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SUMMARY 

Data equalizers serve to combat the intersymbol interference (I SI) and noise 
which arise in digital transmission and recording systems. They comprise one 
or more filters, whose combined action causes an estimate of the transmitted 
data sequence to arise, from which decisions are extracted by means of a 
detector. 

This thesis explores the application of partial reponse techniques in data 
equalization. These techniques involve the introduction of a controlled 
amount of ISI and the detection of a correlated data sequence with an in
creased number of amplitude levels, from which the original transmitted data 
sequence can be recovered by means of a deterministic inverse mapping. 
Among other things, it is shown that this indirect approach may lead to 
advantages in terms of noise immunity and error propagation. 

The scope is then extended to the robustness of data equalizers, i.e. their 
ability to function properly in the presence of variations of the system para
meters. This property is particularly important for non-adaptive implemen
tations, as applied at high data rates or when the admissible power consump
tion is restricted. After analyzing the robustness of various equalization and 
detection methods in a conventional dimensioning, the optimally robust 
versions of the most commonly used equalizers are derived relative to a mean
square measure of performance. 

The analytical results of the thesis are illustrated by means of performance 
comparisons for a class of digital magnetic recording systems, for which a 
simple discrete-time characterization is first derived. Apart from conventional 
versions of the equalizers under study, these comparisons also cover 
maximum-likelihood sequence detection and a recently introduced method 
called ISI cancellation. 
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Introductory chapter 

INTRODUCTORY CHAPTER 

1. Equalization methods 

In the unfolding information society 1), transportation of information (in 
place or time) takes place at any level between the global (radio, cable and 
satellite) communication networks that are already covering the world like 
spiderwebs, down to the growing arrays of electronic equipment that fill the 
homes of nearly every individual. Increasingly, information of any sort (voice, 
audio and TV signals serving as examples) is first translated into a digital form 
before it is transported as a sequence of discrete message elements in a process 
whiCh is commonly referred to as data transmission 2). Not only does this 
discrete form suit the nature of existing technology well, but it also allows 
communication to become more reliable, as the intrinsic uncertainty associated 
with the distinction between a continuum of possible messages is avoided by 
discretization 3). Historically confined to such fields as radio and telephone 
modems 4), the application area of data transmission is now entering a phase of 
rapid diversification, covering e.g. satellite communications5), fibre optics6) 

and the emerging Integrated Services Digital Network {ISDN)7), wherein vast 
amounts of high-speed digital data traverse the subscriber cables in the local 
telephone network. Perhaps less obvious, aspects of data transmission are also 
central to digital magnetic and optical recording systems, where digital streams 
of information are stored as patterns of magnetization and chains of shallow 
deflections, respectively 8•9). Until recently applied almost exclusively for the 
background storage of computer-relateq data, digital recording now holds out 
great promise for the storage of audio and video information, Compact Disc 
being only a forerunner ofupcoming generations of equipment of this kind 9•10). 

Central to the data transmission process, the analog channels across which 
information is conveyed generally deliver corrupted and transformed versions 
of their input waveforms. Among the possible transmission impairments, noise 
and interference between neighbouring message elements (referred to as Inter-
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Symbol Interference or ISI) are almost always predominant, because reasons 
of economy designate signal power and bandwidth to be scarse commodities 1 1). 

Also, nonlinearities and variations of the channel parameters may be present 2). 

Among the various (andoften conjunctively applicable) methods available to 
handle these transmission problems, equalization methods play an important 
and conspicuous role 2•4). In a general definition4.l2), a data equalizer is a 
constellation of one or more filters applied at the receiving end of the system, 
whose purpose it is to mitigate the combined effect of ISI and noise. By proper 
instrumentation, data equalizers can additionally serve to counter channel 
parameter variations and channel nonlinearities 2). 

This thesis presents a number of theoretical extensions to the state of the art 
in data equalization. Originally motivated by the equalization problems that 
arise in high-density digital magnetic recording, these extensions are presented 
and analyzed here in a general form, and their virtues are quantified by means 
of numerical recurrences to their source of inspiration. Before the contents of 
the thesis are described in more detail, the following section first establishes a 
suitable base of reference by sketching a historical perspective of data equaliza
tion and some closely related concepts, and by tracing the development of 
digital magnetic recording back in time, with emphasis on the aspects that are 
relevant to data equalization. 

2. A historical perspectiv.e of data equalization 

2 .1. Linear equalization 

The earliest roots of data equalization lie in the annals of telegraphy 13•14). 

After Heaviside's analy~is in 1887 of the properties of transmission lines 15), 

implicit forms of equalization emerged in the form of adding inductance to long 
(e.q. submarine) cables so as to improv~ their frequency response H). In the 
twenties of this century, Ktipfmiiller and Nyquist were perhaps first in pointing 
out the capabilities of a linear filter to mitigate the harmful effects of intersym
bol interference 16•17•18). According to Nyquist's classical first criterion for 
distortionless transmission 18), all ISI can be eliminated prior to detection by 
. means of a linear filter which essentially equalizes the characteristics of the 
channel across a certain frequency range which, for a low-pass channel, 
extends from zero to somewhat beyond half of the signalling rate. Reflecting 
the nature of the cable networks that were used as transmission media in those 
days, Nyquist refrained from considering a second distrubance which sets a 
fundamental limit to the attainable data throughput, viz. noise. Although some 
important notions with regard to this disturbance were already put forward by 
Hartley around that time 19), nearly two decades elapsed before it was recog-
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nized that in single pulse transmission, i.e. in the absence of ISI, noise can be 
optimally suppressed by a filter whose impulse response is the time inverse of 
the channel impulse response 20•21). Having an amplitude-frequency characte
ristic equal to that of the channel, this so-called matched filter is in a sense the 
opposite of the linear equalizer, which approximates the reciprocal of the 
channel characteristics over a certain frequency range. Hence, although both 
ISI and noise can be optimally suppressed by means of a linear filter when 
occurring individually, their combined suppression poses conflicting require
ments, whose disparity is proportional to the amplitude distortion arising in the 
channel. Explained here heuristically, this insight emerged analytically in the 
early sixties, when the structure, dimensioning and performance of the opti
mum linear equalizer in the presence of a mixture of ISI and noise were first 
derived 22•23•24). In later years, a mainstream of work has been directed towards 
the achievement of noise suppression figures which more closely approach the 
matched filter ideal by treating ISI in a different manner. This is possible by 
making use of its strong structural properties, some of which have actually 
been recognized very early in history. These methods and their underlying 
concepts will now be discussed in order of increasing performance (and, 
unavoidably, complexity). 

2.2. Partial response techniques 

Already in the late nineteenth century it was observed that, relative to the 
maximum operating speed at which telegraph signals could be clearly received 
"doubling the dotting speed" would result in a received signal assuming three 
(as opposed to the regular two) values: positive, negative and zero (ref. 11, 
pp. 123-124). By using a suitable (manual and later mechanical) decoding 
procedure, the transmitted data could in principle be unambiguously recon
structed from this ternary signal. After various recurrences to the topic 18•

11
), 

this concept was generalized in the sixties into what is nowadays known as 
'partial response techniques' 25•26•27•28). Involving the use of an integer-valued 
system impulse response which extends over a small number of symbol inter
vals, partial response techniques entail the occurrence of a controlled quantity 
of ISI, thus causing a received signal with a somewhat increased number of 
amplitude lev~ls to arise, from which the original data can be recovered by 
means of a simple (symbol-by-symbol) decoding procedure. In order for this 
procedure to be memory less so as to prevent error propagation from occurring, 
a simple pre-coding operation must be added at the transmitting end of the 
system, which changes neither the statistics nor the alphabet of the data 
sequence 27). Traditionally thought of as allowing an increased information 
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throughput in exchange for a reduced margin against noise 4•11 •29), partial 
response techniques can also be viewed as a means of providing additional 
freedom of equalization by allowing a well-defined quantity of ISI to remain 
untackled before detection, thereby potentially reducing noise enhancement. 
As it no longer entails a spectral smoothing operation, the common term 
"equalization" is strictly speaking inappropriate to designate the conditioning 
of ISI that takes place here. This historical abuse prevails even more strongly 
in the case of the decision feedback equalizer (DFE), which will now be 
considered. 

2.3. Decision feedback equalization 

Like partial response techniques, the historical origins of decision feedback 
equalization can also be traced back into the pre-Nyquist era 30•31•32), when it 
was recognized that reception of cable telegraph signals was mainly hampered 
by interference due to symbols that had already been detected. By feeding these 
''past'' digits into a properly adjusted feedback filter (FBF), an estimate would 
be formed of this post-cursive ISI, that could next be subtracted from the 
incoming signal. Accuracy of compensation being an important prerequisite 
for the success of this technique, the immature state of technology precluded it 
from becoming widely applied until adaptive filtering methods became avail
able in the late sixties. Also, considerable time elapsed before it was recognized 
that the technique, when combined with an additional prefilter, would enable a 
significant improvement in noise suppression relative to the linear equalizer33). 

Conceptually, the optimum prefilter acts as a low-pass phase equalizer, trans
forming all pre-cursive ISI into post-cursive ISI that can in turn be removed by 
the FBF 34•35•36). Having a smooth amplitude-frequency characteristic across 
the band of interest and hence causing essentially no noise enhancement, this 
prefilter in a sense takes the middle between the inverse modelling (with 
associated noise enhancement) performed by the linear equalizer, and the 
duplication of the channel amplitude-frequency characteristics (with associated 
noise reduction) realized by the matched filter. Designated Decision Feedback 
Equalization 37) (although again no spectral smoothing is involved), this method 
achieves its noise advantage at the cost of allowing decision errors to induce 
further errors through the backward coupling of the FBF. Although this error 
propagation process is difficult to analyze, theoretical considerations and 
practical experience have shown that, on typical channels, error propagation is 
not catastrophic and in fact degrades the achieved transmission quality only 
slightly 12•37•38). Now that its performance benefits are no longer disputed, the 
DFE is currently evolving into a major equalization workhorse. This aplies in 
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particular for ISDN transmission systems, where advantage is taken of the 
natural suitability of the FBF to adaptive, digital implementation89). 

2.4. !SI cancellation 

As the DFE prefilter achieves the largest possible noise suppression subject 
to the condition of suppressing all pre-cursive ISI, a further improvement of 
noise suppression is only feasible at the cost of allowing such ISI to arise. 
Although its influence can intrinsically not be undone by means of a feedback 
filter, pre-cursive ISI can be intentionally removed by means of an additional 
("forward") filter which is excited by preliminary decisions that have been 
produced beforehand using a separate (e.g. decision feedback) equalizer. 
Although its roots date back nearly two decades 40), the fully fledged version of 
this concept, referred to as ISI cancellation or data-aided equalization, has only 
recently been established and elaborated41 .42.43). Subject to the assumption that 
all arising ISI is perfectly eliminated by the combined action of the forward and 
feedback filters, the prefilter need only be concerned with noise and hence 
ideally equals a matched filter 41 A2). Unfortunately, simulations reveal that 
erroneous preliminary decisions which propagate through the forward filter 
cause decision errors in the final detection stage to be far more likely than 
anticipated on the basis of the naive assumption of perfect ISI elimination43). 

For this reason, the precise merits of ISI cancellation are yet to be uncovered. 

2.5. Maximum-Likelihood Sequence Detection (MLSD) 

In all equalization methods, ISI is regarded as a nuisance whose effect has to 
be attacked by some means. For the sake of completeness, we shall now also 
trace the development of an alternative approach called Maximum Likelihood 
Sequence Detection (MLSD), which does not entail linear filtering, although it 
is often applied in conjunction with equalization. 

In MLSD, ISI is essentially regarded as an implicit form of coding, causing 
the incoming data sequence to be transformed into an "encoded" signal with a 
well-defined, highly specific correlation structure. From this point of view, 
optimum detection in the presence of ISI and additive noise amounts to 
choosing the data sequence whose ''encoded'' version most closely matches the 
received signal. As according to this MLSD perspective ISI becomes in a sense 
invisible, the attained performance basically corresponds to that of the matched 
filter in single pulse transmission 48). Only for channels with very severe 
amplitude distortion is confusion likely between candidate sequences which 
differ in more than one position, in which case a loss relative to optimum 
isolated pulse transmission is incurred2). Through explained easily, MLSD 
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requires in its straightforward implementation the calculation of a likelihood or 
distance metric for all possible data sequences. Already for short message 
lenghts, the exploding cardinality of this set renders this approach absolutely 
prohibitive. The earliest breakthrough in MLSD occurred halfway through the 
sixties, when it becames obvious that this exponential dependence can actually 
be brought down to linear proportions by carrying MLSD out in a sequential 
fashion 44

). Still involving an intimidating workload, the algorithm concerned 
was followed in the early seventies by the Viterbi algorithm, an offspring from 
methods in dynamic programming45.46.47•48A9). Having a complexity which is 
independent of the message length and which grows exponentially with the 
extent of the ISI (i.e. the channel memory duration expressed in symbol 
intervals), the Viterbi detector finally rendered MLSD practicable for systems 
at low speeds and suffering from ISI with a restricted extent. Nevertheless, in 
many instances the fully fledged Viterbi algorithm is still orders of magnitude 
more complicated than the equalizers discussed above. For this reason, subse~ 
quent research has aimed at establishing further complexity reductions, thereby 
inevitably sacrificing some performance 5°). Apart from reduced-state Viterbi 
detection 51 •52), wherein the number of sequences kept track of is dramatically 
reduced, channel memory truncation53•54) has proved to be an effective means 
to this end. Involving the use oflinear53•54) or decision feedback 55•56) equaliza
tion, the latter collection of methods transforms the impulse response of the 
channel into a substantially shorter Desired Impulse Response (DIR), which 
has to be chosen appropriately in order to keep the performance degradation in 
terms of noise suppression and/or error propagation as small as possible. By 
choosing a DIR among the class of integer-valued responses discussed pre
viously, this approach can alternatively be viewed as a substitution of the 
memoryless threshold detector normally used in partial response equalization 
by a relatively simple MLSD, thus establishing an improvement of the effective 
signal-to-noise ratio, which ranges up to about 3 dB for the commonly used 
pseudo ternary class of partial responses 45). 

2.6. Parameter variations 

If no special measures are taken, serious performance degradations may be 
incurred if an equalizer or detector has been dimensioned to perform well for 
the nominal characteristics of the channel, while the actual characteristics 
exhibit a deviation 11 •78). Because this sensitivity problem is generally greater 
for the advanced equalization methods than for the simpler ones (as will be 
illustrated in later chapters of this thesis), it has undoubtedly delayed the 
development and application of the former category. As a first step to its 
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solution, early work has sought an improvement of the resistance of the linear 
equalizer to parameter variations, at the expense of some performance in the 
nominal situation 57). 

Only two decades ago, theory and technology were ripe for the emergence of 
the most natural solution to the parameter variation problem, viz. adaptive 
techniques. These techniques enable the dimensioning of the equalizer (or 
detector) to be adapted according to an estimate of the actual channel parame
ters which is extracted dynamically from the received signal. Particularly the 
Least-Mean-Square (LMS) algorithm 58•59) and many derivatives thereof60) 

have become widely applied. Recently, more powerful adaptation methods 
have been appearing whose merits basically lie in an improved convergence 
speed, mostly achieved at a substantial expense to hardware complexitiy 60•61). 

Even in the presence of an adaptation mechanism it may be difficult to 
counter specific variations due to inherent restrictions set by the structure of the 
equalizer or detector used. For example, the occurrence of timing errors can 
only partly be compensated by the symbol interval-spaced transversal equali
zers that were commonly applied up to the mid seventies 12). By that time, it 
became clear that fractionally-spaced equalizers, whose tap spacing is (often 
considerably) smaller than a symbol interval, are so much more flexible than 
the symbol interval-spaced equalizer, that their adaptive versions can effective
ly counter variations (notably timing errors) that were formerly beyond 
grasp62•63). For this reason, adaptive equalizers are nowadays often equipped 
with this feature 12). 

2.7. Nonlinearities 

Although ISI normally stems from linear interaction between transmitted 
symbols, it may happen that a channel causes an additional nonlinear portion of 
ISI to arise. In their basic forms, the methods discussed before can withstand 
no more than a restricted quantity of nonlinear interference. During the last 
decade, several adaptive methods have been proposed to overcome this short
coming. For the linear equalizer, the addition of appropriately (and adaptively) 
dimensioned quadratic and third order nonlinearities (Volterra kernels) has 
proved to be an effective, though hardware-expensive, approach64). By con
trast, the use of a table lookup feedback filter enables the DFE to handle 
nonlinearities of the trailing type as a natural consequence of the ability of this 
filter structure to handle any nonlinear input-output relation 65

). Apart from 
being faster, the table lookup filter is in fact less complicated than its transversal 
counterpart for the short feedback filter lengths that are often applied in 
practice. Analogously, by implementing both the forward and the feedback 
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filter of the ISI canceller in a (preferably combined) table lookup structure, this 
equalizer manifests itself as a powerful tool for coping with a wide class of 
nonlinearities 66). 

