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Abstract
Low rank approximation of matrices is an important tool in machine learning. Given a data mat-
rix, low rank approximation helps to find factors, patterns, and provides concise representations
for the data. Research on low rank approximation usually focuses on real matrices. However,
in many applications data are binary (categorical) rather than continuous. This leads to the
problem of low rank approximation of binary matrices. Here we are given a d× n binary matrix
A and a small integer k < d. The goal is to find two binary matrices U and V of sizes d × k
and k × n respectively, so that the Frobenius norm of A − UV is minimized. There are two
models of this problem, depending on the definition of the dot product of binary vectors: The
GF(2) model and the Boolean semiring model. Unlike low rank approximation of a real matrix
which can be efficiently solved by Singular Value Decomposition, we show that approximation of
a binary matrix is NP-hard, even for k = 1.

In this paper, our main concern is the problem of Column Subset Selection (CSS), in which
the low rank matrix U must be formed by k columns of the data matrix, and we are interested in
the approximation ratio achievable by CSS for binary matrices. For the GF(2) model, we show
that CSS has approximation ratio bounded by k

2 + 1 + k
2(2k−1) and this is asymptotically tight.

For the Boolean model, it turns out that CSS is no longer sufficient to obtain a bound. We then
develop a Generalized CSS (GCSS) procedure in which the columns of U are generated from
Boolean formulas operating bitwise on selected columns of the data matrix. We show that the
approximation ratio achieved by GCSS is bounded by 2k−1 + 1, and argue that an exponential
dependency on k is seems inherent.

1 Work done while at Peking University.
2 Partially supported by National Basic Research Program of China (973 Program) (grant no.
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1 Introduction

Low rank approximation of matrices is a classical problem. Given a matrix A of size d× n,
the goal is to find two low rank matrices U and V, such that UV approximates A. Formally,
the problem is to solve the equation minU,V ‖A −UV‖2

F , where the minimum is over all
matrices U,V of sizes d × k and k × n respectively. The parameter k, typically a small
integer, is the desired rank. The error is measured in terms of the Frobenius norm ‖ · ‖F .

In many applications, A is a data matrix : Each column of A is a d-dimensional data vector,
and each row of A corresponds to an attribute. In the literature, low rank approximation of
A is often called factor analysis or dimensionality reduction: the k columns of the matrix U
are the factors or basis vectors of the low dimensional space, and each column of V contains
the combination coefficients.

If A, U, V are real matrices, low rank approximation can be efficiently solved by Singular
Value Decomposition (SVD). This problem has been studied for more than a century, and is
known as Principal Component Analysis (PCA) [28], Karhunen-Loève Transform [30], to
name a few.

In this paper we consider low rank approximation of binary matrices. The motivation
is that in many applications data are binary (categorical) rather than continuous. Indeed,
nearly half of the data sets in the UCI repository contains categorical features. In the binary
case, we require that the data matrix A as well as the rank-k matrices U,V are binary.
There are two natural formulations of the binary low rank approximation problem, depending
on the definition of vector dot product. One formulation will be referred to as the GF(2)
model, in which the dot product of two binary vectors u,v is defined as uTv := ⊕iuivi.
The other formulation will be referred to as the Boolean model, in which the dot product is
defined as uTv :=

∨
i(ui ∧ vi).

The Boolean model is usually called Boolean Factor Analysis (BFA). It has found numerous
applications in machine learning and data mining including latent variable analysis, topic
models, association rule mining, clustering, and database tiling [3, 33,38,40,44]. The GF(2)
model, while being less studied, has been applied to Independent Component Analysis (ICA)
over string data, attracting attention from the signal processing community [25,35,48].

Despite of various applications and heuristic algorithms [19, 21, 31, 33], little is known
from a theoretical point of view about the binary low rank approximation problem. In
fact, previously the only known result is that for the very special case of k = 1 (where the
GF(2) and the Boolean model are equivalent) there are 2-approximation algorithms (see
Section 1.1).

http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.41
http://arxiv.org/abs/1511.01699
http://arxiv.org/abs/1511.01699
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In this paper, we provide the first theoretical results for the general binary low rank
approximation problem, which is formally stated as follows. Given A ∈ {0, 1}d×n, solve

min
U∈{0,1}d×k,V∈{0,1}k×n

‖A−UV‖2
F . (1)

where the matrix product UV is over GF(2) or the Boolean semiring respectively.
Before stating the results, let us first consider the differences between low rank approxim-

ation of real matrices and our GF(2) and Boolean models. First, the linear space over GF(2)
has a very different structure from the Euclidean space. The dot product over GF(2) is not
an inner product and does not induce a norm: there exists a 6= 0 such that aTa = 0 over
GF(2). An immediate consequence is that for binary matrices of the GF(2) model, there is
no Singular Value Decomposition (SVD), which is the basis for low rank approximation of
real matrices. The Boolean model is even more different: As it is a semiring rather than a
field, we do not even have a linear space (see below for details).

