
ALMA MATER STUDIORUM · UNIVERSITÀ DI BOLOGNA

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

A Collaborative Mobile Crowdsensing system
for Smart Cities

Relatore:
Chiar.mo Prof.
Luciano Bononi

Presentato da:
Alain Di Chiappari

Co-relatori:
Dott. Luca Bedogni
Dott. Federico Montori

Sessione II
Anno Accademico 2015/2016

My crime is that of curiosity. My crime is that of judging people by what

they say and think, not what they look like.

[The Hacker’s Manifesto, The Mentor]

Contents

1 Introduction 7

2 Background 11
2.1 Environmental monitoring . 11

2.2 CoAP . 11

2.3 Geofencing . 15

2.4 Military Grid Reference System . 17

3 Related Works 21
3.1 Mobile Crowdsensing . 21

3.2 Applications . 29

4 System Architecture 33
4.1 Central Coordination Unit . 36

4.2 Mobile Application . 38

5 Implementation 43
5.1 Central Coordination Unit . 43

5.1.1 Database . 43

5.1.2 Server . 45

5.2 Sensing Client Android . 49

5.2.1 The View . 50

5.2.2 Sensors Measurements . 52

5.2.3 CoAP and Communication . 54

5.2.4 Timer and Geofencing . 54

3

CONTENTS CONTENTS

6 Test and evaluation 57

7 Future developments 61
7.1 More and different devices . 61
7.2 Performances and consumption . 61
7.3 Scalability . 62
7.4 Privacy, security, and reliability . 62
7.5 Stakeholders and Marketing . 63

8 Conclusions 65

List of Figures

1.1 Smart city . 8

2.1 CoAP packet . 12
2.2 Typical CoAP architecture . 14
2.3 Geofencing modalities . 15
2.4 UTM grid . 17
2.5 UTM grid examples . 19

3.1 MCSC taxonomy . 22
3.2 MCS Categorization . 24

4.1 SenSquare architecture . 36
4.2 Android App architecture . 39

5.1 Android View Main . 51
5.2 Android View Settings . 51
5.3 Android View geofences(1) . 55
5.4 Android View geofences(2) . 55

6.1 Test update time . 58
6.2 Test update amount . 59

5

Chapter 1

Introduction

Nowadays words like Smart City, Internet of Things, Environmental Awareness sur-
round us with the growing interest of Computer Science and Engineering communities.
Services supporting these paradigms are definitely based on large amounts of sensed
data, which, once obtained and gathered, need to be analyzed in order to build maps,
infer patterns, extract useful information. Everything is done in order to achieve a better
quality of life.
Just to illustrate the problem, a large number of people around the world are exposed
to high levels of noise pollution, causing serious physical illnesses and influencing neg-
atively productivity and social behavior. Countries, such as the United Kingdom and
Germany, have started monitoring noise pollution [1] to face the problem starting from
data.
The advantages that could come from an intelligent approach to sensing, gathering and
analyzing environmental or social data are numerous and heterogeneous. They ranging
from intelligent transportation system, using traffic congestion monitoring and real-time
parking maps; environmental monitoring, with air and noise pollution level sensing; tar-
geted and location-based advertising, using GPS or other location systems; furthermore,
other interesting solutions are becoming possible, such as the construction of detailed
and real-time maps upon WiFi and telephone cell coverage.

A successful society and city management relies also on efficient monitoring of urban
and community dynamics for decision and policy making [2]. In order to achieve this,

7

8 1. Introduction

traditional sensing techniques like Wired or Wireless Sensor Network (WSN), need an
intensive usage of distributed sensors to acquire real-world conditions. Despite various
and growing research, the high installation and maintenance cost, the low spatial cov-
erage, as well as hard algorithmic issues [3], these techniques have never been largely
deployed in urban contexts.
An enormous help predictably comes from mobile devices like smartphones, tablets
and other more recent technological gadgets such as smartwatches and fitness bands. In
fact, over the past ten years the evolution of mobile phones (mainly), have originated
new solutions and services [4]. These devices are equipped with several sensors such as
(two or more) camera, microphone, GPS, accelerometer, digital compass, light sensor,
proximity sensor, temperature, barometer, humidity and it will be early the normality to
have health-monitoring sensors as well [5].
Crowdsensing is a paradigm aiming to gather sensing measurements directly from people’s

Figure 1.1: A Smart City portrayal [6]

mobile devices in order to provide clients (people themselves, institutions, governments,
companies and so on) with advanced services. Mainly these data will be used for ana-
lysis and information extraction [4]. The looser energy constraints, the greater memory
and storage and the extremely higher computational and network communication power
of mobile devices compared to the standard little WSNs sensors, are remarkable fea-

9

tures, leading crowdsensing along the way of success. Furthermore, geofencing and
activity recognition often represent, among the others, essential technologies support-
ing this emergent paradigm.

Toward meeting these challenges, in this document, I propose SenSquare, a Crowdsens-
ing approach based on smartphone and a central coordination server for time-and-space
homogeneous data collecting.
The rest of the document is organized as follows. In Chapter 2 the whole set of main
technologies and the paradigms that leverage this project will be briefly described.
Chapter 3 introduces many related MCS works both on classification (and taxonomy)
and applications in different scenarios. In Chapter 4 we will see the system architecture,
especially how it have been envisaged and the main concepts on which, SenSquare re-
lies on. After that, in Chapter 5, the implementation has been described more in detail,
with related examples for each part of the system. In Chapter 6, it is briefly illustrated
a simple test physically carried on, to evaluate the performances comparing SenSquare
with an ideal non-smart approach. Finally, Chapter 7 introduces many future improve-
ments and Chapter 8 makes a brief overview conclusion on the whole work.

Chapter 2

Background

2.1 Environmental monitoring

Sensing and environmental monitoring were born with the necessity to collect data
to observe and control environmental, productivity, technical and social parameters,
mainly for military and ecosystem monitoring purposes.
As mentioned earlier, a common solution adopted so far is the deployment of a sensor
network, especially in the recent form of Wireless Sensor Networks, also thanks to pro-
tocols and technologies such as 6LoWPAN, ZigBee, Ultra Wide Band and so on.
WSN, for his conception, has the need to link tens to thousands of radio transmitting
sensors and cover areas that are difficult to wire for charging and interconnecting. The
challenges in designing this kind of network involve the management of resources. One
of the main areas of application unquestionably is the environmental monitoring for
personal, institutional and scientific purposes. Crowdsensing comes in handy to extend
and improve different kind of sensing applications and services where an infrastructure
support is difficult or expensive to maintain.

2.2 CoAP

The Constrained Application Protocol (CoAP) is a transfer protocol for constrained

nodes and networks, such as those that will form the Internet of Things. Similarly to

its older and heavier cousin HTTP, CoAP uses the REST architectural style. Based

11

12 2. Background

on UDP and unencumbered by historical baggage, however, CoAP aims to achieve its

modest goals with considerably less complexity [7].
CoAP provides a request/response interaction model between application endpoints,

supports the built-in discovery of services and resources, and includes key concepts of

the Web such as URIs and Internet media types. CoAP is designed to easily interface

with HTTP for integration with the Web while meeting specialized requirements such

as multicast support, strongly low overhead, and simplicity for constrained environ-

ments [8].

In these two statements, we can find all the main CoAP core’s characteristics. Let us
see more about this protocol and why a section of this document is dedicated to it.

CoAP was conceived mainly for IoT devices, that are battery-operated, constrained in
computational power, RAM and storage capacity. Often protocols and applications are
not designed to be optimized for running under these requirements, hence there are
many performance issues.
Especially in wireless environments, many packet losses will occur, getting worse the

Figure 2.1: CoAP packet [9]

already critical power consumption of mobile devices. Furthermore, wireless standards
need fragmentation, aggravating packet loss and adding other weight for headers.
Wireless devices and applications need power-efficient protocols, but existing protocols
have typically been designed without power-efficiency criteria. In low-power wireless
systems, the radio transceiver is typically the most power-consuming component [10].
Usually, in WSNs, a first and common approach is the tuning of the radio duty cycle,

2.2 CoAP 13

sometimes with the protocols support. These methods allow to maintain a low power
consumption, organizing the send/receive tasks all in the on-period, and in the idle time
turning off (or decreasing power of) the radio transceivers.
Several devices are becoming connected, in order to build automation systems, mobile
personal gadgets, cellular terminals and smart grids, considering that under the push of
IoT, it is expected over the next decade, a growing to trillions of embedded devices [7].
Under this consideration, it has to be said that 6LoWPAN and ZigBee are a remarkable
breakthrough on the network side.
Unfortunately, networking alone is not enough to support the modern approach based on
the Web Architecture with REST paradigm, especially in the form of HTTP protocol,
which provides through simple URIs, both information and services.
CoRE WG1, an IETF Working Group, has been working in these years with the pur-
pose of making possible REST architecture for devices and networks with constrained
requirements. Their main result is the Constrained Application Protocol, CoAP [7, 8].
REST architecture is so crucial that represent the Web as we know it today. Key fea-
tures of REST are the following. First of all, beside the central client-server model, is
the resources concept, everything is accessible through a URI. Synchronous request/re-

sponse and stateless approach. Layered system and possibilities for deploying of cach-

ing, proxying and redirecting, seamlessly for clients. HTTP implements this concept
through synchronous request/response methods such as GET, PUT, POST and DELETE
to access on-server resources.

CoAP is conceived to keep all the handy REST features in HTTP, decreasing the cost for
network and memory usage. In order to save batteries and to be lightweight CoAP has
a fresh approach to the REST paradigm with a limited amount of requested resources.
To do that, CoRE WG has built the protocol on the following bases.
Primarily, CoAP uses UDP with a simple message layer for lost packets retransmission
and a little four bytes (binary) header within it. A common request employs from ten to
twenty bytes for the header [7].
Clearly, all the main request methods of HTTP are kept (GET, POST, PUT, DELETE)

and the response codes as well, but encoded in one byte only. CoAP uses URIs to
identify resources, with the schema coap[s]://{scheme-specific-part} as HTTP does.

1https://trac.tools.ietf.org/wg/core/trac/wiki

14 2. Background

Figure 2.2: A typical architecture using CoAP [9]

Basic CoAP messages work better for small payloads, for instance for sensing data
and similar [7]. Anyway, if the application requests larger payloads, UDP supports it
through IP fragmentation, but CoAP prefers to exploit “Block” options dividing the data
into multiple packets and keeping the server stateless.
An immediate advantage of this HTTP-like approach is the possibility to develop a
CoAP IoT, or similar, architecture, connected with an existing HTTP service, through a
simple proxy as a translate-middleware, “speaking” CoAP on the client side, and HTTP
on the server side.
Further CoAP characteristics are, first, the Observer pattern, where the client can specify
an interest in a GET request, afterward, the server will push information requested asyn-
chronously without establish a whole publish and subscribe mechanism. Second, CoAP
supports Machine to Machine communication, through resource discovery following a
new IETF approach with the well-known resource path /.well-known/core (RFC5785).
Today, security on CoAP is demanded to the use of the protocol on the top of DTLS,
similarly to SSL/TLS for HTTP.