3. A historical perspective of digital magnetic recording 

The origin of magnetic recording can be traced back to its first description by 
Smith in 188867), and to its first embodiment in 1898 by Poulsen in the form of 
his "Telegraphone"68), for which he received the Grand Prix at the 1900 Paris 
World Exhibition. Originally intended for the storage and reproduction of 
analog signals, soon after the first world war the (U.S.) military authorities 
recognized the value of the magnetic storage medium (which at that time took 
the form of steel wire) for the recording at increased speeds of telegraph 
signals, thereby giving birth to digital magnetic recording. After a period of 
slow evolution, the advent and rapid growth of digital computing in the second 
half of the forties ushered digital magnetic recording into the data storage 
scene. Supported by the need to provide random data access, the initially 
developed tape machines were followed in 1956 by the first magnetic disk 
drive, IBM's RAMAC 350 69). Since then, an ever-growing stream of new 
magnetic data storage equipment has flooded the market, culminating in the 
present generations of equipment where storage capacities, data reliability and 
information densities have increased by several orders of magnitude over their 
earliest predecessors8•10). In the near future, confirming the maturity of the 
discipline, digital magnetic recording will form the heart of several systems for 
the storage of high-quality audio and video signals 70·71). 

In the course of this commercial development, increasingly general and 
refined models have been constructed to describe the magnetic recording 
process. For systems using longitudinal magnetization and a replay head of the 
differentiating (coil pick-up) type, foundations were laid in the fifties by 
Wallace and Karlqvist, who studied the influence of the spacing of the recor
ding medium and the replay head, the gap size of the replay head and the 
thickness of the medium upon the transfer characteristics of the system 72• 73). In 
later years, a plethora of refinements and extensions (for e.g. perpendicular 
magnetization and magneto-resistive heads) to their baseline models has perva
ded the technicalliterature8•74). Remarkably, although magnetic materials and 
mechanical constructions have greatly changed since then, the models of 
Karlqvist and W allace still appear to be a good description of the major transfer 
impairments encountered in much present-day equipment8·74•75). Although the 
noise arising in the recording channel can generally be considered as additive 
and Gaussian, its precise characteristics are often hard to predict because of its 
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many constituents, of which only some (e.g. the medium-induced noise) have 
been modelled in a general fashion 8). 

4. Outline of the thesis 

Following the preceding historical review, the contents of this thesis can now 
be previewed in more detail. As a comprehensive illustration of the origins of 
the disturbances that equalization methods are expected to deal with, chapter 2 
is concerned with an important practical category of digital magnetic recording 
systems, whose representatives are used in all later chapters to judge the merits 
of distinct equalization methods. The chapter opens by describing the mecha
nisms in the recording process that give rise to ISI and noise, and by summa
rizing the continuous-time models that have been conceived in the last decades 
(on the basis of physical and electromagnetic considerations) to describe these 
phenomena analytically 8). Making use of a well-known sufficient statistic of 
the resulting equalizer input signal 3), the remainder of the chapter translates 
these models into discrete-time models which are equivalent in the sense of 
detection theory. As a canonic representation of the information transfer that 
takes place across the recording channel, these discrete-time models are closely 
related to the optimum performances of all possible equalizer types 2). Their 
remarkably simple form moreover provides direct insight into the influence of 
several system parameters upon the transmission quality and upon the equaliza
tion problems that are to be expected, and this insight can in turn be used as a 
guideline for the system designer. 

Following this baseline work, chapter 3 is devoted to the use of partial 
response techniques 26•27•28) in equalization. Viewing them as being essentially 
embodied in the equalizer only, the chapter complements their traditional 
interpretation as a "signalling" or "coding" method29•76). For the linear equali
zer, a mean-square analysis that is carried through on the basis of this novel 
perspective reveals that the use of partial response techniques may be beneficial 
for the transmission quality. This finding contradicts the belief4•11 •29) that 
partial response techniques unavoidably entail a lower transmission quality, in 
return for their capability of rendering data transmission at the Nyquist rate 
practicable. Expanding upon their traditional use in conjunction with linear 
equalization, the chapter proceeds by showing that partial response techniques 
can also be combined with the more sophisticated decision-feedback method of 
equalization 31). Sharply contrasting with the linear equalizer situation, it is 
found that nu mean-square performance advantages can originate from ap
plying partial response techniques here, leaving only potential advantages in 
the domain of error propagation. Concluding the chapter, the developed theory 
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is verified by applying it to the equivalent models derived in chapter 2, and by 
validating the so-obtained quantitative equalizer rankings by means of Monte 
Carlo simulations. 

Although the angle of incidence taken and the extensions studied in chapter 
3 are new, the basic methods treated are traditional, and their merits and 
characteristics are well understood2). By contrast, chapter 4 is concerned with 
the relatively new concept of ISI cancellation, whose performance merits, as 
noted before, have been the subject of both theoretical speculations 41 .42) and 
preliminary numerical investigations43). By carrying out an extensive and 
refined set of simulations for several of the recording channels of chapter 2, 
chapter 4 establishes a number of important new insights relating to ISI 
cancellation. For example, it is shown that the existing theoretical predic
tions41A2) are grossly optimistic in accrediting a performance level to the 
canceller equal to or exceeding that of the most powerful receiver type known 
to date, viz. the Maximum-Likelihood Sequence Detector (MLSD). Further
more, a broad category of channels is demarcated for which the ISI canceller 
essentially parallels the decision feedback equalizer (DFE) in performance and 
hence disqualifies itself from application in view of its more involved imple
mentation. 

The remainder of the thesis centers around the robustness of equalizers, i.e. 
their ability to withstand variations of system parameters. In recent years, a 
renewed interest can be observed in this topic in the context of digital recording, 
where rapid parameter variations, high data rates and power consumption 
restrictions may preclude adaptation methods from being either beneficial or at 
all applied78). To place the subject in perspective, chapter 5 presents an 
analysis of the sensitivity to timing errors of conventional equalization and 
detection methods when applied to the category of digital magnetic recording 
systems of chapter 2. This analysis is comprehensive in that it covers the vast 
majority of methods existing to date, and because it is largely cast in a general 
form which makes specialization to other types of systems and variations a 
straightforward undertaking. Complying with experimental observations77), 

the performance calculations and Monte Carlo simulations which are carried 
out at the end of the chapter to validate the anticipated sensitivity behaviour, 
indicate that all methods studied may already induce serious performance 
degradations in the presence of relatively small timing errors. The rate of 
degradation generally depends strongly upon both the nominal system para
meters and the applied equalization or detection method. Furthermore, varia
tion of other parameters, such as the system gain (whose influence is studied in 
passing in chapter 3), inay lead to a different sensitivity ranking. Thus, it is a 
priori difficult, if not impossible, to make more than the global prediction that, 
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in a conventional dimensioning, the simplest equalization methods are fre
quently the least sensitive ones. Clearly, more control over the robustness of 
equalizers would be desirable. To this end, chapter 6 derives a general solution 
to this dimensioning problem for the linear equalizer' thereby extending more 
fragmentary work which dates back to the pre-adaptive era 57). More in particu
lar, for both the partial and the full response situation, this chapter derives the 
structure, dimensioning and performance of the equalizer which is optimum 
relative to a mean-square performance measure that takes account of parameter 
variations. Also, it outlines an efficient numerical method for calculating this 
dimensioning. The potential of the so-identified design method is then illustra· 
ted by a recurrence to the recording environment of chapter 5, for which in 
many instances significant improvements of the timing margin are found to be 
within reach at a modest expense to the nominal performance. 

In a treatment which also covers several of the results of the preceding 
chapters, the final chapter of the thesis applies a novel tool to the signal 
proceSsing stage in order to be able to identify the optimally robust decision 
feedback equalizer (DFE). This tool is the Zak transform, a linear time
frequency signal representation originating from quantum mechanics, which is 
in between the FoUrier integral for continuous-time signals and the Fourier 
series for discrete-time ones.* As such, it is in a natural way capable of 
reflecting both the continuous- and the discrete-time aspects inherent in data 
transmission, where a data stream is converted into a continuous-time signal 
and decisions are taken at discrete, equidistant moments. While progressing 
towards its main result, the chapter ascertains the merits of the Zak transform as 
a tool for use in data transmission by re-deriving several classical results in this 
field in a general and compact way. The chapter concludes by performing a 
numerical comparison of the optimally robust DFE and its conventional coun
terpart for the recording environment of the preceding two chapters. 
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DISCRETE-TIME MODELS FOR 
DIGITAL MAGNETIC RECORDING 

Abstract 

Using a fundamental result from detection theory, this paper translates the 
most popular continuous-time models for digital magnetic recording into 
simple discrete-time models which are equivalent from an information 
transfer point of view, and which are closely related to the optimum per
formances of all commonly applied receiver types. The models take ac
count of the head-to-medium spacing, medium thickness, playback head 
gap size, tape speed, transmission code and informatil'n density, and are 
valid for both longitudinally and perpendicularly magnetized media. 

1. Introduction 

It has long been known (see e.g. ref. 1, eh. 4) that any continuous-time 
noisy dispersive channel which transports pulse-amplitude-modulated digital 
data can be translated into a discrete-time form which is equivalent from an 
information transfer point of view. This characterization goes without the 
redundancy which implicitly resides in the continuous-time description, and is 
as such more convenient to handle both analytically and numerically. It is 
moreover closely related to the optimum performances of all commonly ap
plied receiver types (see e.g. ref. 2, eh. 6), and hence facilitates the analysis 
and design of the communications system. Unfortunately, many real world 
channels (e.g. voiceband telephone connections, wire pairs, optical stora"Ae 
media, radio links) are so complex in nature that it seems in general to be im
possible to establish manageable analytical forms for the equivalent discrete
time channel. This paper presents, however, an exception to this rule. Building 
upon the most popular continuous-time models for digital magnetic recording 
it derives simple closed-form expressions for the equivalent discrete-time 
channels, which uncover many of the intimate ties that exist between the com
munications properties of the recording system and its physical parameters. 
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A companion paper 8) uses a subclass of the derived models to compare several 
(both traditional and less conventional) equalization methods, and may as 
such serve to further demonstrate the usefulness of the characterization under 
study. 

The paper starts with the presentation of a general continuous-time model 
for digital magnetic recording which captures the parameters of interest, com
menting in passing upon the validity of some of the assumptions embodied in 
it. The theoretical background underlying the equivalent discrete-time charac
terization is next presented in both time- and frequency-domain terms, fol
lowed by a discussion of the basic properties of a canonic factorized form of 
the characterization which is particularly useful for simulation purposes and 
for the analysis of certain receiver types. Subsequent sections actually derive 
the models equivalent to increasingly general subsets of the category of re
cording systems studied, with special emphasis on their spectral properties and 
on the received energy per recorded bit, a quantity of particular relevance in 
communications engineering. For the classical and most restricted Lorentzian 
model, which assumes longitudinal magnetization, a vanishing medium thick
ness, and a playback head with a very narrow gap, exact and remarkably 
simple equivalent descriptions are established, and two canonic factorizations 
are identified. Two generalizations of the Lorentzian model, relieving the 
medium thickness and gap size restrictions, respectively, are then subjected to 
analysis. Although it appears to be feasible to establish exact equivalent time
domain characterizations, their rather unpalatable form and their non-amen
ability to Fourier transformation call for simple yet accurate approximations 
to the true equivalent characteristics, which are successfully identified. After 
showing that all derived models remain valid for perpendicular and mixed 
modes of magnetization, a concluding section finally summarizes the major 
insights gained. 

2. The digital magnetic recording process 

The recording of digital information on magnetic information carriers is 
conventionally a two-level process: according to the value of a binary digit ak 
a position on the medium is magnetized (to saturation) in one direction or in 
the opposite direction. The finite dimensions of the recording and playback 
head, as well as the spatial dispersion on the information carrier, together give 
rise to intersymbol interference which may extend over many bit intervals. The 
most widely applied playback head is of the gapped-ring core type 4), in which 
a pick-up coil translates flux changes into a proportional output voltage. A 
suitable conceptual model for a recording system that uses this type of head is 
depicted in fig. 1. A (possibly pre-coded or modulated) incoming binary data 
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I,..-------, 

input / 
data "• 1 : 

-----------1 Gaussian white 
I nois!f n (t) 
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head 
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l----...JI __________ ..; 

received 
signal 
r (t) 

Fig. 1. Continuous-time channel model for a digital magnetic recording system employing a dif
ferentiating playback head. 

sequence ak e [ -1, 1} is translated by means of an encoding function c(t) into 
a two-level continuous-time data signal s(t) of the form 

CO 

s(t) = L ak c(t - kT), (1) 
k•-oo 

which is applied to the recording head. In this formula, T represents the time 
separation of successive bits. The encoding function c(t) depends upon the 
transmission code used. For the widely applied class of NRZ-like codes (com
prising e.g. NRZ 6), NRZI 6), 8-to-10 8)), c(t) equals 

{ 

1, 
c(t) = 

0, 

O::;;;;t<T, 
(2) 

else. 

A second popular encoding function is associated with the Bi-phase transmis
sion code 5) (which is also referred to as Manchester code or as phase modul
ation). It is given by 

{ 

1, 0:::;;; t <iT, 
c(t) = - 1, iT:::;;; t < T, 

0, else. 
(3) 

The recording head, tape and playback head together cause dispersion which 
can be modelled as an impulse response h(t). Conforming to the majority of 
practical systems encountered to date, we will initially assume the medium to 
be longitudinally magnetized, which causes h(t) to be symmetrical"). At the 
end of the paper we will show that the equivalent discrete-time models derived 
on the basis of this assumption are also valid for longitudinal and mixed 
modes of magnetization. In the case that both the medium thickness and the 
gap width of the playback head are small (this notion will be made more pre
cise later on), the classical Lorentzian model 6 •7) is applicable, for which h(t) 
takes the form 

h t - K V o(a + d) 
( ) - (v t)2 + (a+ d)ll 

(4) 
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In this expression, v, o, a and d represent the relative head-medium velocity, 
the effective thickness of the medium (or, equivalently, the effective depth of 
recording), the transition width of recorded pulses, and the effective medium
to-head spacing, respectively, while K is a proportionality constant depending 
on the head efficiency factor, the track width, the system of units employed, 
and several other factors. Typically, o, a and d range between roughly 0.25 
and 2.5 ~m 4 •

7
-

9
). 

The influence of the thickness o of the medium was first studied in detail by 
Wallace 10), who generalized eq. 4 into the frequency-domain version of the 
expression 8•11) 

K v (v t)2 + (d + a + o)2 

h(t) = 2 ln (v t)2 + (d + a)2 ' (5) 

which is valid for arbitrary o. By making a power series expansion in o and 
neglecting the quadratic and higher order terms, eq. 5 is seen to degenerate 
into eq. 4 for small medium thicknesses. 

The second extension of eq. 4 to be considered is due to Karlqvist 12). It 
again has a bearing on thin recording media (for which o << d + a), but addi
tionally accounts for the presence of a gap of size g in the playback head. The 
associated dispersion impulse response equals 

h(t) _ K;d .[.-n ( ·::!) _ araan ( 
0 ::! ) ]. (~ 

The gap size g is usually of the same order of magnitude as the aforementioned 
parameters 4 •7- 9). It should be stressed that eqs 4, 5 and 6 are compatible 
models related to the same recording system. In fact the three can be com
bined into one frequency domain expression 4) 

1 exp ( 21t o Ill ) sin( 1t_g_f) 
1tKo _____ v_T __ ·exp( -21t(a+d)IJI)· vT 

Hc(f)= --· 
(a+d) (21t:~l) vT (:g:) ' 

(7) 
where the Fourier transform Hc(f) of h(t) is defined as 

00 

J ( -j21t/t) 
Hc(f) ~ h(t) exp T dt. (8) 

This somewhat unconventional definition, with f dimensionless, has been 
chosen because in the remainder this turns out to simplify the equations. The 
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three frequency-dependent factors appearing from the left to the right in the 
RHS of eq. 7 are referred to as thickness loss, spacing loss, and gap loss, res
pectively4•10). 

As the :flux-to-voltage conversion in the playback head is essentially a dif
ferentiation, the overall impulse response of the recording channel (see fig. 1) 
amounts to 

d 
f(t) ~ - (c * h) (t), 

dt 
(9) 

where '•' indicates linear convolution. The output signal r(t) of the reproduce 
head can now be described as 

"' 
r(t) = L akf(t - kT) + n(t), (10) 

k•-oo 

where n(t) accounts for the presence of additive noise. Accurate and univers
ally applicable models describing all relevant noise sources are not available to 
the author's knowledge, although it seems reasonable to assume n(t) to be 
Gaussian 4•6). Among the major components of n(t) are medium noise (with 
spectral characteristics that depend to a large extent on the magnetic material 
used and on whether the medium is particulate 13•14) or metallic 15

)), head 
noise 16), surface roughness noise 17), and preamplifier noise 17- 20). The latter 
three categories are becoming more important because of the trend of track 
sizes to decrease in favour of larger areal information densities 20•21). In view 
of this plethora of mainly ill-predictable constituents of n(t) a first-order 
approximation has been made. This implies that we shall resort to a white 
noise assumption, which is not uncommon 5•20) and in many instances reftects 
the net reality reasonably well 17- 19). It should be recognized, though, that the 
applicability of the models derived hereafter depends on the extent to which 
this assumption is realistic. A similar remark applies to the linear form of 
eq. 10, which is somewhat suggestive as it relies upon the validity of the super
position principle. Despite the nonlinear nature of the magnetic storage pro
cess, it appears that for the particular class of (binary) input signals s(t) under 
study superposition is mostly well approximated in practice, particularly when 
the recording densities are not extreme 11 •22 •28). 

