (un)n∈N

}
can

obtain NE, that is, the computation resource allocation of each user can finally reach a stable

state. At present, we guarantee the maximum revenue of the individual user within a certain

mining delay range, we consider saving the transmit power of each user. In order to obtain the

optimal transmission power of the individual user, we give the following theorem.

Theorem 2: Given the optimal computing resource allocation {M ∗,β∗}, we can get the

optimal transmission power allocation for user n as

p∗n =
N0

hn

2

S+aβ∗nM
∗
n

W

T̄−α2N
2(β∗nM∗n+

∑
β∗−nM

∗
−n)

fE
−α1β

∗
nM
∗
n

fE


− 1

 ,∀n ∈ N , (26)

where β∗−n and M∗
−n are the optimal others’ offloading ratio and selected nonce length, respec-

tively, and
∑
β∗−nM

∗
−n is the summation of optimal nonce length, which is offloaded to the MEC

server for all mobile users except user n.

Proof: The NE of the non-cooperative game G is obtained through our proposed CRGR-

based alternating iterative algorithm. Given the optimal computing resource allocation {M ∗,β∗},

the mining delay of the MEC server meets the maximum delay requirement, which means the

following inequality holds

S + aβ∗nM
∗
n

W log2

(
1 + pnhn

N0

) +
α2N

2
(
β∗nM

∗
n +

∑
β∗−nM

∗
−n
)

fE
+
α1β

∗
nM

∗
n

fE
≤ T̄ ,∀n ∈ N . (27)

After some simple operations on (27), we can easily achieve the transmitted power of user n as

pn ≥
N0

hn

2

S+aβ∗nM
∗
n

W

T̄−α2N
2(β∗nM∗n+

∑
β∗−nM

∗
−n)

fE
−α1β

∗
nM
∗
n

fE


− 1

 , ∀n ∈ N . (28)

In order to save the transmitted power as much as possible, we can obtain the optimal or minimum

individual transmission power as shown in (26). This completes the proof.

Note that the result in (26) can achieve a closed-form expression of the optimal transmission

power of the individual mobile user, given the delay-limited computation offloading strategies

for all mobile users. Based on Theorem 2, we investigate the relationship between the optimal
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individual transmission power and its own optimal computation resource allocation strategy as

the following proposition.

Proposition 1: The optimal individual transmission power p∗n increases monotonically with

M∗
n and β∗n.

Proof: Firstly, we analyze the relationship between p∗n and M∗
n and we take the first order

derivative of (26) with respect to Mn as follows
∂p∗n
∂M∗n

=
N0 ln 2

(
aβ∗nφ+(S+aβ∗nM

∗
n)

(
α2N

2β∗n
fE

+
α1β
∗
n

fE

))
hnWφ2 · 2

S+aβ∗nM
∗
n

Wφ ,∀n ∈ N ,
(29)

where

φ = T̄ −
α2N

2
(
β∗nM

∗
n +

∑
β∗−nM

∗
−n
)

fE
− α1β

∗
nM

∗
n

fE
. (30)

Meanwhile, the optimal computation resource allocation for user n satisfies the constraint con-

dition C4′ − 2 in the problem P3, that is, the following inequality holds

T̄ −
α2N

2
(
β∗nM

∗
n +

∑
β∗−nM

∗
−n
)

fE
− α1β

∗
nM

∗
n

fE
≥ S + aβ∗nM

∗
n

W log2

(
1 + pnhn

N0

) ≥ 0,∀n ∈ N . (31)

As such, we proved ∂p∗n
∂M∗n

> 0, which means that p∗n increases monotonically with M∗
n. Similarly,

we can get ∂p∗n
∂β∗n

> 0, which also proves p∗n increases monotonically with β∗n. The proof of

Proposition 1 is now completed.

According to Proposition 1, we see that the optimal individual transmission power of user

n needs to strengthen when its own optimal computation resource allocation A∗n = {M∗
n, β

∗
n}

raises for n ∈ N . That is, the larger number of selected nonces and offloading ratio of user n

to the MEC server, the more individual transmission power can be consumed for n ∈ N . Next,

we examine the relationship between the optimal individual transmitted power and other users’

computation resource allocation strategies as the following proposition.

Proposition 2: The optimal individual transmission power p∗n also increases monotonically

with
∑
β∗−nM

∗
−n.

Proof: From the closed-form expression (26), we can certainly work on the relationship

between p∗n and
∑
β∗−nM

∗
−n and take the first order derivative of (26) with respect to

∑
β∗−nM

∗
−n

as follows
∂p∗n

∂(
∑
β∗−nM

∗
−n)

= N0 ln 2(S+aβ∗nM
∗
n)α2N2

hnfEWφ2 · 2
S+aβ∗nM

∗
n

Wφ ,∀n ∈ N .
(32)
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According to the proof process of Proposition 1, we can easily get φ ≥ 0. On that account, we

proved ∂p∗n
∂(
∑
β∗−nM

∗
−n)

> 0, which indicates that p∗n also extends monotonically with
∑
β∗−nM

∗
−n.

