4,860 research outputs found

    Gryphon M^3 system: integration of MEMS for flight control

    Get PDF
    By using distributed arrays of micro-actuators as effectors, micro-sensors to detect the optimal actuation location, and microelectronics to provide close loop feedback decisions, a low power control system has been developed for controlling a UAV. Implementing the Microsensors, Microactuators, and Microelectronics leads to what is known as a M^3 (M-cubic) system. This project involves demonstrating the concept of using small actuators (approximately micron-millimeter scale) to provide large control forces for a large-scale system (approximately meter scale) through natural flow amplification phenomenon. This is theorized by using fluid separation phenomenon, vortex evolution, and vortex symmetry on a delta wing aircraft. By using MEMS actuators to control leading edge vortex separation and growth, a desired aerodynamic force can be produced about the aircraft for flight control. Consequently, a MEMS shear stress sensor array was developed for detecting the leading edge separation line where leading edge vortex flow separation occurs. By knowing the leading edge separation line, a closely coupled micro actuation from the effectors can cause the required separation that leads to vortex control. A robust and flexible balloon type actuator was developed using pneumatic pressure as the actuation force. Recently, efforts have started to address the most elusive problem of amplified distributed control (ADC) through data mining algorithms. Preliminary data mining results are promising and this part of the research is ongoing. All wind tunnel data used the baseline 56.5 degree(s) sweepback delta wing with root chord of 31.75 cm

    Improved catalysts by low-G processing

    Get PDF
    The advantages of space for manufacturing more perfect microcrystalline morphologies and structures will be investigated. Production of smaller silver and palladium crystals with enhanced catalytic properties is discussed. The elimination of convection accompanying electrodeposition of fine metallic powders at high overvoltages in a low gravity environment is outlined

    Gryphon M^3 system: integration of MEMS for flight control

    Get PDF
    By using distributed arrays of micro-actuators as effectors, micro-sensors to detect the optimal actuation location, and microelectronics to provide close loop feedback decisions, a low power control system has been developed for controlling a UAV. Implementing the Microsensors, Microactuators, and Microelectronics leads to what is known as a M^3 (M-cubic) system. This project involves demonstrating the concept of using small actuators (approximately micron-millimeter scale) to provide large control forces for a large-scale system (approximately meter scale) through natural flow amplification phenomenon. This is theorized by using fluid separation phenomenon, vortex evolution, and vortex symmetry on a delta wing aircraft. By using MEMS actuators to control leading edge vortex separation and growth, a desired aerodynamic force can be produced about the aircraft for flight control. Consequently, a MEMS shear stress sensor array was developed for detecting the leading edge separation line where leading edge vortex flow separation occurs. By knowing the leading edge separation line, a closely coupled micro actuation from the effectors can cause the required separation that leads to vortex control. A robust and flexible balloon type actuator was developed using pneumatic pressure as the actuation force. Recently, efforts have started to address the most elusive problem of amplified distributed control (ADC) through data mining algorithms. Preliminary data mining results are promising and this part of the research is ongoing. All wind tunnel data used the baseline 56.5 degree(s) sweepback delta wing with root chord of 31.75 cm

    Consequences of Environmental Mercury Exposure for Migratory Fitness and Survival of Passerine Birds