Thus the methodologies from the setting of real matrices do not carry over to the setting
of binary matrices. In fact, we will show that finding the exact solution of (1) is NP-hard even
for k = 1 (see Section 4). This result was obtained independently by Gillis and Vavasis [22].

Another well-studied approach for low rank approximation of matrices is Column Subset
Selection (CSS) [20, 32]. The goal of CSS is to find a subset of k columns of A and form the
low rank basis matrix so that the residual is as small as possible. An advantage of CSS is
that the result is more interpretable than that of SVD. CSS has been extensively studied for
low rank approximation of real matrices [1, 5, 6, 10, 11, 13–16, 24, 36, 43, 46, 47]. Below is a
formal definition of CSS over real matrices.

I Definition 1 (CSS for real matrices). Given a matrix A ∈ Rd×n and a positive integer k,
pick k columns of A forming a matrix PA ∈ Rd×k such that the residual

‖A−PAQ‖ξ

is minimized over all possible
(
n
k

)
choices for the matrix PA. Here Q denotes the optimal

matrix of size k × n given PA, which can be obtained by solving a least squares problem,
and ξ = 2 or F denotes the spectral norm or Frobenius norm.

The central problem in CSS is to determine the best function φ(n, k) of n, k satisfying

‖A−PAQ‖2
ξ ≤ φ(k, n)‖A−Ak‖2

ξ , (2)

where Ak denotes the best rank-k approximation to the matrix A as computed with SVD.
Two classical results [14,24] shows that for real matrices we have

‖A−PAQ‖2
2 ≤ (k(n− k) + 1)‖A−Ak‖2

2 , (3)
‖A−PAQ‖2

F ≤ (k + 1)‖A−Ak‖2
F . (4)

There is extensive work on developing efficient algorithms for CSS with approximation
ratio close to the above bounds, possibly using more than k columns of A. These include
methods such as rank revealing QR [36], adaptive sampling [15], subspace sampling (leverage
scores) [6, 16], efficient volume sampling [13], projection-cost preserving sketches [11] and
greedy CSS [1].

In this work, we study the CSS problem for binary matrices over GF(2) and Boolean
semiring respectively. We consider the central problem expressed by Eq. (2) and aiming to
determine the best φ(k, n). We only consider the Frobenius norm, since the spectral norm
does not exist in the GF(2) and Boolean models.

MFCS 2018
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The difficulty of the CSS problem for GF(2) and Boolean semiring model is that all
methods developed for CSS over real matrices rely on at least one of the following concepts
which are intrinsic to the Euclidean space: SVD, volume of a simplex, Euclidean distance,
orthogonal projection, and QR decomposition. However, none of these concept exists in the
GF(2) or Boolean models.

In this paper, we develop new methods for the CSS problem for GF(2) and Boolean
model respectively. For GF(2) model, we show that by picking the best k columns of A to
form PA, we achieve the bound

‖A−PAQ‖2
F ≤

(
k

2 + 1 + k

2(2k − 1)

)
‖A−Ak‖2

F ,

where Ak = UV is the optimal solution of (1). Moreover, we show that the ratio is
asymptotically tight.

For Boolean model, it turns out that basic CSS is no longer sufficient for obtaining a
bound, simply because the Boolean semiring is not a field. We instead propose a Generalized
CSS (GCSS) procedure. In this GCSS framework, we select a larger number of columns
of A and potential basis matrices PA are generated from these using carefully designed
Boolean formulas operating bitwise on the chosen columns of A. We show that GCSS based
on (2k − 1) columns of A achieves approximation ratio (2k−1 + 1) relative to ‖A−Ak‖2

F .
Moreover, we argue that the exponential dependence in k seems inherent with the Boolean
model (see Section 3 for details).

Our work is a first step towards a good understanding of low rank approximation
of matrices over GF(2) and the Boolean semiring. While our work gives approximation
algorithms for low rank approximation for both the GF(2) and the Boolean model, our work
is should mainly by viewed as existence results for (Generalized) CSS for binary matrices,
parallel to the classical existence theorems [14,24] for CSS of real matrices stated in Eq. (3)
and (4). Moreover, as SVD does not apply to the GF(2) or Boolean model, CSS is so far
the only method that obtains a low rank approximation for binary matrices with theoretical
guarantees and deserves an in-depth study. Finally, it is an important future direction to
develop efficient algorithms to achieve or approximately achieve the ratios obtained in this
paper. We believe this requires new techniques futher exploiting the algebraic structure of
GF(2) and the Boolean semiring.

The rest of this paper is organized as follows. In Section 1.1 we discuss existing results
on low rank approximation of binary matrices. In Section 2 we present the information-
theoretically optimal upper bound for the approximation ratio of CSS over GF(2). In
Section 3 we propose the GCSS procedure and give the upper bound for the Boolean semiring
model. In Section 4 we show that finding the exaction solution of the low rank binary
matrix approximation problem is NP-hard even for k = 1. Finally we give our conclusion in
Section 5.

