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The Minimum Distance of Graph Codes
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Abstract. We study codes constructed from graphs where the code
symbols are associated with the edges and the symbols connected to a
given vertex are restricted to be codewords in a component code. In par-
ticular we treat such codes from bipartite expander graphs coming from
Euclidean planes and other geometries. We give results on the minimum
distances of the codes.

Keywords : Graph codes, Euclidean and projective geometry.

1 Introduction

In 1981 Tanner [1] introduced a construction of error-correcting codes based
on graphs and since then a considerable number of results have been obtained
[2], [3], [4], [5] and [6]. The recent textbook by Roth [8] contains a thorough
presentation of the subject. In this paper we consider some classes of graph
codes and in particular codes from bipartite expander graphs based on finite
geometries. In this case the vertices of the graph are labeled by the points and
lines of a finite geometry, and there is an edge connecting a line vertex to any
vertex labeled by a point on the line. The code symbols are associated with the
edges, and the symbols connected to a given vertex are restricted to be codewords
in a component code over the field that is used for constructing the geometry.

In Section 2 we recall the construction of the codes and we give basic bounds
on their parameters. In Section 3 the lower bound on the minimum distance is
improved by considering the properties of eigenvectors of the adjacency matrix
of the graph. In Section 4 we specialize to bipartite graphs from finite geometries,
and in Section 5 we show that the bound obtained is tight for a special class of
graph codes. Section 6 contains the conclusion.



2 Basic Parameters and Bounds

We recall the construction of codes based on graphs.

2.1 General n-regular graphs

Let G = (V,E) be an n-regular connected graph, without loops and multiple
edges, with vertex set V and edge set E. Let |V | = m1, |E| = m1n

2 = L and
let C1 be a (n, k, d) code over the finite field Fq. We now construct a code C
of length L over Fq by associating Fq symbols with the edges of the graph ( in
some selected order) and demanding that the symbols connected to a vertex in
V shall be a codeword in C1. It is clear that C is a linear code of length L and
if we let K denote the dimension of C we have that L − K ≤ m1(n − k) and
therefore

Lemma 1. The rate R = K
L satisfy

R ≥ 2r − 1 , where r = k
n is the rate of the component code.

In the following we shall use the adjacency matrix matrix of the graph so we
recall the definition:

Definition 1. Let z1, z2, . . . , zm1 be the vertices of the graph G. The adjacency
matrix A = (aij), i, j = 1, 2, . . . ,m1 is defined by

aij =
{

1 if zi is connected to zj
0 else

2.2 Bipartite graphs

With bipartite graphs the construction is as follows. Let G = (V,E) be an
n-regular connected bipartite graph, without multiple edges, with vertex set
V = V1 ∪ V2 such that V1 ∩ V2 = ∅ and |V1|= |V2|= m. A bipartite graph is
n-regular if each vertex of V1 is connected to n vertices of V2, and each vertex
of V2 is connected to n vertices of V1.

Let C1 be a linear (n, k1, d1) code and C2 a linear (n, k2, d2) code both over
the finite field Fq. We now construct a code C of length L = mn over Fq by
associating Fq symbols with the edges of the graph and demanding that the
symbols connected to a vertex of V1 shall be a codeword of C1 and that the
symbols on the edges connected to a vertex of V2 shall be a codeword of C2.
More formally we assume an ordering of the edges E of G and for a vertex
u ∈ V let E(u) denote the set of edges incident with u . For a word x = (xe)e∈E
in FqL denote by (x)E(u) the subword of x that is indexed by E(u), that is
(x)E(u) = (xe)e∈E(u). Then the code C is defined by

C = {c ∈ FqL : (c)E(u) ∈ C1 for every u ∈ V1 and (c)E(u) ∈ C2 for every u ∈ V2}

It is clear that C is a linear code. Let K be its dimension. We recall from [3]



Lemma 2. The rate R = K
L of C satisfies

R ≥ r1 + r2 − 1 where r1 =
k1

n
and r2 =

k2

n

Proof: The number of linearly independent parity checks is at most m(n −
k1) +m(n− k2), so L−K ≤ m(n− k1) +m(n− k2) and since L = mn we get
the result. 2

