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Abstract

We consider domination analysis of approximation algorithms for the bipartite boolean
quadratic programming problem (BBQP) with m + n variables. A closed form formula is de-
veloped to compute the average objective function value A of all solutions in O(mn) time.
However, computing the median objective function value of the solutions is shown to be NP-
hard. Also, we show that any solution with objective function value no worse than A dominates
at least 2m+n−2 solutions and this bound is the best possible. Further, we show that such a
solution can be identified in O(mn) time and hence the dominance ratio of this algorithm is at
least 1

4 . We then show that for any fixed rational number α > 1, no polynomial time approxima-

tion algorithm exists for BBQP with dominance ratio larger than 1−2
(1−α)

α
(m+n), unless P=NP.

We then analyze some powerful local search algorithms and show that they can get trapped at
a local maximum with objective function value less than A . One of our approximation algo-
rithms has an interesting rounding property which provides a data dependent lower bound on
the optimal objective function value. A new integer programming formulation of BBQP is also
given and computational results with our rounding algorithms are reported.

Keywords: quadratic programming, boolean variables, heuristics, worst-case analysis, domi-
nation analysis.

1 Introduction

The bipartite boolean quadratic programming problem (BBQP) is to

Maximize f(x, y) = xTQy + cx+ dy
subject to x ∈ {0, 1}m, y ∈ {0, 1}n

where Q = (qij) is an m × n matrix, c = (c1, c2, . . . , cm) is a row vector in Rm, and d =
(d1, d2, . . . , dn) is a row vector in Rn. Without loss of generality, we assume that m ≤ n.
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BBQP has applications in data mining, clustering and bioinformatics [35], approximating a
matrix by a rank-one binary matrix [10, 32], mining discrete patterns in binary data [21, 32],
solving fundamental graph theoretic optimization problems such as maximum weight biclique [4, 34],
maximum weight cut problem on a bipartite graph [26], maximum weight induced subgraph of a
bipartite graph [26], and computing approximations to the cut-norm of a matrix [3].

BBQP is closely related to the well-studied boolean quadratic programming problem (BQP) [7,
12, 39]:

Maximize f(x) = xTQ′x+ c′x
subject to x ∈ {0, 1}n,

where Q′ is an n×n matrix and c′ is a row vector in Rn. BBQP can be formulated as a BQP with
n+m variables [26] and hence the resulting cost matrix will have dimension (n+m)×(n+m). This
increase in problem size is not desirable especially for large scale problems. On the other hand, we
can formulate BQP as a BBQP by choosing

Q = Q′ + 2MI, c =
1

2
c′ −Me and d =

1

2
c′ −Me, (1)

where I is an n × n identity matrix, e ∈ Rn is an all one row vector and M is a very large
number [26]. Thus, BBQP is a proper generalization of BQP which makes the study of BBQP
further interesting. An instance of BBQP is completely defined by the matrix Q and vectors c
and d and hence it is represented by P(Q, c, d). Thus, P(Q, 0, 0) represents a BBQP with no
terms cx or dy in the objective function. Such an instance is referred to as a homogeneous BBQP.
Relationships between BBQP and its homogeneous version are considered in [26].

BBQP is trivial if the entries of Q,c and d are either all positive or all negative. BBQP is
known to be NP-hard [25] since the maximum weight biclique problem (MWBP) is a special case
of it. Approximation hardness results for MWBP are established by Ambuhl et al. [4] and Tan [34].
Performance ratio for approximation algorithms for some special cases of BBQP are discussed by
Alon and Naor [3] and Raghavendra and Steurer [27]. Results extensive experimental analysis of
algorithms for BBQP are reported by Karapetyan and Punnen [19] and Glover et al. [13]. Punnen,
Sripratak, and Karapetyan [26] studied BBQP and identified various polynomially solvable special
cases. Various classes of valid inequalities and facet defining inequalities for the polytope associated
with BBQP are obtained by Sripratak and Punnen [33].

Worst case analysis of approximation algorithms (heuristics) are carried out normally through
the measure of performance ratio [37]. Other important measures include differential ratio [8],
dominance ratio [11, 17], dominance number [40, 11], comparison to average value of solutions [5,
36, 31, 30, 28] etc. Our focus in this paper is on domination analysis and average value based
analysis of approximation algorithms for BBQP. Berend et al. [7] eloquently argues the importance
of domination analysis in the study of approximation algorithms.

Let F be the family of all solutions of BBQP and it is easy to see that |F | = 2m+n. The
average objective function value A (Q, c, d) of all the solutions of BBQP is given by A (Q, c, d) =
2−(m+n)

∑

(x,y)∈F
f(x, y). The idea of comparing a heuristic solution to the average objective func-

tion value of all the solutions as a measure of heuristic quality for combinatorial optimization
problems was originated in the Russian literature in the early 1970s. Most of these studies are
focussed on the traveling salesman problem and the assignment problem (e.g. Rublineckii [28],
Minina and Perekrest [22], Vizing [38], Sarvanov and Doroshko [29, 30]). In the western literature,
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Gutin and Yeo [16], Grover [14], Punnen et al. [25], Punnen and Kabadi [24], Deneko and Woeg-
inger [9] studied the traveling salesman problem and identified heuristics that guarantee a solution
with objective function value no worse than the average value of all tours. Such a solution has
interesting domination properties and hence the approach is also relevant in dominance analysis
of heuristics. For recent developments on domination analysis, we refer to the excellent research
papers [2, 7, 11, 15]. Gutin and Yeo [16], Sarvanov [31], and Angel et al. [5] studied heuristics
for the quadratic assignment problem with performance guarantee in terms of average value of
solutions. Similar analysis for the three-dimensional assignment problem was considered by Sar-
vanov [31], for the Maximum clique problem by Bendall and Margot [6], and for the satisfiability
problem by Twitto [36]. Berend et al. [7] considered dominance analysis by including infeasible
solutions. Other problems studied from the point of view of dominance analysis and average value
based analysis include graph bipartition, variations of maximum clique and independent set prob-
lems [5, 14] and the subset-sum problem [7]. For information on dominance results and linkages
with the development of heuristic algorithms based on very large scale neighborhood search, we
refer to [1].