1.1 Other Related Works
To the best of our knowledge, all known theoretical results on the low rank approximation
problem are about the special case of rank-one, i.e., k = 1. In the rank-one case, one looks
for binary vectors u, v such that ‖A − uvT ‖F is minimized, and the GF(2) and Boolean
models are therefore equivalent.

Shen et al. [39] formulate the rank-one problem as an integer linear program and showed
that solving its linear programming relaxation yields a 2-approximation algorithm. They
also improved the efficiency by reducing the linear program to a max-flow problem using
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a technique developed in [26]. Jiang et al. [29] observed that for the rank-one case, simply
choosing the best column from A yields a 2-approximation algorithm.

In the GF(2) model, low rank approximation is related to the concept of matrix rigidity
introduced by Valiant [45], as a method of proving lower bounds for linear circuits. For a
matrix A over GF(2), the rigidity RA(k) is the smallest number of entries of A that must
be changed in order to bring its rank down to k. Thus for a d × n matrix A, RA(k) is
precisely the minimum approximation error possible by a product of a d× k matrix U and a
k × n matrix V. By the results of Valiant, an n× n matrix A for which RA(k) ≥ n1+ε, for
k = O(n/ log logn) and for some constant ε > 0 cannot be computed by a linear circuit of size
O(n) and depth O(logn). Such rigid matrices exists in abundance – the challenge is to come
up with an explicit construction of a family of rigid matrices. For the low rank approximation
problem we are however interested in the setting of k � n and we are interested in algorithms
rather than explicit matrices.

2 Column Subset Selection for Binary Matrices Over GF(2)

In this section we characterize the best possible approximation ratio of CSS in the GF(2)
model. As mentioned in Section 1, the best approximation ratio of CSS for real matrices
is k + 1 under the Frobenius norm. This result is proved by the so-called volume sampling
method [14]. Concretely, the volume sampling method randomly samples a set of k columns
of A with probability proportional to the volume of the k-dimensional simplex formed
by the k-columns along with the origin. Volume sampling generates an (expected) k + 1
approximation ratio.

However, the GF(2) model does not have a notion of volume, since the dot product over
GF(2) is not an inner product. Nevertheless, we develop a new approach and show the
following bound.

I Theorem 2. For any binary matrix A ∈ {0, 1}d×n, there exist PA ∈ {0, 1}d×k and
Q ∈ {0, 1}k×n, where the columns of PA are chosen from the columns of A, such that

‖A−PAQ‖2
F ≤

(
k

2 + 1 + k

2(2k − 1)

)
·OPTk,

where OPTk := ‖A−Ak‖2
F , and Ak = UV is the optimal solution of (1). Here all matrix

operations are over GF(2).

Moreover, we show that the approximation ratio
(
k
2 + 1 + k

2(2k−1)

)
is asymptotically tight.

I Theorem 3. In the GF(2) model, for every k ≥ 1 and every ε > 0, there exists A such
that

‖A−PAQ‖2
F >

(
k

2 + 1 + k

2(2k − 1) − ε
)
·OPTk,

for all PA,Q, where PA are formed by k columns of A.

Below, we give a high level description of the proof of the theorems. Our method uses
the structure of GF(2) and is different to the techniques developed for CSS of real matrices.

Consider the problem given by Eq. (1). Throughout this paper, we will call the matrix
U the basis matrix, since its column vectors are the basis of the low dimensional space.
Likewise we call the right matrix V the coefficient matrix, since its columns contain the linear
combination coefficients. Let U and V be an optimal solution of Eq. (1), and let u1, . . . ,uk

MFCS 2018
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be the k columns of U. For each column ui of the optimal basis matrix U, consider its
nearest neighbor among all the columns of A. Let a1, . . . ,an be the n columns of A, and
denote by a(ui) the nearest neighbor column of ui in A. Given an optimal basis matrix U,
we thus have a matrix A(U) := (a(u1), . . . ,a(uk)), consisting of columns of A. Note that
the optimal solution of Eq.(1) is not unique. In fact, fixing an optimal basis matrix U,
for every matrix B = (b1, . . . ,bk), bi ∈ {0, 1}k, if the rank3 of B is k over GF(2), then
(UB,B−1V) must also be an optimal solution. Each optimal basis matrix UB induces a
nearest neighbor matrix A(UB). We will show that there must exist a rank k matrix B
such that the induced nearest neighbor matrix A(UB), which when used as basis matrix,
achieves an approximation error at most (k2 + 1 + k

