993 research outputs found

    A study of digital techniques for signal processing

    Get PDF
    Analysis and definition of digital techniques for signal processin

    A low-complexity eigenfilter design method for channel shortening equalizers for DMT systems

    Get PDF
    We present a new low-complexity method for the design of channel shortening equalizers for discrete multitone (DMT) modulation systems using the eigenfilter approach. In contrast to other such methods which require a Cholesky decomposition for each delay parameter value used, ours requires only one such decomposition. Simulation results show that our method performs nearly optimally in terms of observed bit rate

    Intersymbol and Intercarrier Interference in OFDM Transmissions through Highly Dispersive Channels

    Get PDF
    This work quantifies, for the first time, intersymbol and intercarrier interferences induced by very dispersive channels in OFDM systems. The resulting achievable data rate for \wam{suboptimal} OFDM transmissions is derived based on the computation of signal-to-interference-plus-noise ratio for arbitrary length finite duration channel impulse responses. Simulation results point to significant differences between data rates obtained via conventional formulations, for which interferences are supposed to be limited to two or three blocks, versus the data rates considering the actual channel dispersion

    A Low-Complexity Graph-Based LMMSE Receiver Designed for Colored Noise Induced by FTN-Signaling

    Full text link
    We propose a low complexity graph-based linear minimum mean square error (LMMSE) equalizer which considers both the intersymbol interference (ISI) and the effect of non-white noise inherent in Faster-than-Nyquist (FTN) signaling. In order to incorporate the statistics of noise signal into the factor graph over which the LMMSE algorithm is implemented, we suggest a method that models it as an autoregressive (AR) process. Furthermore, we develop a new mechanism for exchange of information between the proposed equalizer and the channel decoder through turbo iterations. Based on these improvements, we show that the proposed low complexity receiver structure performs close to the optimal decoder operating in ISI-free ideal scenario without FTN signaling through simulations.Comment: 6 pages, 6 figures, IEEE Wireless Communications and Networking Conference 2014, Istanbul, Turke

    Partial response techniques and robustness in data equalization

    Get PDF

    Adaptive equalizers and the DFE

    Get PDF
    L’argomento principale che viene affrontato nella tesina è quello dell’equalizzatore DFE; ne viene spiegata la struttura e la funzionalità. In particolar modo viene affrontato il problema del calcolo dei coefficienti dei filtri che lo compongono. Questi infati possono essere calcolati tramite metodo direto che però richiede l’inversione della matrice delle autocorrelazioni R e questo richiede una complessità di realizzazione elevata. Per semplificare questa complessità si introduce la fattorizzazione di Cholesky della matrice R che abbassa di grado la complessitàope

    Performance of optimum detector structures for noisy intersymbol interference channels

    Get PDF
    The errors which arise in transmitting digital information by radio or wireline systems because of additive noise from successively transmitted signals interfering with one another are described. The probability of error and the performance of optimum detector structures are examined. A comparative study of the performance of certain detector structures and approximations to them, and the performance of a transversal equalizer are included

    Orthogonal transmultiplexers : extensions to digital subscriber line (DSL) communications

    Get PDF
    An orthogonal transmultiplexer which unifies multirate filter bank theory and communications theory is investigated in this dissertation. Various extensions of the orthogonal transmultiplexer techniques have been made for digital subscriber line communication applications. It is shown that the theoretical performance bounds of single carrier modulation based transceivers and multicarrier modulation based transceivers are the same under the same operational conditions. Single carrier based transceiver systems such as Quadrature Amplitude Modulation (QAM) and Carrierless Amplitude and Phase (CAP) modulation scheme, multicarrier based transceiver systems such as Orthogonal Frequency Division Multiplexing (OFDM) or Discrete Multi Tone (DMT) and Discrete Subband (Wavelet) Multicarrier based transceiver (DSBMT) techniques are considered in this investigation. The performance of DMT and DSBMT based transceiver systems for a narrow band interference and their robustness are also investigated. It is shown that the performance of a DMT based transceiver system is quite sensitive to the location and strength of a single tone (narrow band) interference. The performance sensitivity is highlighted in this work. It is shown that an adaptive interference exciser can alleviate the sensitivity problem of a DMT based system. The improved spectral properties of DSBMT technique reduces the performance sensitivity for variations of a narrow band interference. It is shown that DSBMT technique outperforms DMT and has a more robust performance than the latter. The superior performance robustness is shown in this work. Optimal orthogonal basis design using cosine modulated multirate filter bank is discussed. An adaptive linear combiner at the output of analysis filter bank is implemented to eliminate the intersymbol and interchannel interferences. It is shown that DSBMT is the most suitable technique for a narrow band interference environment. A blind channel identification and optimal MMSE based equalizer employing a nonmaximally decimated filter bank precoder / postequalizer structure is proposed. The performance of blind channel identification scheme is shown not to be sensitive to the characteristics of unknown channel. The performance of the proposed optimal MMSE based equalizer is shown to be superior to the zero-forcing equalizer

    Wideband receive spatial modulation with time domain pre-equalizer for large MIMO systems

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksReceive spatial modulation (RSM) schemes are promising for massive multiple-input-multiple-output (MIMO) systems at millimeter wave (mmWave) bands because they require reduced complexity and low consumption hardware at the user terminal and exploit the receive spatial dimension to attain high spectral efficiency. To the best of our knowledge, these schemes have been developed for narrowband transmission. In this paper, we adapt RSM schemes for outdoor wideband mmWave massive MIMO systems. We consider the downlink of a single user system operating with single carrier RSM and design a low complexity time-domain finite impulse response pre-equalizer to combat the intersymbol interference caused by the wideband transmission, assuming imperfect channel knowledge. We show that receive antenna selection (RAS) is necessary for attaining high spectral efficiency and we suggest fast and efficient RAS algorithm. Simulation results show that the proposed RSM scheme achieves comparable spectral efficiency to the fully digital orthogonal frequency division multiplexing MIMO system with superior energy efficiency.Peer ReviewedPostprint (author's final draft
    corecore