In SenSquare I used CoAP mainly to address the problem of high power consump-
tion, due to the huge amount of requests for each sensing data. The kinds of requests
used in this project perfectly fit with the CoAP purposes. In fact, as we can see in a

2.3 Geofencing 15

moment, there are only little fragments of json both for data sending and little more
features. Furthermore, in future developments, it is expected to use homogeneously the
same approach for development on Arduino and other embedded platforms, keeping the
examined advantages.

2.3 Geofencing

Figure 2.3: Geofencing modalities [11]

The core of SenSquare is conceived using CoAP for communication purposes and,
among the others, geofencing technology to support sensing spatial homogeneity on the
client, as described in the next chapters. This section wants to introduce and describe
this location-based technology and the offered possibilities. In this document I am go-
ing to refer with geofencing according to the Android implementation [12], given that it
has been used in SenSquare development.

In [13] we can find that context-aware computing is referred to mobile computing in

16 2. Background

which users employ many different mobile, stationary and embedded computers over

the course of the day. In this model computation does not occur at a single location in a

single context, as in desktop computing, but rather spans a multitude of situations and

locations covering the office, meeting room, home, airport, hotel, classroom, market,

bus, etc.
The challenge is to exploit the user life’s dynamic to devise a new class of application,
in which the core is based on the users’ current context. These new systems have to
recognize the correct context in which they are, triggering the right behavior based on
space, time, relationships, device and so on.
Context-aware applications, mainly, have to react to the environment answering the
questions: Where you are. Who you are with. What resources are nearby. [13]. With
geofencing we can answer the first question, moving forward to a new kind of location-
based, context-aware applications.

A geo-fence is a virtual delimited area, in two-dimensional space, generally shaped as a
circle identified by a central position (latitude/longitude located) and a radius. The ma-
jor utility, using this technology, is the possibility to set user/developer-defined actions
to trigger in one or more of the following situations:

• ENTER. When the user enters a geofence.

• EXIT. When the user gets out of a geofence.

• DWELLING. When the user is moving inside a geofence for a defined continu-
ous amount of time.

Thanks to these features location-based services become proactive supporting smart no-
tifications, action triggering and so on. Mobile devices, in this way, are able to act
within an intelligent environment supporting the user by adapting its capabilities to-
wards the situational needs [14], or in our case, creating an automatic system for trigger
transmission of sensing data based on the user geographic position.

2.4 Military Grid Reference System 17

2.4 Military Grid Reference System

SenSquare space homogeneous sensing system relies on MGRS (UTM) coordinates.
Let us see, in this paragraph, what is this reference system and why it has been chosen
for SenSquare, instead of using the common geographic coordinate system.

For our purposes, independently from the granularity level and the size of the area,
we do not need, primarily, the exact (centimeter-accuracy) position whence the data
come from. It is crucial, instead, the possibility to associate a sensing data to this area,
according to the kind of sensor we are monitoring and the granularity is requested from
stakeholders. In other words, for instance, if we are monitoring the pressure level in
hPa, we are not looking for the exact latitude-longitude identified position, we are,
rather, aiming to estimate the pressure level in a kilometer-sized region.

GPS or other position provider services (WiFi fingerprinting, Telephony Cells estim-

Figure 2.4: UTM grid example with zone 19 [15].

ate) give us position information in terms of latitude and longitude (and seldom height as

18 2. Background

well). For most purposes, this kind of system is quite enough, however, when we need to
plot position information on maps or we have to make further calculations using them,
it is definitely useful to work with the corresponding grid on a map projection [15].
In our case, it has been chosen the Universal Transverse Mercator (UTM), one of the
most widely used map projection and grid system. According to the U.S. Department
of Defense decision, I used the Military Grid Reference System (MGRS) applied on the
UTM grid.
UTM exists since 1947 when the United States Army adopted the ellipsoidal transverse
Mercator projection and the associated grid UTM system in order to get rectangular
coordinates on large-scale military maps covering almost the whole world [15]. UTM
became a widely and popularly system used not only for military purposes but for civil
uses as well, such as general surveying and mapping and navigation.

UTM divides the Earth into 60 zones, each generally 6 degrees wide in longitude.
Omitted minor exceptions, the zones are numbered from 1 to 60 starting at 180 degrees
longitude and proceeding east. The effort in creating the grid was in keeping zones
narrow enough to lower distortion and scale variation within an acceptable level.
MGRS comes from UTM grid system (and UPS, Universal Polar Stereographic grid
system for polar regions). MGRS is used to map the entire planet and uses a different
labeling system from the UTM one.
To better explain MGRS, let us start with an example.
We can take the valid MGRS address 33TUF 81384 62754, which identifies a position
in the ancient Medieval Caste of Gaeta, in Italy, as we can see in Figure 2.5. It is
composed as follows:

33T Grid Zone Designator.

UF 100km square identifier.

81384 62754 location 1m resolution, 81384 easting, 62754 northing.

2.4 Military Grid Reference System 19

Figure 2.5: In left-right and top-bottom order. MGRS grid with 10m, 100m, 1km, 10km,
100km and GDZ grid on the same location.

20 2. Background

33TUF GZD and 100km precision grid square ID.

33TUF 8 6 10km precision.

33TUF 81 62 1km precision.

33TUF 813 627 100m precision.

33TUF 8138 6275 10m precision.

33TUF 81384 62754 1m precision.

The main advantage coming from MGRS is due to the infinite possible GPS coordin-
ates, especially when calculus or manipulation is involved on position values. UTM
divides the Earth into squares, and MGRS approximates each position identifying it
according to different levels of accuracy. This is quite useful for sensing task, as we
mentioned earlier.
MGRS, hence, divides the earth surface into 10km, 1km, 100m, 10m and 1m side length
square, conforming to the specified precision, therefore the digits of the last part of the
address could be 0, 2, 4, 6, 8, 10.
Due to the application of 2-dimensional geometry on 3-dimensional space itself, some
adjacent square to a grid junction is clipped, in these cases area are better described by
a polygon.
Finally, it is needed to know that when it is lowering on precision scale, MGRS needs
truncation (on both easting and northing) rather than rounding, and that the southwest
corner of the square, or polygon in general, is the identifying point for the whole area,
even when the polygon is clipped [15].

Chapter 3

Related Works

3.1 Mobile Crowdsensing

To enter the world of Crowdsensing, it could start summarizing the more general concept
of crowdsourcing, a paradigm impelling people to collaborate for a common project,
with or without a monetary profit and without the necessary legal belonging to a com-
pany or association. Classic examples of crowdsourcing are open-source programming
projects, the famous Wikipedia platform, the growing universe of crowdfunding for fin-
ance independent (and not) projects and so on.

Mobile Crowdsensing (MCS) is a paradigm extending the vision of participatory sens-
ing in a crowdsourcing vision by leveraging both participatory sensory data from mobile
devices and user-contributed data from mobile social networking services [2], fusing
machine and human intelligence in this collaborative process. It allows the increasing
number of mobile device users to get and share local knowledge information to collect
for real-time or future analysis.
From a pragmatic perspective, in [16] we can find that MCS is the ability to acquire

local knowledge through sensor-enhanced mobile devices - e.g., location, personal and

surrounding context, noise level, traffic conditions, and in the future more specialized

information such as pollution - and the possibility to share this knowledge with the so-

cial sphere, healthcare providers, and utility providers.

According to a formal definition in [2], MCSC (Mobile Crowd Sensing and Computing)

21

22 3. Related Works

Figure 3.1: MCSC taxonomy [2]

3.1 Mobile Crowdsensing 23

is a new sensing paradigm that empowers ordinary citizens to contribute data sensed or

generated from their mobile devices and aggregates and fuses the data in the cloud for

crowd intelligence extraction and human-centric service delivery.
Concluding this review around the possible definitions, in [17] we have a human-centric
perspective of MCS, which is Mobile crowd sensing is a new paradigm that takes ad-

vantage of pervasive mobile devices to efficiently collect data, enabling numerous large-

scale applications. Human involvement is one of the most important features, and hu-

man mobility offers unprecedented opportunities for both sensing coverage and data

transmission. [...] Compared to traditional sensor networks, human mobility offers

unprecedented opportunities for both sensing coverage and data transmission. Simil-
arly in [4] Mobile crowdsensing refers to a broad range of social and community-based

sensing paradigms employing mobile devices and wireless networks. Different from

conventional sensing solutions using specialized networks of sensors, mobile crowd-

sensing aims to leverage human intelligence to collect, process, and aggregate sensing

data using individuals’ mobile devices, so as to realize a higher quality and more effi-

cient sensing solution.

It is possible to discern different types of MCS according to different points of view.
A first kind of classification is done upon the user consciousness in collecting data [18]:

• Participatory sensing is referred to an MCS paradigm in which users are com-
pletely involved in the application running lifetime, deciding how, where, when
and what to sense or get data for the system.

• Opportunistic sensing require, instead, an unconscious usage of the application,
which always runs in the background, opportunistically getting data without user
involvement.

Looking at the kind of transmission support, we can find another classification [17,18]:

• Infrastructure-based transmission uses infrastructure support for Internet con-
nection like cellular networks (3G/4G). In this MCS paradigm, there are the clas-
sic problems related to the constraining economic cost and bandwidth usage.

• Opportunistic transmission enables, instead, transmission of data through short-
range radio communication support, such as WiFi, Bluetooth, ZigBee. Opportun-

24 3. Related Works

istic transmission avoids the costs related to telephony company subscription but
suffers intermittent connection like any other best-effort service.

In [19] we can find a categorization related to analysis time:

• Offline analysis, the most common and older solution provide for the input ana-
lysis process in deferred time. Classic examples are transportation activities in
urban space, health, and physical assessment, environmental parameters monitor-
ing.

• Online analysis, on the other hand, provide a real-time analysis, this is pretty use-
ful in scenarios like traffic monitoring, public safety, and collaborative searching.

Figure 3.2: MCS Categorization [2]

In [2] other classification are identified according to:

• Data generation mode:

– Mobile Sensing exploits the sensing functionalities (included antennas, mi-
crophones etc.) of the device, providing a data completeness related to its
technological level.

– Mobile Social Networking approaches leverage on user spontaneous contri-
bution, through direct intervention or through other platforms such as social
networks.

3.1 Mobile Crowdsensing 25

• Sensing style:

– Explicit Sensing is the sensing style in opportunistic/participatory modalit-
ies, where the user is aware to sensing task and data collection is the main
goal of the service. In this case, the sensing task is explicit to the user.

– Implicit Sensing performs a kind of hidden data collection, the user is fo-
cused on the usage of the platform for social interaction. In this case, the
data generation is a secondary task and so it is implicit for the user.

• Volunteer organization:

– Group sensing is referred to a modality in which user are loosely or op-
portunistically organized (for instance for space or time criteria) in order to
address a data collection for a shared problem. An example for this could
be a group of random people passing, over the time, in a precise zone of the
city which needs a sensing task for a set of environmental parameters.

– Community sensing is based on the “community” concept, according to the
Cambridge Advanced Learner’s Dictionary community is the people living

in one particular area or people who are considered as a unit because of

their common interests, social group or nationality. It expected from this
modality a high-quality of data, for the nature of community itself, who
perform tasks in a higher interactive and spontaneous way. For example, a
college community can be treated as a unity in the task of monitoring their
school quality, supposing the existence of a common goal, the better life in
their structure.

– Urban sensing has often a lower quality level of data compared to the previ-
ous models, despite the broad spread. This is due to a low fostering in using
the service and to a scarce sense of belonging to community.