2(2k−1) ) times that of the optimal solution
(UB,B−1V). Let Err(b1, . . . ,bk) be the approximation error associated with the basis
matrix A(UB) for B = (b1, . . . ,bk). Our goal is to bound the quantity

min
b1,...,bk

Err(b1, . . . ,bk) , (5)

where bi ∈ {0, 1}k for all i ∈ [k].
Directly bounding Eq.(5) is prohibitive. The approach we take is to consider a sequence of

k + 1 error minimization problems. For the r-th (0 ≤ r ≤ k) minimization, we only optimize
r vectors among b1, . . . ,bk and keep the other k − r vectors fixed. Given b1, . . . ,bk, let

Err(0)(b1, . . . ,bk) := Err(b1, . . . ,bk), (6)
Err(r)(b1, . . . ,bk−r) := min

b∈{0,1}k
Err(r−1)(b1, . . . ,bk−r,b). (7)

Note that Err(k)() is exactly the quantity of Eq.(5).
Although the final goal is to bound the ratio between Err(k)() and the error of the optimal

solution of Eq.(1), we instead prove additive bounds for Err(r)(b1, . . . ,bk−r) for all 0 ≤ r ≤ k.
To be more precise, letting OPTk be the error of the optimal solution of Eq.(1), we will show
that Err(r)(b1, . . . ,bk−r) is bounded by OPTk plus a term depending on r and b1, . . . ,bk−r
(Theorem 5). Then when r = k, this additive bound becomes a multiplicative bound with
respect to OPTk and gives the desired ratio. The reason for introducing Err(0), . . . ,Err(k−1)

is that we make use of the relation between Err(r) and Err(r−1) to prove the bound. More
precisely, is the additive bound proved by induction in r.

Although the relation of Err(r) and Err(r−1) is

Err(r)(b1, . . . ,bk−r) = min
b

Err(r−1)(b1, . . . ,bk−r,b),

directly optimizing b seems very difficult. Our approach is to use weighted averaging. Since
for each b ∈ {0, 1}k it holds that,

Err(r)(b1, . . . ,bk−r) ≤ Err(r−1)(b1, . . . ,bk−r,b),

we have that for any set of weights wb such that wb ≥ 0 and
∑

b wb = 1,

Err(r)(b1, . . . ,bk−r) ≤
∑

b

wbErr(r−1)(b1, . . . ,bk−r,b).

We carefully choose the weights wb to get a small upper bound. We perform weighted
averaging in two layers. Consider the quotient space GF(2)k/span(b1, . . . ,bk−r) and the
coset [b] := b + span(b1, . . . ,bk−r). In the first layer, we perform weighted averaging within

3 Throughout this section, matrix inverse and matrix rank are all over GF(2).
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each coset [b], and obtain a bound for Err(r) depending on the coset. In the second layer
we average over all cosets using another set of weights. We need different rules to set the
weights in the two layers. Within a coset [b], we choose the weights as follows. Let U,V be
the already fixed optimal solution of Eq.(1). For each c ∈ [b], let nc denote the number of
columns of V that are equal to c. The weight we assign to c is proportional to nc. For the
second layer, let

n[b] :=
∑

c∈[b]

nc

be the total number of columns of V that belong to the coset [b]. We assign the weight to a
coset [b] as follows. If

[b] = span(b1, . . . ,bk−r),

then the weight is set to be zero. Otherwise, we assign the weight to [b] proportional to
n[b]∑

[b] n[b] − λn[b]
,

where λ is a constant depending on r. Combining the two layers of averaging we obtain
the additive bound and that implies the desired approximation ratio. This finishes the
description of the proof of Theorem 2.

The lower bound in Theorem 3 is proved by explicit construction. We construct a matrix
which is approximately low rank in the sense that it is the product of two rank-k matrix
plus a very sparse matrix. The key ingredient of the proof is the construction of the two
rank-k matrices, which have special structures so that the approximation ratio of column
subset selection cannot be smaller than k

2 + 1 + k
2(2k−1) significantly.

The additive bounds are stated in Theorem 5, which is technical. Below we first describe
the notions that will appear in Theorem 5. These notions will also be frequently used in the
proof as well. For clarity, we list the notions in two tables.

I Definition 4. For 1 ≤ r ≤ k and linear independent vectors b1, . . . ,br in {0, 1}k:

Table 1 Definitions for vector spans.

Definition Explanation
spanc(b1, . . . , br) := {0, 1}k \ span(b1, . . . , br) Complement of span(b1, . . . , br).
span\i(b1, . . . , br) := span(b1, . . . , bi−1, bi+1, . . . , br) Span of all vectors except the ith.

Let A be the matrix to be approximated and (U,V) be a fixed optimal solution of the
problem in Eq.(1). For u ∈ {0, 1}d, c ∈ {0, 1}k, and X ⊂ {0, 1}k:

Table 2 Definitions for errors and nearest neighbors.

