89 research outputs found

    Let Opportunistic Crowdsensors Work Together for Resource-efficient, Quality-aware Observations

    Get PDF
    International audienceOpportunistic crowdsensing empowers citizens carrying hand-held devices to sense physical phenomena of common interest at a large and fine-grained scale without requiring the citizens' active involvement. However, the resulting uncontrolled collection and upload of the massive amount of contributed raw data incur significant resource consumption, from the end device to the server, as well as challenge the quality of the collected observations. This paper tackles both challenges raised by opportunistic crowdsensing, that is, enabling the resource-efficient gathering of relevant observations. To achieve so, we introduce the BeTogether middleware fostering context-aware, collaborative crowdsensing at the edge so that co-located crowdsensors operating in the same context, group together to share the work load in a cost- and quality-effective way. We evaluate the proposed solution using an implementation-driven evaluation that leverages a dataset embedding nearly 1 million entries contributed by 550 crowdsensors over a year. Results show that BeTogether increases the quality of the collected data while reducing the overall resource cost compared to the cloud-centric approach

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    Delivering IoT Services in Smart Cities and Environmental Monitoring through Collective Awareness, Mobile Crowdsensing and Open Data

    Get PDF
    The Internet of Things (IoT) is the paradigm that allows us to interact with the real world by means of networking-enabled devices and convert physical phenomena into valuable digital knowledge. Such a rapidly evolving field leveraged the explosion of a number of technologies, standards and platforms. Consequently, different IoT ecosystems behave as closed islands and do not interoperate with each other, thus the potential of the number of connected objects in the world is far from being totally unleashed. Typically, research efforts in tackling such challenge tend to propose a new IoT platforms or standards, however, such solutions find obstacles in keeping up the pace at which the field is evolving. Our work is different, in that it originates from the following observation: in use cases that depend on common phenomena such as Smart Cities or environmental monitoring a lot of useful data for applications is already in place somewhere or devices capable of collecting such data are already deployed. For such scenarios, we propose and study the use of Collective Awareness Paradigms (CAP), which offload data collection to a crowd of participants. We bring three main contributions: we study the feasibility of using Open Data coming from heterogeneous sources, focusing particularly on crowdsourced and user-contributed data that has the drawback of being incomplete and we then propose a State-of-the-Art algorith that automatically classifies raw crowdsourced sensor data; we design a data collection framework that uses Mobile Crowdsensing (MCS) and puts the participants and the stakeholders in a coordinated interaction together with a distributed data collection algorithm that prevents the users from collecting too much or too less data; (3) we design a Service Oriented Architecture that constitutes a unique interface to the raw data collected through CAPs through their aggregation into ad-hoc services, moreover, we provide a prototype implementation

    Anchor-Assisted and Vote-Based Trustworthiness Assurance in Smart City Crowdsensing

    Get PDF
    Smart city sensing calls for crowdsensing via mobile devices that are equipped with various built-in sensors. As incentivizing users to participate in distributed sensing is still an open research issue, the trustworthiness of crowdsensed data is expected to be a grand challenge if this cloud-inspired recruitment of sensing services is to be adopted. Recent research proposes reputation-based user recruitment models for crowdsensing; however, there is no standard way of identifying adversaries in smart city crowdsensing. This paper adopts previously proposed vote-based approaches, and presents a thorough performance study of vote-based trustworthiness with trusted entities that are basically a subset of the participating smartphone users. Those entities are called trustworthy anchors of the crowdsensing system. Thus, an anchor user is fully trustworthy and is fully capable of voting for the trustworthiness of other users, who participate in sensing of the same set of phenomena. Besides the anchors, the reputations of regular users are determined based on vote-based (distributed) reputation. We present a detailed performance study of the anchor-based trustworthiness assurance in smart city crowdsensing through simulations, and compare it with the purely vote-based trustworthiness approach without anchors, and a reputation-unaware crowdsensing approach, where user reputations are discarded. Through simulation findings, we aim at providing specifications regarding the impact of anchor and adversary populations on crowdsensing and user utilities under various environmental settings. We show that significant improvement can be achieved in terms of usefulness and trustworthiness of the crowdsensed data if the size of the anchor population is set properl

    A Survey on Mobile Crowdsensing Systems: Challenges, Solutions, and Opportunities