SenSquare is designed as a mixed form of participatory and opportunistic sensing; users
can, independently, take decisions about which sensor data they want to share and which
stakeholder can benefit of. Regarding transmission type both the modalities described
are used, in order to achieve a better coverage sensing map, anyway, on cutting-edge

26 3. Related Works

devices is possible to autonomously choose which kind of connection technology al-
lows for each single application. The project is also designed to support both offline
and online analysis, considering that all the data are immediately sent to the server and
directly accessible through specific API or REST calls. The data generation belongs to
the first class, exploiting all the available sensors. The sensing style is explicit and the
system is designed for an urban audience, because of the Smart Cities nature itself.

In [20] the mobile cyber-physical systems (CPS) are discussed as integrated comput-

ing and communication systems that process and react to sensing data from the external

physical environment and transform the way humans interact with the physical world,
enhanced with mobile features and exploiting strongly the Crowdsensing paradigm.
They also identify a classification upon the kind of MCS application:

• Vehicular Social Networking which uses the regular and predictable drivers’
routes to collect data in order to measure traffic congestion, identify the real-time
best route and detect accidents supporting a quicker medical intervention.

• Environmental Monitoring, not only in an implicit way but also exploiting the
awareness, leveraging on the user’s cooperativeness, especially when the system
is deployed for communities.

• Disease Report and Crisis Management is one of the most interesting and ap-
propriate field for MCS spreading, considering the richness of sensors on mo-
bile devices, for instance, the Ministry of Health in Cambodia uses GeoChat, a

crowdsourced sensing interactive mapping application, for disease reporting and

staff alerts which enable rapidly escalated responses to potential outbreaks. Also,

Ushahidi has been used to crowdsource and map crisis information from multiple

sensing data streams in real-time through mobile devices, so as to coordinate

field teams’ activities and provide remote support from outside an earthquake

zone [20–22].

We can also find a further classification, as described in [5]:

• Smart Cities exploit the high density and heterogeneous population to improve

city efficiency by deploying smarter grids, water management systems and ulti-

3.1 Mobile Crowdsensing 27

mately the social progress. [...] People can actively participate in sensing cam-

paigns to make their cities safer and cleaner.

• Road Transportation, beyond the real-time traffic information, uses MCS, in
particular through GPS, accelerometer, and gyroscope in order to quickly identify
and repair uneven roads.

• Healthcare & Wellbeing can help both for real-time first aid and long-term epi-
demiological or medical research thanks to collecting a big amount of data, also
linked to activity recognition systems as well. Besides this, data collection and
analysis has interesting applications for fitness and wellbeing in general [23, 24].

• Marketing/Advertising is a cutting-edge field of study for the impressive eco-
nomic returns. MCS fused with activity recognition and location management
(context-aware solutions) generate mobility routes and patterns incredibly use-
ful for companies and vendors in order to adapt commercial strategies to social
behaviors.

Let us move on which are the key features, and related issues, affecting MCS design
and development. Outstanding obstacles in the growing MCS expansion, are identified
for instance in [16] and [19]. Let us proceed in a short review about them.
First of all, the heterogeneous mobile devices and sensing hardware population leads
to enormous difficulties from designing to deployment. Just the different operating sys-
tems installed on the devices, both for the brand and version itself, make up a hindrance
for a larger spread of applications, dealing with incompatibility and portability prob-
lems. An application lifecycle is already a hard task in itself, support and maintenance
for so different platforms is onerous in time and, often, in money as well.
Later, another issue regards the burden of an MCS installed app for the users. Without
considering that for each MCS system, today, a user has to install a separate and specific
application, it is clear that battery lifetime is a well-known open problem for smartphone
and similar devices. Users are also conscious that each application steals processing
and memory capacity to other apps; modern operating systems, on the other hand, are
designed for self-contained products, making inter-application data sharing difficult be-
cause of justifiable security reasons.
Finally, the increasing network bandwidth demand is a big issue for a large scale

28 3. Related Works

MCS. Emerging applications, not only for sensing, require more and more data to send
and receive; this is primarily due to the nature of the data, often multimedia streaming
such as video and music, and later for the intensive network usage requested for better
accuracy, performance and so on.
In [19] the proposed solution relies upon three principles: separation of data collection
and sharing from application logic, removal of application installation from the deploy-
ment and decentralization of processing and data aggregation.
My solution through SenSquare adopts this last principle, combined with a lightweight
communication protocol and an intelligent server logic.

I decided to briefly debate the crucial issue of User Motivation individually. This
problem is faced in many works such as [16], [17], and deeply in [25], which treats
the economic incentive for the MCS user (as data provider) and in [26], in which the
authors build up a detailed dissertation upon the fostering problem.
Mainly when users’ devices have a limited amount of resources (battery, memory, com-
putation), or the information requested are particularly sensible (position, photos, med-
ical parameters), users properly demand a kind of remuneration, incentive or benefit to
installing and use the MCS application. For these reasons construct a fostering system
or an economic model is crucial for the system success, mainly because, for definition,
Crowdsensing request a large number of “volunteers”.
Often an economic incentive is a right way, especially when the volunteer organization
model is the Urban one. The incentive could be directly monetary, sale-based, company
fidelity-based (in SenSquare this is the designed way) and so on. Marketing in this field
has no limits.
Another fostering model is related to Gamification1. The user application, in this
case, could be developed using the main Gamification principles, for instance provid-
ing badges, levels, goals, ranking. This fostering modality mainly attracts the youngest
segment of population, and has a great success on workplaces although is, currently, a
recent research field yet [27–29].

1Gamification is the application of game-design elements and game principles in non-game contexts.
Gamification commonly employs game design elements which are used in so-called non-game contexts in
attempts to improve user engagement, organizational productivity, flow, learning, employee recruitment
and evaluation, ease of use and usefulness of systems, physical exercise, traffic violations, and voter
apathy, among others. [from Wikipedia, https://en.wikipedia.org/wiki/Gamification]

3.2 Applications 29

User participation represents one of the most important elements in MCS. Considering
the consumption of resources, the personal data transfer and the exposing to potential
threats, the fostering modality and the decision of the called minimum price is a well-
known problem to address properly.

As we saw so far, WSN or other sensor networks require specific hardware, protocols,
and applications to cover a large area for monitoring of the environment, roads, social
behaviors and so on. Performances are heavily dependent on the number of sensors and
a scarce coverage leads to a low quality of the sensing task results [25]. Smartphones
and mobile devices in general are born with embedded sensors, growing in number and
quality as time passes. Wireless and 3G/4G connectivity, GPS, activity recognition,
provide with sensors a perfect mixture for an MCS exponential growing. Crowdsensing
is the perfect tool for address sensing task in an urban environment to support a more
general Smart City environment, considering problems and characteristics that make it
unique.

3.2 Applications

Collaborative Internet of Things is, always more, a growing field of study, gaining in-
terest as solution breaking down the barriers of isolated IoT ecosystems.
As I mentioned before, like it happens for MCS, also, in general, IoT-based architec-
tures suffer a low inter-architecture interoperability. In [30] a general comprehensive
paradigm is proposed. MCS is a perfect candidate to become part of this revolution,
thanks to a little amount of requested resources, an easier deployment and a large pop-
ulation, which under the correct stimulus, can collaborate with restrained costs.
We saw that MCS is a recent concept that exploits the sensing (and not only) capacity
of personal mobile devices, such as smartphones, in-vehicles facilities, and wearables,
giving us a potentially huge amount of device (or manually) produced data. When this
data, after the appropriate gathering and analysis, become information, the common in-
terests on it are definitely remarkable.
Although the above considerations upon the theory of MCS, the term is common re-
ferred, in literature, on the two paradigms described earlier: participatory sensing
(crowdsourcing in an user-awareness way) and opportunistic sensing (not involving

30 3. Related Works

the user in the sensing tasks). MCS approach is conceived and implemented to map
phenomena of common interest, which need a significant amount of data, in a hetero-
geneous way regarding the different points of view to describe events/situations, and in
a homogeneous way regarding the as larger as possible sensing sampling. This has been
demonstrated to be efficient in several fields of application where the IoT is already the
key technology set that tackles the most challenging tasks [31].

Most of the remarkable applications of MCS are designed to support Smart Cities
concept. By now it has become straightforward that the increasing density of popu-
lation with related problems make big cities management a strenuous assignment for
institutions. Solutions for Smart Cities are heterogeneous and range on the entire spec-
trum of city and personal life.
Environmental monitoring is the natural application of MCS paradigm applied to Smart
Cities, considering that most devices natively support environmental sensors. Several
applications, such as SecondNose [32] and studies like [33] and [34], have been pro-
posed in order to improve the environment conditions, starting from data sensing col-
lecting, sometimes trying to sensitize directly the interested population. In Park Here!

an example of advanced smart parking systems is provided, through which users can be
informed in real-time about the presence of vacant parking spots close to their destin-
ations, in order to reduce the high level of stress and decreasing air pollution. Often,
activity detection is used for this purpose as well, based on gyroscopes, acceleromet-
ers [35], sonars [36], magnetometers [37] and on-board cameras. Other crowdsensed
user’s transportation mode detection in smart cities is also interestingly addressed in
[38,39] regarding activity-recognition system itself and in [40] implementing a location
and activity-based mobile advertisement service.
Especially in Smart Cities, MCS can reduce the costs associated with large-scale sens-
ing, providing at the same time additional human-related data [5].

As just mentioned with Park Here! Road Transportation is an highly potential field of
application for many MCS applications [41]. Institutions and transport authorities can
strongly benefit of real-time traffic information [42], constructing fine and large grain
maps in order to support traffic engineering, roads and cycle lanes construction and so
on.

3.2 Applications 31

Healtcare has even found advantages in MCS, such as in [43], in which patients are
collecting measurements about their daily activities in order to provide a significant
dataset to be analyzed by doctors. This study, in particular, is focused on a specific
annoying disorder called tinnitus.

Finally, Marketing & Advertising is relying on MCS for new and effective kinds of
strategy. As mentioned above, Geospot [40] is a perfect example of mobile advertising
system which uses sensing for activity recognition and geofencing. Stakeholders as
vendors and companies, in general, are definitely interested in human traces and pat-
terns to implement context-aware solutions.

The common approach in designing an MCS architecture is to divide the system into
two interdependent pieces according to a client-server paradigm. A cloud backend nor-
mally expects data in a particular format from its respective sensing client, which, this
last, can only talk with its respective server. In this way, there is any kind of vertical
interoperability among different application, neither a common protocol is established
in order to achieve a similar result.
Is straightforward what kind of waste this approach causes. Some architectural attempts
have been proposed, for instance, McSense [26], a centralized MCS system that exploits
monetary rewards to make the backend entity assign sensing tasks to the users. In this
document, through SenSquare, we are going to address these issue as well, in order to
give a better solution for this interoperability purposes.

As addressed in the previous section, we know that social and monetary incentive is
essential to push the user toward a better collaboration [26, 44]. It is clear, indeed, that
MCS is effective and efficient if and only if the penetration of the application is as wide
and permeating as possible.
Exploiting monetary rewards (refunds and actual payments) is an immediate way to
foster a massive collaboration, in [45] it is described an approach based on micro-
payments, whereas in [25] is based on reverse auction dynamic price with virtual
participation credit and recruitment algorithm. In this reverse auction, participants want
to sell their sensed data to an auctioneer, which, wants to buy the least expensive meas-

32 3. Related Works

urements. To make this process equal, after such cycle winners raise their prices and
losers lower theirs.
Like gamification does, other approaches address the fostering issue relies on the per-
sonal interest of users, or anyway, on their entertainment using the application.

