31,737 research outputs found

    Expressing social attitudes in virtual agents for social training games

    Full text link
    The use of virtual agents in social coaching has increased rapidly in the last decade. In order to train the user in different situations than can occur in real life, the virtual agent should be able to express different social attitudes. In this paper, we propose a model of social attitudes that enables a virtual agent to reason on the appropriate social attitude to express during the interaction with a user given the course of the interaction, but also the emotions, mood and personality of the agent. Moreover, the model enables the virtual agent to display its social attitude through its non-verbal behaviour. The proposed model has been developed in the context of job interview simulation. The methodology used to develop such a model combined a theoretical and an empirical approach. Indeed, the model is based both on the literature in Human and Social Sciences on social attitudes but also on the analysis of an audiovisual corpus of job interviews and on post-hoc interviews with the recruiters on their expressed attitudes during the job interview

    Nanoinformatics: developing new computing applications for nanomedicine

    Get PDF
    Nanoinformatics has recently emerged to address the need of computing applications at the nano level. In this regard, the authors have participated in various initiatives to identify its concepts, foundations and challenges. While nanomaterials open up the possibility for developing new devices in many industrial and scientific areas, they also offer breakthrough perspectives for the prevention, diagnosis and treatment of diseases. In this paper, we analyze the different aspects of nanoinformatics and suggest five research topics to help catalyze new research and development in the area, particularly focused on nanomedicine. We also encompass the use of informatics to further the biological and clinical applications of basic research in nanoscience and nanotechnology, and the related concept of an extended ?nanotype? to coalesce information related to nanoparticles. We suggest how nanoinformatics could accelerate developments in nanomedicine, similarly to what happened with the Human Genome and other -omics projects, on issues like exchanging modeling and simulation methods and tools, linking toxicity information to clinical and personal databases or developing new approaches for scientific ontologies, among many others

    A model for providing emotion awareness and feedback using fuzzy logic in online learning

    Get PDF
    Monitoring users’ emotive states and using that information for providing feedback and scaffolding is crucial. In the learning context, emotions can be used to increase students’ attention as well as to improve memory and reasoning. In this context, tutors should be prepared to create affective learning situations and encourage collaborative knowledge construction as well as identify those students’ feelings which hinder learning process. In this paper, we propose a novel approach to label affective behavior in educational discourse based on fuzzy logic, which enables a human or virtual tutor to capture students’ emotions, make students aware of their own emotions, assess these emotions and provide appropriate affective feedback. To that end, we propose a fuzzy classifier that provides a priori qualitative assessment and fuzzy qualifiers bound to the amounts such as few, regular and many assigned by an affective dictionary to every word. The advantage of the statistical approach is to reduce the classical pollution problem of training and analyzing the scenario using the same dataset. Our approach has been tested in a real online learning environment and proved to have a very positive influence on students’ learning performance.Peer ReviewedPostprint (author's final draft

    A fuzzy-based approach for classifying students' emotional states in online collaborative work

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Emotion awareness is becoming a key aspect in collaborative work at academia, enterprises and organizations that use collaborative group work in their activity. Due to pervasiveness of ICT's, most of collaboration can be performed through communication media channels such as discussion forums, social networks, etc. The emotive state of the users while they carry out their activity such as collaborative learning at Universities or project work at enterprises and organizations influences very much their performance and can actually determine the final learning or project outcome. Therefore, monitoring the users' emotive states and using that information for providing feedback and scaffolding is crucial. To this end, automated analysis over data collected from communication channels is a useful source. In this paper, we propose an approach to process such collected data in order to classify and assess emotional states of involved users and provide them feedback accordingly to their emotive states. In order to achieve this, a fuzzy approach is used to build the emotive classification system, which is fed with data from ANEW dictionary, whose words are bound to emotional weights and these, in turn, are used to map Fuzzy sets in our proposal. The proposed fuzzy-based system has been evaluated using real data from collaborative learning courses in an academic context.Peer ReviewedPostprint (author's final draft

    Requirements for Topology in 3D GIS

    Get PDF
    Topology and its various benefits are well understood within the context of 2D Geographical Information Systems. However, requirements in three-dimensional (3D) applications have yet to be defined, with factors such as lack of users' familiarity with the potential of such systems impeding this process. In this paper, we identify and review a number of requirements for topology in 3D applications. The review utilises existing topological frameworks and data models as a starting point. Three key areas were studied for the purposes of requirements identification, namely existing 2D topological systems, requirements for visualisation in 3D and requirements for 3D analysis supported by topology. This was followed by analysis of application areas such as earth sciences and urban modelling which are traditionally associated with GIS, as well as others including medical, biological and chemical science. Requirements for topological functionality in 3D were then grouped and categorised. The paper concludes by suggesting that these requirements can be used as a basis for the implementation of topology in 3D. It is the aim of this review to serve as a focus for further discussion and identification of additional applications that would benefit from 3D topology. © 2006 The Authors. Journal compilation © 2006 Blackwell Publishing Ltd

    A Process to Implement an Artificial Neural Network and Association Rules Techniques to Improve Asset Performance and Energy Efficiency

    Get PDF
    In this paper, we address the problem of asset performance monitoring, with the intention of both detecting any potential reliability problem and predicting any loss of energy consumption e ciency. This is an important concern for many industries and utilities with very intensive capitalization in very long-lasting assets. To overcome this problem, in this paper we propose an approach to combine an Artificial Neural Network (ANN) with Data Mining (DM) tools, specifically with Association Rule (AR) Mining. The combination of these two techniques can now be done using software which can handle large volumes of data (big data), but the process still needs to ensure that the required amount of data will be available during the assets’ life cycle and that its quality is acceptable. The combination of these two techniques in the proposed sequence di ers from previous works found in the literature, giving researchers new options to face the problem. Practical implementation of the proposed approach may lead to novel predictive maintenance models (emerging predictive analytics) that may detect with unprecedented precision any asset’s lack of performance and help manage assets’ O&M accordingly. The approach is illustrated using specific examples where asset performance monitoring is rather complex under normal operational conditions.Ministerio de Economía y Competitividad DPI2015-70842-
    corecore