A solution with objective function value no worse than the average value of a solution with
high probability can be obtained by repeated random sampling. However, it should be pointed out
that even algorithms that performs well in practice could produce solutions with objective function
value inferior to the average value of a solution. We observed this particularly in the case of the
BBQP. Thus, a worst case performance of a heuristic that guarantees a solution with objective
function value no worse than the average value of a solution is a useful measure to be included
when studying worst case behavior of heuristic algorithms for combinatorial optimization problems.

Let (x, y), (x0, y0) ∈ F . Then (x0, y0) dominates (x, y) if f(x, y) ≤ f(x0, y0). Let Γ be a
heuristic algorithm for BBQP that produces a solution (xΓ, yΓ). Define G Γ = {(x, y) ∈ F :
f(x, y) ≤ f(xΓ, yΓ)}. Let I be the collection of all instances of BBQP. Then the dominance number

and dominance ratio of Γ are defined respectively as

inf
P(Q,c,d)∈I

∣
∣G

Γ
∣
∣ and inf

P(Q,c,d)∈I

{∣
∣G Γ

∣
∣

|F |

}

.

The concept of dominance ratio in the analysis of heuristics was proposed by Glover and Pun-
nen [11]. Prior to this work, Zemel [40] considered different measures to analyze heuristic algo-
rithms one of which is equivalent to the dominance number. Hassin and Kuller [17] also considered
similar measures in analyzing heuristic algorithms.

In this paper we obtain a closed form formula to compute A (Q, c, d) in O(mn) time. We also
show that any solution to BBQP with objective function value no less than A (Q, c, d) dominates
2m+n−2 solutions. Such a solution is called no worse than average solution. Two algorithms of
complexity O(mn) are developed to compute no-worse than average solutions. Thus, the dominance
ratio of these algorithms is at least 1

4 . One of these algorithms have interesting rounding property
which provides data dependent lower bounds. The problem of computing a solution with objective
function value no worse than the median of the objective function values of all solutions is shown
to be NP-hard. Further, we show that, unless P=NP, for any fixed rational number α > 1,
no polynomial time approximation algorithm exists for BBQP with dominance ratio larger than

1−2
(1−α)

α
(m+n). We also analyze some very powerful local search algorithms and show that, in worst

case, such algorithms could get trapped at a locally optimal solution with objective function value
less than A (Q, c, d). Finally we provide a new integer programming formulation of BBQP and the
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resulting LP relaxation solution could be used to initiate our rounding algorithms. Computational
results are also provided using the rounding algorithms which establish that the algorithms are
good candidates to obtain very fast starting solutions in complex metaheuristic algorithms.

Through out this paper, we use the following notations and naming conventions. We denote
M = {1, 2, . . . ,m} and N = {1, 2, . . . , n}. The ith component of a vector is represented simply
by adding the subscript i to the name of the vector. For example, the ith component of the vector
x∗ is x∗i . The set {0, 1}n is denoted by B

n and [0, 1]n is denoted by U
n for any positive integer n.

For any positive integer m, an m-vector of all 1’s is denoted by 1m and an m-vector of all 0’s is
denoted by 0m.

2 Average value of solutions and dominance properties

Note that there are 2m candidate solutions for x and 2n candidate solutions for y. Then the
solutions in the family F can be enumerated as F = {(xk, yℓ) : k = 1, 2, . . . , 2m, ℓ = 1, 2, . . . , 2n}.
The next theorem gives a closed form expression to compute A (Q, c, d) in O(mn) time.

Theorem 1. A (Q, c, d) =
1

4

∑

i∈M

∑

j∈N

qij +
1

2

∑

i∈M

ci +
1

2

∑

j∈N

dj .

Proof. Let η = 2m and ν = 2n. Then

A (Q, c, d) =
1

2m+n

η
∑

k=1

ν∑

ℓ=1

f(xk, yℓ)

=
1

2m+n

η
∑

k=1

ν∑

ℓ=1




∑

i∈M

∑

j∈N

qijx
k
i y

ℓ
j +

∑

i∈M

cix
k
i +

∑

j∈N

djy
ℓ
j





=
1

2m+n




∑

i∈M

∑

j∈N

qij

η
∑

k=1

xki

ν∑

ℓ=1

yℓj +
∑

i∈M

ci

ν∑

ℓ=1

η
∑

k=1

xki +
∑

j∈N

dj

η
∑

k=1

ν∑

ℓ=1

yℓj





=
1

2m+n



2m−12n−1
∑

i∈M

∑

j∈N

qij + ν2m−1
∑

i∈M

ci + η2n−1
∑

j∈N

dj





=
1

4

∑

i∈M

∑

j∈N

qij +
1

2

∑

i∈M

ci +
1

2

∑

j∈N

dj .

If either x = 0 or y = 0, then xTQy = 0 and such an (x, y) is called a trivial solution. Note that
f(x, y) need not be equal to zero for trivial solutions. All remaining solutions are called nontrivial

solutions. Maximizing f(x, y) over trivial solutions is straightforward and thus one can restrict
attention to non-trivial solutions only. The number of nontrivial solutions is (2m − 1)(2n − 1). Let
Ā(Q, c, d) denote the average value of all nontrivial solutions for P(Q, c, d).
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Corollary 2. Ā(Q, c, d) =
2m−12n−1

(2m − 1)(2n − 1)




∑

i∈M

∑

j∈N

qij +
2n − 1

2n−1

∑

i∈M

ci +
2m − 1

2m−1

∑

j∈N

dj



. Fur-

ther, Ā(Q,0m,0n) =
2m+n

(2m − 1)(2n − 1)
A (Q,0m,0n) and lim

n→∞
lim

m→∞
Ā(Q, c, d) = A (Q, c, d).

From Corollary 2, the asymptotic behavior of Ā(Q, c, d) and A (Q, c, d) are the same. Thus,
hereafter we focus our attention on A (Q, c, d) only.