Chapter 4

System Architecture

This chapter illustrates the SenSquare architecture, describing how it has been conceived
and outlining the modules which compose the whole system.
SenSquare is designed to be a star topology system, in which sensing clients can only
communicate with a central server, hence there is no link of any kind among them. The
central server is called Central Coordination Unit (CCU). CCU is the only element
in the system designated to have reasoning capabilities or any kind of intelligent beha-
viour.
As just mentioned, client device entities are the sensing elements of SenSquare. They
rely on a minimum set of sensing hardware, one or more current location retrieval
(and geofencing) mechanisms and network connection to communicate with CCU. Such
devices can be smartphones, tablet, wearable and in the near future, embedded devices.
This is the basic components of MCS SenSquare system.

Take part in this scenario also the stakeholders, a different type of client in SenSquare,
we can call them interested clients. Stakeholders orchestrate the meaning of the sensing
data, in order to achieve their singular and specific purposes. To do that, they can push
rules to the CCU, specifying sensor, time and space related parameters as described in
detail, shortly. Users, equipped with their personal sensing client devices, can subscribe
to one or more stakeholders offering data in exchange for some kind of revenue, previ-
ously set among the parts and depending on the respective needs.
CCU main task consists in gather and store, in a database, sensing measurements com-

33

34 4. System Architecture

ing from sensing clients. Crucial, right after this incoming direction part, is the process
to determine the correct answer for the client. What sensing clients expect from the
server, after a measuring sending, are the time and space update criteria, related to that
sensor.
More in detail, a sensing client continuously gets measurement updates from its sensors.
Whenever it sends this values (one communication for each sensor update), CCU replies
to them with a time interval update condition (time after the new measurement for that
sensor has to be re-sent) and a space update condition (a zone, in which the client cur-
rently is, outside which the new measurement for that sensor has to be re-sent). It is
clear that the space condition is worthless for non-mobile devices.
It is needed to better specify the time and space conditions mentioned above, consisting
in the core aspect of MCS SenSquare intelligence. These conditions are based on the
set of stakeholders (or system default) inserted rules. How the set is composed, that is,
which of all rules stored in the CCU’s database, belong to a set, depends on kind of
sensor, user’s position, current time, user’s subscription. Let us see why.
First of all, a rule is defined by a tuple, defined as follows:

< stakeholderID, sensorType, addrMGRS, areaMGRSGran

spaceSampleGran, timeSampleGran, timeExpire, countExpire >

• stakeholderID is the identifier of the stakeholder who inserted the rule and that
owns it.

• sensorType is type of sensor, requested to monitor.

• addrMGRS is a valid MGRS address, it has no meanings without the next field.

• areaMGRSGran gives a semantic to the previous field. If addrMGRS identifies
a specific 1m precision location, this field is the mask to apply on it, giving so the
zone which is requested to monitor. Making an example, if the address is 33TUF

81384 62754 and the mask is 2, the MGRS area within the rule is valid is 33TUF

81 62.

• spaceSampleGran defines the size of the area within a single measurement for
a rule is valid. The sensing client will receive a zone for geofencing exit trigger

35

related to this value, hence, it will have to send the new measurement for the given
sensor, once exited the zone it currently is in. If spaceSampleGran is 4, sampling
within this area has to be 10m sized. Obviously, this field can not contain a value
lesser than areaMGRSGran, because the sampling would concern a bigger square
than the monitored area itself.

• timeSampleGran, similar to the previous field, defines a time period in seconds,
after which the sensing client has to send the new measurement for the given
sensor.

• timeExpire defines until when, as timestamp, the rule have validity.

• countExpire defines up to how many measurements, the rule have validity.

The Sensing Infrastructure is defined as the set of all mobile and static devices par-
ticipating actively in this scenario. Being crowdsensing, part of the general crowd-
sourcing concept, it can be assumed that sensing clients are mostly private users, shar-
ing data and consequently battery, computation, memory, and storage for our purposes.
Users, in this architecture, can submit voluntarily their data, choosing also the stake-
holders that can take benefit from them. As mentioned at the beginning of this chapter,
the voluntaries expect a reward from this exchange, on the other hand, stakeholder cli-
ents request a minimum of reliability from the data that users provide. As described
in the related works chapter of this document, there are many strategies to face these
problems and we leave them as future enhancements, complementaries to this project
although as interesting as it.
Depending on what and how many stakeholders the users subscribe (instead of just
keeping the default ones), device resource consumption could be onerous. Thereby, it is
needed, some mechanism to avoid this problem, especially with numerous subscriptions
and stakeholders’ rules in the database. CCU is delegated to handle this task.

Before explaining how this problem is addressed, let us consider an example.
An internet service provider decides to develop a crowdsourcing city WiFi for the sub-
scriber clients. Each customer, accepting the terms and conditions, will share a part of
its home connectivity with other customers of the same provider. On the other side,
these customers can take benefit of this sharing when they are not at home, using the

36 4. System Architecture

other customers’ connectivity. To deploy this system in the first city, the provider com-
pany, first want to map all the territory in terms of WiFi coverage. They, hence, need
the average wireless throughput with a precision of 10 meters and a rate of few hours in
all the zones they want to map. They also want the BSSID and the RSSI of the sensed
access points, to evaluate the signal strength in as many points as possible. After in-
serting the rule on the CCU’s database and created an effective fostering plan to get
subscriptions, they have to wait for the proper amount of data to take strategy decisions.

Figure 4.1: System architecture. The red arrow represent the redundancy avoidance
through the rules in the same area.

4.1 Central Coordination Unit

One of the core goals of SenSquare, as seen so far, is to reduce as much as possible
the energy consumption of the sensing clients. On the computational side, it has acted
concentrating most of the burden generated by the ecosystem on the CCU, giving thus,
the complete control of the scenario to it. I developed the python CoAP/REST server
together with a MySQL database, for rules and sensing data, as the CCU.

4.1 Central Coordination Unit 37

Most of the computational cost is due to responses that clients expect to receive after
a measurement sending. This response includes a timer and an area, that, as we stated
before, characterize when and where the next update for the given sensor is required.

Timer Different sensor measurements need to be updated according to different timers.
It is clear that the ambient temperature or pressure value, do not require frequent up-
dates, being a slow changing number. Instead, for noise level, it is needed to have always
fresh data in order to monitor, conveniently, frequently changing noisy locations.

Zone Assuming mobility on sensing clients, and the MGRS zone labeling introduced
above, SenSquare uses zone constraint to achieving a homogeneous sampling of the ter-
ritory. We know the MGRS hierarchically divides the word into squares (or polygons)
uniquely identified with the encoding seen earlier. A great advantage of MGRS comes
from exploit this encoding applying a mask to scale or descend in the space hierarchy.
Considering an amount of digits (on both easting/northing last parts), according to the
mask, identifies different sized square in the hierarchy, always containing the full en-
coded location (1m square zone).

For instance, Bologna belongs to the part of Italy having Grid Zone Identifier 32T,
and the city itself is assigned the 100km sided square 32T PQ. A device sends to CCU a
latitude/longitude position that server translates into the MGRS identifier 32TPQ 57314

29575 (always the maximum precision after translation). We can infer that the device is
in Bologna, and that it belongs, among the other, to the 10km sided square 32TPQ 57

29 (mask = 2 => 1km).

When the CCU calculates which zone has to be sent to the client in response, acts
as follows. First, it takes all the rules related to the right sensor, both default ones and
stakeholders subscribed too. Among them are taken only those contain the client posi-
tion. Finally, considering that there still could be multiple rules satisfying these criteria
and that we want to avoid useless energy consumption on the client side, is reckoned
just one zone. The zone chosen is always the smallest sticking out from the rules, that
is the one which satisfies, with the finest grain, all the other rules requesting that sensor
measurement.

38 4. System Architecture

Similarly, the shortest timeout (finest grain in time) is chosen to fit all the others.
Let us define more formally the tricky task of zone calculus. CCU apply for each rule
the operation addrMGRS||areaMGRSGran (where || is the mask operation), to ob-
tain the validity area in these rules. Then, it identifies if the client position belongs to
them and searches for the littlest granularity requested in these rules, identifying so, the
square in the hierarchy satisfying all the rules, consequently. Granularity goes from 0
to 5, where 0 means “remove all the digits east/north” and keep a 100km sided square,
and 6 means “keep all the digits east/north” and keep a 1m sided square.
Summarizing, two rules R1 and R2 are both applicable to the same measurement if:

{R1, R2}.timeExpire ≥ currentTime

R1.sensorType = R2.sensorType

R1.validityArea ⊆ R2.validityArea

,

where validityArea is the result of mask operation and ⊆ the geographical inclusion
between square areas.
If a set R1, . . . , Rn of rules are all applicable in this way, server can answer the client
with the area defined by max{R1.spaceSampleGran, . . . , Rn.spaceSampleGran} and
timer
min{R1.timeSampleGran, . . . , Rn.timeSampleGran}.
Once obtained the minimum square, as described, is calculated a circular area, that is
the circumscribed circle for this square, using the half of the diagonal as the circle’s
radius. The center (in latitude and longitude coordinates) and the radius (in meter, of
this circle) is finally sent to the client.

4.2 Mobile Application

Smartphones, body gadgets, but also car and other IoT devices, are increasingly a
powerful set of environmental sensors too. They compose a perfect scenario for an
MCS scenario. Here, I am going to present my deployment for a demonstrative mobile
application sensing client, developed in Android environment.
Once started, the application checks the availability of the sensors we want to use for our
crowdsensing purposes. Then, it starts all the routines to obtain constantly the necessary

4.2 Mobile Application 39

Figure 4.2: Mobile Application architecture

40 4. System Architecture

measurements of these sensors, most of which, are approachable only through asyn-
chronous requests. For debugging purposes (nowadays temperature/humidity sensors
are seldom included) I also developed a stub to provide mock measurements for un-
available sensors in order to fully test the system. When a measurement is available, it
is sent to the CCU through a lightweight CoAP request encapsulate in a JSON format,
including other information, as we are going to see in the Implementation chapter. When
the application performs the first start, all the data are sent almost simultaneously.
When the CCU receives a request containing the JSON encoded data, as we saw in the
previous section, it calculates a timer and a circle sized area identified through a center
and a radius. Another JSON with these data is sent, as CoAP response, to the client.
The client now can decode the JSON extracting timer to set the re-sending of the sensor
measurement, and similarly, the geofencing area outside the which the re-sending will
be triggered as well. We know that this circle area is calculated taking the finest grain
rule matching the conditions as seen. Once taken the designed MGRS square delimiting
the validity of the measurement, the center will be the MGRS 1 meter precision address
(translated into latitude/longitude coordinates) and the radius will be the half of the di-
agonal. Specifying, geofencing uses circle areas, hence CCU gets the circumscribed
circle for each of the MGRS square areas, taking their half diagonals as radius for the
client.