3. An equivalent discrete-time characterization 

We proceed by feeding the received signal r(t) into a filter matched to f(t), 
the output of which is sampled at the rate 1/T (see fig. 2). This is an 
information lossless procedure (ref. 1, eh. 4). Thus the sampled output se
quence uk of the matched filter is a sufficient staiistic for the optimum estima
tion of the information sequence ak. Mathematically, Uk can be denoted as 

Uk = (a•x)k + vk, (11) 
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,------------- --l I Gaussian white 1 

1 channel noise n (t I I 
I I 
I I 
1 I received 

input I channel + j signal 
data a, 1 impulse + I r ltJ 

1 I response 
I . f It I 
I 
L_ 

I 
I 
I 

__j 

Fig. 2. Continuous-time model of a noisy dispersive channel followed by a matched filter and a 
sampler. 

wliere x~c represents the sampled autocorrelation function of f(t), i.e. 

"" 
Xk g j f(t)f(t + kT) dt, (12) 

-oo 

and Vk is the sampled additive noise sequence at the output of the matched fil
ter, i.e. 

"" 
vk g f n(t)f(t- kT) dt. 

-eo 

This sequence has an autocorrelation function E[vkvi] which equals 

E[vkvi] = No Xk-lo 

(13) 

(14) 

where No represents the spectral density of n(t). The (fully discrete-time) 
model described by eqs 12 to 14 is depicted in fig. 3. Defining the autocorrela
tion function z(t) of h(t) as 

CO 

z(t) g j h(v) h(v + t) dv, (15) 
-eo 

and making use of eqs 2, 3 and 10 we see that Xk can be expressed in terms of 
z(t) as 

Xk = -z(kT + T) + 2z(kT) - z(kT- T) 

for NRZ-like codes, and as 

sampled channel 
au tacorretation 
function x. 

(coloured) Gaussian 
noise Vk 

(16) 

Fig. 3. Equivalent discrete-time model of the continuous-time system depicted in fig. 2. 
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Xk z(kT + T) - 4z ( kT + ~) + 6z(kT) - 4z ( kT ~) + z(kT- T) 

(17) 

for Bi-phase. Defining the Fourier transform X(.O) of Xk as 

CO 

X(D) ~ L Xkexp(- j 21t D k), (18) 
k=-co 

we can translate eq. 16 into the frequency-domain expression 

X(D) 4 sin2(1t D) Z(.Q), (19) 

where Z(D) is the Fourier transform of the sampled autocorrelation sequence 

Zk ~ z(kT). (20) 

As appendix A shows, the frequency-domain equivalent of eq. 17 reads 

( 1tD (D) (1t.O) (.0- 1) X(.Q) = 8sin4 

2 
t 2 + 8cos4 2 t -

2
- , (21) 

where '2(.0) is the Fourier transform of the sampled autocorrelation sequence 

fk~z(~)· (22) 

Comparing eqs 22 and 20, we see that an analytic expression for '2(D) can be 
obtained by substituting T by j Tin a given expression for Z(.Q). 

The sampled system autocorrelation function Xk and its Fourier transform 
X(.Q) are closely related to the optimum performances of all known receiver 
types 2). In the sequel of this paper we will capture Zk and Z(D) in analytic 
forms. By applying the above time- or frequency-domain relations the cor
responding functions Xk or X(.O), and hence the associated receiver perfor
mances, are then readily determined. 

4. Spectral factorization 

Because Xk is a real-valued autocorrelation sequence it can be factored as 
the convolution of a real-valued sequence fk and its time-reversed version f-k 

(ref. 2, eh. 6). Introducing the notation 

U-)k ~ f-k• for all k, (23) 

it follows that Xk can be represented as 

Xk = U- * f)k. (24) 
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This equation can be transformed to the frequency domain, and then reads 

X(Q) = IF(!J)I 2
• (25) 

where F(Q) represents the Fourier transform of fk· From eqs 14 and 24, we see 
that the correlation structure of the sampled noise sequence V-k can be thought 
of as being brought about by filtering a white noise sequence nk by a filter with 
an impulse responsef-k· This observation leads us to the canonic system model 
of fig. 4, which is equivalent to our original continuous-time model with regard 

r----------------, 
equivalent 1 

discrete- time I 
channel Gaussian white I 

noise nk 

channel 

I virtual 
i received 
1 signal 
1

1 

r k matched 
impulse )---'------~ filter 
response I '-• .......... F*(fl) 

'• +--+ FWI : 
L ____ ------- ______ I 

Fig. 4. Canonic equivalent discrete-time model of the continuous-time system depicted in fig. 2. 

to the optimum attainable transmission quality. It comprises a discrete-time 
noisy dispersive channel, which transforms the input data sequence ak into a 
'received·' sequence rk of the form 

(26) 

where nk is a zero mean white Gaussian noise sequence having variance No. 
The output signal of the equivalent discrete-time channel has been named rk to 
stress the similarity with the continuous-time model of fig. 1. It should be 
borne in mind, however, that rk is, in general, not a sampled version of r(t). 

The canonic representation of eq. 26 clearly reveals that for every recorded 
bit ak a signal energy U- * f)o = xo is received. As the performance of any 
applied receiver is directly governed by the signal-to-noise ratio ofthe received 
signal, which is in turn proportional to the received energy per bit, we will 
devote special consideration in the forthcoming sections to the behaviour of xo 
as a function of the system parameters. 

Although the knowledge of Xk or X(Q) suffices to evaluate the performance 
of any receiver type, it can be useful, e.g. for simulation purposes, to have an 
analytic description of fk or F(Q) as well. Without further constraints the 
knowledge of Xk or X(Q) does not suffice to identify a unique function fk or 
F(Q), since the factorization of Xk allows the phase characteristics of fk to be 
chosen at liberty. A useful constraint, particularly when the receiver is of the 
decision feedback equalizer or Viterbi detector type 2}, is thatfk be minimum 
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phase. In view of the complexity of the problem we will restrict our factoriza· 
tion efforts in this paper to an important and tractable subclass of the con
sidered recording systems, employing an NRZ-like transmission code and con
forming to the Lorentzian or Wallace dispersion characterization. For this 
subclass we will be able to identify two distinct analytical (but unfortunately 
non-minimum phase) factorization&. 

5. The discrete-time Lorentzian model 

We now concentrate upon the derivation of the equivalent discrete-time 
Lorentzian model, for which the dispersion impulse response h(t) is given by 
eq. 4. This (symmetrical) impulse response has a spatial width pw5o at half of 
its maximum amplitude h(O) which equals {ref. 8) 

PW5o = 2(a +d). (27) 

This motivates the introduction of a normalized information density D as 

6 2(a +d) 
D= vT • (28) 

According to eq. 28, changes in D can be brought about by changing the time 
separation of bits T (which leads to a different bit frequency and changing 
requirements for the hardware operating speed), the head-to-medium spac
ing d, the transition width of recording pulses a, and finally by changing the 
medium velocity v. which from a physical point of view is the most direct den
sity control mechanism. For this reason we are motivated to attribute changes 
in D to changes of the medium velocity v, which will be explicitly reftected in 
the constant gain factors appearing in the forthcoming formulas. Further de
fining a normalized medium thickness Ll as 

Ll !:::, 0 
= 2(a +d) ' 

(29) 

we see that the Lorentzian impulse response, eq. 4, can be written as 

h(t) = 4KLI(a +d) . __ 1-:---
DT 2t 2 

( D T) + l 
(30) 

The ~ourier transform of h(t) equals 

He(/)= 21t KLI(a +d) exp(-1t Dlfl>, (31) 

in accordance with eq. 7. Applying Parseval's theorem to eq. 31, we see that 
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the sampled autocorrelation function Zk = z(k T) of h(t) can be expressed as 
CO 

1 J . Zk = T I Hc(/)12 exp(J 2nf k) df 

CO 

2[2n K A (a+ d)j2 J 
= T exp(-27t DJ) cos(2n/k) df 

0 

where the constant of proportionality A is given by 

A~ [2nKLi(a+d)] 2 

- T 

(32) 

(33) 

Thus the (sampled) autocorrelation function of h(t) also has a Lorentzian 
shape. The Fourier transform 

"" 
Z(D) ~ L Zkexp(-j 2n .Q k) 

i=-oo 

of Zk is given by (ref. 24, p. 138) 

Z(D) = A • cosh(2n D(0.5 D)) 
sinh(7t D) 

(34) 

(35) 

As the Fourier transform F(Q) of any real-valued sequence/k has a Hermitian 
symmetry about zero and is periodic with period 1 26

), it suffices to consider 
frequencies in the interval [0, 0.5]. Eq. 35 and all forthcoming expressions in 
Q are valid in this interval, outside which the appropriate extension applies. 
Combining eq. 35 with eqs 19 and 21 we arrive at the system transfer functions 

X Q = 4A. sin2(n D) cosh(2n D(O.S Q)) (
36

) 
( ) sinh(n D) 

for NRZ, and 

(nD) . (nQ) cos4 

2 cosh(2nDD) + sm4 

2 cosh(2nD(l- Q)) 

X(Q) = I6A· 
sinh(27tD) 

[ 
cosh[ nD( 1 ~)] sinh[nD( 1- ~)J] 

= 2A (3 + cos(2nQ)) . h ) -4cos(nQ) h( D) 
sm (nD cos n 

for Bi-phase. These functions are plotted in figs 5 and 6 with the normalized 
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Fig. S. Equivalent channel amplitude-frequency characteristics for a system applying an NRZ-like 
transmission code and conforming to the Lorentzian dispersion model. 

or-----========~~ 
0·0.2 

0.5 

t -30 
2 

-40 

0.1 Q2 0.3 Q4 Q5 
- normalized frequency .Q 

Fig. 6. Equivalent channel amplitude-frequency chatacteristics for a system applyingthe Bi-phase 
transmission code and conforming to the Lorentzian dispersion model. 

information density D as parameter. The OdB levels in both tigurescoincide, 
so that a direct comparison is allowed. It is easily verified from eqs 36 and 37 
that the !1 = 0.5 values of X(D) for NRZ and Bi-phase are equal. As can be 
observed from fig. 5, the equivalent NRZ system transfer function suffers from 
seve~e amplitude distortion in the vicinity of de, which causes the performance 
of particularly the conventional linear equalizer to deteriorate strongly (ref. 2, 
eh. 6). Due to its nonzero spectral content at the bit frequency (which folds 
back onto de byeq. 21), the Bi-phase transfer function turns out to be much 
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smoother. although the favourably reduced amplitude distortion goes beyond 
effective densities of roughly 0.5 at the expense of a strongly decreased received 
signal power (or, equivalently, a worse signal-to-noise ratio), which again tilts 
the net performance balance in favour of NRZ. Thus Bi-phase may be con
sidered a good choice at low densities, but is definitely inferior to NRZ-like 
codes for high-density applications. This conclusion can be strengthened by 
considering the received energy per bit xo, which directly governs the perfor
mance of any receiver incorporated in the system under study. Combining 
eq. 32 with eqs 16 and 17, we find that 

2A 1 
(38) Xo = 

D(D2 + 1) 1t 

for NRZ-like codes, and 

6A 1 
(39) Xo = 

D(4D2 + 1) (D2 + 1) 1t 

for Bi-phase. These two functions are shown in fig. 7 (the 0 dB level coincides 
with 16A/51t, corresponding to the parameter choiceD = 0.5 for NRZ). Com
paring both curves we see that for densities D below roughly 0.5 the Bi-phase 
received energy per bit clearly exceeds the corresponding NRZ entity (for 
small D by a factor of 3, i.e. 4. 77 dB, reflecting the full profit of the threefold 
average number of flux reversals per second), whereas the opposite holds 
beyond D = 0.5, confirming our view regarding the applicability of both 
codes. It is seen that for both NRZ and Bi-phase the received energy per bit 

.... 
:0 

~ 
~ 0 

~ .., 
-~ -10 
~ 

t 
-20 

0.1 0. 2 03 0., 0.5 2 3 4 5 
- normalized information density D 

Fig. 7. Received energy per bit x0 versus normalized information density D for systems employing 
NRZ-like and Bi-phase transmission codes and conforming to the Lorentzian dispersion model. 
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initially degrades relatively slowly as D increases, but that beyond a critical 
density in the order of magnitude of 1 it suddenly decreases at a dramatic rate 
(proportional to the third or even fifth power of D). This severe penalty for 
density increments discourages attempts to achieve effective signal-to-noise 
ratio improvements by means of channel coding techniques, as the increased 
information density which accompanies their use (the application of more 
data levels to accommodate redundancy is, to say the least, nontrivial) is likely 
to induce a degradation of received signal power which outweighs the estab
lished noise immunity improvements. 

We proceed by considering the problem of factorizing the autocorrelation 
function Xk as the convolution of a real discrete-time sequence/k and its time
reversed version f-k· For convenience we confine our attention to the NRZ 
class of transmission codes. According to eq. 19 we then see that the Fourier 
transform X(D) of Xk can be written as 

X(D) = I G(D) . H(D) 12
' (40) 

where 
G(D) = 1 - exp(- j 21t D), (41) 

and H(D) is a root of the Lorentzian dispersion spectrum Z(D) according to 
eq. 35, i.e. 

IH<D>I 2 = Z(D). (42) 

In time-domain notation eq. 41 reads 

gk = ok ok-t. (43) 

so that gk is obviously a real-valued function. Our problem therefore reduces 
to the identification of a real-valued root hk of the dispersion autocorrelation 
function Zk, so that the desired equivalent discrete-time system impulse res-
ponse 

is also real-valued. 
Writing the Lorentzian dispersion spectrum eq. 35 as 

1 + 2 sinh2 (1t D(0.5 D)) 
Z(D) = A · ------'----'---"'-'

sinh(1t D) 

and defining two real-valued functions Hc(D) and Ho(D) as 

H (D) D. ( A )
1 

c = sinh(1t D) 
and 

H(D)D.( 2A "h 0 o = sinh(1t D) sm (1t D( .5 - D)), 

26 
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we see from eq. 45 that Z(Q) can be expressed as 

Z(Q) = [H.(Q) + j Ho(D)] [H.(D) - j Ho(Q)]. 

Comparing eqs 48 and 42 we now see that the function 

H(Q) ~ H.(D) + j Ho(D) 

(48) 

(49) 

is apparently a factor of Z{Q). Since both H.(D) and j Ho(D) correspond to 
real-valued sequences (having an even and odd symmetry about zero, respec
tively), the sequence hk corresponding to H(Q) is real-valued, as desired. Per
forming the inverse transformation of eq. 49 (the transform of Ha(D) can e.g. 
be found in ref. 24, p. 138), we find that hk equals 

An alternative factorization can be performed by writing Z(Q) as 

Z(Q) = A • cosh
2
(1t D(0.5 - Q)) + sinh

2
(1t D(O.S - D)) ' (Sl) 

sinh(n D) 

which, after a derivation along the same lines, leads to a root hk of the more 
compact form 

D 
k+-

2 
(52) 

which is, as eq. 50, neither causal nor symmetric. The equivalent discrete-time 
channel model conforming to eqs 43 and 50/52 is depicted in fig. 8. The strong 
functional symmetries between fig. 8 and the continuous-time model of fig. 1 

r--- ------
1 channel impulse response f• 
I 
I,-------, 

Input i dlfferen tiel 
data a• 1 encoding 

I function 

I g• 

Gaussian white 
noise nk 

"received" 
+ signal '• 

1-i----'-+~ I 1----

Fig. 8. Discrete-time channel model for a system employing an NRZ-like transmission code and 
conforming to the Lorentzian dispersion model. 
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are immediately apparent. The encoding function and the playback head dif
ferentiation have their counterpart in the differential encoding function g~c, 
whereas the dispersion impulse response h(t) is reflected in a discrete-time 
impulse response ht in which a (non-symmetrical) Lorentzian tendency still 
prevails. Interestingly, it is easy to show that a dispersion factor ht with a fully 
(symmetrical) Lorentzian shape can never satisfy condition 42, so that the 
equivalent discrete-time model can never be completely similar in form to its 
continuous-time ancestor. 