The proof of Proposition 2 is finished completely.

Here,
∑
β∗−nM

∗
−n is meant to the summation of optimal nonce lengths offloaded to the MEC

server for all users except user n. From Proposition 2, we note that the n-th user’s optimal

transmission power also elevates when other users’ total number of nonces offloaded to the

MEC server raises. The main reason for this phenomenon is that the increment of other users’

offloading tasks to the MEC server may stimulate the more computation offloading of user n

to the MEC server for n ∈ N . Combined with Proposition 1, we conclude that the individual

transmission power of user n will extend accordingly with the optimal computation resource

allocation strategies for all mobile users.

V. NUMERICAL RESULTS

In our numerical results, we first perform the convergence of the proposed CRGR-based

alternating iterative algorithm. Then we present the impact of different parameters on the system

performance of our proposed MEC-assisted mobile blockchain networks. Moreover, we use

computer simulations to evaluate the delay-limited computation resource management and the

optimal individual transmission power in the proposed mobile blockchain networks with the

need of the MEC server. The main simulation parameters are listed in Table I.

A. The Convergence of the CRGR-based Alternating Iterative Algorithm

Fist of all, we present the convergence performance of our proposed CRGR-based alternating

iterative algorithm described in Algorithm 1. Without loss of generality, we assume only three

mobile users in this MEC-assisted mobile blockchain network. CPU frequencies of all users and

MEC server are set at f1 = f2 = f3 = 0.5 GHz and fE = 100 GHz , respectively. The all users’

original transmitted power is 0.1W and block sizes of all users are s1 = 1000, s2 = 2000, and

s3 = 3000.

In Fig. 3, we plot the individual nonce length, offloading ratio to the MEC server, and revenue

versus the number of iteration to depict the convergence of the outer loop of Algorithm 1 in

Fig. 3(a), Fig. 3(b) and Fig. 3(c), respectively. There is no simulation about the convergence

of the inner loop of Algorithm 1, because the interior-point method used for the inner loop
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TABLE I. Simulation Parameters

Parameter Value

CPU cycles required for one nonce hash computing α1 1000 Mega cycles

CPU cycles required for KL divergence between two one-dimensional vectors α2 10−10 cycles

CPU frequency of user n, fn 0.5− 1 GHz

CPU frequency of the MEC server fE 50− 150 GHz

The transmit bandwidth W 20 MHz

The channel gain of user n, hn 10−8

The power of noise N0 −100 dBm

The data size of the block header except nonce S 76 ∗ 8 = 608 bit

The data size of one nonce a 4 ∗ 8 = 32 bit

The threshold of the maximum mining delay T̄ 600 s

The fixed bonus for mining a new block B 2 ∗ 104 $

The transaction fee rate r 2 $

The transaction size of user n, sn 500− 3000

The fee charged by the MEC server for one nonce hash computing c 0.001 $

The adjustable difficulty parameter h 10

usually requires only a few iterations to converge, such as within 100 iterations [28]. Observing

from Fig. 3, we can observe that the individual nonce length, offloading ratio, and revenue of

Algorithm 1 are all unstable in the first 4 iterations for three users. As shown in Fig. 3, when

the iteration is larger than 4, the proposed CRGR-based alternating iterative algorithm reaches a

stable state. We can also observe that when computing resource allocation strategies including

nonce lengths and offloading ratios of all three users tend to stabilize in Fig. 3(a) and Fig. 3(b),

the individual revenue of all users will converge in Fig. 3(c). This is because the individual

revenue is greatly affected by computing resource allocation strategies in our proposed MEC-

assisted mobile blockchain networks. Hence, we can see that Algorithm 1 has a significantly

fast convergence rate and the number of iteration is always no more than 4. This also shows that

our proposed Algorithm 1 can achieve the NE of the non-cooperative game G in the polynomial

time.
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Fig. 3. Convergence performance of the proposed CRGR-based alternating iterative algorithm.

CPU frequencies of all three users and MEC server are f1 = f2 = f3 = 0.5 GHz and fE = 100

GHz. The block sizes of all three users are s1 = 1000, s1 = 2000, and s3 = 3000, respectively.

(a) The individual nonce length versus the number of iteration. (b) The offloading ratio to the

MEC server versus the number of iteration. (c) The individual revenue versus the number of

iteration.