The sensors we consider in SenSquare are relative humidity, temperature (both hard
to find on existing devices), barometer, light. Other measurements are ambient noise
(through microphone), RSSI/BSSID/SSID of personal and public WiFi infrastructural
networks the user is connected to, operator/RSSI/throughput of the cellular network the
user is connected to. The latter is a kind of OpenSignal1 crowdsource stations monit-
oring. Throughput measuring, differently from the most of other measurements which
happen constantly or asynchronously by the operating system, is done only when re-
quested, reducing the power consumption and network utilization, that can, also, be
monetarily expensive.

Each user can also subscribe one or more stakeholders. If the user does not choose
to do that, CCU will answer to its requests only using the default rules (for example

1https://opensignal.com/about/

4.2 Mobile Application 41

those inserted by the institution owning the system). Currently, each user can only
choose to concede its sensing data in full to stakeholders subscribed. One of the fu-
ture enhancement will be the possibility to choose each single sensor measurement for
each stakeholder, giving to the user a finer grain permission setting. For instance, a
user is willing to concede WiFi and cellular network data to its telephone company in
exchange for some benefits, but he will not provide other kinds of measurements for the
least privilege principle.

Chapter 5

Implementation

As we have seen in this document, SenSquare is composed of two main parts, a Central
Coordination Unit (a MySQL database and a running Python server) and, currently,
an Android sensing client. First of all, it has been designed and developed a basic
Android application able to get all the requested measurements in different ways. Once
this “draft” application was ready to run, the focus has been moved to the database
implementation, with tables for rules, stakeholders, measurements and so on. The next
step it has been the Python server, core of the system. It links the client measurements to
the semantic logic and the database storing and retrieving. Finally, it has been developed
the communication modules for both client and server in CoAP as debated along this
document.

5.1 Central Coordination Unit

5.1.1 Database

The database, initially based on a simple SQLite to start the first test, it has been finally
developed in MySQL and is, currently, composed of the following seven tables.

• sensors contains all the sensors we are interested in, comprehending their related
information, such as a numeric identifier (mostly corresponding to the android
sensor ID), name, unit of measure.

43

44 5. Implementation

Sensor ID Unit
Light 5 lux

Pressure 6 hPa

Humidity 12 %

Temperature 13 ◦C

Ambient Noise 100 ND

WiFi 101 dB

Telephone 102 dB

• all sensor data contains all the client sensing data coming from real environ-
mental sensors (light, temperature, relative humidity, pressure) and microphones.
This data are all homogeneous in terms of fields, they have a unique identifier,
a user and sensor type identifier, a location (both in latitude/longitude and in
MGRS), a timestamp and obviously, a value.

• all tel data contains all the data relative to telephony cells sensed by clients.
They have the same field of the previous table, besides specific value like op-
erator name, the strength of the signal, the technology used (2G, 3G, 4G) and
throughput.

• all wifi data have the same characteristic of all tel data. but the values are the
SSID, BSSID, the signal strength relative to the user current connection (if con-
nected to a WiFi network).

• stakeholders contains all the information about entities, authorities, companies
involved in the system as clients of the sensed raw data.

• rules contains all the rules as described in the previous chapter.

• subscription contains, finally, the references of the client subscriptions to the
stakeholders. In a future development, this table will be enhanced with a finer
grain filtering on the specific sensor to monitor.

5.1 Central Coordination Unit 45

5.1.2 Server

The whole server is developed in Python 3.4.3. It has been decided to rely on this
language to evade from the common choices as PHP is, keeping a stable and high per-
formance server-side. Python (especially in the chosen version 3) provides also a huge
amount of libraries, and finally, supplies an easier way to rapidly build, even complex,
architectures, with small constructs and highly readable code.
The server relies on many specific libraries, which have been chosen to address in an
easier way the following issues.

• MySQL Connector is a standardized database driver for Python platforms and
development1. This library is used to interface the server with the MySQL data-
base in the following easy manner:

1 i m p o r t mysql . c o n n e c t o r
2 conn = mysql . c o n n e c t o r . c o n n e c t (u s e r =” u s e r ” , password =” passw ” ,

d a t a b a s e =” db ” , h o s t =” h o s t ”)
3 c u r s o r = conn . c u r s o r ()
4 r e s = s e l f . c u r s o r . e x e c u t e (”SELECT ∗ FROM t a b l e ”)

• MGRS coordinate conversion for Python is one of the rare libraries to deal with
the Military Grid Reference System according to the UTM grid. This library is
a wrapper for Python, actually written in C, compatible with the commonest and
widest used CPython implementation (for Python3). This is an example, from the
official documentation2 about how it works in a nutshell:

1 >>> i m p o r t mgrs
2

3 >>> l a t i t u d e = 4 2 . 0
4 >>> l o n g i t u d e = −93.0
5

6 >>> m = mgrs .MGRS()
7 >>> c = m. toMGRS (l a t i t u d e , l o n g i t u d e)
8 >>> c
9 ’ 15TWG0000049776 ’

10

1https://dev.mysql.com/downloads/connector/python/
2https://pypi.python.org/pypi/mgrs

46 5. Implementation

11 >>> d = m. toLa tLon (c)
12 >>> d
13 (41 .999997975127997 , −93.000000000000014)
14

15 >>> y = ’ 321942 .29N’
16 >>> yd = m. dmstodd (y)
17 32 .328414
18

19 >>> d , m, s = m. ddtodms (3 2 . 3 2 8 4 1 4)
20 >>> d , m, s
21 (3 2 . 0 , 1 9 . 0 , 4 2 . 2 9 0 4 0 0)

• Aiocoap3 is a great Python implementation of Constrained Application Protocol
for our communication purposes, the fundamental part of this project to respect
low battery consumption constraints. Aiocoap uses asyncio4 as the module that
provides infrastructure for writing single-threaded concurrent code using coroutines,

multiplexing I/O access over sockets and other resources, running network clients

and servers, and other related primitives.

• Other common and standard libraries concern random, time, json and strings op-
erations.

The server consists of four modules, each of which fulfills specific duties, let us see
more in detail.

Module - Query.py

This module provides an easy interface to database for other modules. It will be needed
just to instantiate an object of Query class to rapidly get access to all the possible
queries, from the basic CRUD operations to the most complex rule filtering calls.

1 ### WHICHEVER MODULE ###
2 from Query i m p o r t ∗
3

4 queryObj = Query ()
5 s u b S t a k e s = l i s t (queryObj . g e t S u b s c r i b e d S t a k e h o l d e r s (d a t a [’ u s e r ’]))
6 queryObj . c l o s e ()

3https://github.com/chrysn/aiocoap
4https://docs.python.org/3/library/asyncio.html

5.1 Central Coordination Unit 47

When a Query object is instanced, a connection with the database is established as
follow:

1 ### CLASS QUERY ###
2 c l a s s Query :
3 conn = None
4 c u r s o r = None
5

6 d e f i n i t (s e l f) :
7 # Read c o n n e c t i o n i n f o r m a t i o n s from a f i l e
8 db , use r , passw , h o s t = t u p l e (map (lambda x : x . s t r i p (”\n ”) . s p l i t (

” : ”) [1] , open (” a u t h . t x t ” , ” r ”) . r e a d l i n e s ()))
9 s e l f . conn = mysql . c o n n e c t o r . c o n n e c t (u s e r = use r , password =passw ,

d a t a b a s e =db , h o s t = h o s t)

Now we can interface with the database through this object, finally, it is important to
call the close() method, which terminates the connection with the database, closing the
cursor and committing possible updates.

1 ### CLASS QUERY ###
2 d e f c l o s e (s e l f) :
3 t r y :
4 s e l f . c u r s o r . c l o s e ()
5 s e l f . conn . commit ()
6 s e l f . conn . c l o s e ()
7 e x c e p t mysql . c o n n e c t o r . E r r o r a s e r r :
8 p r i n t (”DB ERROR: {} ” . f o r m a t (e r r))

This module contains many queries mostly for selecting, inserting, deleting rules, stake-
holders, measurements and other complex specific queries functional for other modules.
This is the most in-constant-evolution module of the project.

Module - utils.py

This module contains all the functions useful for other modules. Most of these functions
regard tricky calculations for spatial and time constraints. MGRS conversion, spatial-
belonging check, zone and timer calculations to answer the clients are implemented
here.
For instance, the following is an interesting function, illuminating in understanding how
the MGRS mask, debated above, is implemented to check sensing client belonging.

48 5. Implementation

1 ### MODULE UTILS ###
2 d e f b e l o n g s t o (zone , coord , g r a n u l a r i t y) :
3 # D i v i s i o n i n ”32T PQ 12345 12345”
4 g r i d s q z o n e , b i g s q z o n e , x zone , y zone = zone [: 3] , zone [3 : 5] ,

zone [5 : 1 0] , zone [1 0 : 1 5]
5 g r i d s q c o o r d , b i g s q c o o r d , x coord , y c o o r d = coord [: 3] , coo rd

[3 : 5] , coord [5 : 1 0] , coord [1 0 : 1 5]
6 r e t u r n g r i d s q z o n e == g r i d s q c o o r d and \
7 b i g s q z o n e == b i g s q c o o r d and \
8 x zone [0 : g r a n u l a r i t y] == x c o o r d [0 : g r a n u l a r i t y] and \
9 y zone [0 : g r a n u l a r i t y] == y c o o r d [0 : g r a n u l a r i t y]

Module - routines.py

This module, currently, only contains a routine function to remove all the old rules. This
means that all the rules with an expire time minor than the current timestamp will be
deleted from the database. In the same way, all the rules with a number of related meas-
urements greater than the requested amount in the countExpire field, will be deleted.
It has been planned, as future works, a series of different routines implementing a ma-
chine learning system. This system will be in charge of optimize the entire system
performance, operating mainly on the rules, adapting in this way the sensing client be-
havior in an intelligent and efficient way.

Module - server.py

This is the main module of the server, it is the point of access for sensing clients and
the brain of the whole system, coordinating resources, database access, receiving and
sending data.
As we have seen, first of all, it have been created the resource tree, identifying the
exposed services:

1 ### MODULE SERVER ###
2 d e f main () :
3 [. . .]
4 # Resource t r e e c r e a t i o n
5 r o o t = r e s o u r c e . S i t e ()
6 r o o t . a d d r e s o u r c e ((’ s e n s i n g s e n d ’ ,) , Sens ingSend ())

5.2 Sensing Client Android 49

7 r o o t . a d d r e s o u r c e ((’ g e t s u b s c r i p t i o n s ’ ,) , G e t S u b s c r i p t i o n s ())
8 r o o t . a d d r e s o u r c e ((’ u p d a t e s u b s c r i p t i o n s ’ ,) , U p d a t e S u b s c r i p t i o n ()

)
9 r o o t . a d d r e s o u r c e ((’ c a l c t h r o u g h p u t ’ ,) , Ca l cThroughpu t ())

10 a s y n c i o . a sync (a i o c o a p . C o n t e x t . c r e a t e s e r v e r c o n t e x t (r o o t))
11 a s y n c i o . g e t e v e n t l o o p () . r u n f o r e v e r ()

For each resource, it has been developed a class providing the service requested. All the
calls are made through POST CoAP.

• SensingSend accept a JSON from the client containing a sensor measurement
with the related location, time, user and sensor identifiers fields. After the rule ex-
traction mechanism described previously, in this class it will be crafted a response
with zone and timeout parameters for the next client update.