Let G = {(x, y) : x ∈ {0, 1}m, y ∈ {0, 1}n, f(x, y) ≤ A (Q, c, d)}. Thus, G consists of all
solutions of BBQP that are no worse than average.

Theorem 3. |G | ≥ 2m+n−2.

Proof. For any solution (x, y) ∈ F , let P (x, y) = {(x, y), (x,1n − y), (1m − x, y), (1m − x,1n − y)}.
It can be verified that P (x, y) = P (x,1n − y) = P (1m − x, y) = P (1m − x,1n − y) and P (x, y) 6=
P (x′, y′) if x′ /∈ {x,1m − x} or y′ /∈ {y,1n − y}. Thus, we can partition the solution space F into
1
42

m+n = 2m+n−2 disjoint sets P (xk, yk), k = 1, 2, . . . , 2m+n−2 = ω, say. Note that

f(x, y) + f(1m − x, y) + f(x,1n − y) + f(1m − x,1n − y) =
∑

i∈M

∑

j∈N

qij + 2
∑

i∈M

ci + 2
∑

j∈N

dj

= 4A (Q, c, d). (2)

From equation (2), it follows immediately that

min {f(x, y), f(1m − x, y), f(x,1n − y), f(1m − x,1n − y)} ≤ A (Q, c, d).

Thus, from each P (xk, yk), k = 1, 2, . . . ω, choose a solution with smallest objective function value
to form the set D1. By construction, f(x, y) ≤ A (Q, c, d) for all (x, y) ∈ D1. Since |D1| = 2m+n−2,
the result follows.

The lower bound on G established in Theorem 3 is tight. To see this, consider the matrix Q
defined by

qij =

{

−1 if i = m, j = n,

0 otherwise.

and choose c and d as zero vectors in Rm and Rn, respectively. Then A (Q, c, d) = −1
4 and the

set of solutions (x, y) with f(x, y) ≤ A (Q, c, d) is precisely G = {(x, y)|xm = yn = 1}. Clearly,
|G | = 2m+n−2 and hence the bound obtained in Theorem 3 is the best possible.

Theorem 3 establishes that any algorithm that guarantees a solution with objective function
value no worse than A (Q, c, d) dominates 2m+n−2 solutions of the BBQP P(Q, c, d). In other
words, the domination ratio of such an algorithm is at least 1/4. Our next theorem establishes
an upper bound on the dominance number of any polynomial time approximation algorithm for
BBQP.

Theorem 4. Unless P=NP, no polynomial time algorithm for BBQP can have dominance number

more than 2m+n − 2⌊
m+n

α
⌋ for any fixed rational number α > 1.
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Proof. We show that a polynomial time algorithm Ω for BBQP with dominance number at least

2m+n−2⌊
m+n

α
⌋+1 can be used to compute an optimal solution to BBQP. Without loss of generality,

assume α = a
b
where a and b are positive relatively prime integers with a > b. Consider an instance

P(Q, c, d) of BBQP. Let Q∗ = (q∗ij) be an abm× abn matrix where

q∗ij =

{

qij if i ∈ M and j ∈ N ,

0 otherwise.

Likewise, let c∗ and d∗ be vectors in Rabm and Rabn such that

c∗i =

{

ci if i ∈ M ,

0 otherwise
and d∗j =

{

dj if j ∈ N ,

0 otherwise.

It is easy to verify that from any optimal solution to the BBQP instance P(Q∗, c∗, d∗) an optimal
solution to P(Q, c, d) can be recovered. The total number of solutions of P(Q∗, c∗, d∗) is 2ab(m+n)

of which at least 2ab(m+n)−(m+n) are optimal. So the maximum number of non-optimal solutions
is 2ab(m+n) − 2ab(m+n)−(m+n). Solve the BBQP instance P(Q∗, c∗, d∗) using Ω and let (x∗, y∗)
be the resulting solution. By hypothesis, the objective function value of (x∗, y∗) is not worse

than that of at least 2ab(m+n) − 2
ab(m+n)

a/b + 1 = 2ab(m+n) − 2b
2(m+n) + 1 solutions. Since a > b,

we have 2ab(m+n) − 2b
2(m+n) + 1 > 2ab(m+n) − 2ab(m+n)−(m+n) . Thus, (x∗, y∗) must be optimal

for P(Q∗, c∗, d∗). From (x∗, y∗), an optimal solution to P(Q, c, d) can be recovered by simply
taking the first m components of x∗ and first n components of y∗. The result now follows from
NP-completeness of BBQP.

Theorem 4 implies that unless P=NP, no polynomial time approximation algorithm for BBQP

can have dominance ratio more than 1− 2
(1−α)

α
(m+n) for any fixed rational number α > 1.

Although we have a closed form formula for computing the average value of all solutions to
BBQP, we now show that computing the median value of all solutions is NP-hard.

Since |F | is even, there are two values of median, say θ1 and θ2, where θ1 ≤ θ2. A median
finding algorithm could simply produce θ1 or θ2, but we may not know precisely, the output is
either θ1 or θ2.

Theorem 5. Computing a median of the objective function values of BBQP is NP-hard.

Proof. Suppose we have a polynomial time algorithm to compute a median of the objective function
values of BBQP. We will show that this algorithm can be used to solve the PARTITION problem,
which is defined as follows: Given n positive integers a1, a2, . . . , an, determine if there exists a
partition S1 and S2 of N = {1, 2, . . . , n} such that

∑

j∈S1
aj =

∑

j∈S2
aj. From an instance of

PARTITION, construct an instance of BBQP as follows: Choose c as the zero vector, dj = aj
for j = 1, 2, . . . , n. Choose M = {1, 2}. Define q1j = ajǫ and q2j = −ajǫ, where ǫ is a very
small positive number. For each subset H of N , let yH be its characteristic vector, i.e. yH ∈ B

n

and yHj = 1 if and only if j ∈ H. For each choice of H, we can associate four choices for x as
x = (0, 0), x = (1, 0), x = (0, 1) or x = (1, 1). Thus, for each H, we get the following solutions FH =
{((0, 0), yH ), ((1, 0), yH ), ((0, 1), yH ), ((1, 1), yH )}. Now, f((0, 0), yH ) =