B. Impacts of Different Parameters

In this subsection, we chiefly examine that effects of several parameters including the number

of users, CPU frequency of the individual user and the MEC server, and the block size on
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(d) Delay for MEC Server

Fig. 4. The effect of the number of users and CPU frequency of the MEC server. CPU frequency

and the block size of all users are f1 = f2 = ... = fN = 0.5 GHz and s1 = s2 = ... = sN = 2000.

CPU frequency of the MEC server takes 50 GHz, 100 GHz, and 150 GHz, respectively. (a) The

average nonce length versus the number of users. (b) The average offloading ratio to the MEC

server versus the number of users. (c) The average revenue versus the number of users. (d) The

average run time for the MEC server versus the number of users.

computation offloading and transmit power resource allocation are represented in Fig. 4, Fig. 5,

and Fig. 6, respectively.

1) Impacts of the Number of Users & CPU Frequency of MEC Server: Fig. 4 discusses

the effects of the number of users and CPU frequency of MEC server on the average nonce
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length, offloading ratio, revenue, and mining delay of the MEC server in Fig. 4(a), Fig. 4(b),

Fig. 4(c) and Fig. 4(d), respectively. Here, we assume that CPU frequency and the block size

of all users are 0.5 GHz and 2000. We take the CPU frequency of the MEC server as 50 GHz,

100GHz, 150GHz, respectively. Observing Fig. 4, we find that the average computation resource

allocation (i.e. nonce length and offloading ratio), revenue, and mining delay of MEC server all

decrease with the increment of N . Meanwhile, the average revenue of all users tends towards

stability with the continuous growth of N . The reason is that more users in the MEC-aided

mobile blockchain systems, the mining competition between users becomes more fierce, and the

corresponding allocated computation resources are going to reduce. The mining computation

task assigned to the MEC server decreases and the delay cuts down accordingly.

Fig. 4(c) shows that the downward trend of the average revenue is getting slower, when the

number of users is larger. Fig. 4(d) indicates an obvious result that the mining delay of the MEC

server decreases with the increment of fE . We can also observe from Fig. 4(d) that the decline

of the mining delay is slowing down with the increase of fE . For example, when N = 2, the

mining delay drops from 106.16s of fE = 50 GHz to 53.08s of fE = 100 GHz. We can easily

get that the mining delay is going to drop by has 53.08s when fE increases from 50 GHz to

100 GHz. From Fig. 4(d), the mining delay changes from 53.08s of fE = 100 GHz to 35.39s

of fE = 150 GHz. Then we can obtain that the mining delay will decrease by 17.69s when fE

increases from 100 GHz to 150 GHz. From Fig. 4(a)-4(c), we can observe that the computation

resource allocation and revenue are independent of the CPU frequency of the MEC server. The

phenomenon is relevant to our proposed MEC-assisted mobile blockchain system model, and

we consider only one MEC server, which has no competition with other MEC servers. Thus, the

change of fE does not substantially transform the computation resource allocation and revenue

of our proposed MEC-assisted mobile blockchain systems in this paper.

2) Impact of CPU Frequency of Individual User: Fig. 5 shows effects of CPU frequency of

the individual user on the computation resource management, revenue and transmit power for

each user, where the number of users is set to be N = 3, CPU frequency of MEC server is

100 GHz, and the block size of all users is s1 = s2 = s3 = 2000. As shown in Fig. 5(a),

the nonce length in Case 1 and Case 2 is the same for all three users, which means that the

nonce length selection strategy has nothing to do with the CPU frequency of the individual user.

However, under the same conditions, the nonce length strategy of users 1 and user 3 is slightly
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Fig. 5. The effect of CPU frequency of the individual user. Case 1: CPU frequencies of all three

users and MEC server are f1 = f2 = f3 = 0.5 GHz and fE = 100 GHz, respectively. The block

size of all three users is s1 = s2 = s3 = 2000; Case 2: CPU frequencies of the MEC server and

the block size are fE = 100 GHz and s1 = s2 = s3 = 2000. CPU frequencies of three users are

f1 = 0.2 GHz, f2 = 0.5 GHz, and f3 = 0.8 GHz, respectively. (a) The individual nonce length

in Case 1 and Case 2. (b) The individual offloading ratio to the MEC server in Case 1 and Case

2. (c) The individual revenue in Case 1 and Case 2. (d) The individual transmission power in

Case 1 and Case 2.

less than that of user 2. This shows that our proposed algorithm cannot provide a completely fair

computation resource allocation. The reason for this phenomenon may be related to the order
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Fig. 6. The effect of the block size of the individual user. Case 1: CPU frequencies of all three

users and MEC server are f1 = f2 = f3 = 0.5 GHz and fE = 100 GHz, respectively. The block

size of all three users is s1 = s2 = s3 = 2000; Case 3: CPU frequencies of all three users and