• GetSubscriptions answers the client with the list of stakeholders previously sub-
scribed, given the user identifier. In future developments, this class will also add
to the response which sensors for each stakeholder the user accepted the data
access.

• UpdateSubscription accept a JSON containing the list of stakeholders the user
subscribed. Once obtained this information, the database will be consequently
updated.

• CalcThroughput only contains a mock method to accept a certain amount of no-
sense data and answer an empty response. The semantic of this call is expressed
on the next sensing send call for a cellular sensing measurement, which also will
contain the value of the throughput estimated on the client-side, knowing the size
of the sent packet (header plus body) and the time within which the process is
completed.

5.2 Sensing Client Android

As mentioned in the previous chapters, my mobile application implements a mixed form
of participatory sensing because of user’s possibility to choose the stakeholders (and in
future the single measurements too) to subscribe, and opportunistic sensing because

50 5. Implementation

of the background running nature of the applications itself. A user, once subscribed the
preferred stakeholders, can forget the application running in background, while it senses
and communicates with the CCU seamlessly.
Currently, the sensing client is available on Android platforms, compiled with SDK ver-
sion 23, which also is the minimum target version. As we can in see in the build.gradle

file it have been used many libraries.

1 d e p e n d e n c i e s {
2 compi l e f i l e T r e e (d i r : ’ l i b s ’ , i n c l u d e : [’ ∗ . j a r ’])
3 t e s t C o m p i l e ’ j u n i t : j u n i t : 4 . 1 2 ’
4 compi l e ’com . a n d r o i d . s u p p o r t : appcompat−v7 : 2 3 . 4 . 0 ’
5 compi l e ’com . g oo g l e . a n d r o i d . gms : p lay−s e r v i c e s : 9 . 0 . 2 ’
6 compi l e ’com . a n d r o i d . s u p p o r t : appcompat−v7 : 2 3 . 1 . 1 ’
7 compi l e ’ de . u z l . i tm : ncoap−c o r e : 1 . 8 . 3 −SNAPSHOT ’
8 compi l e ’ o rg . s l f 4 j : s l f 4 j −a n d r o i d : 1 . 7 . 2 1 ’
9 compi l e ’com . a n d r o i d . s u p p o r t : m u l t i d e x : 1 . 0 . 0 ’

10 }

Just mentioning two libraries among them, Google Play Services, has been fundamental
to obtain easy access to location services like device position and Geofencing, and Spit-
Firefox5, based on CoAP Java implementation nCoAP6 that allows us, instead, to im-
plement the CoAP client functionalities for Android applications.

Android development highly relies on asynchronous calls and tasks. Many methods
are invoked through an Intent call where a specific event is triggered or a preparatory
task is completed. This is true especially in this case, where most of the work is done,
for instance, when a CoAP request is answered, a sensing measurement is ready and
it is given to us from the system, when a Geofencing event is triggered because the
user is entered/exited/dwelling into/from/within an area. Navigate into the code, also
because of this intrinsic aspect could be tricky, let us more in detail how the application
is structured.

5.2.1 The View

As a case of study, the application is composed of two simple screens.
5https://github.com/okleine/spitfirefox
6https://github.com/okleine/nCoAP

5.2 Sensing Client Android 51

Figure 5.1: MainActivity Figure 5.2: StakeholdersActivity

52 5. Implementation

• MainActivity, the first one, in Figure 5.1, is the main activity that starts with
the application, it mostly has a debugging purpose in our prototypal scenario. It
includes a map, showing the user position and the geofences active in the current
moment. The three buttons under the map allow us to start the sensing routines
and asynchronous tasks, to start the CoAP sending of the measurements, and
finally to switch the screen with the settings one, which allows to (un)subscribe
the stakeholders. Moreover, there is a log screen, that shows useful information
about sensing tasks and connection with the CCU. The user can selective choose
to log both, one of, or none of this information.

• StakeholdersActivity, in Figure 5.2 is currently the Settings activity and allow
the user, as mention earlier, to choose which stakeholder subscribe. Two debug-
purpose buttons are needed to retrieve the stakeholders subscribed and to update
the new choices on the server.

5.2.2 Sensors Measurements

As we have seen so far, the sensing client has to gather measurements from real sensors,
included the microphone, and from antennas for WiFi and Telephone technologies.
Most of the information that we need, especially on Android platforms, request a special
treatment. Once the designated button is clicked, a Service and few Intent Services to
deal with sensors and position are started.

1 /∗ ∗∗ MAINACTIVITY ∗∗ ∗ /
2

3 / / S t a r t s e r v i c e f o r P h o n e L i s t e n e r
4 I n t e n t p h o n e L i s t I n t e n t = new I n t e n t (g e t A p p l i c a t i o n C o n t e x t () ,

N e v e r S l e e p S e r v i c e . c l a s s) ;
5 s t a r t S e r v i c e (p h o n e L i s t I n t e n t) ;
6

7 / / S t a r t i n t e n t s e r v i c e f o r u p d a t e p o s i t i o n
8 I n t e n t p o s i n t e n t = new I n t e n t (g e t A p p l i c a t i o n C o n t e x t () ,

P o s i t i o n I n t e n t S e r v i c e . c l a s s) ;
9 s t a r t S e r v i c e (p o s i n t e n t) ;

10

11 / / S t a r t i n t e n t s e r v i c e f o r u p d a t e s e n s o r s

5.2 Sensing Client Android 53

12 I n t e n t s e n s o r i n t e n t = new I n t e n t (g e t A p p l i c a t i o n C o n t e x t () ,
S e n s o r s I n t e n t S e r v i c e . c l a s s) ;

13 s e n s o r i n t e n t . s e t A c t i o n (C o n s t a n t s . INTENT START SENSORS) ;
14 s t a r t S e r v i c e (s e n s o r i n t e n t) ;
15

16 / / S t a r t i n t e n t s e r v i c e f o r u p d a t e a m p l i t u d e s e n s i n g
17 I n t e n t a m p l i n t e n t = new I n t e n t (g e t A p p l i c a t i o n C o n t e x t () ,

S e n s o r s I n t e n t S e r v i c e . c l a s s) ;
18 a m p l i n t e n t . s e t A c t i o n (C o n s t a n t s . INTENT START AUDIOAMPLITUDE SENSE) ;
19 . s t a r t S e r v i c e (a m p l i n t e n t) ;

NeverSleepService is a very simple Service, that always runs in the background (it is
also the only one and with very limited functions) to keep a landing point for Tele-

phonyManager services. In this case, we only need it for a PhoneStateListener in order
to get asynchronously the received signal strength variation from telephony cell the
user is connected to. CustomPhoneStateListener extends PhoneStateListener and re-
trieves all the useful information, such as the company provider, the technology adopted
and, obviously, the signal strength. Finally, it stores them in a SharedPreferences file.
PositionIntentService instead is started to bind the GoogleAPI and receive the asyn-
chronous position update, stored automatically in the SharedPreferences to make them
read when useful, for instance before a measurement sending. We can specify a level of
accuracy and a time range for updates, balancing performances and energy consumption
as we want.
SensorsIntentService deals with all the environmental sensors that the device provides
us, with a subscribe and asynchronous update similar to the positioning mechanism.
Again, we have also to monitor the ambient noise level, in practice, we have to measure
the amplitude of the sound incoming to the microphone. To do that, we need to start
an AsyncTask, in the class GetAmplitudeTask, which records a few seconds from the
microphone and calculates the amplitude average. In this case, finally, the value is sent
to the SensorsIntentService which saves it in the SharedPreferences, ready to be read.
As regards the WiFi data retrieval, we do not need asynchronous calls or tasks, so all
the methods relative to these information and other utils are gathered in the RadioUtils
class. Here we can accede to WiFi RSSI, BSSID, SSID, user MAC address to calculate
a unique identifier and so on.

54 5. Implementation

5.2.3 CoAP and Communication

Let us see now, something more on the communication side. The classes that mostly ac-
complish the communication task are SendIntentReceive and the SendRequestTask,
extending AsyncTask and using the SpitFirefox library callbacks.
When the user starts for the first time the application, or when a timer or a geofence
callback is triggered, SendIntentReceive is awakened trough an Intent. This IntentSer-
vice also deals with the other kind of requests, relative to subscriptions and throughput
estimation. For each kind of Action (an Android parameter for Intent) is implemented a
specific method to manage it.
If the task is a sensing measurement sending, all the useful data are taken from the
SharedPreferences (if retrieval is asynchronous) or calling the right method. Now, for
each request Action, is triggered an asynchronous call, which is a CoAP POST request,
implemented in the SendRequestTask. Once a request is successfully done, with the
same mechanism, SendRequestTask notifies with an intent the SendIntentReceive.

5.2.4 Timer and Geofencing

At this point, SendIntentReceive has the information obtained from the CCU. If the call
regards subscriptions or throughput estimation, it is just needed to store the new values
in the SharedPreferences and eventually update the View.
Otherwise, if the call was a sensing measurement update, all the information in the
JSON response are extracted to set the timeout for time sampling and the geofence
trigger on the GeofenceIntentService, a specific class for the landing of geofencing
intents provoked.

1 /∗ ∗∗ SENDINTENTSERVICE ∗∗ ∗ /
2

3 p r i v a t e vo id h a n d l e A c t i o n R e c e i v e d D a t a (S t r i n g r e s p o n s e) {
4 / / E x t r a c t JSON i n f o r m a t i o n
5 [. . .]
6 I n t e n t g i = new I n t e n t (g e t A p p l i c a t i o n C o n t e x t () ,

G e o f e n c e I n t e n t S e r v i c e . c l a s s) ;
7 g i . p u t E x t r a (C o n s t a n t s . EXTRA GEOFENCE SENSORTYPE , s e n s o r) ;
8 g i . p u t E x t r a (C o n s t a n t s . EXTRA GEOFENCE LATITUDE , l a t i t u d e) ;
9 g i . p u t E x t r a (C o n s t a n t s . EXTRA GEOFENCE LONGITUDE, l o n g i t u d e) ;

5.2 Sensing Client Android 55

Figure 5.3: Multiple geofences act-
ive for the user position.

Figure 5.4: The same situation with
only one geofence active.

