17 research outputs found

    The bipartite unconstrained 0–1 quadratic programming problem: Polynomially solvable cases

    Get PDF
    We consider the bipartite unconstrained 0-1 quadratic programming problem (BQP01) which is a generalization of the well studied unconstrained 0-1 quadratic programming problem (QP01). BQP01 has numerous applications and the problem is known to be MAX SNP hard. We show that if the rank of an associated m×n cost matrix Q=(qij) is fixed, then BQP01 can be solved in polynomial time. When Q is of rank one, we provide an O(nlogn) algorithm and this complexity reduces to O(n) with additional assumptions. Further, if qij=ai+bj for some ai and bj, then BQP01 is shown to be solvable in O(mnlogn) time. By restricting m=O(logn), we obtain yet another polynomially solvable case of BQP01 but the problem remains MAX SNP hard if m=O(nk) for a fixed k. Finally, if the minimum number of rows and columns to be deleted from Q to make the remaining matrix non-negative is O(logn), then we show that BQP01 is polynomially solvable but it is NP-hard if this number is O(nk) for any fixed k

    Low Rank Approximation of Binary Matrices: Column Subset Selection and Generalizations

    Get PDF
    Low rank matrix approximation is an important tool in machine learning. Given a data matrix, low rank approximation helps to find factors, patterns and provides concise representations for the data. Research on low rank approximation usually focus on real matrices. However, in many applications data are binary (categorical) rather than continuous. This leads to the problem of low rank approximation of binary matrix. Here we are given a d×nd \times n binary matrix AA and a small integer kk. The goal is to find two binary matrices UU and VV of sizes d×kd \times k and k×nk \times n respectively, so that the Frobenius norm of A−UVA - U V is minimized. There are two models of this problem, depending on the definition of the dot product of binary vectors: The GF(2)\mathrm{GF}(2) model and the Boolean semiring model. Unlike low rank approximation of real matrix which can be efficiently solved by Singular Value Decomposition, approximation of binary matrix is NPNP-hard even for k=1k=1. In this paper, we consider the problem of Column Subset Selection (CSS), in which one low rank matrix must be formed by kk columns of the data matrix. We characterize the approximation ratio of CSS for binary matrices. For GF(2)GF(2) model, we show the approximation ratio of CSS is bounded by k2+1+k2(2k−1)\frac{k}{2}+1+\frac{k}{2(2^k-1)} and this bound is asymptotically tight. For Boolean model, it turns out that CSS is no longer sufficient to obtain a bound. We then develop a Generalized CSS (GCSS) procedure in which the columns of one low rank matrix are generated from Boolean formulas operating bitwise on columns of the data matrix. We show the approximation ratio of GCSS is bounded by 2k−1+12^{k-1}+1, and the exponential dependency on kk is inherent.Comment: 38 page

    Average value of solutions for the bipartite boolean quadratic programs and rounding algorithms

    Get PDF
    We consider domination analysis of approximation algorithms for the bipartite boolean quadratic programming problem (BBQP) with m+n variables. A closed-form formula is developed to compute the average objective function value A of all solutions in O(mn) time. However, computing the median objective function value of the solutions is shown to be NP-hard. Also, we show that any solution with objective function value no worse than A dominates at least 2 m+n-2 solutions and this bound is the best possible. Further, we show that such a solution can be identified in O(mn) time and hence the domination ratio of this algorithm is at least 14. We then show that for any fixed natural numbers a and b such that η=ab > 1, no polynomial time approximation algorithm exists for BBQP with domination ratio larger than 1-2(1-η)η(m+n), unless P = NP. It is shown that some powerful local search algorithms can get trapped at a local maximum with objective function value less than A. One of our approximation algorithms has an interesting rounding property which provides a data dependent lower bound on the optimal objective function value. A new integer programming formulation of BBQP is also given and computational results with our rounding algorithms are reported

    A divide-and-conquer algorithm for binary matrix completion

    Full text link
    We propose an algorithm for low rank matrix completion for matrices with binary entries which obtains explicit binary factors. Our algorithm, which we call TBMC (\emph{Tiling for Binary Matrix Completion}), gives interpretable output in the form of binary factors which represent a decomposition of the matrix into tiles. Our approach is inspired by a popular algorithm from the data mining community called PROXIMUS: it adopts the same recursive partitioning approach while extending to missing data. The algorithm relies upon rank-one approximations of incomplete binary matrices, and we propose a linear programming (LP) approach for solving this subproblem. We also prove a 22-approximation result for the LP approach which holds for any level of subsampling and for any subsampling pattern. Our numerical experiments show that TBMC outperforms existing methods on recommender systems arising in the context of real datasets.Comment: 14 pages,4 figure
    corecore