Let x1, x2, . . . , xm be the vertices in V1 and y1, y2, . . . , ym the vertices in V2

and define the m×m matrix M = mij by

mij =
{

1 if xi is connected to yj
0 else

The adjacency matrix of the bipartite graph is then

A =
(

0 M
MT 0

)

2.3 Bounds on the minimum distance

In both cases above we have that each row of A has n 1s, the largest eigenvalue of
A is n, and the corresponding eigenvector is the all-ones vector. In the bipartite
case also −n is an eigenvalue of A, and the corresponding eigenvector has 1s
in the first half of the positions and -1 in the rest. It is known [8] that for a
connected graph −n ≤ λi ≤ n where λi is any eigenvalue and that the second
largest eigenvalue λ is closely related to the expansion properties of the graph.
Large random graphs and known families with good expansion properties have
λ = 2

√
n− 1 [7]. We quote the following bounds on the minimum distances.

Theorem 1. The minimum distance D of C satisfies

D ≥ dm1
d− λ

2(n− λ)
(1)

Theorem 2. The minimum distance D of C if d1 = d2 = d satisfies

D ≥ dmd− λ
n− λ

(2)

This bound was obtained by Sipser and Spielman in [6], and a slight modification
gives the bound in Theorem 1. For proofs see e.g. [8], Chapter 13.

For a complete n-regular graph, where m1 = n+ 1, then λ = −1, the bound
of Theorem 1 is

D ≥ d(d+ 1)
2

which indeed is the right bound for these codes.



We also note that in the case where the bipartite graph is complete, and
hence n = m and λ = 0, we get the usual bound for product codes.

For short component codes, where d ≤ λ, the bound is not useful, but we can
get a simple lower bound by the following consideration: Any vertex correspond-
ing to a nonzero codeword on the right side is incident with at least d nonzero
edges connecting to vertices in the left set, and these reach at least d(d − 1)
vertices in the right set with nonzero edges. If the girth of the graph is at least 6,
these vertices are distinct, and the minimum distance is always lower bounded
by

D ≥ d(d(d− 1) + 1) = d(d2 − d+ 1) (3)

If the girth is g ≥ 6, the argument can be repeated to give

D ≥ d(1 + d(d− 1)
∑ g/2−3

2
i=0 (d− 1)2i) if g/2 is odd

D ≥ d(d

g/2−2
2∑
i=0

(d− 1)2i) (4)

if g/2 is even. This bound also appears in Skachek’s thesis [11].
The potential of graph codes is related to the possibility of keeping the com-

ponent code fixed while the size of the graph increases. In this way the per-
formance can be improved with only a linear increase in decoding complexity.
However, for the codes C and C to have a reasonable rate, the component codes
must have high rate, and to get a positive bound from Theorem 1 and Theorem
2, the minimum distance of the component codes has to be larger than λ. The
combination of these requirements tends to make the resulting code too long
for any realistic application. Thus our emphasis in this paper is to improve the
analysis of codes of moderate block length derived from specific good graphs.

3 Improved Lower Bounds on the Minimum Distance

In Section 5 we demonstrate that the bound of Theorem 2 is actually tight in
certain cases. However, in some cases of interest, it is possible to get sharper lower
bounds. As a first case we consider component codes of different rates. Even
though the resulting bound on the minimum distance for fixed overall rate is
maximized by choosing component codes with equal distance (see comment after
the proof of Theorem 3), the performance with practical decoding algorithms is
improved by using unequal distances (as in the case of product codes). Several
generalizations of (2) to unequal distances were presented in [9], and [10].

Theorem 3. The minimum distance D of C satisfies

D ≥ md1
d2 − λβ
n− λβ

(5)

where β is the positive root of

β2(αn− d1) + βλ(1− d1

d2
) + d1 − n = 0



Proof: Let È be a set of edges in G that supports a nonzero codeword of C.
Let S be the subset of vertices in V1 incident with È and let T be the subset
of vertices in V2 incident with È. We will get the bound on D from a bound of
|È|. We follow the standard line of proof by defining a vector v as a modified
indicator vector for the sets S and T , and then apply a well-known result (see
e.g. [8], Lemma 13.6)

vTAv ≤ λvT v (6)

Equality holds if and only if v is an eigenvector associated with the eigenvalue
λ. We obtain improved bounds by adjusting the coordinates of v to values that
are consistent with the the properties of an eigenvector.