∑

j∈H aj, f((1, 0), y
H ) =

(1+ ǫ)
∑

j∈H aj, f((0, 1), y
H ) = (1− ǫ)

∑

j∈H aj and f((1, 1), yH ) =
∑

j∈H aj. Thus, f((0, 1), y
H ) <

f((0, 0), yH ) = f((1, 1), yH ) < f((1, 0), yH ). There are 2n choices for H and hence there are 2n+2
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different solutions for the BBQP constructed. For each subset H of N , let g(H) =
∑

j∈H aj and
G = {g(H) : H ⊆ N}. We first observe that G has two medians and these median values are the
same and equal to 1

2

∑

j∈N aj if and only if N has the required partition. This follows from the

fact that for any H ⊆ N , either g(H) ≤ 1
2

∑

j∈N aj ≤ g(N \H) or g(N \H) ≤ 1
2

∑

j∈N aj ≤ g(H).
Let σ1 < σ2 < · · · < σκ be an ascending arrangement of distinct g(H), H ⊆ N and let

Wk = {H ⊆ N : g(H) = σk}. Note that |Wk| = |Wκ+1−k| and σk + σκ+1−k =
∑

j∈N aj. Thus,

the required partition exists if and only if median of {σ1, σ2, . . . , σκ} = 1
2

∑

j∈N aj . Consider an
ascending arrangement of f(x, y) for all solutions (x, y) of the BBQP constructed. This can be
grouped as blocks of values B1 < B2 < · · · < Bκ where the block Bk has the structure

repeated |Wk| times
︷ ︸︸ ︷

σk(1−ǫ) = σk(1−ǫ) = · · · = σk(1−ǫ) < σk = σk = · · · = σk
︸ ︷︷ ︸

repeated 2|Wk| times

<

repeated |Wk| times
︷ ︸︸ ︷

σk(1+ǫ) = σk(1+ǫ) = · · · = σk(1+ǫ)

for k = 1, 2, . . . , κ. Thus, median of {σ1, σ2, . . . , σκ} is the same as median of the objective function
values of BBQP. Thus, the required partition exists if and only both the median values are the same
and equal to 1

2

∑

j∈N aj. The proof now follows from the NP-completeness of PARTITION.

It may be noted that the above theorem does not rule out the possibility of a polynomial time
algorithm with dominance number 2m+n−1.

3 Average value of solutions and local search

In this section we consider two natural local search heuristics for BBQP and show that the solution
produced could have objective function value worse than A (Q, c, d). One of the popular heuristics
for BBQP is the alternating algorithm proposed by many authors [21, 10, 19]. The algorithm starts
with a candidate solution x0 and try to choose an optimal y0. Then fix y0 and tries to find the
best candidate for x, say x1 yielding a solution (x1, y0). These operations can be carried out using
the formulas

y0j =







1 if
∑

i∈M

qijx
0
i + dj > 0,

0 otherwise,

and x1i =







1 if
∑

j∈N

qijy
0
j + ci > 0,

0 otherwise,

Now fix x = x1 and try to choose the best y = y1 and the process is continued until no
improvement is possible by fixing either x variables or y variables. The algorithm terminates
when a locally optimal solution is reached. From experimental analysis [19], it is known that this
algorithm produces reasonably good solutions on average. To the best of our knowledge, worst-case
behavior of this algorithm has not been investigated.

Theorem 6. The objective function value of a locally optimal solution produced by the alternating

algorithm could be arbitrarily bad and could be worse than A (Q, c, d).

Proof. Choose m = n, c = d = 0, set q11 = 1, qnn = M and qij = 0 for all other combinations of i
and j. Choose the starting solution x01 = 1 and x0i = 0 for i 6= 1. The algorithm will choose y01 = 1
and y0j = 0 for j 6= 1. Now (x0, y0) will be locally optimal solution with objective function value 1,
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but the optimal objective function value is M +1 for any M > 0. The average cost of a solution is
M+1
4 . Thus, for M > 3 the solution produced by the alternating algorithm is less than A (Q, c, d).

In fact, by choosing M large, the solution can be made arbitrarily bad.

Despite this example, it is easy to see that a solution produced by the alternating algorithm
dominates at least 2m + 2n − 1 solutions.

Let us now consider a more general neighborhood, which is a variation of the k-exchange
neighborhood studied for various combinatorial optimization problems. For any (x0, y0) ∈ F , let
N
hk be the set of solutions in F obtained by flipping at most h components of x0 and at most

k components of y0. If h = m or k = n, we ignore “,” in the definition of N
h,k. Note that

|Nh,k| =
(
∑h

j=0

(
m
j

))(∑k
i=0

(
n
i

))

, and the best solution in this neighborhood can be identified

in polynomial time for fixed h and k. A more powerful neighborhood is N
α = N

mα ∪ N
αn and

|Nα| = 2m
∑α

j=0

(
n
j

)
+ 2n

∑α
i=0

(
m
i

)
−
∑α

i=0

(
m
i

)∑α
j=0

(
n
j

)
. Again, this neighborhood can also be

searched for an improving solution in polynomial time for fixed α [19]. It may be noted that a
solution produced by the alternating algorithm is locally optimal with respect to the neighborhood
N
0 = N

m0 ∪N
0n. Glover et al. [13] considered the neighborhoods N1, N2, and N

1,1. They provided
fast and efficient algorithms for exploring these neighborhoods supported by detailed computational
analysis. They also considered tabu search algorithms using these neighborhoods in a hybrid
form. Computational results with these algorithms provided very high quality solutions, improving
several benchmark instances. Nonetheless, our next theorem shows that even such very powerful
local search algorithms could provide solutions with objective function values that are inferior to
A (Q, c, d) even if we allow α to be a function of n.

Theorem 7. A locally optimal solution to BBQP with respect to the neighborhood N
α = N

mα∪N
αn

could be worse than average for any α ≤
⌊
n
5

⌋
.

Proof. Consider the matrix Q defined as

qij =







λ if i = m, j = n,

−1 if i = m or j = n but (i, j) 6= (m,n),

a otherwise.