56 5. Implementation

10 g i . p u t E x t r a (C o n s t a n t s . EXTRA GEOFENCE RADIUS , S t r i n g . va lueOf (
r a d i u s)) ;

11 g i . p u t E x t r a (C o n s t a n t s . EXTRA GEOFENCE EXPIRE MILLISEC , S t r i n g .
va lueOf (t i m e o u t ∗1000)) ;

12 s t a r t S e r v i c e (g i) ;
13

14 / / S e t t i m e o u t based on s e r v e r r e s p o n s e
15 alarmMgr = (AlarmManager) g e t A p p l i c a t i o n C o n t e x t () . g e t S y s t e m S e r v i c e

(C o n t e x t . ALARM SERVICE) ;
16 I n t e n t i n t e n t A l a r m = new I n t e n t (g e t A p p l i c a t i o n C o n t e x t () ,

S e n d I n t e n t S e r v i c e . c l a s s) ;
17 i n t e n t A l a r m . s e t A c t i o n (C o n s t a n t s . ACTION SENDDATA+ s e n s o r) ;
18 i n t e n t A l a r m . p u t E x t r a (C o n s t a n t s . EXTRA TYPE OF SENSOR TO SEND ,

s e n s o r) ;
19 a l a r m I n t e n t = P e n d i n g I n t e n t . g e t S e r v i c e (g e t A p p l i c a t i o n C o n t e x t () ,

0 , i n t e n t A l a r m , 0) ;
20

21 i n t s e c o n d s = t i m e o u t ;
22 alarmMgr . s e t (AlarmManager . ELAPSED REALTIME WAKEUP,
23 SystemClock . e l a p s e d R e a l t i m e () +
24 s e c o n d s ∗ 1000 , a l a r m I n t e n t) ;
25 }

Chapter 6

Test and evaluation

The following test case was led, in order to evaluate the system in a real urban envir-
onment. It has been used city of Bologna as perfect example of heterogeneous and
complex municipality in which the deployment of Smart City concept, as debated in
this document, is applicable and fertile.
First, there have been identified two MGRS 10km sided squares including all the city,

one identified by 32TPQ 8 2 (the southern one) and the other by 32TPQ 8 3 (the north-
ern).
There have been set up two rules in the database, for the light sensor. One rule requested
timeSampleGran = 300 and spaceSampleGran = 0 (100km side square sampling) over
the all the considered space. Then a mock stakeholder has been added, which requested
through another rule, the same light sensor monitoring, this time over the only northern
half of the city and with a finer space grain, spaceSampleGran = 3 (100m side square
sampling). In figure Figure 6.1 we can see the variation of the update timer over a time
span of about 10 hours for a test user’s smartphone. The x-axis shows the updates in
chronological order, labeled with an increasing index. On the y-axis, instead, we have
the number of seconds elapsed from the previous update.

As in the diagram is clear, while the user is within the southern square, the updates
are triggered at the regular interval of about 300 seconds according to the relative rule.
Connection failures (high spikes) and sporadic border crossing (low spikes) are prob-
ably responsible for the few irregularities present on this trend.

57

58 6. Test and evaluation

Figure 6.1: The update time variability over 230 measurements compared with the ideal
non-smart approach.

59

While the user, instead, is within the northern square of the city (interval [40, 180]),
the spatial constraint of the second rule seems to be more effective, making the device
send updates more frequently, as the user is moving. During this period, high spikes are
probably due to slow or standing still user, while low spikes denote a user walking fast
and/or crossing a small lateral portion of a 100 meter MGRS sided square.

Assuming a non-smart application, which sends measurement updates at a constant rate
of 60 seconds, we can see a huge difference with the SenSquare approach. The non-
smart application guarantees a regular and constant updating rate but it is straightfor-
ward that are performed much more updates than required, with the consequent energy
and resource waste. In fact, with a 60 seconds timer for the same number of measure-
ments this approach cover only 3.5 hours of monitoring.

Another test is showed in the histogram in Figure 6.2. This test is performed on two

Figure 6.2: Number of updates required by SenSquare for two different sensors, grouped
in 15 minutes time slots.

different measurements in the south square of Bologna. A rule identifies a measurement

60 6. Test and evaluation

for the noise sensor with timeSampleGran = 80, and another rule requires the mon-
itoring of cellular connectivity with timeSampleGran = 300. Two stakeholders’ rules
require the same sensor sampling, for both the measurements with spaceSampleGran

= 4 (spatial constraint of 10 meters). As we can see, initially it is clear that the update
rate is due to the spatial constraint, because of the user movements, such as continu-
ous walking, while when the user stands still, in the second part of the time span, the
update rate is more time-driven. A non-smart approach would require the same update
rate regardless of the spatial conditions, asking for useless measurements, with battery,
computation and network consumption.

More and different kinds of test are planned as future work. Among them, it could
be interesting a stress test with a relevant amount of sensing clients, in order to test the
server implementation efficiency, what kind of tuning is requested on the countExpire

field in rules for each sensor and to study the urban mobility in a real usage test. An ana-
lytical or simulation-based study could be useful to show, in a less expensive way, the
system behavior in various conditions. Furthermore, specific tests with different sensing
client devices, such as Arduino platforms and other smart devices could be appropriate
to give a complete evaluation of the system.

Chapter 7

Future developments

As future works, many improvements are planned to expand this project in order to make
it a complete MCS system, which can be able to exit from the academic environment,
being competitive with other solutions.

7.1 More and different devices

First of all, it is needed to develop the same client functionalities (or most of them) on
other operating systems, such as iOS and Windows, as well as design and develop sens-
ing clients for platforms like Arduino/Genuino and ESP8266-01. This is fundamental
to widen the entire scenario, getting great advantages from different devices with vari-
ous and numerous sensors, especially for embedded platforms. An implementation for
these devices would also allow covering homogeneously specific zones in an urban
environment with a lightweight “infrastructure” supporting the mobility sensing client
population.

7.2 Performances and consumption

Staying on the client side, as we mentioned in the previous chapters, besides specific
parameters tuning tests, it is planned a complete performance enhancement, through
analytical and simulation studies. The goal is to achieve a very low cost on and users’
devices, mainly in terms of computation and power consumption. It is possible to act on

61

62 7. Future developments

the client implementation, on the CCU, and on the whole system as well. For instance,
sensing clients could enrich their CoAP requests with battery/CPU/memory constraint,
in order to give to the CCU the possibility to balance the sensing tasks, not only on the
basis of stakeholders’ rules, but adding them a new reasoning on this constraints (for
example treating them as new rules as well).
It is also, envisaged a future work that includes machine learning techniques in order
to establish the needed number of measurements in a specified zone. There will be
calculations using the data variance and the number of users, therefore the rules will
change dynamically, outlining a self-adapting elastic ecosystem.

7.3 Scalability

Moreover, another future work is related to the zone-specific CCU. This simply means
that the scalability will be ensured also by a division of the scenario in different zones,
each of which is automatically served by a different CCU. A user in travel, who changes
multiple city environments in few hours or minutes, will not know that his/her device is
connecting with different CCU because it will be seamless. Many different implement-
ations are possible in this sense, from proxying to an application-driven solution with a
kind of “almanac” like in GPS technology [46].

7.4 Privacy, security, and reliability

Many future developments are related to ensure more control for the user above privacy
issues. These enhancements engage the whole system and involve strongly architecture
design and development effort.
The easiest feature, shortly implementable, is the possibility for the user to choose with
a finer grain which sensor measurements concede to which stakeholders, as we men-
tioned in “Mobile Application” section. In this case, the work on the client is minimal,
but on the server, it is requested a more complex filtering on the described rules choosing
the procedure. Further improvements are related to the following issues. Data anonym-
ization is one of them and it is one of the most studied fields in the era of big data.
Currently, users are identified by an ID on the CCU’s database, this is useful to link

7.5 Stakeholders and Marketing 63

them with their subscriber, in order to implement the rule filtering and fostering mech-
anisms as well. A great enhancement could be the implementation of data aggregation
beside data encryption.
Furthermore, data reliability is crucial. As the SenSquare system will be available for a
large audience, it will be necessary a strict control over the data quality. It is clear, in
fact, that people live their life independently from their crowdsensing application run-
ning on their devices. This obvious, but not banal fact, is to consider implementing
mechanisms able to identify situations in which the data coming on the CCU are junk.
For instance, a person could keep their phone in a pocket invalidating the light sensor
measurements, but not completely the noise sensor one.

7.5 Stakeholders and Marketing

A web and a mobile platform are also necessary to make the stakeholders able to insert
their rules, developing a personal fostering and marketing campaign, and clearly, to get
and see in handy ways the data they have collected. Finally, it could be also interesting
to design a potential business model, as seen in [25,26,45], in order to reach an as wide
as possible participation and make the project attractive for companies and institutions.

Chapter 8

Conclusions

In this document it has been introduced the crowdsensing paradigm, as a specific form
of crowdsourcing for wide environment sensing monitoring. We covered the technolo-
gical background, upon which SenSquare is designed, starting from the environmental
monitoring, passing through MCS solution paradigms, the CoAP lightweight protocol
and technologies like Geofencing besides MGRS reference system as geographical sup-
port.
We have also made a panoramic over the state of the art in MCS research field, in dif-
ferent application scenarios. Finally, it has been presented the SenSquare system, our
proposal for a new MCS point of view, joining different aspects existing in other related
projects.
The architecture, in addition to CCU and a mobile sensing client implementation, were
illustrated, in order to better understand principles and reasonings behind every choice.
Strong advantages come from this MCS system. First, the usage of MGRS allows an
easiest and efficient way to make calculus on the server, helping the scalability and
keeping simple the location management. Second, the rule filtering system allows a
low energy consumption on the client side, reducing also the network usage, avoiding
multiple, useless or redundant measurements sending, just reasoning on spatial and tem-
poral semantics. Furthermore, the usage of a lightweight and portable application pro-
tocol allows to drastically reduce the resource waste in terms of memory, computation,
network, and power, enabling the same client design on different platforms, including
the embedded ones.

65

66 8. Conclusions

In SenSquare, there is no effort for users and stakeholders to collaborate for collecting
huge amount of sensing measurements. Stakeholders only have to ensure an effective
rewarding campaign and inserting strategic rules on the CCU. On the other hand, users
only have to accept one or more stakeholders sensors monitoring proposal, doing noth-
ing else that carrying around their “sensing” devices during the day.
The implemented working system, described in this thesis, just represents the first step
in a long road to a complete and competitive work. SenSquare, hopefully, with the
illustrated enhancements, can easily become a milestone in the Mobile Crowdsensing
scenario.

Bibliography

[1] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and W. Hu, “Ear-phone: an
end-to-end participatory urban noise mapping system,” in Proceedings of the 9th

ACM/IEEE International Conference on Information Processing in Sensor Net-

works. ACM, 2010, pp. 105–116.

[2] B. Guo, Z. Wang, Z. Yu, Y. Wang, N. Y. Yen, R. Huang, and X. Zhou, “Mobile
crowd sensing and computing: The review of an emerging human-powered sensing
paradigm,” ACM Computing Surveys (CSUR), vol. 48, no. 1, p. 7, 2015.

[3] A. D. Chiappari, “Wireless sensor network in environmental monitoring,” 2015.
[Online]. Available: http://alaindev.it/docs/wsnenv.pdf

[4] F. J. Villanueva, D. Villa, M. J. Santofimia, J. Barba, and J. C. López, “Crowdsens-
ing smart city parking monitoring,” in Internet of Things (WF-IoT), 2015 IEEE 2nd

World Forum on. IEEE, 2015, pp. 751–756.

[5] M. Talasila, R. Curtmola, and C. Borcea, “Improving location reliability in crowd
sensed data with minimal efforts,” in Wireless and Mobile Networking Conference

(WMNC), 2013 6th Joint IFIP. IEEE, 2013, pp. 1–8.

[6] (2016) Image. [Online]. Available: https://www.linkedin.com/topic/
smart-city-concept

[7] C. Bormann, A. P. Castellani, and Z. Shelby, “Coap: An application protocol for
billions of tiny internet nodes,” IEEE Internet Computing, vol. 16, no. 2, p. 62,
2012.

[8] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application protocol
(coap),” Tech. Rep., 2014.

67

http://alaindev.it/docs/wsnenv.pdf
https://www.linkedin.com/topic/smart-city-concept
https://www.linkedin.com/topic/smart-city-concept

68 BIBLIOGRAPHY

[9] (2016) Image. [Online]. Available: http://www.cse.wustl.edu/∼jain/cse574-14/ftp/
coap/

[10] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A low-power coap for contiki,” in
2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Sys-

tems. IEEE, 2011, pp. 855–860.