6. The influence of the medium thickness 

This section focusses upon the model due to Wallace, conforming to eq. 5. 
Making use of the normalizations 28 and 29, eq. 5 can equivalently be denoted 
as 

2t 2 

K(a+d) (DT) + (l + 21 )
2 

h(t) = D T ln 2t 2 

( D T) + l 

(53) 

The Fourier transform of h(t) equals (ref. 25, vol. 1, p. 18) 

K(a +d) 
Hc(f) = Dlfl · [1- exp(-2nLJ Dl/1>1 exp(-nDI/1), (54) 

in accordance with eq. 7. Making use of this transform, it is easy to find the 
associated autocorrelation sequence z~~: defined in eqs 15 and 20 (see appen
dix B). Using the shorthand notation 

k ( k ) 1 + LJ ( ( k )
2

) U(k,LJ) ~ - D · arctan D(l + LJ) + -
2 
-ln (1 + LJ)2 + D , (55) 

z~~: can, according to appendix B, be expressed as 

A 
Zk = - [U(k, 0) - 2U(k, LJ) + U(k, 21)], 

nD 
(56) 

where the constant of proportionality A has been defined in eq. 33 (it should 
be noted that A is proportional to the square of LJ and hence may not be con
sidered constant in the context of this section). Combining eqs 56 and 16 yields 
the desired expression for Xk for NRZ-like transmission codes (which is not 
reproduced here in view of its size). Substituting T by ~ T and D by 2D in 
eq. 56 yields the sequence f~c defined in eq. 21, which can be combined with 
eq. 17 to yield the corresponding Bi-phase expression for Xk (which is omitted 
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Fig. 9. Received energy per bit Xo versus normalized information density D with normalized 
medium thickness Ll as parameter for a system employing an NRZ-Jike transmission code. 

for the same reason). The received energy per bit xo as a function of the infor
mation density D, calculated on the basis of the foregoing expressions, is dis
played in figs 9 and 10, with Ll as parameter. The 0 dB level in both figures 
corresponds to the parameter choice D = Ll = 0.5 for NRZ. For small Ll the 
curves closely resemble their Lorentzian counterparts displayed in fig. 7, as 
was to be expected. Irrespective of Ll , in the high-density region beyond D = 1 
the received energy per bit is again seen to deteriorate at a rate which increas
ingly disqualifies any coding technique from establishing there effective signal-

-:;; 
~ 
~ 
c: .. .., 
~ -10 
·~ 

0.1 Q2 0.3 0.4 0.5 2 3 4 5 
- normalized information density D 

Fig. 10. Received energy per bit Xo versus normalized information density D with normalized 
medium thickness Ll as parameter for a system employing the Si-phase transmission code. 
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to-noise ratio increments. It can be observed that the received energy per bit 
grows rapidly with ..1 up to about ..1 = 1, after which a saturation effect occurs, 
accompanied (and partly caused) by a rapid increase of the system dispersion, 
as will become apparent shortly. 

Although the foregoing expressions take exact account of the medium thick
ness, they have a rather complicated form and hence are relatively difficult to 
interpret. Moreover, their Fourier transform cannot easily (and more likely 
not at all) be expressed in closed form. We are thus led to proceed along a 
somewhat indirect line which, as will become apparent later, will culminate in 
a simple and yet accurate approximation of the exact characterization. 

From eqs 54 and 15 it follows that the Fourier transform 

CO 

I (-j 21tjt) 
Zc(f) ~ z(t) exp T dt 

of z(t) equals with A from eq. 33 

[K(a + d)] 2 

Zc(f)= (Diflro~ ·[1-exp(-27tL1Difi>F·exp(-27tDifl> 

= AT. sinh
2
(7t L1 

(1tL1 Dl/1>2 · exp(- 21t D(1 + L1) If!). 

(57) 

(58) 

The Fourier transform Z(D) of z~c (which has been defined in eq. 34) is accord
ing to the samping theorem (see e.g. ref. 26, eh. 2) related to Zc(f) as 

1 CO 

Z(Q) = L Zc(U - n). 
T n=-co 

(59) 

Combining eqs 58 and 59 we now have that 

CO 

The sinh2(x)/x2 factor encountered in eq. 60 is reminiscent of the Fourier 
transform of a triangular time sequence. This similarity shows up explicitly in 
the identity 

a 

1 I ( lxl) sinh
2

(7t aD) 1-- exp(21tDx)dx= 
2 

, 
a a ~aD) 

(61) 

-a 

which can easily be verified by applying standard identities. Using eq. 61, 
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eq. 60 can be written as 
LID CO 

Z(D)= .. /D j (1- ~x~) I exp(-21t(D(1 +L1)-x)ID-nl)dx.(62) 
-LID n=-co 

This expression contains a series of the form 
CO 

G(a, D)~ L exp(-al n- Dl), (63) 
n=-ce 

which can be seen to equal 

G(a D) = cosh(a(0.5 - D)) 
' sinh(~a) 

(64) 

by decomposing it into two semi-infinite geometric series, summing each of 
these series individually, and adding the results. Applying this result to eq. 62, 
we find that 

LID 

A j ( lxl) cosh(21t(D(l + L1) -x)(0.5- D)) 
Z(D) = - 1 - - · . dx. 

L1 D L1 D smh(1t (D(l + L1) - x)) 
(65) 

-LID 

In spite of its relatively simple form, it does not appear feasible to evaluate 
analytically the integral contained in eq. 65. It is, however, relatively straight
forward to approximate it accurately by noting that the function 

6. cosh(21t(D(1 + L1)- x) (0.5 - D)) I I 
F(x) = sinh(1t(D(l + L1)- x)) ' for x ~ L1 D, (66) 

contained in the integrand is convex-u for all D in [0, 0.5] and D > 0. Thus 
we can bound F(x) from above by a straight line between the two boundary 
values F(- L1 D) and F(L1 D), and from below by the tangent of F(x) in the 
midpoint x = 0. Doing so, we find that Z(D) is bounded as 

Z,(D):::;;; Z(D):::;;; Zu(D), (67) 
where 

6. ~. [ cosh(21t D(0.5 - D)) cosh(21t D(1 + 2L1) (0.5 - D))] (
6

S) 
Zu(D) = . h ) + · h( (1 "'A)) ' 2 sm (1t D sm 1t D + """-~ 

and 
6. cosh(21t D(l + L1)(0.5 - D)) 

z,(D) =A· sinh(1t D(l + L1)) · (69) 

Because of the convexity of F(x) the midpoint approximation is better than 
the one involving its two boundary values. Moreover the triangular weighting 
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functlon contained in eq. 65 emphasizes the vicinity of x = 0, for which the 
midpoint approximation of F(x) is most accurate. Therefore we may expect 
Z1(D) to be a good approximation of Z(D). Some insight into the accuracy of 
Z1(D) can be obtained by defining an inaccuracy figure E as 

[ 

0

/z(D)dD] 
E ~ 10 · 10log -

0
----

- 0.5 ' 

I Zl(D)dD 
0 

(70) 

which compares Z(D) and Zz(D) over the entire frequency interval of interest, 
weighing all frequencies equally strongly. By means of numerical techniques 
we found that E is nearly independent of the information density D. The rela
tion between E and the normalized medium thickness L1 is displayed in fig. 11. 
It is seen that E depends nearly linearly upon Ll , and that it does not exceed 
0.3 dB for any thickness Ll smaller than 1.5. According to eq. 69, the net effect 
of increasing the medium thickness is not only a (favourable) multiplicative 
increment of the amplitude of Z(D) (recall that A is proportional to the square 
of Ll), but also an increment by a factor (1 + Ll) of the system dispersion, 
which is clearly less desirable in view of the resulting performance degradation 
of most conventional receiver types (ref. 2, eh. 6). 

Since eq. 69 fully conforms to the Lorentzian model, all the results of the 
preceding section apply to this approximation, provided that the appropriate 
modifications are made to the constant gain factor and/or dispersion. In par
ticular, we found that the simple approximations to the received energy per bit 

1.5.------------~ 

-- normaliad medium thickness <I 

Fig. 11. Model inaccuracy E versus normalized medium thickness Ll for the approximate disper
sion spectrum according to eq. 69. 
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which are obtained in this way (identical in form to eqs 38 and 39) comply 
within 1 dB with the true behaviour depicted in figs 9 and 10 for normalized 
medium thickness up to 1 and 0.5, respectively. 

7. The inftuence of the gap size 

Applying the definitions 28 and 29, we see that the impulse response h(t) ac
cording to eq. 6 assumes the normalized form 

h(t) = 2K~~~ d) -( arctan (;~+a) - arctan (;~-a)]. (71) 

where the normalized gap size a is defined as 

a~ g 
2(a +d) 

(72) 

The determination of the sampled autocorrelation sequence z~c of h(t) is 
straightforward though somewhat lengthy, and is reproduced in appendix C. 
There it is shown that z~c can be expressed in the shorthand notations A and 
U(k,LI) defined in eqs 33 and 55 as 

A 
Zk= 1tDa2 ·[-U(k-aD,0)+2U(k,O)- U(k+aD,O)J. (73) 

It is worth noting the similarity of eqs 73 and 56. Combining eq. 73 with eqs 16 
and 17, we again find analytical expressions for the received energy per bit Xo 

for NRZ-like and Bi-phase transmission codes, respectively, which are dis
played in figs 12 and 13. The 0 dB level in both figures corresponds to the para-

~ - 10 

i 
-20 

0.1 0.2 0.3 0.4 0.5 2 3 4 5 

- normalized information density D 

Fig. 12. Received energy per bit xo versus normalized information density D with normalized gap 
size G as parameter for a system employing an NRZ-like transmission code. 
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t -20 
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Fig. 13. Received energy per bit xo versus normalized information density D with normalized gap 
size G as parameter for a system employing the Bi-phase transmission code. 

meter choice (D = 0.5, G = 0) for NRZ. We see that a non-zero gap size leads 
to a loss in received signal energy which slowly increases with the information 
density D, and which exceeds 1 dB for normalized gap sizes beyond roughly 
0.5. It should be noted that both figures assume A to be constant, and hence 
do not account for the dependence of the head efficiency factor on the gap 
size 8

). 

Though being exact, expression eq. 73 is again too complicated to allow its 
Fourier transform to be evaluated analytically. For this reason we again pro
ceed towards an approximation. According to appendix C, the Fourier trans
form Zc(f) of the autocorrelation function z(t) of h(t) equals 

sin2 (n: G Dill> 
Zc(f) = A T · (n: G Dl/1>2 • exp(- 2n: Dlfl>. (74) 

Combining eqs 7 4 and 59 we now have that 
CO 

Z(Q) =A.~ sin2(n; GDID- n!) . ex (-2n:DI.O 
L (n: GDID- nl) 2 P 

nl). (75) 

n•-oo 

A straightforward upper bound for Z(.Q) can be obtained by replacing the 
sin2(x)/x2 form contained in eq. 75 by its largest (n = 0) term. This yields 

"' 
Z(.Q) 

sin2(n: G D .Q) I 
A · . · exp(- 2n: DID - n I) 

(n: GD.Q)2 

n=-ao 

=A . sin2(n: G D .Q) • cosh(2n: D(0.5 - .Q)) ~:,. Z (.Q) (76) 
(n: G D .0)2 sinh(n: D) = u • 
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This bound is nearly tight when D is relatively large (say, D > 1), so that the 
sum in eq. 75 converges rapidly. Alternatively, when G is small, it is also quite 
accurate since then the sin2(x)/x2 term decreases relatively slowly, so that its 
substitution by 1 is legitimate. We can obtain insight into the accuracy of 
eq. 76 by again defining a model inaccuracy figure E as 

[ 

0.5 ] j Zu(D)dQ 

E ~ 10. Iolog o o.G • 

j Z(Q)dQ 
0 

(77) 

Fig. 14 shows E as a function of D, with Gas parameter. Unlike the Wallace 
case, it is seen that E now depends upon both parameters involved. As ex
pected, the model is very accurate for both small G and large D. Only in the 
region (D ~ 0.5, G ~ 1) E exceeds 0.3 dB. In this region Zk normally has only 

0.2 0.3 0.4 0.5 2 3 4 5 

- normalized Information density D 

Fig. 14. Model inaccuracy E versus normalized information density D for the approximate dis
persion spectrum according to eq. 76. 

a few terms which differ relevantly from zero. Truncating its Fourier series to 
include only these terms and making use of the symmetry of Zk, we get an 
alternative approximation for Z(Q) which reads 

L 

Z(Q) ;;;; zo + 2 L Zk cos(2rc Q k), (78) 
k=l 

where Zk is given explicitly by eqs 73 and 55. The truncation length L can be 
determined by requiring all disregarded coefficients Zk to be less than e · zo in 
magnitude, where e is a predetermined constant. For instance for e = 0.02, 
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numerical calculations indicate that values of G up to 3 in conjunction with 
values of D up to 0.2 and 0.5 allow L to be chosen as small as 1 and 3, respec
tively. 

Applying the results of the previous section, it is easy to show that eq. 76 can 
be extended to include the effect of the medium thickness by substituting D by 
D(l + Ll) in the arguments of the contained hyperbolic functions. Outside the 
region (D ~ 0.5, G ~ 1) this gives an accurate approximation to the true dis
persion spectrum for normalized medium thicknesses Ll up to about 1.5. 

8. Perpendicular magnetization 

So far we have been exclusively concerned with longitudinally magnetized 
media, characteristic for the majority of systems in current use. In the present 
section we present a brief digression on perpendicular magnetization. This sub
ject is interesting in itself, its application being pursued intensively 21

•
27

), and 
it also merits attention because the two modes of magnetization more often 
than not appear to occur in conjunction, causing noticeable deviations from 
the ideally expected symmetrical (or asymmetrical) playback waveforms 11 •28). 

The continuous-time dispersion transfer function Hp(f) for perpendicularly 
magnetized media is the Hilbert transform of its longitudinal counterpart 
He(/) 4), i.e. 

{ 

j He(/), J < 0 
Hp(!)= 

-j He( f), f > 0. 

From eq. 79 we see at once that 

(79) 

(80) 

so that according to the frequency domain version of eq. 15 the dispersion 
autocorrelation function for perpendicular magnetization is simply equal to 
the corresponding longitudinal function, implying that the equivalent discrete
time characterizations are also equal. This observation reflects the well-known 
fact that phase distortion does not affect the optimum attainable performance 
of any receiver type 2). Using eq. 79 and the real-valuedness of Hc(f), it can 
easily be verified that mixed modes of magnetization also induce equivalent 
discrete-time characterizations which are (apart from a constant gain factor) 
identical to the ones derived before. 

9. Conclusion 

This paper has translated the most commonly employed continuous-time 
models for digital magnetic recording into discrete-time characterizations 
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which are equivalent from an information transfer point of view. Apart from 
being simpler to interpret and to handle numerically, these characterizations 
are closely related to the optimum performances of all known digital receiver 
types. Therefore they provide valuable criteria to assess both the influences of 
specific system parameters on the attainable performance, and the effects of 
important trade-offs which are involved in the system design. This rewarding 
aspect is exemplified in a companion paper 3), in which a subclass of the de
rived models serves as a basis for the comparison of several (linear and deci
sion feedback) equalization methods. 

For the classical Lorentzian model, which presupposes that both the 
medium thickness and the gap size of the playback head are small, we have 
established compact equivalent characterizations in both the time and the fre
quency domain, and we were able to translate these into a simple canonic form 
which bears close resemblance to its continuous-time predecessor. These des
criptions indicate that the received energy per bit, which directly governs the 
signal-to-noise ratio and therewith the performance of any receiver connected 
to the recording system, depends strongly upon both the information density 
on the recording medium and the applied transmission code. More in parti
cular, we have classified the Bi-phase transmission code to be superior to NRZ
like codes at low densities: to be precise there is a 4. 77 dB signal-to-noise ratio 
advantage. In contrast, at high densities the signal-to-noise ratio balance 
clearly reverses, designating Bi-phase to be distinctly inferior. The received 
energy per bit was initially found to decrease only linearly with the informa
tion density, whereas beyond a (well defined) critical density it suddenly 
deteriorates at a dramatic rate. This effect discourages attempts to achieve 
effective signal-to-noise ratio improvements at high densities by means of 
channel coding techniques, since the increased information density which 
accompanies their use is likely to cause a degradation of received signal power 
which outweighs the achieved noise immunity improvements. 

As a first extension to the Lorentzian model we have removed the constraint 
on the medium thickness. For the (more complex) continuous-time character
ization which arises in this way we have established a comparably complex 
equivalent discrete-time characterization, as well as alternative characteriza
tions which are considerably simpler, though at the sacrifice of some accuracy. 
We found that an increment of the medium thickness gives rise to an initially 
fairly rapid, but beyond a well defined critical thickness practically negligible 
growth of received signal power. At the same time the system dispersivity (or, 
equivalently, the channel amplitude distortion) increases rapidly, in a manner 
which closely resembles the effect of an information density enlargement. Our 
efforts relating to the extension of the Lorentzian model which elucidates the 
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role of the gap size of the playback head have also resulted in a rather complex 
exact equivalent characterization as well as in simple but accurate approxima
tions thereof. These descriptions revealed a nearly Lorentzian behaviour up to 
a well defined critical gap size, beyond which substantial dispersion losses are 
incurred. 