(3)

and choose c and d as zero vectors. Without loss of generality, we assume m = n. Otherwise,
we can extend the matrix Q into an n × n matrix by adding n − m rows of zeros and extending
the vector c into an n-vector by making the last n −m entries zeros. We also assume that n is a
multiple of 5. Consider the solution (x0, y0) where x0n = y0n = 1 and all other components are zero.
Also, let α = n

5 and assume n ≥ 6.

Let N r
x(0) be the set of all x ∈ B

n with xn = 0 obtained by flipping exactly r entries of x0 and
N r

x(1) be the set of all x ∈ B
n with xn = 1 obtained by flipping exactly r entries of x0. Define N r

y (0)
and N r

y (0) analogously. Note that for any (x, y) ∈ N
αn, x ∈ N r

x(0) ∪N r
x(1) and y ∈ N s

y (0) ∪N s
y (1)

for some 0 ≤ r ≤ α, 0 ≤ s ≤ n and for any (x, y) ∈ N
nα, x ∈ N r

x(0) ∪N r
x(1) and y ∈ N s

y (0) ∪N s
y (1)

for some 0 ≤ r ≤ n, 0 ≤ s ≤ α. Thus, for (x, y) ∈ Nα we have
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f(x, y) =







(r−1)(s−1)a if x ∈ N r
x(0), y ∈ N s

y (0) for (r, s) ∈ Iαn ∪ Inα
(ra−1)(s−1) if x ∈ N r

x(1), y ∈ N s
y (0) for (r, s) ∈ Iαn ∪ Inα ,

(r−1)(sa−1) if x ∈ N r
x(0), y ∈ N s

y (1) for (r, s) ∈ Iαn ∪ Inα ,

rsa−r−s+λ if x ∈ N r
x(1), y ∈ N s

y (1) for (r, s) ∈ Iαn ∪ Inα .

(4)

where Ipq = {0, 1, . . . , p} × {0, 1, . . . , q}.
Thus, (x0, y0) is locally optimal with respect to Nα if and only if

(r−1)(s−1)a ≤ λ for all (r, s) ∈ Iαn ∪ Inα (5)

(ra−1)(s−1) ≤ λ for all (r, s) ∈ Iαn ∪ Inα , (6)

(r−1)(sa−1) ≤ λ for all (r, s) ∈ Iαn ∪ Inα , (7)

rsa−r−s≤ 0 for all (r, s) ∈ Iαn ∪ Inα . (8)

It is not very difficult to verify that conditions (5), (6), (7), and (8), are satisfied if

(α − 1)(n − 1)a ≤ λ, (9)

(n − 1)(αa − 1) ≤ λ, (10)

(α − 1)(na− 1) ≤ λ, and (11)

aαn− α− n ≤ 0. (12)

Choose a = 6
n
. Then inequality (12) holds and inequality (9) implies inequalities (10) and (11).

Choose λ = (α− 1)(n − 1) 6
n
. Then (x0, y0) is locally optimal. Now,

A (Q, c, d) − f(x0, y0) =
1

4
((n− 1)2a− (2n− 2) + λ)− λ

=
1

4n
(
2

5
n2 +

58

5
n− 12) > 0 for n ≥ 6.

This completes the proof.

As an immediate corollary, we have the following result.

Corollary 8. For any fixed h and k, the objective function value of a locally optimal solution with

respect to the neighborhood N
hk could be worse than A (Q, c, d) for sufficiently large m and n.

Proof. Choose α = max{h, k}. Then a locally optimal solution with respect to N
α is not worse

than a locally optimal with respect to N
hk. The result now follows from Theorem 7.

These examples motivates us to develop polynomial time algorithms for BBQP that guarantee
a solution with objective function value no worse than A (Q, c, d).
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4 Algorithms with no worse than average guarantee

We first consider a very simple algorithm to compute a solution with objective function value
guaranteed to be no worse than A (Q, c, d). The algorithm simply takes fractional vectors x ∈ U

n

and y ∈ U
n and applies a rounding scheme to produce a solution for BBQP. Let x ∈ U

m and
y ∈ U

n. Extending the definition of f(x, y) for 0-1 vectors, define

f(x, y) =
∑

i∈M

∑

j∈N

qijxiyj +
∑

i∈M

cixi +
∑

j∈N

djyj.

Consider the solutions y∗ ∈ B
n and x∗ ∈ B

m given by

y∗j =







1 if dj +
∑

i∈M

qijxi > 0,

0 otherwise,

(13)

x∗i =







1 if ci +
∑

j∈N

qijy
∗
j > 0,

0 otherwise.

(14)

Note that x∗ is the optimal 0-1 vector when y is fixed at y∗, and equation (13) rounds the y to y∗

using a prescribed rounding criterion. The process of constructing (x∗, y∗) from (x, y) thus called
a round-y optimize-x algorithm or RyOx-algorithm. The next theorem establishes a lower bound
on the objective function value of the solution produced by the RyOx-algorithm.

Theorem 9. f(x∗, y∗) ≥ f(x, y).

Proof.

f(x, y) =
∑

i∈M

∑

j∈N

qijxiyj +
∑

i∈M

cixi +
∑

j∈N

djyj

=




∑

j∈N

(
∑

i∈M

qijxi + dj

)

 yj +
∑

i∈M

cixi

≤
∑

j∈N

(
∑

i∈M

qijxi + dj

)

y∗j +
∑

i∈M

cixi (by construction of y∗)

=
∑

j∈N

djy
∗
j +

∑

i∈M




∑

j∈N

qijy
∗
j + ci



xi

≤
∑

j∈N

djy
∗
j +

∑

i∈M




∑

j∈N

qijy
∗
j + ci



x∗i (by construction of x∗)

= f(x∗, y∗).

Note that (x∗, y∗) can be constructed in O(mn) time whenever x and y are rational numbers.
We can also round x first to obtain x0 ∈ B

m and choose optimal y = y0 by fixing x at x0. This is
done using the rounding scheme given by the following equations:

10



x0i =







1 if ci +
∑

j∈N

qijyj > 0,

0 otherwise,

and y0j =







1 if dj +
∑

i∈M

qijx
0
i > 0,

0 otherwise,

Theorem 10. f(x0, y0) ≥ f(x, y).

