28 research outputs found

    Relaxation Bounds on the Minimum Pseudo-Weight of Linear Block Codes

    Full text link
    Just as the Hamming weight spectrum of a linear block code sheds light on the performance of a maximum likelihood decoder, the pseudo-weight spectrum provides insight into the performance of a linear programming decoder. Using properties of polyhedral cones, we find the pseudo-weight spectrum of some short codes. We also present two general lower bounds on the minimum pseudo-weight. The first bound is based on the column weight of the parity-check matrix. The second bound is computed by solving an optimization problem. In some cases, this bound is more tractable to compute than previously known bounds and thus can be applied to longer codes.Comment: To appear in the proceedings of the 2005 IEEE International Symposium on Information Theory, Adelaide, Australia, September 4-9, 200

    LDPC codes associated with linear representations of geometries

    Get PDF
    We look at low density parity check codes over a finite field K associated with finite geometries T*(2) (K), where K is any subset of PG(2, q), with q = p(h), p not equal char K. This includes the geometry LU(3, q)(D), the generalized quadrangle T*(2)(K) with K a hyperoval, the affine space AG(3, q) and several partial and semi-partial geometries. In some cases the dimension and/or the code words of minimum weight are known. We prove an expression for the dimension and the minimum weight of the code. We classify the code words of minimum weight. We show that the code is generated completely by its words of minimum weight. We end with some practical considerations on the choice of K

    Woven Graph Codes: Asymptotic Performances and Examples

    Full text link
    Constructions of woven graph codes based on constituent block and convolutional codes are studied. It is shown that within the random ensemble of such codes based on ss-partite, ss-uniform hypergraphs, where ss depends only on the code rate, there exist codes satisfying the Varshamov-Gilbert (VG) and the Costello lower bound on the minimum distance and the free distance, respectively. A connection between regular bipartite graphs and tailbiting codes is shown. Some examples of woven graph codes are presented. Among them an example of a rate Rwg=1/3R_{\rm wg}=1/3 woven graph code with dfree=32d_{\rm free}=32 based on Heawood's bipartite graph and containing n=7n=7 constituent rate Rc=2/3R^{c}=2/3 convolutional codes with overall constraint lengths νc=5\nu^{c}=5 is given. An encoding procedure for woven graph codes with complexity proportional to the number of constituent codes and their overall constraint length νc\nu^{c} is presented.Comment: Submitted to IEEE Trans. Inform. Theor

    Graph Codes with Reed-Solomon Component Codes

    Get PDF

    The Minimum Distance of Graph Codes

    Get PDF
    We study codes constructed from graphs where the code symbols are associated with the edges and the symbols connected to a given vertex are restricted to be codewords in a component code. In particular we treat such codes from bipartite expander graphs coming from Euclidean planes and other geometries. We give results on the minimum distances of the codes

    New Classes of Partial Geometries and Their Associated LDPC Codes

    Full text link
    The use of partial geometries to construct parity-check matrices for LDPC codes has resulted in the design of successful codes with a probability of error close to the Shannon capacity at bit error rates down to 101510^{-15}. Such considerations have motivated this further investigation. A new and simple construction of a type of partial geometries with quasi-cyclic structure is given and their properties are investigated. The trapping sets of the partial geometry codes were considered previously using the geometric aspects of the underlying structure to derive information on the size of allowable trapping sets. This topic is further considered here. Finally, there is a natural relationship between partial geometries and strongly regular graphs. The eigenvalues of the adjacency matrices of such graphs are well known and it is of interest to determine if any of the Tanner graphs derived from the partial geometries are good expanders for certain parameter sets, since it can be argued that codes with good geometric and expansion properties might perform well under message-passing decoding.Comment: 34 pages with single column, 6 figure
    corecore