Though initially established for longitudinally magnetized media, all derived 
models were found to be valid for perpendicular and mixed modes of magnet
ization as well. 

Appendix A. Bi-phase spectral mapping 

This appendix expresses the Fourier transform X(!l) of the sampied disper
sion autocorrelation function Xk according to eq. 17 in terms of the Fourier 
transform t(D) of the sampled dispersion autocorrelation sequence 

£kg z ( k:). (Al) 

Rewriting eq. 17, we see that Xk and £k are interrelated as 

Xk = (y * £)u, 

in which the sequence Yk is defined as 

Yk g Ok+Z 40k+l + 60k - 40k-l + Ok-2· 

The Fourier transform of Yk is 

Y(!l) = 16 sin4 (1t !1). 

(A2) 

(A3) 

(A4) 

Applying the multirate signal processing theory developed in ref. 26 to eq. A2 
and making use of eq. A4 we now find that 

= 8 sin4 ( 1t 
2
!1 t ( ~) + 8 cos4 ( 1t 

2
!1 t ( !1; 

1
). (AS) 

Appendix B. The Wallace autocorrelation function 

This appendix derives the Wallace autocorrelation function z(t) defined as 
CO 

z(t) g / h(v) h(v + t) dv, (Bl) 

where the Fourier transform He( f) of h(t) is given by 

K(a +d) 
Hc(f) = Dlfl ·[1- exp(-21tL1DI/I)]exp(-1tDI/I). (B2) 
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Making use of Parseval's identity we can write z(t) as 

CO 

1 I (j2rtft) z(t) = T I Hc(f) 12 exp T df 

-«> 

(
j2rtft) 

exp T df. (B3) 

This expression is hard to evaluate directly. We therefore resort to an indirect 
approach, differentiating z(t) two times with respect to t, so that the square 
off in the denominator of eq. B3 vanishes. Additionally making use of the 
symmetry of He (f), we see that z"(t) equals 

z "(t) (
21t/f:\. 

exp(-2rtLID/))2exp(-2rtDf)cos r)df 

= rt(2K(a + d)}
2 

[ _ 1 + 2(1 + 
(D T) 3 t 2 t 2 

1 + ( D T) (1 + Ll )2 + ( D T) 

1+2.1 ] (B4) 

Integrating this expression two times with respect to t and making use of the a 
priori knowledge that z '(0) = z(co) = 0, we find after some algebra that 

z(t) = 
4

1t K~a; d)
2 

[ u( ~, o) 2u( ~ ,LI) + u( ~, 2..:1 )]. (BS) 

where the shorthand notation U(k,LI) stands for 

k [ k ] 1 + Ll [ ( k)
2

] U(k,LI) ~ - D • arctan D(l + Ll) + - 2 -In (1 + Ll) 2 + D . (B6) 

Appendix C. The KarJqvist autocorrelation function 

This appendix is concerned with the derivation of the autocorrelation func
tion z(t) of the Karlqvist impulse response h(t) given by 
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2KLJ(a+d) [ 2t ) ( 2t 
h(t) = G D T · arctan D T + G - arctan D T o)J. (Cl) 

The Fourier transform He(/) of h(t) equals 4 ) 

2KLJ(a +d) 
Hc(f) = GDI/I exp(-1t Dl/1) sin(1t GDI/1>. (C2) 

Applying Parseval's relationship, we can write z(t) as 

"" 
z(t) ~ J IHc(/)jl1 exp ( j2it) elf 

_.., 

.. 
[2K LJ (a+ d)]2/ 1 ( 21t/t) 2 

2 
2exp(-21tDf)sin2(1tGD/)cos -- elf, (C3) 

(GD) T j T 
0 

in which use was made of the symmetry properties of z(t). This expression is 
again hard to evaluate directly. Differentiating two times with respect tot, we 
find that the second derivative z"(t) of z(t) equals 

00 

(41tKLl(a+d)) 2J . (21t/t) 
z"(t) = -2 (GD)2 T 3 exp(-21tDj)sm2(1t GDJ)cos -r dj 

0 

00 

(41tKLl(a+d))
2

/ 2 f [ (21t/t) = exp(- 1tD ) -cos -- + 
(GD)2 T 3 T 

0 

(C4) 

Integrating two times with respect to t and making use of the (a priori) know
ledge that z'(O) = z(oo) = 0, we finally obtain z(t) as 

40 



Discrete-time models for digital magnetic recording 

z(t) = 
4n[~i;d)]

2 

[ -u( ~- GD,o) + 2u( ~ .o) -u( ~ + GD,o)]. 
(CS) 

where, as before, the shorthand notation U(k,LI) stands for 

U(k Ll) ~ - !.._ · arctan [ k ] + l + Ll In[(t + L1)2 + (.!5.._)
2

] {C6) 
• - D D(l + Ll) 2 D . 
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PARTIAL RESPONSE EQUALIZATION 

Abstract 

Supplementing their traditional view as a signalling or coding method, this 
paper elaborates a reception perspective of partial response techniques. It 
treats the data equalization problem that arises when an a priori selected 
partial response is secluded from a noisy dispersive communication channel 
and the equalization effort is exclusively directed to its remainder. For a 
given subdivision of the channel, and relative to a mean-square quality 
measure, it derives the optimum linear and decision-feedback equalizers, 
their performances and their sensitivity to gain variations. These results 
indicate that the linear equalizer greatly benefits from an appropriate selec
tion of the partial response. In contrast, the performance of the optimum 
decision feedback equalizer turns out to be essentially independent of the 
applied subdivision, leaving only potential advantages in the domain of 
error propagation. The results are quantified for a class of digital magnetic 
recording channels, revealing a pre-eminent influence of the information 
density upon the relative merits of distinct partial response I equalizer 
combinations. 

1. Introduction 

Partial response techniques involve the introduction of a controlled amount 
of intersymbol interference and the detection of a correlated data sequence with 
an increased number of amplitude levels, from which the original transmitted 
data sequence can be recovered by means of a deterministic transformation 1•3). 

Compared to full response signalling, in which all intersymbol interference is 
eliminated prior to detection, their use generally increases the complexity of 
the system and not rarely decreases its margin against noise, but in return offers 
potential advantages in domains like spectrum control, spectral efficiency, 
sensitivity to timing errors and to changes of the data rate, error monitoring, 
and, last but not least, attainable data throughputs 4-7). Embodiments of partial 
response techniques are encountered in digital magnetic recording systems 8• 9) 

and in a variety of transmission systems using e.g. pulse amplitude modula
tion 1•5), phase-shift keying 10) and quadrature-amplitude modulation 11). A sur
vey of the application area is provided in ref. 7. 
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Focused upon the objectives just mentioned, most theoretical studies of the 
subject have viewed partial response techniques as a signalling or coding 
method 1• 5• 7•9• 11 • 12), The biased nature of this perspective may explain the scant 
recognition of the fact that, for a given transmission environment and at a fixed 
data rate, partial response techniques may also serve to achieve an improved 
tran,smission quality relative to full-response signalling. The present paper 
elaborates this hitherto under-exposed objective. In particular, it studies the 
situation where a linear equalizer is applied to transform the output signal of a 
noisy dispersive channel into one with controlled intersymbol interference, 
suitable for handling by a symbol-by-symbol multilevel threshold detector. 
Accordingly, partial response techniques are treated as primarily taking shape 
in the receiver. This unorthodox viewing angle is sometimes more natural, and 
throws new light upon the merits and characteristics of the concept under 
study. The paper further extends the state of the partial response art by 
exploring the merits of the decision feedback equalizer (DFE) as a more 
powerful substitute for its linear counterpart. Although a theoretical study 
hereof has to the author's knowledge not previously been undertaken, the use 
of decision-feedback equalization in a partial-response mode of operation has 
recently been considered for experimental ISDN transmission systems 13. 14). 

The paper is organized as follows. After sketching the historical development 
and interpretation of partial response techniques, an alternative viewing angle 
is outlined according to which a noisy dispersive channel is conceptually 
subdivided into a predefined partial response and a residual channel upon 
which all equalization effort is concentrated. For a given partial response, and 
relative to a mean-square performance measure, the optimum linear equalizer 
and its performance are then derived, showing that distinct noise immunity 
advantages may accrue from partial rather than full response equalization. In 
contrast, a similar analysis that is next carried through reveals that for the DFE 
such advantages· are essentially beyond reach, and that the optimum mean
square partial response DFE may in its straightforward configuration be even 
seriously hampered by error propagation. Among the three methods that are 
outlined to counter this problem, the most promising one, involving a modified 
(and in fact simplified) configuration, is subjected to a more detailed error 
propagation analysis. The sensitivity of both this modified DFE and the linear 
equalizer to channel gain variations, a factor of particular relevance in (e.g. 
recording) systems in which variations beyond the tracking speed of adaptation 
algorithms occur, is subsequently captured in analytic forms. To exemplify the 
developed body of theory, a comparison is finally presented of the mean-square 
performances and bit error characteristics achieved by various partial response/ 
equalizer combinations for a class of digital magnetic recording systems of 
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practical relevance, for which a canonic discrete-time characterization has 
been derived in a companion paper 15). 

2. Partial response techniques 

Historically, a prevailing incentive for the use of partial response techniques 
has been their capability to support a higher transmission rate on a given 
channel than feasible by means of full-response signalling 6• 5). The first (avant
la-lettre) instance hereof originated in cable telegraphy midway the Victorian 
age, when it was discovered that 'doubling the dotting speed' relative to the 
maximum signalling rate at which transmitted symbols were clearly intelligi
ble, would result in a received signal assuming 3 (rather than the transmitted 2) 
data levels, continually reflecting the sum of two adjacent transmitted sym
bols6). In the absence of past decision errors, the transmitted data could be 
unambiguously reconstructed from this received signal by means of a recursive 
decoding procedure. In return for the doubled signalling rate, discrimination 
between three rather than two possible signal values within the same range 
would be required, resulting an a ( 6 dB) reduction of the margin against noise. 

In the sixties of this century, the modem version of this telegraph trick 
became known as duo binary signalling 1). Mathematically, duobinary signall
ing involves the reception of a signal bk that is related to the signal ak actually 
transmitted as 

(1) 

where '*' represents linear convolution, while g" is the duobinary response, 
whose .@"-transform 

g( 9') g i gk f?gk (2) 
k= 00 

equals 

g( 9') = 1 + 9'. (3) 

The serious problem of error propagation, originating from the recursive nature 
of the decoding procedure, was solved by adding a suitable data transformation 
(which normally takes the form of a so-called precoder2

)) at the transmitting 
end of the system, thus enabling the decoder to become memoryless. The term 
'partial response techniques' emerged for the general idea of tolerating or 
deliberately introducing a controlled amount of intersymbol interference 
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in pursuit of an increased data throughput, spectrum control or related objecti
ves 3•12). Central to the applicability of partial response techniques, the existen
ce of simple pre- and decoding schemes was first demonstrated for simple, 
integer-valued partial responses, of which the category 

has come to dominate the partial response application scene2•3•5). Later, preco
ding and symbol-wise decoding schemes were uncovered for increasingly 
more general classes of responses 12•16). As they involve the unravelling of 
'controlled' intersymbol interference with a more complicated nature, these 
schemes are generally more involved than the ones applicable to eq. (4). Also, 
it was recognized that the correlation present in the received signal could be 
exploited to perform error monitoring, and even to establish an improved 
transmission quality (e.g. by 'null zone detection' 17) or 'ambiguity zone detec
tion' 18)). The ultimate improvement in this respect was brought in the early 
seventies by the Viterbi detector, the first practicable instance of a maximum-li
kelihood sequence detector (MLSD), and as such capable of making a maxi
mum-likelihood estimate of the transmitted data sequence. As the precise 
structure of the intersymbol interference is immaterial to its applicability, the 
Viterbi detector in a sense blurred the distinction between the by then well 
established partial response discipline and the world outside it. To minimize 
this confusion, we shall in this paper essentially restrict consideration to 
response.s of the category eq. (4)*). Also, we will assume the use of a conven
tional symbol-wise threshold detector throughout, although some concluding 
remarks will be devoted to its substitution by a Viterbi detector. 

Supplementing their prevailing signalling or coding connotation, briefly 
addressed in the preceding lines, one can also consider partial response techni
ques as a method that aims at noise immunity improvements over full response 
signalling. This alternative viewing-angle will now be outlined in more detail. 

3. A reception perspective of partial response techniques 

Although data transmission across analog channels is a continuous-time 
process, its basic features can in principle be represented in a discrete-time 
fashion. More in particular, when pulse amplitude modulation is used and 
when the channel causes only linear intersymbol interference and additive 
Gaussian noise to arise (as we will assume in the present paper), then the 

*) Nevertheless, many of the results obtained hereafter (especially those established in the appendi
ces) have a more general applicability. 
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information transfer which takes place across the channel can be cast in the 
canonic discrete-time form 

(5) 

where r~c is the equivalent discrete-time received signal, ak is the data sequence 
to be conveyed, fi is the equivalent discrete-time impulse response of the 
channel, '*' represents linear convolution, and nk is an additive white Gaussian 
noise sequence having variance No 19). The equivalent received signal rk can be 
uniquely determined from the continuous-time signal r(t) actually received 
through the application of a so-called whitened matched filter20). This filter, 
which maps r( t) into rk, consists of a matched filter, a symbol-rate sampler and 
a discrete-time noise whitening filter. It is information-lossless, and can be 
regarded as a constituent of any receiver in an optimum dimensioning 20). 

Consequently, when optimizing distinct receiver types, attention may be 
confined to their discrete-time part, i.e. to the sequence of operations which 
they perform upon rk. For the sake of compactness and clarity, we will take this 
approach in this paper. For the same reason, we will assume ak to be drawn 
from the alphabet { -1, + 1}, to be uncorrelated and to be statistically indepen
dent of nt. Without changing the nature of the results derived hereafter, most of 
these assumptions can be easily relaxed 21). Also, spectral colouration of nk can 
be easily accounted for 4). The well-defined nature of the whitened matched 
filter enables the equivalent discrete-time impulse fi to be uniquely calculated 
from the actual continuous-time channel parameters 19• 20• 22). Although this 
calculation can mostly be made numerically only, it is sometimes possible to 
determine fi or its amplitude characteristics analytically. This applies in particu
lar to the class of digital recording systems which is used in a later section to 
compare distinct partial response/equalizer combinations. 

The intersymbol interference and noise reflected in eq. (5) are normally dealt 
with by means of equalization methods. Using one or more linear filters, an 
equalizer attempts to form an accurate estimate of a~c (or, as we shall see, of a 
simple linear transformation thereof), which is then applied to a detector whose 
decisions are normally made in a memoryless (symbol-by-symbol) fashion*). 
Particularly the simpler and hence less powerful equalizers encounter severe 
difficulties (notably excessive noise enhancement) in dire9tly estimating the 
transmitted data sequence ak whenever the channel impulse response fi exhibits 

*) Apart from the conventional multilevel threshold detector, assumed throughout this paper, there 
exists a second symbol-by-symbol detector type employing decision feedback and a binary 
decision device 3• 5). Apart from its error propagation behaviour, this detector is identical in 
performance to its multilevel threshold counterpart for the category of responses ( 4) 3, s. 23). 
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much amplitude distortion, i.e. when its amplitude spectrum contains zeros or 
deep depressions 4• 19). To cope with these problems,fi, may be factored into a 
predefined partial response g~c, 0 ~ k ~ K - 1, which captures the major part of 
the amplitude distortion offi,, and a residual response h~c which can be equalized 
without severe noise enhancement. This factorization can be denoted as 

(6) 

With the aid of eq. (6), eq. (5) can be written as 

(7) 

where 

(8) 

is a correlated data sequence taking on at most 2K (and generally less) values. 
Fig. 1 depicts the model described by eqs. (7) and (8). The choice for gk is 

Fig. l. Discrete-time factorized model of a data transmission system. 

explicitly visible only in the receiver, which now attempts to reconstruct the 
(virtual) data sequence bkratherthan the original data sequence a~c. This is a less 
demanding task because of the relatively small amplitude distortion of the 
residual response h~c. The factorization of the channel impulse response can be 
governed by both performance considerations and engineering convenience 
(e.g. by the acceptable number of data levels of b~c). Whenever g~crepresents an 
invertible operation, the estimate of bk can be translated into a unique estimate 
of the original data sequence a~c by means of a deterministic transformation. In 
order for the estimate of the transformed data sequence bk to be detectable by 
means of a simple symbol-by-symbol multilevel threshold detector, bk should 
assume no more than a small number of amplitude levels. This prerequisite is 
(for small m and n) met by the important practical class of responses of eq. ( 4). 