The proof of Theorem 10 follows along the same line as Theorem 9 and hence omitted. The
process of constructing (x0, y0) is called round-x optimize-y algorithm or RxOy-algorithm. The
complexity of the RxOy-algorithm is also O(mn).

Corollary 11. A solution (x̄, ȳ) for BBQP satisfying f(x̄, ȳ) ≥ A (Q, c, d) can be obtained in

O(mn) time.

Proof. Let xi = 1/2 for all i ∈ M and yj = 1/2 for all j ∈ N . Then it can be verified that
f(x, y) = A (Q, c, d), but (x, y) is not feasible for BBQP. Now, choose (x̄, ȳ) as the output of either
the RyOx-algorithm or the RxOy-algorithm. The result now follows from Theorems 9 or 10.

In view of Corollary 11 and Theorem 9, the dominance ratio of the RyOx-algorithm and the
RxOy-algorithm is at least 1

4 . By choosing an appropriate starting solution, we can establish
improved dominance ratio for these algorithms.

We now discuss an unexpected upper bound on A (Q, c, d). As a consequence, we have yet an-
other simple scheme to compute a solution that is not worse than average. Let α =

∑

i∈M

∑

j∈N
qij,

β =
∑

i∈M
ci and γ =

∑

j∈N
dj .

Theorem 12. A (Q, c, d) ≤ max{α+ β + γ, β, γ, 0}.

Proof. Let u and v be real numbers in [0, 1]. Choose x ∈ B
m, y ∈ B

n be such that xi = u for
all i ∈ M and yj = v for all j ∈ N . Then f(x, y) = αuv + βu + γv = η(u, v), say. Note that
η(1/2, 1/2) = A (Q, c, d). Thus, max{η(u, v) : (u, v) ∈ U

2} ≥ A (Q, c, d). Since η(u, v) is bilinear,
its maximum is attained at an extreme point of the square U

2. Since these extreme points are
precisely (0, 0), (1, 0), (0, 1), (1, 1), the result follows.

Corollary 13. One of the solutions (1m,1n), (1m,0n), (0m,1n), (0m,0n) of BBQP have an objec-

tive function value no worse than A (Q, c, d).

The proof of this corollary follows directly from Theorem 12. We can compute α, β and γ in
O(mn) time and hence we have a solution no worse than average in O(mn) time. Interestingly,
if α, β and γ are given, then we can identify a solution to BBQP with objective function value
no worse than A (Q, c, d) in O(1) time. The solution produced by Corollary 13 is trivial and may
not be of much practical value. Nevertheless, the simple upper bound on A (Q, c, d) established by
Theorem 12 is very interesting and have interesting consequences as discussed below.

Recall that the alternating algorithm starts with a solution (x0, y0), fix x0 and find the best y,
say y1. Then fix y at y1 and compute the optimal x and so on. Since we initiate the algorithm
by fixing x first, we call this the x-first alternating algorithm. We can also start the algorithm by
fixing y0 first and the resulting variation is called the y-first alternating algorithm.

Theorem 14. The best solution amongst the solutions produced by the x-first alternating algorithm

with starting solutions (1m,1n) and (0m,0n) dominates 2m+n−2 + 3
(
2n−1

)
solutions.
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Proof. Let (x∗, y∗) be the best solution obtained. When the starting solution is (1m,1n), f(x∗, y∗) ≥
max{f(1m,1n), f(1m,0n)}. Likewise, when the starting solution is (0m,0n), we have f(x∗, y∗) ≥
max{f(0m,0n), f(0m,1n)}. Thus, by Theorem 12 f(x∗, y∗) ≥ A (Q, c, d) and hence by Theorem 3,
(x∗, y∗) dominates at least 2m+n−2 solutions. To account for the remaining solutions that are dom-
inated by (x∗, y∗) we proceed as follows.

Construct the set D1 as in the proof of Theorem 3. Recall that |D1| = 2m+n−2. Let D2 =
{(1m, y), (0m, y) : y ∈ B

n}. Now, |D2| = 2n+1. For any y ∈ B
n, we have P (0m, y) = P (1m, y) and

P (0m, y) = {(0m, y), (1m, y), (0m,1n−y), (1m,1n−y)}. Thus, D2 can be partitioned into sets of the
form P (0m, yk) and there are 1

42
n+1 = 2n−1 such sets. Exactly one element from each P (0m, yk) is

in D1. Thus, |D1∩D2| = 2n−1 and hence |D1∪D2| = 2m+n−2+2n+1−2n−1 = 2n−1
(
2m−1 + 3

)
.

From Theorem 14 the dominance ratio of the x-first alternating algorithm is at least 1
4 + 3

2m+1

when starting solutions are selected carefully and the algorithm is applied twice. Note that to
achieve this dominance ratio, we simply need to perform only one iteration each, when the algo-
rithm starts with (1m,1n) and (0m,0n). Thus, we can achieve this dominance ratio in polynomial
time. A similar result can be derived for y-first alternating algorithm and local search algorithm
with neighborhood N

α for any α ≥ 0. Further, similar dominance ratio can be achieved by RxOy-
algorithm or RyOx-algorithm applied twice, once starting with (1m,1n) and then starting with
(0m,0n) and choosing the best solution.