Suppose that |S| = a and |T | = αa, α ≥ 1, and let e be the average valency
of the vertices in S, thus e

α the average valency in T . Let v = (vi) be a vector of
length 2m where

vi =


1 if i ∈ S

− a
m−a if i ∈ V1 \ S
β if i ∈ T

− αβa
m−αa if i ∈ V2 \ T

where 0 < β ≤ 1. By balancing v we assure that the inner product of v with
the eigenvectors associated with the largest numerical eigenvalue n is 0. Since
the multiplicity of n is one it follows that v is in the space spanned by the
eigenvectors of A that are associated with the remaining eigenvalues of A. We
can directly calculate the left side of (6) since we know that the number of edges
connecting S and T is ae, and thus also the number of edges connecting S and
V2 \T , namely (n− e)a. Therefore the number of edges connecting V1 \S and T
is aα(n− e/α) and the remaining edges connect V1 \S and V2 \ T . We therefore
get

vTAv = 2maβ
(m−a)(m−αa) (me− naα)

The inequality (6) and this result give

2maβ
(m−a)(m−αa) (me− naα) ≤ λ(a+ (m− a) a2

(m−a)2 + aαβ2 + (m− αa) α2β2a2

(m−αa)2 )

and this by a straightforward calculation leads to the following bound on a

a ≥ m

α

2eβ − λ(1 + αβ2)
2βn− λ(1 + β2)

(7)

which holds for any positive β. The lower bound on a is met if and only if v is
an eigenvector associated with the eigenvalue λ, i.e. Av = λv, and a necessary
condition for this, where we only look at the upper part of A is

λ = eβ − (n− e) aαβ

m− aα
and βλ =

e

α
− (n− e

α
)

a

m− a



These two conditions lead to the following expressions for a

a = m
eβ − λ

α(βn− λ)
(8)

a = m
e
α − βλ
n− βλ

(9)

and by eliminating a we get the equation for β. It can be seen that there is a
positive solution less than 1.

Maximizing the right side of (7) with respect to β actually leads to the same
equation. Thus this is the sharpest lower bound that can be obtained by this
method. The bound can be met if there is a subgraph on S and T with exactly
valencies e and e

α (which we expect will rarely be the case). Since D ≥ ea the
lower bound increases with a and e, we thus get a new lower bound by choosing
α = e

d2
since the bound on a decreases with α and then choosing e = d1. 2

The bound in Theorem 3 improves the bounds obtained in [9] and [10]. They
are respectively

D ≥ m
n (d1d2 − λ

2 (d1 + d2)) where d1 ≥ d2 >
λ
2 .

and

D ≥ md1d2−λ
√
d1d2

n−λ

The comparisons are facilitated by using the approximation β ≈ 1/
√
α, which

can also be used to prove that for fixed rate, i.e. d1 + d2 fixed, the lower bound
is maximum for d1 = d2.

Example 1. As a case where Theorem 3 gives simple numbers we may take n =
16, λ = 4, d1 = 8, α = 2, and consequently β = 2/3. From (5) we get D ≥ 4m/5
compared to m/2 and 0.78m for the earlier bounds.

For Theorem 2 or 3 to hold with equality, the edges connecting vertices in S
to V2 \T must be equally distributed over these vertices (and similarly for edges
connecting T to V1\S). Clearly this is usually not possible because of the integer
constraints. In the proof of the following theorem we modify v by distinguishing
between the subsets of vertices that are connected to S or T and the remaining
vertices. For simplicity we only treat the symmetric case d1 = d2 = d.