Definition Explanation
a(u) The nearest neighbor of u among the columns of A

(If more than one nearest neighbor, choose one arbitrarily.)
Jc := {j ∈ [n] : Vj = c} The set of columns of V that are equal to vector c.
nc := |Jc| The number of columns of V that are equal to c.
Lc :=

∑
j∈Jc

|aj −Uc| The total approximation error of those columns in Jc.
NX :=

∑
c∈X nc The total number of columns of V that belong to set X .

Mc =
{

Lc
nc

nc > 0
d nc = 0 Upper bound of the average error of the columns in Jc.

MFCS 2018
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Now we can state the additive bounds.

I Theorem 5. Let b1, . . . ,bk be k linear independent vectors in {0, 1}k. Then for each
0 ≤ r ≤ k,

Errr(b1, . . . ,bk−r) ≤ OPTk + λr ·
∑

c∈spanc(b1,...,bk−r)

Lc +
k−r∑
i=1

fi(b1, . . . ,bk−r)Mbi , (8)

where Mbi has been defined in Definition 4, and

λr =
{

0 r = 0
r
2

(
1 + 1

2r−1

)
, 1 ≤ r ≤ k

and

fi(b1, . . . ,bk−r) = NX + 1
2NY , (9)

here X = bi + span\i(b1, . . . ,bk−r), and Y = spanc(b1, . . . ,bk−r).

The formal proof of Theorem 5 is lengthy and can be found in the full version of the
paper [12]. Theorem 2 follows from Theorem 5 immediately.

Proof of Theorem 2. Let r = k in Theorem 5. Then the last term in the RHS of Eq.(8)
vanishes. The second term in the RHS of Eq.(8) becomes λk ·

∑
c∈{0,1}k Lc. Observe that∑

c∈{0,1}k
Lc = OPTk,

and

1 + λk = k

2 + 1 + k

2(2k − 1) ,

the theorem follows. J

3 Generalized CSS Over Boolean Semiring

It is not difficult to see that the method developed for GF(2) model in the previous section
does not apply to the Boolean model, simply because the Boolean semiring does not have
a field structure. It turns out that, somewhat surprisingly, CSS is not sufficient to yield a
bound relative to the optimal low rank solution in the Boolean model.

Here, we propose a Generalized CSS (GCSS) procedure. In GCSS, instead of using the
columns of A directly to form PA, we apply carefully designed Boolean formulas (bitwise)
to a predefined number of columns of A to form PA.

To illustrate the ideas, we first give an informal high level description of GCSS. We
can capture our GCSS by the following framework, which we denote as an oblivious basis
generation scheme with advice. Let f(k) and g(k) be functions of k. An oblivious basis
generation scheme with advice size f(k) and column dependence size g(k) operates as follows.
Given as input an advice string o ∈ {0, 1}f(k) the scheme outputs k Boolean formulas
Φ1, . . . ,Φk each of g(k) bits. Given g(k) columns ai1 , . . . ,aig(k) of the matrix A, the k basis
vectors u1, . . . ,uk of PA are constructed as

uj = Φj(ai1 , . . . ,aig(k)),
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where the Boolean function Φj is applied entry-wise. From such a basis generation scheme
we immediately obtain an approximation result by iterating over all possible selections of
g(k) columns of A as well as all possible advice strings o ∈ {0, 1}f(k). We stress that the
amount of information about A that can be supplied to the algorithm using the advice
string is independent of the actual size of A. Our construction of GCSS will have column
dependence size 2k − 1 and advice size O(k2k) in which we encode an ordering of the given
2k − 1 columns. This results in an approximation ratio of 2k−1 + 1.

To give a precise description of GCSS, it is more convenient to use sets instead of vectors
as the representation. For a column ai of A, let

Ai := {j ∈ [d] : (ai)j = 1},

i.e., ai is the characteristic vector of Ai. Similarly, for an optimal solution (U,V) of the
Boolean low rank approximation problem, let

Ui := {j ∈ [d] : (ui)j = 1},

and

Vi := {j ∈ [k] : vij = 1}.

Thus in this section we will always think of a column of A, U or V as a set. Given a set
S ⊂ [k], let

JS := {j ∈ [n] : Vj = S},

and nS := |JS |. Using these notions, the Boolean product of U and a vector which is the
characteristic vector of S will be denoted by US :=

⋃
i∈S Ui. Abusing the notion slightly,

we shall still use Ui instead of U{i} from now on. Like in the previous section, the nearest
neighbor column of US in A is defined by a(US). As we use set representation in this section,
for notational simplicity we let DS ⊂ [d] be the set corresponding to this nearest neighbor
column a(US), i.e.,

DS := {i ∈ [d] : a(US)i = 1}

We are going to construct a rank-k solution B1, . . . ,Bk, where Bi ⊂ [d] is the set
representation of the column of the basis matrix. Once the basis matrix is obtained, the
coefficient matrix can be calculated in the same way as in the previous section. The concrete
GCSS procedure is described in Algorithm 1.