    Get PDF
    Mobile crowdsensing (MCS) has gained significant attention in recent years and has become an appealing paradigm for urban sensing. For data collection, MCS systems rely on contribution from mobile devices of a large number of participants or a crowd. Smartphones, tablets, and wearable devices are deployed widely and already equipped with a rich set of sensors, making them an excellent source of information. Mobility and intelligence of humans guarantee higher coverage and better context awareness if compared to traditional sensor networks. At the same time, individuals may be reluctant to share data for privacy concerns. For this reason, MCS frameworks are specifically designed to include incentive mechanisms and address privacy concerns. Despite the growing interest in the research community, MCS solutions need a deeper investigation and categorization on many aspects that span from sensing and communication to system management and data storage. In this paper, we take the research on MCS a step further by presenting a survey on existing works in the domain and propose a detailed taxonomy to shed light on the current landscape and classify applications, methodologies, and architectures. Our objective is not only to analyze and consolidate past research but also to outline potential future research directions and synergies with other research areas

    A Collaborative Mobile Crowdsensing System for Smart Cities

    Get PDF
    Nowadays words like Smart City, Internet of Things, Environmental Awareness surround us with the growing interest of Computer Science and Engineering communities. Services supporting these paradigms are definitely based on large amounts of sensed data, which, once obtained and gathered, need to be analyzed in order to build maps, infer patterns, extract useful information. Everything is done in order to achieve a better quality of life. Traditional sensing techniques, like Wired or Wireless Sensor Network, need an intensive usage of distributed sensors to acquire real-world conditions. We propose SenSquare, a Crowdsensing approach based on smartphones and a central coordination server for time-and-space homogeneous data collecting. SenSquare relies on technologies such as CoAP lightweight protocol, Geofencing and the Military Grid Reference System

    Energy-efficient Communications in Cloud, Mobile Cloud and Fog Computing

    Get PDF
    This thesis studies the problem of energy efficiency of communications in distributed computing paradigms, including cloud computing, mobile cloud computing and fog/edge computing. Distributed computing paradigms have significantly changed the way of doing business. With cloud computing, companies and end users can access the vast majority services online through a virtualized environment in a pay-as-you-go basis. %Three are the main services typically consumed by cloud users are Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). Mobile cloud and fog/edge computing are the natural extension of the cloud computing paradigm for mobile and Internet of Things (IoT) devices. Based on offloading, the process of outsourcing computing tasks from mobile devices to the cloud, mobile cloud and fog/edge computing paradigms have become popular techniques to augment the capabilities of the mobile devices and to reduce their battery drain. Being equipped with a number of sensors, the proliferation of mobile and IoT devices has given rise to a new cloud-based paradigm for collecting data, which is called mobile crowdsensing as for proper operation it requires a large number of participants. A plethora of communication technologies is applicable to distributing computing paradigms. For example, cloud data centers typically implement wired technologies while mobile cloud and fog/edge environments exploit wireless technologies such as 3G/4G, WiFi and Bluetooth. Communication technologies directly impact the performance and the energy drain of the system. This Ph.D. thesis analyzes from a global perspective the efficiency in using energy of communications systems in distributed computing paradigms. In particular, the following contributions are proposed: - A new framework of performance metrics for communication systems of cloud computing data centers. The proposed framework allows a fine-grain analysis and comparison of communication systems, processes, and protocols, defining their influence on the performance of cloud applications. - A novel model for the problem of computation offloading, which describes the workflow of mobile applications through a new Directed Acyclic Graph (DAG) technique. This methodology is suitable for IoT devices working in fog computing environments and was used to design an Android application, called TreeGlass, which performs recognition of trees using Google Glass. TreeGlass is evaluated experimentally in different offloading scenarios by measuring battery drain and time of execution as key performance indicators. - In mobile crowdsensing systems, novel performance metrics and a new framework for data acquisition, which exploits a new policy for user recruitment. Performance of the framework are validated through CrowdSenSim, which is a new simulator designed for mobile crowdsensing activities in large scale urban scenarios

    Spatial crowdsourcing with mobile agents in vehicular networks

    Get PDF
    In the last years, the automotive industry has shown interest in the addition of computing and communication devices to cars, thanks to technological advances in these fields, in order to meet the increasing demand of “connected” applications and services. Although vehicular ad hoc networks (VANETs) have not been fully developed yet, they could be used in a near future as a means to provide a number of interesting applications and services that need the exchange of data among vehicles and other data sources. In this paper, we propose a spatial crowdsourcing schema for the opportunistic collection of information within an interest area in a city or region (e.g., measures about the environment, such as the concentration of certain gases in the atmosphere, or information such as the availability of parking spaces in an area), using vehicular ad hoc communications. We present a method that exploits mobile agent technology to accomplish the distributed collection and querying of data among vehicles in such a scenario. Our proposal is supported by an extensive set of realistic simulations that prove the feasibility of the approach
    corecore