We shall first derive the coordinates of a hypothetical eigenvector correspond-
ing to sets S and T of minimal (equal) size. To get a useful bound for smaller
d we denote the set of vertices in V2 \ T that are connected to S as U2 and
the set of vertices in V2 not in T or U2 as W2. Similarly V1 is divided into S,
U1, and W1. The eigenvector v′ is assumed to have coordinates 1 in positions
corresponding to S and T , u in positions corresponding to U1 and U2, and w
in the remaining positions. We get the smallest value of a by assuming that the
a(n−d) edges from S reach distinct vertices in U2, and that this is consequently
the size of the set. It now follows from the assumption that v′ is an eigenvector
with eigenvalue λ that u = (λ−d)/(n−d). Further |W1| = f = m−a(n−d+1),



and since the vector has to be balanced, w = a(d − λ − 1)/f . Let the number
of edges connecting a vertex in U1 to vertices in W2 be g. The number of such
edges incident with a vertex in W2, h, then follows. We get the final condition
by applying the eigenvalue calculation to a vertex in U1:

1 + (n− g − 1)
λ− d
n− d

+ gw = λ
λ− d
n− d

(10)

The remaining parameter in v′ should be selected to minimize a for a given value
of m. The minimum is always on the boundary of the range 0 ≤ g ≤ n− 1 and
0 ≤ h ≤ n. The condition h = n applies for λ + 1 < d down to a value close to
d = λ. For smaller d the limit is g = n− 1. Both conditions hold when

λ2 + λ(n− d)− d(n− 1) = 0 (11)

which clearly has a solution λ = d− ε for a small positive ε.
From the properties of such a potential eigenvector we get the following lower

bound:

Theorem 4. The minimum distance of C is lower bounded by D ≥ da where

m/a ≤ 1 + n− d+
(n− 1)(n− d)(λ− d+ 1)

n− d− λ2 + dλ
(12)

for (λ2 − n)/(λ− 1) < d ≤ λ+ ε and

m/a ≤ 1 + n− d+
(n− d)λ(λ− d+ 1)

n(d− λ)
(13)

for λ+ 1 ≥ d ≥ λ+ ε, where ε is a positive number derived below.

Proof: The expression (13) in the Theorem follows from (10). However to
arrive at a solution with positive parameters in the other case we must assume
(λ2−n)/(λ−1) < d, which also ensures that the denominator in (12) is positive.
To prove that the eigenvectors give actual lower bounds on the minimum distance
of the code we assume that a minimum weight codeword defines S and T as
before. We then construct the vector v using the value u from the eigenvector
and choose the value w′ of the remaining coordinates to get a balanced vector.
For d > λ we minimize the number of additional vertices, f , by letting each
have h = n connections to W2. The result then follows by choosing w to get
a balanced vector. For d = λ we get u = 0, and from h = n we directly get
m/a ≤ 2n − d. For d < λ the vector v is inserted in the inequality (5), we get
an inequality for a/m which depends on the parameter corresponding to g. The
minimum is again always on the boundary. Thus the only remaining variable is
a. Calculating the two sides of (5) we find

vTAv = ad+2a(λ−d)+a(n−g−1)(λ−d)2/(n−d)+2ag(λ−d)w+f(n−h)w2

and



λvT v = λa+ λa(λ− d)2/(n− d) + λfw2.

The terms containing a factor w or fw2 vanish for small a/m. We can then
reduce the inequality by the factor (λ−d), which is positive. We then find that the
inequality (5) cannot be satisfied for very small a as long as (λ2−n)/(λ−1) < d,
and consequently A cannot have eigenvalue λ. The smallest value of a that lets
(5) be satisfied gives equality and thus v is the eigenvector.

2

Theorem 4 improves on (2) and (3) when the graph is large and d is close to λ
as demonstrated in Example 4. As a case of particular interest we mention that
for d = λ, D ≥ dm/(2n− d). For very small d, the approach could be extended
by considering additional subsets of vertices (reached from S and T in several
steps), but the improvements would only apply to very long codes.

For a general n-regular graph we similarly split the set of vertices into S, U ,
and W , and the same derivation gives lower bounds on the minimum distance
that are half the values of (12) and (13).