Now we can state the main result of this section.

I Theorem 6. GCSS (as described above) has approximation ratio 2k relative to the optimal
solution of (1) over Boolean semiring.

We now give the very high level idea of the proof. Fix a bijection π that satisfies
nS1 ≤ · · · ≤ nS2k−1. By construction the set DS` is the best approximation to US` given by
a column of A. Ideally the sets B1, . . . ,Bk should be such that

⋃
i∈S` Bi is a comparable

substitute for all `. What we instead will be able to achieve is that for all ` ∈ [2k − 1]

US` 4

(⋃
i∈S`

Bi

)
⊆

⋃
`′≥`

(
US`′ 4DS`′

) (10)
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41:10 Low Rank Approximation of Binary Matrices

where as seen from the algorithm the sets Bi are Boolean combinations of the sets DS` .
Intuitively, we give more importance to approximating the columns of A from JS` as `
increases. As the sizes nS` of these sets of columns also increase this means that we can
account for the extra cost of possible poor approximation of the sets US` for smaller ` in
terms of the approximation error of the sets DS`′ to US`′ for larger `

′ ≥ `.
Intuitively we should attempt to approximate all the sets DS` simultaneously by

⋃
i∈S` Bi.

But since we work over a semiring we will have to work with under-approximations. So for
every ` we instead approximate the under-approximation

⋃
i∈S` E

`
i of DS` . We do this by

initially letting Bi = E1
i and then for each ` ∈ [2k − 1] adding

(⋃
i∈S` E

`
i

)
\
(⋃

i∈S` E
1
i

)
to⋃

i∈S` Bi. This last step has to be done carefully piece by piece using the ordering of the sets
S1, . . . ,S2k−1. In the algorithm this is done using the sets F`1,`2

i .
The approximation ratio of GCSS over the Boolean semiring is O(2k), and thus much

larger than that of GF(2). However we shall argue that this exponential dependency on k is
not an artifact of proof technique, it seems inherent to the model.

Let k be even and let n = 2k/2. We define the n×n matrix A = (aα,β) indexed by strings
α, β ∈ {0, 1}k/2 by aα,β = 1 if and only if α 6= β. Thus A is just the negation of the n× n
identity matrix. It is well-known that the Boolean rank of A is equal to k. In particular,
we can write A as the Boolean product of U and V, where the columns of U and the rows
of V are indexed by pairs (i, b) where i ∈ [k/2] and b ∈ {0, 1} and entry (α, (i, b)) of U is 1
if and only if αi = b and entry ((i, b), β) of V is 1 if and only if βi 6= b. We note that the
columns of U can be written as Boolean formulas applied entry-wise to (all of) the columns
of A. Since we consider approximation algorithms with multiplicative error, when supplied
with input A and k our algorithm is required to compute an exact factorization of A into
n× k and k × n matrices U and V. If the underlying basis generation algorithm receives,
say, only half of the columns of A it does not seem possible to compute such a factorization.
It therefore seems that column dependence size at least 2k/2−1 is necessary, which is about
the square-root of the column dependence size of our algorithm.
I Remark. Using the technique of weighted averaging developed for the GF(2) model, we
can actually improve the approximation ratio to 2k−1 + 1. We omit the details of the proof.
The proof of Theorem 6 can be found in the full version of the paper [12].

4 Hardness of Low Rank Approximation of Binary Matrices

Prior to our work, the computational complexity of the low rank approximation problem was
not fully understood. For the rank-1 case, Tan showed that the equivalent problem Maximum
Edge Weight Biclique for {−1, 1}-matrices is NP-hard under randomized reductions [42].
In the case when the rank k is unrestricted (i.e. part of the input) deciding whether there exist
U and V such that A = UV in the Boolean semiring model is precisely the NP-complete
Minimal Set Basis problem [41], and that immediately implies that the approximation
problem is NP-hard to approximate within any factor, as noted by Miettinen et al. [34]. On
the other hand, this does not imply hardness when k � d, n. Indeed, the Minimal Set
Basis problem is fixed-parameter tractable with parameter k, by a simple kernelization
algorithm [17]. Note also that in the GF(2) model, deciding the existence of U and V such
that A = UV is efficiently solvable using Gaussian elimination, regardless of the rank k
being unrestricted.

In this section we show the rank-1 Binary Matrix Approximation problem is NP-hard
under normal polynomial time reduction. We first define two related problems. Let H be a
complete bipartite graph with edge weight, and let W = (wij) be the d× n matrix consisting
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Algorithm 1 Generalized Column Subset Selection.
1: for all selection of 2k − 1 column vectors Aj1 ,Aj2 , . . . ,Aj2k−1

in A do
2: for all bijections π : [2k − 1]→ (2[k] \ {∅}) do
3: Let S` = π(`) for ` ∈ [2k − 1]
4: for i ∈ [k] and ` ∈ [2k − 1] do
5: Compute

E`i :=
⋂
`′≥`:
i∈S`′

DSl

where DS = Ajπ−1(S)
for ∅ 6= S ⊆ [k].