    Get PDF
    Mercury (Hg) is a global contaminant that persists in the environment. The organic form, methylmercury (MeHg) has been shown to adversely affect bird immune function, foraging behavior, navigation, and flight ability. Many songbirds migrate seasonally, a process that consists of multiple endurance flights and refueling at stopovers. Current knowledge of the effects of MeHg on songbird migration and survival is mostly speculative. In this thesis, I present three studies of MeHg in migratory songbirds. In Chapter 2, I assessed the breeding ground MeHg exposure (inferred from feather Hg) of 15 songbird species captured during fall migration at bird banding stations across Canada, and found exclusive insectivores had the highest feather Hg relative to partial insectivores and non-insectivores. A strong geographical trend showed that birds captured from Eastern Canada had the highest Hg exposure; nearly 2 times and 2.5 times greater than Central and Western Canada, respectively. Analysis of feather hydrogen stable isotopes suggested that birds from the northwest of Canada may experience lower Hg exposure. In Chapter 3,a captive dosing study to investigate the refueling/flight scenario with a small migratory insectivore, the Yellow-rumped Warbler (Setophaga coronata) showed that migratory birds that refuel at a highly contaminated stopover site can rapidly bioaccumulate MeHg in blood, muscles and organs within 2-weeks, and MeHg-treated birds had a reduced flight ability in a wind tunnel test. In Chapter 4, in five migratory passerine species, I compared Hg concentrations in tail feathers that were grown at or near breeding grounds prior to autumn migration and retained until the following spring. I predicted a shift in the distribution of species-specific feather Hg values towards lower means in the spring if Hg reduced survival over the migration and winter periods. The results suggest that MeHg exposure in the breeding areas could have a carry-over effect to reduce migration success and survival of insectivorous songbirds that undergo extensive and demanding migratory journeys. Together, these studies advance our knowledge of the impact of mercury on songbird migration and survival

    Aeronautical Engineering. A continuing bibliography with indexes, supplement 156

    Get PDF
    This bibliography lists 288 reports, articles and other documents introduced into the NASA scientific and technical information system in December 1982

    Aeronautical Engineering: A special bibliography with indexes, supplement 74

    Get PDF
    This special bibliography lists 295 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1976

    A Methodology to Improve the Proactive Mitigation of Helicopter Accidents Related to Loss of Tail Rotor Effectiveness

    Get PDF
    Loss of tail rotor effectiveness (LTE) has been recognized to be a major contributing factor in several helicopter accidents where pilots lost directional control. However, it has been noticed that different definitions of this phenomenon exist in the rotorcraft community. Further, the somewhat imprecise representation of LTE in some flight training simulators has led to its low awareness, placing pilots at a much higher risk for potential accidents. One significant method to specifically address those gaps and support rotorcraft safety involves the proactive mitigation of LTE via the analysis of flight data within the Helicopter Flight Data Monitoring (HFDM) program. Through this program, the pilots receive constant flight evaluation reports to promote improved LTE risk evaluations. The main method used for flight data analysis is the detection of safety metrics, i.e., predefined hazardous flight conditions. Nevertheless, a sufficiently reliable LTE safety metric still does not exist, leading to false or missed detections that degrade the quality of the overall safety analysis. The objective of this thesis is to formulate a methodology to enhance the detection capability of the proximity to LTE within the HFDM program. This promotes the awareness of LTE within the rotorcraft community while supporting the proactive mitigation of helicopter accidents related to this critical helicopter safety threat. An alternative approach is used to develop a more reliable LTE safety metric, using a combination of physics-based simulations and machine learning techniques. First, a physics-based investigation is performed to enhance the understanding of the nature of the LTE. A more comprehensive LTE definition is proposed and analyzed, including three different aspects that can lead to LTE behavior, i.e., loss of weathercock stability, running out of pedal (tail rotor collective) for trim, and tail rotor vortex ring state. The modeling of the flight dynamics of each phenomenon is individually analyzed to ensure an accurate physics-based representation of LTE. Further, the parameters that support the detection of LTE are investigated to enable the recognition and classification of each LTE phenomenon in simulation results. Ultimately, a physics-based investigation of the aircraft flight envelope is combined with the application of supervised learning techniques to develop the predictive models of the different LTE phenomena. This provides the operator with a physics-based LTE safety metric designed to detect the proximity to LTE without the need for a simulation model. The methodology is implemented using a generic nonlinear helicopter simulation model. To verify the enhanced capabilities of the final methodology, the physics-based LTE safety metric is compared against the LTE metric currently used within the HFDM program. The results confirm the improved detection of the proximity to LTE, validating the overarching hypothesis of this research and satisfying the research objective.Ph.D

    Aeronautical engineering: A special bibliography with indexes, supplement 80

    Get PDF
    This bibliography lists 277 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1977

    Aeronautical Engineering. A continuing bibliography, supplement 115

    Get PDF
    This bibliography lists 273 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1979

    Aeronautical Engineering: A special bibliography with indexes, supplement 72, July 1976

    Get PDF
    This bibliography lists 184 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1976
    • …
    corecore