The problem BBQP can be formulated as integer linear programming problem [26] as follows:

ILP1: Maximize
∑

i∈M

∑

j∈N

qijzij +
∑

i∈M

cixi +
∑

j∈N

djyj

Subject to zij − xi ≤ 0, i ∈ M , j ∈ N

zij − yj ≤ 0, i ∈ M , j ∈ N

zij − xi − yj ≥ −1, (i, j) ∈ S,

xi ∈ {0, 1} for i ∈ M , yj ∈ {0, 1} for j ∈ N , zij ∈ {0, 1} for (i, j) ∈ M × N ,

where S = {ij : qij < 0}. Let (z′, x′, y′) be an optimal solution to the LP relaxation, where
z′ is an m × n matrix with (i, j)th entry z′ij , and x′ is an m-vector with ith entry x′i and
y′ is an n-vector with jth entry y′j. Recall that for x′ ∈ [0, 1]m and y′ ∈ [0, 1]n, φ(x′, y′) =
∑

i∈M

∑

j∈N
qijx

′
iy

′
j +

∑

i∈M
cix

′
i +

∑

j∈N
djy

′
j and h(z′, x′, y′) is the optimal objective function

value of the linear programming relaxation of ILP1.
For any x ∈ [0, 1]m and y ∈ [0, 1]n, the solution (x1, y1) obtained by the RxOy (RyOx) algorithm

satisfies φ(x, y) ≤ f(x1, y1) ≤ h(z′, x′, y′). This follows from Theorem 9 and the property of LP
relaxations. Alternative integer programming formulations of BBQP could provide different LP
relaxation solutions and hence the resulting RxOy (RyOx) rounding solutions could be different.
We give below a new integer programming formulation of BBQP by increasing the number of

12



variables.

ILP2: Maximize
∑

i∈M

∑

j∈N

qij

(
1

4
uij + vij −

1

4
wij −

1

4
zij

)

+
∑

i∈M

cixi +
∑

j∈N

djyj

Subject to uij + 2vij = xi + yj for i ∈ M , j ∈ N

uij + vij ≤ 1, for i ∈ M , j ∈ N

− zij + wij = xi − yj for i ∈ M , j ∈ N

zij + wij ≤ 1 for i ∈ M , j ∈ N

xi ∈ {0, 1} for i ∈ M , yj ∈ {0, 1} for j ∈ N

uij , vij , wij , zij ∈ {0, 1} for (i, j) ∈ M × N ,

Experimental analysis of RxOy (RyOx) algorithms starting from the LP relaxations of ILP1
and ILP2 are discussed in the next section.

5 Computational results

Although the primary focus of the paper is on theoretical analysis of approximation algorithms, we
have conducted preliminary experimental analysis with the RxOy and RyOx rounding algorithms
to examine features that are not clear from theoretical analysis. The alternating algorithm and local
search algorithms are thoroughly analyzed from an experimental analysis point of view in [19] and [?]
and hence are not considered in our experimental study. The rounding algorithms being simple
constructive heuristics, they are not expected to outperform more sophisticated algorithms that
employ powerful neighborhoods within a metaheuristic framework. Nonetheless, it is interesting to
explore the behavior of these algorithms in the light its theoretical properties and the potential for
computing initial solutions for more advanced solution improvement algorithms.

The data set used in our experiments are smallsize instances of random problems, biclique
instances, matrix factorization instances, and maxcut instances from [19]. The algorithms are
implemented in C# and tested on a DELL PC with Windows 7 operating system, Intel i7 processor
and 16GB of memory. All CPU times reported are in milliseconds and do not include input-output
times. We used the solution obtained by the linear programming relaxation of ILP1 as the fractional
vector (x, y) to initiate the rounding process.

Our first set of experiments were aimed to identify the percentage of problems where LP re-
laxation produced optimal solutions. This data is important since for such problems, rounding
(heuristic algorithms) is irrelevant. The results of these experiments are summarized in Figure 1.
The trend shows that as the problem size increases, the number of problems where the LP relax-
ation produced optimal solution decreases. This decrease is more rapid in some class of problems
compared to random instances.

Let us now discuss the experimental results with the RxOy and RyOx algorithms. The details
are summarized in Tables 1 to 5. In each table, the column “best” reports the best known objective
function value of the problem. Most of these values are optimal. The column “LP obj” contains the
upper bound obtained by the LP relaxation. The columns “xy” and “yx” respectively contains the
objective function value of the solution produced by the RxOy algorithm and the RyOx algorithms.
It may be noted that the solution produced by these algorithms are close to the best known solution
values and the running time is very minimal. This makes these algorithms good candidates to be

13



0 50 100 150 200

0

50

100

mn

O
p
t.
,
%

Figure 1: Random

0 50 100 150 200

0

20

40

60

80

mn

O
p
t.
,
%

Figure 2: Matrix Factorization

used to generate starting solutions for more sophisticated algorithms. The table also provide insight
into the value A (Q, c, d) in comparison to the best known objective function value. The column
“avg” reports A (Q, c, d) and the column “Avg+” reports the value of the upper bound on A (Q, c, d)
provided by Theorem 12. Note that Avg+ is the objective function value of the solution reported
in Corollary 13. These are certainly inferior solutions. The column “xiyj” represents f(x, y) for
the LP relaxation solution (x, y). The experimental results conclusively demonstrate the power of
RxOy and RyOx algorithms as a very fast stand alone heuristics or as an algorithm for generating
starting solutions in more complex algorithms.

Objective Time, ms

Instance Best LP obj. xiyj yx xy Avg+ Avg LP yx xy

20× 50 13555 21179 437.5 12715 12208 2160 624.0 151 171 146
25× 50 13207 25405 759.0 12226 11016 2911 505.0 69 77 87
30× 50 15854 29713 634.0 13992 14824 3219 778.0 102 105 102
35× 50 14136 33471 -2146.0 12554 12099 835 -2028.5 137 143 131
40× 50 18778 39444 42.8 16562 15573 624 125.8 168 183 170
45× 50 22057 44760 -401.0 17688 19660 610 -440.0 212 236 200
50× 50 23801 50390 1576.0 21645 22178 5115 1576.0 234 272 233

Average 17341 34909 128.9 15340 15365 2211 162.9 154 169 153

Table 1: Random

14



Objective Time, ms

Instance Best LP obj. xiyj yx xy Avg+ Avg LP yx xy

20× 50 18341 29999 -1911363.0 4933 0 0 -1911363.0 47 49 47
25× 50 24937 38513 -3265058.5 2764 0 0 -3265058.5 66 90 65
30× 50 27887 51726 -2981174.8 9050 15138 0 -2981174.8 97 95 95
35× 50 32515 57302 -3782013.0 3270 10502 0 -3782013.0 135 134 134
40× 50 33027 61966 -4562391.5 0 0 0 -4562391.5 133 131 133
45× 50 37774 67923 -5789225.5 4420 0 0 -5789225.5 140 141 140
50× 50 30124 78745 -5004969.5 5517 5833 0 -5004969.5 200 195 200