MEC server are f1 = f2 = f3 = 0.5 GHz and fE = 100 GHz, respectively. The block sizes of

three users are s1 = 1000, s2 = 2000, and s3 = 3000, respectively. (a) The individual nonce

length in Case 1 and Case 3. (b) The individual offloading ratio to the MEC server in Case 1

and Case 3. (c) The individual revenue in Case 1 and Case 3. (d) The individual transmission

power in Case 1 and Case 3.

of users running Algorithm 1. Because users in our proposed MEC-assisted mobile blockchain

networks are in the non-cooperative competitive relationship with each other. The first or last user
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enters this system to offload computing requests, other users may know their private information,

such as orders and offloading requests. Therefore, users in the middle order have relatively less

privacy during the computation offloading process, which leads to a greater nonce length selection

strategy for these users. The offloading ratio to the MEC server declines when the user’s CPU

frequency enhances in Fig. 5(b). Within the maximum mining delay range, in order to save the

cost charged by the MEC server for nonce hash computing service of PoW mining tasks, users

choose more mining tasks to calculate locally when the user’s local computing power becomes

stronger. From Fig. 5(c), we can see that the individual revenue raises as the individual user’s

CPU frequency increases. For example, the individual revenue of user 1 drops from 2.88 $ to

2.70 $ when the CPU frequency of user 1 decreases from 0.5 GHz to 0.2 GHz. On the contrary,

the individual revenue of user 3 rises from 2.90 $ to 3.08 $ when the CPU frequency of user 3

increases from 0.5 GHz to 0.8 GHz. Combining Fig. 5(a) and 5(b), the greater CPU frequency

of the individual user, the smaller offloading ratio to MEC server, the lower fee paid to the MEC

server, and the corresponding individual revenue is going to become larger. From Fig. 5(d), the

individual transmission power declines when the CPU frequency of the individual user increases.

Combined with Fig. 5(b), fewer PoW mining tasks need to be offloaded to the MEC server and

the corresponding transmitted power becomes smaller.

3) Impact of Block Size: In the part, Fig. 6 plots the effect of block size on the computation

resource allocation, revenue and transmit power for each user in Fig. 6(a), Fig. 6(b), Fig. 6(c),

and Fig. 6(d), respectively. We assume that the number of user is N = 3, CPU frequency of MEC

server and all users are fE = 100 GHz and f1 = f2 = f3 = 0.5 GHz. As shown in Fig. 6, we

can see that the nonce length, offloading ratio, individual revenue, and transmit power all grow

with the enlargement of the block size. This is because as the block size becomes larger, the

transaction fee charged for successfully mining a new block increases, which offers incentives

to the user mining a new block and causes the mobile user to choose more nonces in order to

win the mining victory in Fig. 6(a). As shown in Fig. 6(a), for example, the nonce length of

user 1 drops from 5188 to 4266 when its block size decreases from 2000 to 1000. Oppositely,

the nonce length of user 3 increases from 5232 to 6037 with the increasing block size of user

3 from 2000 to 3000. Within a certain mining delay range, when the PoW mining task has

become larger in Fig. 6(a), the offloading proportion to the MEC server grows in Fig. 6(b), and

the corresponding transmit power will also raise in Fig. 6(d). The individual revenue increases
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in Fig. 6(c) with the augmentation of the block size, the reason is that the block size becomes

larger, the increasing transaction fee is greater than the expense paid to the MEC server for hash

computing services.

VI. CONCLUSION

In this paper, we have considered the novel MEC-assisted mobile blockchain networks, where

plenty of PoW mining tasks can be offloaded to the MEC server. In this network, we for-

mulated the individual computation resource distribution strategies as a non-cooperative game.

The existence of NE was also proved in the non-cooperative game. To obtain optimal delay-

limited computation resource allocation strategies for all mobile users, we designed a CRGR-

based alternating iterative algorithm. We also derived the closed-form expression of the optimal

transmission power for the individual user within the maximum mining delay range. We have

efficiently achieved optimal delay-limited computation offloading and transmit power strategies

for all users by using the proposed CRGR-based alternating iterative algorithm. The individual

transmission power extends accordingly with the optimal computation resource allocation strate-

gies for all users. Numerical results indicate that our proposed CRGR-based alternating iterative

algorithm has a fast convergence rate and different parameters, such as the number of users,

block size, and CPU frequency of MEC server, have great influences on the system performance

of our proposed delay-limited mobile blockchain networks. Additionally, we have conducted

the numerical experiments to evaluate the system performance to achieve optimal delay-limited

nonce length, offloading ratio to the MEC server, and transmit power strategies for all mobile

users.
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