[11] (2016) Image. [Online]. Available: https://developer.android.com/training/
location/geofencing.html

[12] A. Developers. (2016, aug) Creating and monitoring geofences. [Online].
Available: https://developer.android.com/training/location/geofencing.html

[13] B. Schilit, N. Adams, and R. Want, “Context-aware computing applications,” in
Mobile Computing Systems and Applications, 1994. WMCSA 1994. First Work-

shop on. IEEE, 1994, pp. 85–90.

[14] S. Rodriguez Garzon and B. Deva, “Geofencing 2.0: taking location-based noti-
fications to the next level,” in Proceedings of the 2014 ACM International Joint

Conference on Pervasive and Ubiquitous Computing. ACM, 2014, pp. 921–932.

[15] R. B. Langley, “The utm grid system,” GPS world, vol. 9, no. 2, pp. 46–50, 1998.

[16] B. Guo, Z. Yu, X. Zhou, and D. Zhang, “From participatory sensing to mobile
crowd sensing,” in Pervasive Computing and Communications Workshops (PER-

COM Workshops), 2014 IEEE International Conference on. IEEE, 2014, pp.
593–598.

[17] H. Ma, D. Zhao, and P. Yuan, “Opportunities in mobile crowd sensing,” IEEE

Communications Magazine, vol. 52, no. 8, pp. 29–35, 2014.

[18] N. D. Lane, S. B. Eisenman, M. Musolesi, E. Miluzzo, and A. T. Campbell, “Urban
sensing systems: opportunistic or participatory?” in Proceedings of the 9th work-

shop on Mobile computing systems and applications. ACM, 2008, pp. 11–16.

[19] Y. Xiao, P. Simoens, P. Pillai, K. Ha, and M. Satyanarayanan, “Lowering the bar-
riers to large-scale mobile crowdsensing,” in Proceedings of the 14th Workshop on

Mobile Computing Systems and Applications. ACM, 2013, p. 9.

http://www.cse.wustl.edu/~jain/cse574-14/ftp/coap/
http://www.cse.wustl.edu/~jain/cse574-14/ftp/coap/
https://developer.android.com/training/location/geofencing.html
https://developer.android.com/training/location/geofencing.html
https://developer.android.com/training/location/geofencing.html

BIBLIOGRAPHY 69

[20] X. Hu, T. H. Chu, H. C. Chan, and V. C. Leung, “Vita: A crowdsensing-oriented
mobile cyber-physical system,” IEEE Transactions on Emerging Topics in Com-

puting, vol. 1, no. 1, pp. 148–165, 2013.

[21] InSTEDD. (2006) Geochat. [Online]. Available: http://instedd.org/technologies/
geochat/

[22] (Accessed: 2013) The ushahidi platform. [Online]. Available: http://ushahidi.
com/products/ushahidi-platform

[23] Garmin, edge 305. [Online]. Available: www.garmin.com/products/edge305/

[24] Mit news. [Online]. Available: http://web.mit.edu/newsoffice/2009/
blood-pressure-tt0408.html

[25] J.-S. Lee and B. Hoh, “Dynamic pricing incentive for participatory sensing,” Per-

vasive and Mobile Computing, vol. 6, no. 6, pp. 693–708, 2010.

[26] G. Cardone, L. Foschini, P. Bellavista, A. Corradi, C. Borcea, M. Talasila, and
R. Curtmola, “Fostering participaction in smart cities: a geo-social crowdsensing
platform,” IEEE Communications Magazine, vol. 51, no. 6, pp. 112–119, 2013.

[27] M. Witt, C. Scheiner, and S. Robra-Bissantz, “Gamification of online idea com-
petitions: Insights from an explorative case,” Informatik schafft Communities, vol.
192, 2011.

[28] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game design elements
to gamefulness: defining gamification,” in Proceedings of the 15th international

academic MindTrek conference: Envisioning future media environments. ACM,
2011, pp. 9–15.

[29] S. Dale, “Gamification making work fun, or making fun of work?” Business In-

formation Review, vol. 31, no. 2, pp. 82–90, 2014.

[30] F. Montori, L. Bedogni, and L. Bononi, “On the Integration of Heterogeneous Data
Sources for the Collaborative Internet of Things,” in 2nd International Forum on

Research and Technologies for Society and Industry (RTSI), 2016.

http://instedd.org/technologies/geochat/
http://instedd.org/technologies/geochat/
http://ushahidi.com/products/ushahidi-platform
http://ushahidi.com/products/ushahidi-platform
www.garmin.com/products/edge305/
http://web.mit.edu/newsoffice/2009/blood-pressure-tt0408.html
http://web.mit.edu/newsoffice/2009/blood-pressure-tt0408.html

70 BIBLIOGRAPHY

[31] M. Talasila, R. Curtmola, and C. Borcea, “Mobile crowd sensing,” 2015.

[32] C. Leonardi, A. Cappellotto, M. Caraviello, B. Lepri, and F. Antonelli, “Second-
nose: an air quality mobile crowdsensing system,” in Proceedings of the 8th Nordic

Conference on Human-Computer Interaction: Fun, Fast, Foundational. ACM,
2014, pp. 1051–1054.

[33] M. Zappatore, A. Longo, M. A. Bochicchio, D. Zappatore, A. A. Morrone, and
G. De Mitri, “Mobile crowd sensing-based noise monitoring as a way to improve
learning quality on acoustics,” in Interactive Mobile Communication Technologies

and Learning (IMCL), 2015 International Conference on. IEEE, 2015, pp. 96–
100.

[34] D. Oletic and V. Bilas, “Design of sensor node for air quality crowdsensing,” in
Sensors Applications Symposium (SAS), 2015 IEEE. IEEE, 2015, pp. 1–5.

[35] R. Salpietro, L. Bedogni, M. Di Felice, and L. Bononi, “Park here! a smart parking
system based on smartphones’ embedded sensors and short range communication
technologies,” in Internet of Things (WF-IoT), 2015 IEEE 2nd World Forum on.
IEEE, 2015, pp. 18–23.

[36] R. Liao, C. Roman, P. Ball, S. Ou, and L. Chen, “Crowdsourcing on-street parking
space detection,” arXiv preprint arXiv:1603.00441, 2016.

[37] F. J. Villanueva, D. Villa, M. J. Santofimia, J. Barba, and J. C. López, “Crowdsens-
ing smart city parking monitoring,” in Internet of Things (WF-IoT), 2015 IEEE 2nd

World Forum on. IEEE, 2015, pp. 751–756.

[38] L. Bedogni, M. Di Felice, and L. Bononi, “By train or by car? detecting the user’s
motion type through smartphone sensors data,” in Wireless Days (WD), 2012 IFIP.
IEEE, 2012, pp. 1–6.

[39] B. L. Bedogni L., Di Felice M., “Context-aware android applications through
transportation mode detection techniques,” Wireless Communications and Mobile

Computing, 2016.

BIBLIOGRAPHY 71

[40] D. B. A. Di Chiappari, G. Cinelli, “Geospot, a location-based and activity-
based mobile advertisement prototypal system,” jul 2016. [Online]. Available:
http://alaindev.it/docs/geospot.pdf

[41] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue, M. Gruteser, and
W. Trappe, “Parknet: drive-by sensing of road-side parking statistics,” in Pro-

ceedings of the 8th international conference on Mobile systems, applications, and

services. ACM, 2010, pp. 123–136.

[42] (2016) Mobile millennium project. [Online]. Available: http://traffic.berkeley.edu/

[43] R. Pryss, M. Reichert, J. Herrmann, B. Langguth, and W. Schlee, “Mobile crowd
sensing in clinical and psychological trials–a case study,” in 2015 IEEE 28th In-

ternational Symposium on Computer-Based Medical Systems. IEEE, 2015, pp.
23–24.

[44] L. G. Jaimes, I. J. Vergara-Laurens, and A. Raij, “A survey of incentive techniques
for mobile crowd sensing,” IEEE Internet of Things Journal, vol. 2, no. 5, pp.
370–380, 2015.

[45] S. Reddy, D. Estrin, M. Hansen, and M. Srivastava, “Examining micro-payments
for participatory sensing data collections,” in Proceedings of the 12th ACM inter-

national conference on Ubiquitous computing. ACM, 2010, pp. 33–36.

[46] I. A. Getting, “Perspective/navigation-the global positioning system,” IEEE spec-

trum, vol. 30, no. 12, pp. 36–38, 1993.

[47] R. Liao, C. Roman, P. Ball, S. Ou, and L. Chen, “Crowdsourcing on-street parking
space detection,” arXiv preprint arXiv:1603.00441, 2016.

[48] A. Sheth, S. Seshan, and D. Wetherall, “Geo-fencing: Confining wi-fi coverage
to physical boundaries,” in International Conference on Pervasive Computing.
Springer, 2009, pp. 274–290.

[49] D. R. Sanqunetti, “Implementing geo-fencing on mobile devices,” Apr. 13 2004,
uS Patent 6,721,652.

http://alaindev.it/docs/geospot.pdf
http://traffic.berkeley.edu/

72 BIBLIOGRAPHY

[50] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and future
challenges.” IEEE Communications Magazine, vol. 49, no. 11, pp. 32–39, 2011.

[51] W. Sherchan, P. P. Jayaraman, S. Krishnaswamy, A. Zaslavsky, S. Loke, and
A. Sinha, “Using on-the-move mining for mobile crowdsensing,” in 2012 IEEE

13th International Conference on Mobile Data Management. IEEE, 2012, pp.
115–124.

[52] N. D. Lane, Y. Chon, L. Zhou, Y. Zhang, F. Li, D. Kim, G. Ding, F. Zhao, and
H. Cha, “Piggyback crowdsensing (pcs): energy efficient crowdsourcing of mobile
sensor data by exploiting smartphone app opportunities,” in Proceedings of the

11th ACM Conference on Embedded Networked Sensor Systems. ACM, 2013,
p. 7.

[53] G. Chen, D. Kotz et al., “A survey of context-aware mobile computing research,”
Technical Report TR2000-381, Dept. of Computer Science, Dartmouth College,
Tech. Rep., 2000.

[54] A. P. Castellani, M. Gheda, N. Bui, M. Rossi, and M. Zorzi, “Web services for the
internet of things through coap and exi,” in 2011 IEEE International Conference

on Communications Workshops (ICC). IEEE, 2011, pp. 1–6.

[55] B. L. Di Chiappari, Montori and B. L, “Sensquare: a mobile crowdsensing archi-
tecture for smart cities,” in submitted to 2016 IEEE 3rd World Forum on Internet

of Things (WF-IoT) (WF-IoT 2016), Reston, USA, dec 2016.

	Introduction
	Background
	Environmental monitoring
	CoAP
	Geofencing
	Military Grid Reference System

	Related Works
	Mobile Crowdsensing
	Applications

	System Architecture
	Central Coordination Unit
	Mobile Application

	Implementation
	Central Coordination Unit
	Database
	Server

	Sensing Client Android
	The View
	Sensors Measurements
	CoAP and Communication
	Timer and Geofencing

	Test and evaluation
	Future developments
	More and different devices
	Performances and consumption
	Scalability
	Privacy, security, and reliability
	Stakeholders and Marketing

	Conclusions