Average 29229 55168 -3899456.5 4279 4496 0 -3899456.5 117 119 1160

Table 2: Max Biclique

Objective Time, ms

Instance Best LP obj. xiyj yx xy Avg+ Avg LP yx xy

20× 50 6983 10704 -315.3 5223 5481 0 -393.3 110 109 111
25× 50 8275 13866 -678.5 7630 7350 0 -678.5 169 166 164
30× 50 10227 18958 -140.0 8378 8685 0 -140.0 232 234 228
35× 50 11897 20590 -543.8 11071 9008 0 -543.8 283 283 277
40× 50 14459 23110 892.3 13216 13433 3569 892.3 506 524 498
45× 50 13247 24393 -984.5 12496 9513 0 -984.5 430 431 428
50× 50 15900 28875 356.3 14075 15357 1425 356.3 628 622 621

Average 11570 20071 -201.9 10298 9832 713 -213.1 337 338 333

Table 3: Max Induced Subgraph

Objective Time, ms

Instance Best LP obj. xiyj yx xy Avg+ Avg LP yx xy

20× 50 9008 21266 -791.0 3838 4928 0 -780.0 93 83 89
25× 50 10180 27546 -1205.0 4062 6410 0 -1352.0 123 130 120
30× 50 13592 37676 -1172.0 5808 7560 0 -274.0 205 184 183
35× 50 14024 40900 -1196.0 5816 8578 0 -1105.0 331 267 269
40× 50 17610 45948 1133.0 9424 12082 3568 1784.0 334 290 297
45× 50 15252 48492 -1209.0 6204 9790 0 -1956.0 441 402 402
50× 50 19580 57408 723.0 12332 10364 1446 723.0 591 538 536

Average 14178 39891 -531.0 6783 8530 716 -422.9 303 271 271

Table 4: MaxCut
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Objective Time, ms

Instance Best LP obj. xiyj yx xy Avg+ Avg LP yx xy

20× 50 114 249 -1.5 106 94 0 -1.5 37 32 31
25× 50 127 314 1.5 109 96 6 1.5 45 40 42
30× 50 148 373 -2.5 124 140 0 -2.5 65 61 61
35× 50 139 425 -13.0 106 122 0 -13.0 80 77 78
40× 50 210 512 12.0 182 194 48 12.0 148 73 71
45× 50 191 559 -3.5 165 179 0 -3.5 100 93 94
50× 50 217 637 11.5 181 191 46 11.5 120 119 119

Average 164 438 0.6 139 145 14 0.6 85 71 71

Table 5: Matrix Factorization
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We have also conducted experiments with RxOy and RyOx rounding algorithms using the LP
relaxation solution of ILP2. For random instances, the LP relaxation solution of ILP1 and ILP2
were different but for all other test instances, they produced same solutions most of the time.
In some random instances considered, the rounding algorithms produced better solutions when
started ILP2 LP relaxation solution in comparison to the solutions produced from ILP1 LP relax-
ation. However, in general we did not see significant performance difference and hence preferred
ILP1 formulation, considering its smaller size.

Note that the RxOy and RyOx rounding algorithms can be initiated using any x0 ∈ U
m and

y0 ∈ U
n and not necessarily a fractional solution for an LP relaxation. For i = 1, 2, . . . ,m let

γi = ci +
∑

j∈N
qij and for j = 1, 2, . . . , n let δj = dj +

∑

i∈M
qij. Also, ran[a, b] represents a

uniformly distributed random number in the interval [a, b]. Using these values we generate random
vectors (x0, y0) as follows:
Type 1 random vectors: Choose

x0i =

{

ran(0, 0.5] if γi < 0,

ran(0.5, 1] otherwise,
and y0j =

{

ran(0, 0.5] if δj < 0,

ran(0.5, 1] otherwise.

Type 2 random vectors: These are generated using weighted random numbers with weight
proportional to the corresponding γi or δj values. Let β1 = max{|γi| : i ∈ M} and β2 = max{|δj | :
j ∈ N }. Now choose

x0i =







0.5 −
|γi|

β1
ran(0, 0.5] if γi < 0,

γi
β1

ran(0.5, 1] otherwise,
and y0j =







0.5−
|δj |

β2
ran(0, 0.5] if δj < 0,

δj
β2

ran(0.5, 1] otherwise.

The RxOy and RyOx algorithms using the above choices of starting solution (x0, y0) can also
be used to construct starting solutions for advanced algorithms. The built-in randomness generates
good solutions that can be embedded in metaheristics with multiple starts. Systematic experimental
analysis of such sophisticated algorithms is beyond the scope of this paper.

6 Conclusion

In this paper we studied approximation algorithms for BBQP which is a generalization of the well
known BQP. Various approximation algorithms are analyzed using averaged value based measures
and domination analysis. It is demonstrated that very powerful local search algorithms could get
trapped at poor quality local minimum even if we allow exponential time in searching a very large
scale neighborhood. Some of the proof techniques used are simple yet elegant and could be of
use in domination analysis of heuristics for other related problems. Experimental results with two
construction algorithms are also given. A natural question for further investigation is to close the
gap between non-approximability bounds and lower bounds on domination ratio. Since BBQP is
not as well studied as BQP, there are many other avenues for further investigation and we are
currently investigating further properties of BBQP.

17



References

[1] R.K. Ahuja, O. Ergun, J.B. Orlin, and A.P. Punnen, Very Large Scale Neighborhood Search:
Theory, Algorithms and Applications, Approximation Algorithms and Metaheuristics, T. Gon-
zalez (ed), CRC Press, 2007.

[2] N. Alon, G. Gutin and M. Krivelevich, Algorithms with large domination ratio, Journal on
Algorithms 50 (2004) 118-131.

[3] N. Alon and A. Naor, Approximating the cut-norm via Grothendieck’s inequality, SIAM Journal

of Computing 35 (2006) 787-803.
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