For future use, we now develop some notation. We shall denote the time-
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reversal of a sequence by means of the subscript ' '. Using this notation, the 
autocorrelation functions x", Y~< and Zk ofjk, g~c and hk can be represented as 

(9) 

(10) 

and 
Zk = (h * h_)k, (11) 

respectively. These functions play an important role in the following sections. 
Defining the Fourier transform V ( Q) of a sequence Vk as 

V(Q) ~ :i Vk exp(-j27CQk), (12) 
k~-<IJ 

eqs (9) to ( 11) can equivalently be represented in frequency domain notation as 

and 

X(Q) = IF(Q)j2, 

Y(Q) =I G{Q) 12• 

(13) 

(14) 

(15) 

where X ( Q) ... H ( Q) denote the Fourier transforms of Xk ••• h~c, respectively. 
Before considering the equalization problem in more detail we augment the 
channel with a filter matched to the residual response hk (see fig. 1). This is an 
information-lossless procedure (ref. 19, eh. 6), intended to simplify the forth
coming formulas. Applying eqs (5) and (11 ), we see that the output sequence uk 
of the matched filter equals 

u~c = (r * lz_)~c = (b * Z)k + (n * lz_)k. (16) 

4. Optimum partial response linear equalizer 

The linear equalizer, shown in fig. 2, is a discrete-time filter (having an 
impulse response c", - oo < k < oo) which operates on the matched filter output 
signal uk. It is dimensioned to suppress intersymbol interference and noise as 

48 



Partial response equalization 

Fig. 2. Partial response linear equalizer. 

well as possible, producing estimates bk of the (virtual) data sequence bk. After 
a detection operation that maps bk onto a detected sequence of digits bk. a 
subsequent inverse mapping produces an intentional replica ak of the original 
data sequence ak. It can be noted that responses according to (4) have all their 
zeros (in the f?2! -domain) on the unit circle, so that they strictly speaking 
cannot be inverted. For this reason, the inverse mapping which is needed to 
reconstruct ak from its detected transformation bk is plagued by error propaga
tion. In order to circumvent this problem, one normally adds a precoder at the 
transmitting end of the system in order for the inverse mapping to be memory
less. Since they are well documented and understood 2• 3• 7• 9) and do not affect 
the results presented hereafter, we will not account for the presence of these 
measures in the sequel of this paper. 

As a quality measure for the decisions produced by the detector we will 
employ the mean-square error e between bk and bk, defined as 

(17) 

in which E denotes mathematical expectation. Unlike the somewhat more 
relevant probability of error, this measure has the advantage of being analyti
cally tractable, while it also underlies the most frequently used equalizer 
adaptation algorithms 4• 19). To enable a meaningful comparison in mean-square 
error terms of the merits of distinct partial responses g ( f?2! ) , it is necessary that 
the responses are normalized in amplitude such that identical mean-square 
errors indicate identical or at least comparable error probabilities. When its 
threshold levels are spaced halfway adjacent data levels of bk, and when the 
error signal bk - bk predominantly consists of Gaussian noise (with variance a2 

= e), the symbol error rate achieved by a multilevel symbol-wise threshold 
detector is, athigh signal-to-noise ratios, linearly proportional to Q(d/2a) = 
Q(d/2yE), where d represents the smallest distance between adjacent data 
levels of bk, while 24) 

Q(x) ~ _1_ j e-t'2dy. 
V2ir X 

(18) 
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Hence, an appropriate scaling is obtained when distinct partial responses 
g( §'!) cause identical values of d. Using eq. (8) it can be observed that the 
responses cf. eq. (4) conform to this prerequisite with d ==--2. 

We now focus upon the minimum mean-square error emin achieved by the 
partial response linear equalizer for given responses fi and gk and a given noise 
variance No. Due to the correlated nature of both bk and bk the solution to this 
problem, reproduced in appendix A, is somewhat more complicated than in the 
conventional uncorrelated case. From appendix A it follows that the optimum 
transfer function C(Q) of the equalizer is given by the remarkably simple 
expression 

C(Q) = f(Q) = I G(Q) 1
2 

X(Q) +No IF(Q)j2 +No' 
(19) 

while the minimum mean-square error emin is given by 

- - 0.5 f(Q) - 0.5 I G(Q) 12 
emin-Noco-No I X(Q)+No dQ-No I IF(Q)I 2 +No dQ. (20) 

-0.5 -0.5 

By performing direct detection· of the transmitted data sequence at rather than 
of a linear transformation thereof (which corresponds to G( Q) = Y ( Q) = 1), 
eqs (19) and (20) are seen· to reduce to the familiar expressions for optimum 
mean-square full-response linear equalization (see ref. 19, eh. 6). 

We illustrate the optimum dimensioning specified by eq. ( 19) by means of a 
simple example. Taking the partial response g ( ) = 1 - flit (which leads to 
a ternary sequence bk) and an ideal residual response (for which 
H(Q) = Z(Q) = X(Q)/Y(Q) = 1), it follows from eq. (19) that in the 
absence of noise (No = 0) no equalization is needed. If No substantially differs 
from zero, however, then eq. ( 19) specifies an optimum dimensioning in which 
some residual intersymbol interference is allowed in exchange for an improved 
noise suppression. For No = 1 (corresponding to an unrealistically small 
signal-to-noise ratio Xol No of 3 dB, chosen to show more clearly the effects of 
interest) fig. 3 depicts the optimum system impulse response (z * c )k = Ck that 
results in this way. The system apparently suffers from severe intersymbol 
interference due to the large values of (z * c)-t and (z * c)t, so that in 
combination with the relatively small sampling moment amplitude (z * c )o the 
quality of the decision variables bk appears to be very poor. However, due to the 
correlated nature of bk it is readily apparent that the actual quality of the 
decision variable bk is much better than predicted by this heuristic reasoning. 

Noting that 
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0.8 
Ct< 0.6 

f 0.4 

02 
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-k 

Fig. 3. Optimum linear equalizer impulse response for system having g( .@) = l- .@ and Z(Q) 
=No l. 

bk = -0.17bk+ 1 + 0.55bk- 0.17bk 1 + (n * c)k (21) 

and that 

(22) 

it is easily verified that bk can equivalently be expressed as 

(23) 

so that bk resembles bk considerably better than predicted by sole consideration 
of the system impulse response. 

It is seen from this example that partial response systems can in principle take 
advantage of both pre-cursive and post-cursive intersymbol interference for 
establishing the beste possible transmission quality. This trait of character is 
greatly at variance with the non partial response case, in which intersymbol 
interference inevitably degrades system performance. In the following section, 
in which decision feedback equalization for partial response systems is studied, 
it will consequently be found that the conventional interpretation of the DFE as 
a canceller of all post-cursive intersymbol interference is suboptimum; since 
this cancellation would involve the removal of information which could be 
helpful in establishing a better transmission quality. 

S. Optimum partial response decision feedback equalizer 

Apart from a forward filter that suppresses noise and conditions pre-cursive 
intersymbol interference, the decision feedback equalizer (see fig. 4) also 
contains a feedback filter (FBF) which allows previous decisions to assist in the 
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Fig. 4. Partial response decision feedback equalizer. 

detection of subsequent symbols. The presence of an FBF designates the DFE 
to be intrinsically more powerful than the linear equalizer. To enable its 
performance to be analysed, one usually postulates that all previous decisions 
which affect the FBF output signal are correct23), and hence neglects error 
propagation effects. Although we will not deviate from this approach in this 
paper, we will explore the error propagation problem in some detail in later 
sections. Under the mentioned assumption, the DFE is capable of removing all 
intersymbol interference of the trailing type if the impulse response of the FBF 
is chosen to be an exact replica of the trailing part of the system impulse 
response. In the conventional (non-partial response) case this replication is 
known to be optimum for the overall system performance 23· 25), and one might 
expect the same to be true for the situation under investigation. Surprisingly, 
the analysis that appendix B carries through demonstrates that this is not the 
case. More specifically, 'Yhenever the partial response gk is causal and has 
minimum-phase, the optimum forward and feedback filters are found to satisfy 
in frequency domain notation 

and 

C(Q) = go . G*(Q) 
Yo F*(Q) 

p ( Q) = go . F( Q) - 1 
Yo G(Q) ' 

(24) 

(25) 

respectively, where F(Q) represents the (unique) causal minimum phase 
factor of X ( Q) + No = I F ( Q) 12 + No 25• 26). Appendix B presents a recurrence 
relation by means of which F( Q) (or, more precisely, the corresponding time 
domain sequence Yk. k ~ 0) can be calculated from X ( Q) + No. The restriction 
to causal and minimum-phase partial responses (which will henceforth be 
implied) entails little loss of practicality, as it does not exclude the important 
class of responses g ( 5?2: ) = ( 1 - 5?2: )m ( 1 + 5?2: )n. According to eqs (24) and 
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25), every spectral zero of the partial response 8k induces an identically located 
zero and pole of Ck and Pk. respectively. For all responses g ( !!» ) of the form 
(1- !!»)m (1 + !!» )n this implies that the FBF impulse response Pk will have an 
infinite extent, so that one decision error influences subsequent decisions ad 
infinitum, which is clearly highly undesirable. We further conclude from eq. 
(24) that the total filtering in the forward path of the receiver performed by the 
cascade of the matched filter and the forward filter, is independent of the partial 
response used (H*(Q)C(Q) is, according to (24), completely determined by 
F(Q) and H*(Q)G*(Q) = F*(Q), neither Qfwhich depend on G(Q)). 
Therefore, the FBF assumes the exclusive responsibility for tailoring the 
decision variable bk in such a way that it matches a predefined correlation 
structure (i.e. partial response). 

As in the full-response case, the optimum forward filter Ck is again anticausal 
(naturally allowing a causal implementation by the introduction of an appro
priate delay), and its optimum 'central' (i.e. last non-zero) coefficient value eo 
is related to the minimum mean square error Emin of the equalizer by 

Emin = Noco. (26) 

The following simple expression relates Emin explicitly to the known system 
parameters: 

(27) 

For partial responses g ( !!» ) of the form ( 1 - !!» )m ( 1 + !!» )n we have go = 1, 
so that eq. (27) reduces to the expression describing the optimum mean-square 
error in the non-partial response situation 25). In other words: irrespective of the 
channel characteristics, the added complexity incurred by applying this type of 
partial response is never rewarded in terms of a mean-square performance 
improvement! This remarkable result is in complete contrast with the linear 
equalizer situation just studied, in which the system performance invariably 
benefits from an appropriate selection of the partial response. As the presence 
of an FBF causes the partial response DFE to be intrisically more powerful than 
its linear counterpart, this finding also asserts the performance superiority of 
the conventional full-response DFE over any partial response linear equalizer 
having g( !!») = ( 1 - !!»)m( 1 + !!»)nand followed by a symbol-by-symbol 
multilevel threshold detector. 

We will address the interpretational aspects related to eqs (24) and (25) by 
means of the same example that we considered before in the context of linear 
equalization. Fig. 5 depicts the optimum forward and feedback filter impulse 
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Fig.5. OptimumDFEimpulseresponsesforsystemhavingg(~) = 1-~ andZ(.Q) =No= 1. 
Unconstrained feedback filter. 

responses ( ck = ( c * z hand p~c, respectively) as described by (24) and (25) for 
a system having g ( ) = 1 - §J and H ( Q) = Z( D) = No = 1. It is seen that 
the FBF impulse response indeed has an infinite duration. Unlike the non-par
tial response situation, it no longer replicates the optimum system impulse 
response, which is zero inside its span. This seemingly strange behaviour can 
be understood by recalling that the sequence b~c is correlated, so that any 
decision bk- 1 regarding the symbol bk- 1 contains some information about the 
following symbol b~c. As we have assumed previous decisions to be correct, this 
information is noise-free. Of course the optimum equalizer will try to invoke as 
much noise-free information regarding bk in the decision variable bk as possible, 
thus allowing the 'direct' but undesirably noisy information about bk (entering 
through the forward filter) to be smaller in magnitude. Due to this effect the first 
few feedback filter coefficients (i.e. the coefficients P~< within the span of the 
partial response gk) will have a relatively large non-zero value. The remaining 
coefficients are then determined by the requirement that the disturbing influen
ce of the corresponding older decisions (which are uncorrelated with bk) should 
be minimum. This leads Pi to have a (nearly) zero transfer at those frequencies 
where g~c (and hence b~c) has its largest spectral density and vice versa. For 
instance, in the present example for which g ( ) = 1 - §J the infinitely long 
feedback filter approaches an ideal integrator, which has an infinite transfer 
only at de, being the only frequency for which g~c has zero spectral content. 
More quantitatively it is seen that the decision variable bk approximately equals 
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bk:=::: -O.lbk+2- 0.23bk+ I+ 0.39bk- 0.6(bk-l + bk 2 + ... ) 

= 0.8bk- O.l5(ak+ 1 + ak + ak-1) + (n * c)k, (28) 

in which use has been made of the correlation structure brought about by the 
partial response gk of eq. (22). Unlike the linear equalizer case, the residual 
intersymbol interference is now correlated with bk, but its total effect is only 
comparably large. Thus, due to the smaller noise transfer of the forward filter 
(caused by the reduced magnitude of its coefficients), the resulting mean
square error is favourable over the minimum linear equalizer error ( emin =No eo 
= 0.39, versus Emin = Noco = 0.55 for the linear equalizer). 

The apparent impracticality of the feedback filter solution described by eq. 
(25) can be circumvented by restricting the length of the feedback filter to some 
finite value N, so that a decision error can affect no more than N subsequent 
decisions. Of course, optimization of the DFE subject to this restriction entails 
some increment of the minimum mean-square error. A straightforward exten
sion of the first part of appendix B reveals that the optimum forward and 
feedback filter coefficients citj =I= 1 .. . N, and Ph 1 :s;.j:;;;, N, solve the infinite set 
of equations 

(co~<(x +No o))i = ((p + O)o~<y)j forallj, (29) 

where Ok denotes the Kronecker delta-function. The forward filter is here no 
longer anti causal, but rather has a gap within the span of the feedback filter. It 
can be observed that for the linear equalizer (for which N = 0) the right-hand 
side of eq. (29) degenerates into Yi• so that the time-domain version of eq. (19) 
remains. 

A second possibility that exists for improving the practicality of the optimum 
feedback filter is to invoke the conventional condition that the feedback filter 
coefficients must be a replica of the trailing part of the system impulse response. 
Appendix C derives a semi-infinite set of equations describing both the DFE 
which solves this constrained optimization problem and its mean-square perfor
mance. The greatly differing nature of this solution with the unconstrained one 
can be visualized by returning to the example considered before. Fig. 6 depicts 
the optimum forward and feedback filter impulse responses resulting from a 
zero trailing intersymbol interference constraint for a system having g( ) = 
1 - !!», Zk = Ok and No = 1. The most striking feature of fig. 6 concerns the 
optimum feedback filter, of which all coefficients turn out to be zero. Using 
equation (C5) it is easy to show, incidentally, that this feedback filter solution 
is in fact optimum for all partial responses and irrespective of No whenever 
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Fig. 6. OptimumDFEimpulseresponsesforsystemhavingg(~) = 1 andZ(.Q) =No= 1. 
Feedback filter constrained to remove all trailing intersymbol interference. 

Zk = ok; moreover in this specific case it again holds that Emm simply equals 
No eo. The minimum mean-square error Emin is seen to equal No eo= 0.63, which 
is inferior to both solutions considered before, indicating that in specific cases 
the (less complex) optimum partial response linear equalizer can outperform its 
DFE counterpart when the latter is subjected to a zero trailing intersymbol 
interference constraint. 

The two methods just described for diminishing FBF error propagation 
problems are beyond doubt effective, yet render the minimum mean-square 
error of the DFE interior to the performance achieved by the full-response 
DFE, which is moreover simpler to implement. In contrast, we will now 
consider an alternative approach, involving a modification of the DFE configu
ration, which essentially goes without these disadvantages. 

6. An alternative decision feedback equalizer configuration and its error 
propagation behaviour 

Fig. 7 depicts a simple modification to the DFE configuration considered so 
far which reduces both the implementational complexity and the error propaga
tion problems without loss in minimum mean-square error. Rather than by the 
detected virtual sequence bk the feedback filter is now excited by the final 
estimate ak of the original data sequence ak *). The binary (as opposed to 

*) For expositional simplicity, fig. 7 neglects the practical necessity of using a precoder at the 
transmitting end in order for the inverse mapping to be memoryless. Its presence dictates an 
additional precoder to be incorporated just before the feedback filter so as to feed it with an estimate 
of the precoded input data, to which the received signal is linearly related. Forming tbe modulo 2 
sum of a current input and past output bit, the precoder produces a correct output bit whenever an 
even (or zero) total number of erroneous bits have been applied to it. This effect (which will be 
quantified for the recording system of sec. 8) causes error propagation to be slightly more serious 
than estimated in the present section, since it lengthens bursts so as to contain an even number of 
errors . 
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multilevel) nature of its new input signal obviously simplifies the digital 
implementation of the FBF. In the configuration of fig. 7, the impulse response 

Fig. 7. Partial response DFE employin~ a binary feedback filter input signal. 

p~ of the FBF must also account for the relation 

(30) 

which exists between its former and present excitation. Invoking eq. (25), this 
implies that Pk equals 

(31) 

so that the FBF no longer possesses poles. 
If the partial response adequately stylizes the amplitude distortion of the 

channel and if moreover No is not too large, then Yk will resemble gk closely, so 
that the coefficients p~ become small, and error propagation may be even less 
than in the non-partial response case, for which the FBF will have larger 
coefficients. We may take the FBF L1-norm 

(32) 

to be a rough but simple indicator for the severity of error propagation27• 28) 

(more accurate measures are, regrettably, conspicuous for their restricted 
tractability 27• 28)). For the class of partial responses g( ) = (1 - )m 
( 1 + f:iJ )n, eq. (32) becomes 
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"' y; 
= L 1--g;l, 

i=t Yo 
(33) 

where the sequence y;, i ~ 0, can be calculated by means of the procedure 
outlined in appendix B. Values of below 0.5 indicate that error propagation 
vanishes at high signal-to-noise ratios 27). Conversely, values of in excess of 
roughly 1 indicate a relevant amount of error propagation, since the adverse 
FBF effect on the decision variable bk caused by an erroneous decision then 
significantly exceeds the distance between adjacent data levels of bk, so that 
further decision errors are likely. In such a situation it will often be advisable to 
choose a DFE dimensioning which leads to a shorter effective duration of the 
system impulse response, therewith exchanging a slight noise immunity degra
dation for a favourable reduction oferror propagation 22). Apart from being an 
indicator for error extension effects, the (full-response) FBF L1-norrn %also 
plays an important role in the sensitivity of the DFE to gain variations, as we 
will now see. 