6: end for
7: for 1 ≤ `1 < `2 ≤ 2k − 1 such that i ∈ S`1 ∩ Sl2 do
8: Compute

F`1,`2
i := E`1+1

i \

 ⋃
i′∈S`2

E`1
i′

 .
9: end for
10: for i ∈ [k] do
11: Compute solution vector {B1,B2, . . . ,Bk}by

Bi := E1
i ∪

 ⋃
`1<`2:

i∈S`1∩S`2

F`1,`2
i

 .

12: end for
13: end for
14: Compute the approximation error using the solution vector.
15: if the approximation error is optimal then
16: Save {B1,B2, . . . ,Bk} as the output.
17: end if
18: end for

of these edge weights. The Maximum Edge Weight Biclique problem is to find a biclique
subgraph of H with maximizing total edge weight. As an optimization problem: maximize
xTWy, where x ∈ {0, 1}d and y ∈ {0, 1}n. The Bipartite Max-Cut problem is to find
a cut of the vertices of H maximum the total weight of the edges cut. As an optimization
problem: maximize xTWy, where x ∈ {−1, 1}d and y ∈ {−1, 1}n. Note that these two
problems differ only in the domain from which x and y are chosen.

Shen, Ji, and Ye [39] observed that the rank-1 Binary Matrix Approximation problem
is equivalent to Maximum Edge Weight Biclique when all edge weights are chosen from
{−1, 1}. Namely, if A is a d× n Boolean matrix, u ∈ {0, 1}d, and v ∈ {0, 1}n, and let Jd,n
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denote the d× n all-1 matrix, we have

‖A− uvT‖2
F = ‖A‖2

F − 2uTAv + ‖uvT‖2
F

= ‖A‖2
F − uT(2A− Jd,n)v.

Therefore, minimizing ‖A−uvT‖2
F is equivalent of maximizing uT(2A−Jd,n)v. Also note that

(2A− Jd,n) is a {−1, 1}-matrix. Thus NP-hardness of Maximum Edge Weight Biclique
with {−1, 1} edge weights implies NP-hardness of rank-1 Binary Matrix Approximation.
To show the NP-hardness of Maximum Edge Weight Biclique, we consider reduction
from the Bipartite Max-Cut problem.

Roth and Viswanathan showed that Bipartite Max-Cut is NP-hard even when all weights
are chosen from the set {−1, 1} [37]. This is done by first showing NP-hardness when the
weights are chosen from {−1, 0, 1} and then reducing to the case of weights from {−1, 1}.

Tan showed that Maximum Edge Weight Biclique is NP-hard [42] when weights are
chosen from {−1, 0, 1}, and shows NP-hardness under randomized reductions when weights
are chosen from {−1, 1}. He leaves it as an open problem to obtain NP-hardness under
normal polynomial time reductions. The complexity of this problem was also stated as an
open problem by Amit [2]

The reduction from weights chosen from {−1, 0, 1} to {−1, 1} by Roth and Viswanathan
and by Tan is similar. The idea is to transform the n× n {−1, 0, 1}-weight matrix W into a
new nm×nm {−1, 1}-weight matrix W′, where W′ consists ofm×m blocks corresponding to
each entry of W. A (−1)-entry is transformed into the all-(−1) m×m matrix, and similarly
is a 1-entry transformed into the all 1 m×m matrix. But where Tan transforms a 0-entry to
a random m×m {−1, 1}-matrix, Roth and Viswanathan instead transforms a 0-entry into a
m×m Hadamard matrix. We will show that this transformation into Hadamard matrix also
work in the setting of the Maximum Edge Weight Biclique problem, thereby properly
establishing its NP-hardness.

I Theorem 7. The rank-1 Binary Matrix Approximation problem is NP-hard.

We give a polynomial time many-one reduction from Maximum Edge Weight Biclique
with weights from {−1, 0, 1} to Maximum Edge Weight Biclique with weights from
{0, 1}, thereby showing the theorem. The proof is based on the following three lemmas.

The lemma below is an adaptation of [37, Lemma 4.2] from the {−1, 1} case to the {0, 1}
case.

I Lemma 8. Let W be an n× n matrix and let m ≥ 1, and define W′ = W⊗ Jm, where
Jm := Jm,m. Then

max
u,v

uTW′v = m2 ·max
x,y

xTWy ,

where u,v ∈ {0, 1}mn and x,y ∈ {0, 1}n, respectively. Furthermore, if x and y maximize
xTWy, then u = x⊗ 1m and v = y⊗ 1m maximize uTW′v.