4 Expander Graphs from Geometries

Certain bipartite graphs derived from generalized polygons have good expan-
sion properties [4], and hence the codes derived from these have large minimum
distances. The generalized polygons are incidence structures consisting of points
and lines where any point is incident with the same number of lines, and any line
is incident with the same number of points. A generalized N -gon, where N is a
natural number, defines a bipartite graph G = (V,E) that satisfies the following
conditions:

– For all vertices u, v ∈ V , d(u, v) ≤ N , where d(u, v) is the length of the
minimum path connecting u and v.

– If d(u, v) = s < N , then there is a unique path of length s connecting u and
v.

– Given a vertex u ∈ V there exists a vertex v ∈ V such that d(u, v) = N .

We note that this implies that the girth of the bipartite graph is at least 2N . Most
of this paper is concerned with graphs from finite planes, and in this context the
3-gons are derived from finite projective planes. (The definition and properties
of these can be found in [14], Chapter 2).

Let M be an incidence matrix for a projective plane over Fq with m =
q2 + q + 1 points with homogeneous coordinates (x : y : z) and q2 + q + 1 lines
with homogeneous coordinates (a : b : c) where a point is incident with a line if
ax+ by + cz = 0. The bipartite graph then has adjacency matrix

A =
(

0 M
MT 0

)
The graph is invariant to an interchange of the two sets of variables (x : y : z)
and (a : b : c).



Thus each row of A has q + 1 1s so the largest eigenvalue is q + 1 and the
corresponding eigenvector is the all-ones vector. The graph may be seen as a
simple expander graph: The eigenvalues are ±(q + 1) and ±√q (all real since A
is symmetric). (See [4].)

Starting from a vertex in the right set, q + 1 vertices in the left set can be
reached in one transition, and q(q + 1) vertices in the right set can be reached
from these vertices. The graph can be used to define a code by associating a
symbol with each edge and letting all edges that meet in a vertex satisfy the
parity checks of an (n, k, d) code, where n = q+ 1 . Thus the length of the total
code is

L = mn = (q2 + q + 1)(q + 1)

It is sometimes more convenient to let M be an incidence matrix for an
Euclidean plane [14] with m = q2 points, (x, y), and q2 lines of the form y =
ax + b. The lines of the form x = c are omitted, and in this way the graph is
invariant to an interchange of the two sets of variables.

Thus each row of the adjacency matrix has q 1s and the eigenvalues are ±q,
±√q and 0 [4].

All edges that meet in a vertex satisfy the parity checks of an (n, k, d) code
with n = q. Thus the length of the code is

L = q3

Example 2. For q = 4, the projective plane and (5, 3, 3) component codes give
codes of length L = 5 · 21 = 105. The minimum distance is lower bounded by
(2) and (3), which in this case give the same value

D ≥ 21 · 5 · (d− 2)/(n− 2) = 21

A subgraph with 7 vertices of degree 3 on each side can be found as a binary
sub-plane, and for this reason the lower bound is tight. The rate is lower bounded
by R ≥ 2 · 3/5 − 1 = 1/5, but later we shall see that the actual dimension is
29. If the vertices are labeled (x : y : z) and (a : b : c) where the last nonzero
coordinate is chosen to be 1, the vertex (α : 1 : 1) is connected to the 5 vertices
(α2 : 1 : 0), (α2 : 0 : 1), (0 : 1 : 1), (α : α : 1), (1 : α2 : 1). We can find a basis
for the component codewords by evaluating z2, yz, and y2.(See e.g. [16] p. 69).
Thus the generator matrix of the component code becomes

G =

0 1 1 1 1
0 0 1 α α2

1 0 1 α2 α


In particular the codeword (1, 1, 1, 0, 0) is part of the binary sub-plane.

It is possible to construct longer codes from generalized N-gons, but it is
known [12] that for N > 6 there are no N-gons with degree q + 1.



5 Minimum Distances of Codes from Geometries

For the specific codes constructed from graphs derived from finite geometries it
is possible to get tighter bounds on the minimum distances, and in some cases
we can determine the exact value. Such results provide some insight into the
structure of the code and the tightness of the bounds. The use of RS component
codes also serves to allow a combination of good rates and distances for moderate
code lengths.