7. Sensitivity to gain ·variations 

In spite of the static characterization which is usually adopted, it may happen 
that a communication channel exhibits variations, possibly at a rate beyond the 
tracking capabilities of commonly used adaptation mechanisms 4

• 
19· 29). As an 

example, magnetic recording systems are subject to the influence oflocal tape 
defects and rapid tape-head contact fluctuations 30• 31). A major effect of such 
variations is a decrease of the channel gain, which can be modelled by 
incorporating a marginal gain misadjustment factor a, so that the received 
signal takes on the form ( 1 - a) r~c rather than r~c. (We feel that a scaling of the 
entire received signal is more appropriate than a scaling of only the signal 
component (a *f) k of r~c, since in the present situation any receiver performance 
degradation can only be attributed to a mismatch and by no means to a 
signal-to-noise ratio change.) This will lead to a performance degradation due 
to the erroneous assumptions which the receiver now embodies about the actual 
channel characteristics, not having adapted its dimensioning to the decreased 
channel gain. 

Since we are primarily interested in the order of magnitude of the effect, we 
will facilitate its analysis by restricting consideration to partial responses 
g( §')of the form (1 - §' )m(l + §')",in conjunction with a staircase 
multilevel symbol-by-symbol detector, the thresholds of which are spaced 
halfway between adjacent nominal data levels. For the sake of simplicity we 
will moreover make the not unusual assumpion (see ref. 4, pp. 76-77) that, in 
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the absence of a gain misadjustment, the error signal bk - bk consists predomi
nantly of Gaussian noise (having variance a2 = Bmin). As a consequence, the 
symbol error rate achieved by the detector is asymptotically (i.e. for high 
signal-to-noise ratios) linearly proportional to Q(d/2a), where Q() has been 
defined in eq. (18), while d/2 1 is the minimum distance between any 
possible value of bk and the nearest detector threshold level 24). 

In the presence of a gain misadjustment a, the asymptotic error rate will be 
linearly proportional to Q(d(a)/[2(1 - a)a]), where d(a)/2 denotes the 
smallest distance between any possible value of ( 1 - a) bk and the nearest 
detector threshold level24). For this reason we are led to define an effective 
mean-square error Eeff( a) as 

t:. 4(1-a)2 

Eerr( a) = d2 (a) Emln, (34) 

so that Eetr is a direct measure of the asymptotic symbol error rate achieved by 
the detector and compatible with em1n for a = 0. 

It is easily verified that for a partial response which gives rise to an L-level 
virtual data sequence bk, the linear equalizer has 

d~a)= 1-(L-l)a for L~2, (35) 

provided that a does not exceed 11 ( L - 1 ). For the DFE we have to take 
account of the independence of the feedback filter output signal of a. This leads 
to a residual quantity of trailing intersymbol interference, the largest magnitude 
whereof determines d(a). Making use of eq. (25), it follows that for both 
L = 2 andL = 3, 

d(a)=l-a~ 1£.1. 
2 i=O Yo 

(36) 

It is worth noting that d (a) is intimately related to the full-response FBF 
Lt-norm %according to eq. (33). Combining eqs (34), (35) and (36) we now 
have that 

(1- a)2 
Eerr(a)= [l-(L- 1)a]2Emin 

for the linear equalizer, and 

(37) 
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Eeff(a) = [ "' ] 2 Emin 

1-~2: lrd 
Yo i=O 

(1- a)z 
(38) 

for the (L = 2 and L = 3) DFE. Since neither Yi nor Emin depend upon the partial 
response used, eq. (38) reveals that the full-response DFE and its L = 3 partial 
response counterparts are all equally vulnerable to gain variations. In contrast, 
the full-response linear equalizer (for which L = 2) is judged to be completely 
insensitive to gain variations by eq. (37), whereas the partial response linear 
equalizer does suffer a performance loss in the presence of a gain misadjust
ment. According to eq. (38), the DFE sensitivity depends strongly upon the 
number of coefficients ')/i> i > 0, with a magnitude comparable toro and hence, 
roughly speaking, upon the dispersivity of the channel. Translated into magne
tic recording vocabulary, we may expect DFE sensitivity figures comparable or 
favourable to the partial response linear equalizer at low information densities, 
and a very high sensitivity at the other end of the density spectrum. The next 
section will validate this conjecture. 

8. Performance comparison for a digital magnetic recording system 

To illustrate the foregoing results, we choose a digital magnetic recording 
system employing an NRZ (Non-Return to Zero) -like transmission code, 
longitudinal magnetization and a gapped-ring core playback head. When both 
the thickness of the recording medium and the gap width of the playback head 
are sufficiently small, this system can be characterized by the remarkably 
simple expression 

X(Q) = 4A . 2 ( n) coshlnD(0.5- Q) 
sm n ·~~<~• . h D , sm 1'l 

(39) 

where D is a linear measure of the information density on the recording 
medium and A is a constant of proportionality without further relevance to the 
comparison. We refer to a companion paper 15) for a derivation of this expres
sion and more detailed explanations. According to this paper, a generic channel 
decomposition for the transfer characteristic under study is 

g( ) = 1- §1 (40) 

in conjunction with the residual response 
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(41) 

It can be observed from these expressions that gk embodies a spectral zero at de 
(which originates from the differentiation involved in the flux-to-voltage con
version of the playback head), while for small information densities D the 
residual response hk closely resembles a Kronecker delta function and hence 
exhibits little amplitude distortion. Reception on the basis of this natural 
channel subdivision is usually referred to as amplitude detection of NRZI 
detection in magnetic recording jargon8). It may be expected to yield good 
results at low or moderate information densities, beyond which an alternative 
channel subdivision, designated partial response class IV detection 8), becomes 
more appropriate. This subdivision corresponds to the choice 

g( §') = (1- §' )( 1 + §') = 1- §2 (42) 

and also leads to a residual response hk without a spectral zero at de and a 
ternary sequence bk, so that the added complexity over full-response detection 
(i.e. g ( §') = 1, normally referred to as integrated detection by the magnetic 
recording community 8)), remains modest. In addition we will study the partial 
response 

g(§i) = (1 - §7)(1 + §7)2 = 1 + §'- §'2- @!3, (43) 

which resembles the system impulse response at high information densities, 
and which leads to a 5-level virtual data sequence bk. 

A most useful reference for the comparison of reception methods is the 
so-called matched filter bound (see ref. 19, eh. 6). This bound stems from 
consideration of the transmission of only one isolated bit (as opposed to the 
continuous bit stream actually transmitted), so that intersymbol interference 
vanishes. In this (hypothetical) situation noise is the only remaining disturban
ce. Since a filter matched to the channel impulse response fi is known to 
optimize the signal-to-noise ratio, the corresponding mean-square error can be 
considered as a (not necessarily attainable) bound to the performance of any 
receiver. Optimizing over a constant gain factor following the matched filter 
(which does not affect the signal-to-noise ratio) we obtain a mean-square error 
eM Fa of the form 
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No 
CMFB=---

Xo+No 
(44) 

which obviously cannot be improved upon by any type of receiver. It is worth 
noting that eMFB depends exclusively upon the signal-to-noise ratioxo/ No of the 
received signal, without involving any more detailed channel knowledge. For 
the recording system considered here, the received energy per bit xo equals 15) 

2A 1 
Xo = n . D(D2 + 1 f (45) 

One important consequence of this expression is that beyond D = 1 even small 
increments of the information density lead to a dramatic reduction of the 
received energy per bit, a corresponding increment of eMFB, and a strong 
decrement of the performance of even the most powerful receiver. The infor
mation density improvements feasible by applying more sophisticated recep
tion methods than the full response linear equalizer are explored in some depth 
in ref. 32. 

Motivated by the foregoing considerations, we are led to introduce the 
following figure of merit SI? 

SI?~ eeff( a) I x. ~ l, 
EMFB -=20dB 

No 

(46) 

which assesses the mean-square performance loss relative to the matched filter 
bound of a given receiver operating with a given gain misadjustment a, 
assuming a realistic signal-to-noise ratio xol No.· It should be noted that for most 
receiver types SI? does not depend strongly upon the precise value of the 
signal-to-noise ratio used. Figs 8 and 9, calculated on the basis of the foregoing 
theory, depict the dependence of SI? on the information density D for various 
receivers operating without and with a gain misadjustment, respectively. 

Looking at fig. 8, we see that the performance of the optimum linear 
equalizer depends strongly upon the partial response used. The performance 
balance is moreover strongly affected by the information density, a fact already 
recognized by other researchers 8). At low information densities (D < 0.5), 
amplitude detection (g(@!) = 1- ) appears to be better than the other 
alternatives. In contrast, and in agreement with the findings of ref. 8, both 
integrated detection (g( ) = 1) and partial response class IV detection (for 
which g ( @! ) = 1 - @! 2) appear to be favourable at medium to high densities 
(D > 1), the former being preferable for complexity reasons. Finally, the 
partial response g( f!j}) = 1 + - f!j;3 apparently outperforms the 
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Fig. 8. Mean-square loss SF versus nonnalized infonnation density D for various receivers in the 
absence of a gain misadjustment. 
a. Full-response linear equalizer (g( §?') = 1); b. Bi{!Qlair linear equalizer (g( gy) 1 gy); 
c. M duobinan: linear equalizer (g( gy) = 1-~2); d. Linear equalizer having g( §?') = 
= 1 + 9l'2 - ~3; e. Unrestricted DFE; f. Bipolar DFE having a feedback filter with a 
ternary input signal and an impulse response restricted to a length N = 5; g. Bipolar DFE having a 
feedback filter with a ternary input signal, constrained to remove all trailing intersymbol interfer
ence; h. Maximum-likelihood sequence detector (MLSD). 

other considered partial responses at the highest information densities (D > 3), 
where it apparently resembles the system impulse response quite well. In a 
previous section we have shown that the optimum performance of the uncon
s~ained DFE is insensitive to the partial response g ( 91 ) used (provided that it 
is a product of ( 1 + ~)and ( 1- ) terms). For this reason fig. 8 contains 
only one curve to describe the unconstrained DFE. Fig. 8 also visualizes the 
performance degradations that arise from a restriction of the feedback filter 
length to 5 bit intervals as well as from a zero trailing intersymbol interference 
constraint, in both cases assuming a partial response g( ~) = 1- and a 
ternary FBF input signal. It is seen that over the entire range of densities 
considered a feedback filter length of 5 bit intervals suffices to approximate the 
performance of the unconstrained DFE within 0. 5 dB. In the low-density range 
the residual impulse response hk approaches a delta function, so that the system 
under consideration comes to bear as close resemblance to the system consider
ed before by way of example. The DFE which removes all trailing intersymbol 
interference is here seen to perform marginally better than the optimum 1 - 91 
linear equalizer. However, a small increment of the noise level already clearly 
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reverses the performance balance, in accordance with our previous findings. 
To put the comparison on a somewhat more global basis, fig. 8 displays the 
effective signal-to-noise ratio loss incurred by the most powerful type of 
receiver, viz. the maximum-likelihood sequence detector (MLSD), calculated 
using the theory developed in ref. 19. It is seen that the DFE approximates the 
MLSD performance to. within ldB for all densities between roughly 1 and 2.5, 
so that the significant additional complexity of the MLSD is here unlikely to be 
justified by its performance benefits. By equipping the DFE with an additional 
provision (which does not greatly increase the complexity) to cope with 
pre-cursive intersymbol interference, its performance can be further improved 
in the vicinity of D = 2 by about 0.5 dB 33). 
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Fig. 9 Mean-square loss !£versus normalized information density D for various partial response 
equalizers in the presence of a gain misadjustment of3dB. 
a. Full-response linear equalizer (g(.@) = 1); b. Bipolar linear equalizer (g( .@) = 1 
c. Modified duobinary linear equalizer (g(.@) = 1- .@2); d. DFE. 

Fig. 9 compares several equalizers in the presence of a gain misadjustment 
of 3 dB (corresponding to a = 0. 292). With the exception of the full-response 
linear equalizer, which according to eq. (37) is completely insensitive to gain 
variations, all equalizers incur a significant performance loss, amounting to 
4.6dB for the partial response linear equalizers, and, as anticipated, even 
greatly exceeding this quantity at high densities for the DFE. The relevance of 
these sensitivity results should of course be judged against the factual occurren
ce of gain variations and the possibility to counter them adaptively. 
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The error propagation properties of the feedback equalizers considered are 
assessed in fig. 10 in terms of their FBF L1-norm %. As was to be expected, 
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Fig. 10. Feedback filter L1-norm% versus normalized information density D for 3 partial response 
decision feedback equalizers that use a binary feedback filter input signal. a. Full-response DFE 
(g( ~) = 1); b. Bipolar DFE (g( ~) = 1- ~);c. Modified Duobinary DFE (g( ~) = 
1- ~2), 

the 1 - @! DFE turns out to operate with negligible values of % at low 
densities, ranging up to about D = 0.5. The full-response DFE uniformly 
possesses an FBF L1-norm favourable to the 1- 9?' 2 DFE, which seems to be 
most applicable around D = 1. 5. Finally, beyond roughly D = 3 not even the 
full response DFE seems capable any longer of maintaining a satisfactory error 
propagation behaviour. In this range a reduction of the effective system impulse 
response duration (and hence feedback filter length) is probably rewarding 22). 

9. Simulation results 

As a proof of the mean-square pudding we have performed a representative 
set of Monte Carlo simulations. In these simulations, the applied (transversal) 
linear equalizers were chosen to have 33 coefficients centered around 0, while 
the decision feedback equalizers were equipped with an FBF of length 12 and a 
forward filter of length 33, centered around zero and with the first 12 causal 
coefficients equal to zero. The equalizer coefficients were calculated on the 
basis of eqs (19) and (29), respectively. All equalizers were furnished with a 
staircase symbol-by-symbol detector with thresholds spaced halfway between 
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adjacent nominal data levels, followed by a memoryless square-law inverse 
mapping (serving to circumvent the singularity problems previously mentio
ned), and complemented at the transmitting end by a suitable precoder 5). As 
they have the alternative configuration described in sec. 6, the partial response 
DFE' s also incorporated a precoder just before the feedback filter. As explained 
earlier, the presence in the feedback loop of a precoder induces error bursts to 
contain an even number of errors. With the exception of the bipolar ( 1 - f!l! ) 
DFE at low densities, whose FBF coefficients are so small that even a conti
nuous stream of past decision errors does not completely ruin the detection 
margin for subsequent decisions, we have indeed consistently observed this 
interesting phenomenon, as a result of which bursts also tend to become 
somewhat longer than for the full response DFE. The latter effect is illustrated 
in table I. 

TABLE I. 
DFE burst error statistics measured at a bit error rate of 1 o- 4 • 

average burst length average no. of errors 
(no. ofbitintervals) inside a burst 

DFEtype D=0.5 D=2 D=3 D=0.5 D=2 D=3 

g(f!i!)=1 10.8 9.5 12.9 2.8 1.2 3.1 

g( f!l!) = 1 - f!l! 11.4 10.7 13.1 1.6 2.6 2.5 

g( f!l!) = 1 - f!l!2 12.8 11.5 16.0 3.2 2.2 4.7 

In spite of their larger duration, table I indicates that bursts may on the 
average contain a smaller number of errors, resulting in a better overall 
performance. The actual error propagation behaviour of the equalizers is seen 
to comply well with the mutual ranking predicted in fig. 10, confirming e.g. the 
anticipated superiority of the Bipolar ( 1 - f!l! ) DFE at low information 
densities over its full-response counterpart. Partly due to its relatively large 
FBF impulse response extent, the modified duobinary ( 1 - f!l! 2 ) DFE shows 
up somewhat more negatively than anticipated 27 • 28). Nevertheless, as it exhibits 
no more than a modest number of errors inside a burst, even for this DFE error 
propagation is not a significant problem. 