Proof. Consider first u = x⊗ 1d and v = y⊗ 1m. Then

uT(W⊗ Jm)v = (x⊗ 1m)T(W⊗ Jm)(y⊗ 1m)
= (xTWy)⊗ (1T

mJm1m) = m2 · (xTWy) .

Next, take u and v maximizing uTW′v. We show that u and v can be brought to the form
u = x ⊗ 1m and v = y ⊗ 1m without decreasing the value of uTW′v. We first fix v and
bring u to the desired form, and then similarly bring v to the desired form.
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So fix v, and let z = W′v. Note that u maximizing uTz must satisfy ui = 1 when
zi > 0 and ui = 0 when zi < 0. Since W′ = W ⊗ Jm we have that zjm+1 = zjm+2 =
· · · = z(j+1)m for all j = 0, 1, . . . , n − 1. Hence we can choose a maximizing u satisfying
ujm+1 = ujm+2 = · · · = u(j+1)m for all j = 0, 1, . . . , n− 1 as well, meaning u = x⊗ 1m for
suitable x ∈ {0, 1}n. We can now fix u and in a similar way bring v to the form v = y⊗ 1m
for suitable y ∈ {0, 1}n. J

The following lemma, which is the {0, 1} analogue of [37, Lemma 4.3], is a direct
consequence of Lindsey’s Lemma. We state the proof for completeness.

I Lemma 9. Let H be a m×m Hadamard matrix. For every x,y ∈ {0, 1}m, |xTHy| ≤ m3/2.

Proof. First note

‖Hy‖2 = yT(HTH)y = yT(mI)y = m · ‖y‖2 .

We can then complete the proof by the Cauchy-Schwartz inequality,

|xTHy| ≤ ‖xT‖ · ‖Hy‖ =
√
m · ‖x‖ · ‖y‖ ≤ m3/2 . J

I Lemma 10. Let W = (wij) be a n×n {−1, 0, 1}-matrix and let H be a m×m Hadamard
matrix. Define the (mn)× (mn) {−1, 1}-block matrix W̃ = (W̃ij), where block W̃ij is given
by

W̃ij =
{
wijJm if wij 6= 0
H if wij = 0

.

Let W′ = W⊗ Jm. Then for all u,v ∈ {0, 1}mn,
∣∣∣uTW̃v− uTW′v

∣∣∣ ≤ n2 ·m3/2.

Proof. This is by simple estimation.∣∣∣uTW̃v− uTW′v
∣∣∣ =

∣∣∣uT(W̃−W′)v
∣∣∣

≤ n2 · max
x,y∈{0,1}m

∣∣xTHy
∣∣

≤ n2 ·m3/2 ,

where the last inequality follows from Lemma 9. J

Proof. of Theorem 7 Suppose now that W is an n× n {−1, 0, 1}-matrix. Let m = 2` be
the smallest power of 2 that is greater than 4n4, and let H be the m×m Sylvester Hadamard
matrix. We then define W̃ and W′ as in Lemma 10. Then∣∣∣∣ max

u,v∈{0,1}mn
uTW̃v−m2 · max

x,y∈{0,1}n
xTWy

∣∣∣∣
=
∣∣∣∣ max
u,v∈{0,1}mn

uTW̃v− max
u,v∈{0,1}mn

uTW′v
∣∣∣∣

≤n2 ·m3/2 ≤ m1/2

2 ·m3/2 = m2

2 ,

where the first equality is by Lemma 8 and the first inequality is by Lemma 10.
Since the expression m2 ·maxx,y∈{0,1}n xTWy is an integer multiple of m2, the value
maxu,v∈{0,1}mn uTW̃v uniquely determines the value maxx,y∈{0,1}n xTWy. This then gives
the desired reduction. J
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5 Conclusion

We have studied Column Subset Section (CSS) for low rank binary matrix approximation.
CSS is often used as an alternative approach of SVD for low rank approximation of real
matrices, where the advantage of CSS is the interpretability of its results. For binary matrices,
CSS is so far the only approach yielding theoretical guarantees, as solving the low rank
problem exactly is NP-hard. We provide an upper bound on the approximation ratio of
CSS for the GF(2) model and show the bound is tight. This is a complete characterization
from an information-theoretic point of view. For the Boolean semiring model, we propose a
Generalized CSS (GCSS) method, since CSS is not strong enough to yield a bound in this
scenario. We also show an upper bound for GCSS.

CSS has been actively studied for nearly three decades and the first work can at least
date back to [23], where it was called rank revealing QR in the numerical linear algebra
community. The progress on CSS exhibits an interesting trajectory. Early results either gave
bounds exponential in k or the running time of the algorithm is O(nk) [4, 7–9,18,27]. After
efforts of many researches, there are now polynomial time algorithms that have polynomial
bounds for the approximation ratio.

Our understanding of CSS for binary matrices is at the very beginning stage. It is an
important problem for future work to develop efficient CSS algorithms that achieves or
approximately achieves the bounds of this paper.
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