When q = 2r, the field Fq contains a subfield with q′ = 2s symbols whenever
s divides r. With the chosen coordinates for the projective plane, the component
extended RS code has q′ + 1 positions with coordinates in the subfield. If the
minimum distance of the component code is q′ + 1, it has a codeword which is
1 in these positions and zero otherwise.

The projective plane contains a subfield projective plane over Fq ′. With our
choice of coordinates, such a plane may be found by taking the vertices that have
coordinates in the subfield and the edges incident to these vertices. It now follows
from the remark above that if q′ + 1 is the minimum distance of the component
code, the graph code has a codeword which is 1 on the edges corresponding to
the subfield plane and zero otherwise.

Since F2 is a subfield of any field of characteristic 2, there is always a sub-
plane with 7 points and lines, and thus for d = 3, the minimum distance of the
graph code is ≤ 21. In this case the lower bound (3) is satisfied with equality
and 21 is the actual minimum distance. Similarly the lower bound

(q′ + 1)(q′2 + q′ + 1)

is reached by a codeword on the sub-plane whenever the component code has
d = q′ + 1.

For q = 22r, F2r is a subfield, and in this case the codeword in the subfield
plane has weight satisfying both of the bounds (2) and (3). Thus it is seen that
this is the case where the two bounds coincide. Actually we have the more general
result:

Theorem 5. For q = 22r and any d, 2r + 1 ≤ d ≤ 22r there is a graph code
with generalized RS component codes such that the minimum distance D satisfies
Theorem 2 with equality.

Proof: It is well known that we can order the points of the projective plane in
a cyclic way as powers of a non-primitive element of Fq3. Similarly, within this
sequence the powers of an element of order 22r+2r+1 are the points in a subfield
plane (although these are not the points that have subfield coordinates). The
cosets of this cyclic subgroup are other versions of the smaller projective plane.
It follows that each line in the original plane is a line in one of the subplanes
and has exactly one point in each of the other subplanes. Thus by combining
the required number of these cosets we can get graphs of any required degree.
By assigning symbols to the edges and choosing the appropriate scaling of the
symbols in the component codes, we get a codeword with the weight indicated
by Theorem 2. 2



Example 3. For q = 16, the projective plane and component codes of length 17
give codes of length L = 4641. The minimum distance is lower bounded by

D ≥ 21d(d− 4)

On each side of the graph, the vertices can be divided into a set of 21 vertices
corresponding to the points of a subplane over q = 4, and 12 shifts of this set.
From unions of such sets we can construct the balanced eigenvectors needed for
the lower bound on the minimum distance to be tight. Thus at least for some
choice of the mapping of component code symbols on the edges of the graph,
the lower bound is tight for d ≥ 5.

In the Euclidean plane, we get a slightly higher value of the bounds for
d =
√
q+1, but (2) does not give an integer value. The configuration of d2−d+1

points and lines, which support minimum weight codewords in the projective
planes, do not exist in Euclidean planes. Thus for d =

√
q we get a ≥ q−√q+1,

but the bound is not tight. However, there may be codewords supported by the
q − 1 nonzero points of a subplane. Theorem 4 gives a = m

2n−d = q2

2q−√q , which
is clearly weaker in this case.

Bipartite graphs derived from generalized quadrangles produce longer codes
from small component codes. Thus the bound of Theorem 4 may be of interest
for such codes.

Example 4. Consider the generalized quadrangle over F8. In this case there are
585 nodes on each side of the graph. The second eigenvalue is

√
2q = 4. For

d = 3, the bound (4) gives at least 15 nonzero vertices, and a codeword of this
weight can be constructed by taking the F2 subset of the graph. For d = 4
the same bound gives 40 vertices, but from Theorem 4with n = 9 we find that
at least dm/14e = 42 vertices are nonzero. In this case the integer constraints
are not directly satisfied, and a corresponding eigenvector cannot exist, whereas
with a = 45 it may be possible to get a construction similar to that in the proof
of Theorem 4 with |W | = 7a.

6 Conclusion

We have derived a new bound on the minimum distance of some graph codes
and have analyzed some of these when the underlying graph comes from a finite
geometry.
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