A more extensive digest of the performed simulations is collected in figs 11 
to 13. At D = 0.5 (fig. 11), the full-response linear equalizer is found to lag 
slightly behind its predicted performance. This is due to its required integrating 
nature, which cannot accurately be approximated by a transversal filter having 
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Fig. 11. Bit error rate (BER) vs.signal to noise ratio (SNR) for various receivers atD = 0.5 and in 
the absence of a gain misa<fuistment. a. Full-response linear equalizer (g ( .§1) = 1 ); 
b. Bipolarlinearequalizer(g( ~) = 1- .§f);c. Modifiedduobinarylinearequalizer(g( .§1) 
= = 1 .§12 ); d. Full-response DFE; e. Bipolar DFE using a binary feedback filter input signal; 
f. Modified duobinary DFE using a binary feedback filter input signal; g. Maximum-likelihood 
sequence detector (MLSD). 

t 

10 12 14 
-sNR (dB) 

Fig. 12. Bit error rate (BER) vs. signal to noise ratio (SNR) for various receivers at D = 2 and in 
the absence of a gain mis1!4justment. a. Full-response linear equalizer (g( §i) 1 ); 
b. Bipolar linear equalizer (g( ~) = 1- §i ); c. Modified duobinary linearequalizer(g( §i) 
= l- §12); d. Full-response DFE: e. Bipolar DFE using a binary feedback filter input signal; 
f. Modified duobinary DFE using a binary feedback filter input signal; g. Maximum-likelihood 
sequence detector (MLSD). 
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Fig. 13. Bit error rate (BER) vs. signal to noise ratio (SNR) for various partial response equalizers 
at D = 2 and in the presence of a gain misadjustment of 3 dB. a. Full-response linear equalizer 
(g) §1) = 1 )· b. Bipolar linear equalizer (g( §1) = 1 - §1 ); c. Modified duobinary linear 
equalizer (g( ~) = l - §12); d. Full-response DFE; e. Bipolar DFE using a binary feedback 
filter input signal; f. Modified duobinary DFE using a binary feedback filter input signal. 

only 33 taps. All other equalizers are seen to achieve their predicted performan
ces. In particular, the 1 - §?'OPE outperforms both the 1 - §1 2 and (at high 
signal-to-noise ratios) the full-response DFE, while in the category of linear 
equalizers the 1 - §1 variant also stands out best. Without adding further 
comments, we remark that figs 12 and 13, depicting error characteristics which 
were measured at D = 2 without and with a gain misadjustment of 3 dB, 
respectively, again validate our performance expectations. 

10. Concluding remarks 

This paper has explored the merits and characteristics of the linear and 
decision feedback equalizer when applied to transform the output signal of a 
noisy dispersive channel into one with controlled intersymbol interference, 
suitable for handling by a symbol-by-symbol multilevel threshold detector. 
Relative to a suitably normalized mean-square error measure, it has derived the 
linear and decision feedback equalizers whose output signals optimally match 
an intersymbol interference structure defined by a given partial response. The 
performance of the optimum linear equalizer was shown to benefit greatly from 
an appropriate selection of the partial response, essentially depending upon 
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the extent to which its amplitude-frequency characteristics stylize the amplitu
de distortion introduced by the channel. In contrast, the optimum DFE perfor
mance as well as its forward path dimensioning were shown to be independent 
of the applied partial response whenever the fiJ -transform of the response is 
the usual product of ( 1 + ) and ( 1- fiJ) terms. As a consequence, for 
partial responses of this form the linear equalizer can never surpass the full 
response DFE in performance. 

A notable finding of the DFE analysis is that, unlike the non-partial response 
case, the optimum feedback filter coefficients are not a replica of the overall 
system impulse response, but rather cause a well-defined amount of trailing 
intersymbol interference to arise which allows previous decisions to contribute 
constructively in the detection of subsequent symbols. We observed that the 
optimum feedback filter impulse response is potentially unacceptable from the 
point of view of error propagation, as it may extend over an infinite time-inter
val. Among the conceivable methods to overcome this problem we have 
studied a restriction of the feedback filter length and the use of a zero trailing 
intersymbol interference constraint, both of which were judged to be less 
practical as they increase the noise enhancement of the DFE, thereby ranking it 
behind the full-response DFE in terms of both performance and complexity. 
A third alternative however, involving a modification of the DFE configura
tion, entailed digital hardware savings in conjunction with a significant reduc
tion of error propagation, without increasing the noise enhancement. Requiring 
only marginally more hardware, this alternative achieves better error propaga
tion figures than the full-response DFE in specific environments, for which its 
application is consequently worth considering. 

Quantifying the developed body of theory for a class of digital magnetic 
recording systems in which an NRZ-like transmission code is used in conjunc
tion with differentiating playback heads, we have observed that the information 
density strongly affects the behaviour and the relative merits of the distinct 
equalizers. Among the category of linear equalizers, the bipolar ( 1- fiJ) 

variant was found to achieve superior performances at low information densi
ties, beyond which application of the class IV ( 1 - .§1'2 ) partial response 
becomes advantageous. The most conspicuous advantage of the full-response 
linear equalizer appeared to be its robustness, allowing it to Withstand gain 
variations considerably better than its partial response relatives, though at the 
expense of an inferior nominal performance. Especially at medium and high 
densities, the optimum DFE was found to improve significantly (typically 
some 2dB) upon the best linear equalizer type. Beyond a (relatively high) 
critical density the DFE sensitivity to gain variations suddenly increases rapid
ly, however, and therefore its succesful high-density application will rely 
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largely upon the absence of such variations or the possibility to combat them by 
adaptive means. Although relevant differences were observed in the error 
propagation behaviour of the feedback equalizers considered, it seems that for 
all but the highest densities error propagation is an insignificant problem, 
slightly favouring the 1 - DFE at low densities, beyond which the 
full-response DFE establishes a modest advantage. 

It is worth spending some final remarks to the substitution of the symbol-wise 
multilevel threshold detector assumed in this paper by the more powerful 
maximum-likelihood sequence detector (MLSD), usually implemented as a 
Viterbi detector 20). For the linear equalizer, the resulting configuration has 
been considered before in the context of the channel memory length reduction 
and consequential substantial simplifications of the MLSD which partial res
ponse equalization affords 34• 35). The associated performance can be appraised 
in quadratic terms by evaluating a distance function which takes account of the 
noise colouration introduced by the equalizer. For the category of recording 
systems considered before, such an analysis reveals that the performance 
improvement of the MLSD over its symbol-wise counterpart is largest (up to 
about 3dB for the bipolar and class IV partial responses) when the symbol-wise 
detector also functions best (judged relative to the matched filter bound). 
Conversely, the improvement decreases to negligible proportions whenever 
the symbol-wise detector incurs a large performance loss relative to the mat
ched filter bound, i.e. whenever much equalization effort has to be spent to 
transform the intersymbol interference structure of the channel into the one 
prescribed by the partial response. Mutatis mutandis, similar (albeit smaller) 
improvements probably result for the partial response DFE whenever its error 
propagation is not too severe. 

Appendix A. Minimum mean-square error partial response linear 
equalization 

This appendix is concerned with the derivation of the minimum mean-square 
error dimensioning and performance of the partial response linear equalizer. 
The equalizer, having coefficients Ck, - oo < k < oo, transforms its input signal 
uk into a sequence of decision variables bk which intentionally resembles the 
original (virtual) sequence bk as well as possible. From eq. (12) and fig. 1 we 
see immediately that bk is given by 

(A.1) 

in which '*' denotes linear convolution, Zk represents the autocorrelation 
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function of the discrete-time residual response hk, and the subscript '_, indicates 
time-reversal. The mean-square errorE achieved by the equalizer is defined as 

D. -e = B[(bk- bk)2], (A.2) 

in which E[.] denotes mathematical expectation. It is possible to express E in 
terms of the known system parameters by noting that bk depends on ak as 

(A.3) 

(where gk represents the selected partial response), and that ak is an uncorrelated 
binary sequence having unit power. Using eqs (A.3) and (A.l), the fact that nk 
is a white noise process with variance No statistically independent of ak, and the 
fact that ak is uncorrelated, eq. (A.2) can be written as 

~ 00 

= 2: (g*(Z*c-o))i+No 2: (h-*c)i. (A.4) 
k= oo km-ao 

where Ok denotes the Kronecker delta function. By Parseval's relationship it 
follows from eq. (A.4) that 

0.5 

e= J {iG(.Q)[Z(.Q)C(.Q)-l]I2 +NoZ(D)iC(D)i 2 }d.Q. (A.5) 
-o.s 

The right-hand side of eq. (A.5) can conveniently be minimized over all C( .Q) 
by means of the calculus of variations technique. To this end, C ( .Q) is written. 
as t ( .Q) + ,u V ( .Q), where C ( .Q) and V ( .Q) represent the linear equalizer 
transfer function and an arbitrary deviation thereof, respectively. The require
ment 

8E I a,u ,u:O = 0 for all V(.Q) (A.6) 

then serves to identify the optimum transfer function C(.Q). Using standard 
differentiation rules it is readily verified that 
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0.5 

~e l~t=o= 2Re{ I Z(Q) V*(.Q)[f(.Q)(Z(.Q)C(.Q)- 1) + NoC(.Q)]d.Q }. (A.7) 
'11 -0.5 

Hence, provided that Z(Q) is nonsingular it is required in order for eq. (A.6) 
to be fulfilled that the quantity in square brackets in eq. (A. 7) equals zero for all 
Q. Thus the optimum linear equalizer transfer function is given by 

f(Q) 
t(Q) = X(Q) +No. (A.8) 

By substituting eq. (A.8) into eq. (A.5) the minimum mean-square error Ernin is 
found to equal 

o. 5 NoY(Q) 
Ernin I X(Q) + N. dQ = Noco. 

-0.5 ° 
(A.9) 

Appendix B. Minimum mean-square error partial response decision 
feedback equalization 

In this appendix we derive the optimum partial response DFE dimensioning 
and performance, relative to a mean-square quality measure. The problem at 
hand involves the joint optimization of two filters, viz. the equalizers' forward 
and feedback filter, having impulse responses Ck (- oo < k < oo) andpk( 1 ~ k 
< oo ) , respectively. As causality and anticausality, being typical time-domain 
concepts, play an important role in the derivation we shall, in contrast to 
appendix A, adopt a time domain-oriented approach. We set out by considering 
the decision variable bk produced by the DFE. Making the usual assumption 
that all previous decisions which affect the output of the feedback filter are 
correct23), it follows that bk equals 

Using eq. (B.l), the mean-square errore, defined as 

e@ E[(bk- bk)2], 

can be expressed as 
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e = E [ ( b * ( z * c - p - 0) + n * h_ * c )i] 

= E[(a * g * (z * c- p- o))i] + E[(n * h_ * c)iJ 

provided that the input data and noise sequences are statistically independent, 
uncorrelated, and have variance 1 and No, respectively. 

We first focus upon the optimum setting of the feedback filter coefficients p1• 

Differentiating eq. (B. 3) with respect to P1o 1 ~ j < oo, and requiring all partial 
derivatives to be zero, it follows that 

In the conventional (non partial response) case, g1 = y1 = OJ> so that according 
to eq. (B.4) the optimum feedback filter coefficients are the familiar replica of 
the impulse response {z * c )J> 1 ~j < oo. However, ify1 =F 01, then the solution 
to eq. (B.4) becomes more complicated, and the feedback filter impulse 
response p1 may no longer be expected to resemble the impulse response ( z * c )J 
with complete fidelity. 

Differentiating eq. {B.3) with respect to the forward filter coefficients 
CJ>- oo <j < oo, we find that 

Whenever Zk is non-singular, eq. (B.5) can only be zero for all j if the 
expression within square brackets equals zero, i.e. 

(y * (z * c-p- o) )1 +No c1 = 0 for allj. (B.6) 

Using eq. (B.4) in eq. (B.6) we see at once that 

c1 = 0 for 1 ~ j < oo, (B.7) 

so that, as in the non-partial response case, the optimum forward filter is 
anticausal. Rearranging terms in eq. (B.6) and realizing that eq. (B. 7) must 
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hold, we arrive at a set of equations in the variables cb - oo < j ~ 0, and 
Pb 1 ~ j < oo, which can in principle be solved: 

(c * (x +Noon- (p * y)i = Yi forallj. (B.8) 

Directing our attention to the minimum attainable mean-square error Emm, we 
see by substituting eq. (B.6) into eq. (B.3) that 

Cmin = No[(P- + o) * c]o, (B.9) 

and realizing that P-i= ci = O,j ;::t. 1, eq. (B.9) reduces to 

Emm =No eo. (B.lO) 

For mathematical convenience we now make the assumption that the partial 
response gk is causal and has minimum-phase, so that its convolutional inverse 
g "k 1 is both stable and causal*). Responses within this category that have zeros 
on the unit circle are accommodated by moving the zeros a small distance from 
the unit circle and performing a: limiting operation at the end of the derivation. 
In addition, we factor the sequence xk + Nook as the convolution of a causal 
minimum-phase sequence Yk and its anticausal image Y-k, i.e. 

( x + No o )k = ( y _ * y )k for all k,. (B.ll) 

According to Doob (ref. 26, pp. 159-161) this factorization is unique, and 
exists under mild regularity conditions (the most stringent of which is the 
Paley-Wiener condition, requiring that In [X ( .Q) + No] be integrable, which is 
implied by No> 0). The sequence Yk can be expressed recursively in its k = 0 
value, which equals 

o.; 

Yo = exp { 0. 5 jtn [X ( .Q) + No] d.Q}. (B.12) 
-o.; 

The recursion relation is 36) 

(B.l3) 

*) From a practical point of view, this assumption is hardly restrictive since it does not exclude the 
importantcategoryofresponsesg(fl?") (1- Q")m(l + Q")•. 
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where the coefficients rk, k ;;l: 1, are defined as 

0.5 

rk = I ln[X(Q) + No]cos(2:n:kQ)dQ. 
0 

(B.14) 

By convolving both sides of eq. (B. 8) by ( y- 1 * g- 1 )k (where the superscript 
'- 1' indicates the convolutional inverse operator) and making use of eq s (B .11) 
and (10) we find that 

(B.15) 

The right- and left-hand sides of this expression are (by construction) causal 
and anti-causal, respectively. Since eq. (B .15) requires them to be equal, they 
can be nonzero for k = 0 only, and then assume the (right hand side) value 
(g * y- 1 )o because po = 0. By expressing y'k 1 in Z-transform notation and 
making use of the fact that r ( Z) has no zeros outside the unit circle, this value 
is seen to equate to golyo. We therefore conclude that 

(B.l6) 

and 

(B.l7) 

An immediate consequence of eqs (B.16) and (B.l7) is that every spectral zero 
of gk induces an identically located zero and pole of Ck and pk, respectively. 
Combining eqs (B.lO), (B.12) and (B.l6) we finally arrive at the desired 
closed-form expressLon for Emin: 

2 0.5 

Emm =No -4 = g~ exp { I In =--=-M-0--:::-::- dQ}. 
Yo X( +No 

-0.5 

(B.l8) 

Appendix C. Minimum mean-square error partial response decision feed
back equalization subject to a zero trailing intersymbol interference 
constraint 

This appendix is concerned with the derivation of the mean-square optimum 
decision feedback equalizer and its performance in a partial response mode of 
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operation, subject to the constraint that the feedback filter removes all trailing 
intersymbol interference. The constraint can be denoted as 

(C.l) 

Defining a sequence uk as 

(C.2) 

it follows with the aid of eq. (C.l) that the mean-square errorE conforming to 
eq. (B.2) can be written as ' 

(C.3) 

Our aim is the minimization of e over all c*. A first step towards this objective 
can be made by observing that 

so that 

8Clj = {Zi-n• j~O, 
Ben 0, j~ 1, 

(C.4) 

(C.5) 

Requiring this derivative to equal zero yields the following set of necessary and 
sufficient conditions: 

• 0 

2: (U*Y)JZJ-n+No(Z*C)n=O foralln. (C.6) 
i"'- 00 

By invoking eq. (C.2), we see that eq. (C.6) reduces to the following set of 
equations in only c11 , - oo < n < oo: 

0 0 0 0 

L Ck[ L LZi-kYi-jZj-n + NoZn-d =- L YJZn-J> (C.7) 
k=-co i=-coj:-oc J=-oo 
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which can in principle be solved. Multiplying both sides of eq. (C.6) by en and 
summing over all n we get: 

0 

2: ( U * Y)J(Z* C)J + No(c_ *Z * c)o = 0, (C.8) 
j=-® 

or, invoking eq. (C.2), 

Comparing eq. (C.9) and eq. (C.3) we see that the minimum mean-square error 
Emin can be expressed in the optimum sequence Uk as follows: 

(C.lO) 

Finally, by multiplying eq. (C.6) by Yk- n, k E; 0, invoking eq. (C.2). and 
summing over all nonpositive n it follows that 

0 0 

2: (U*y)j[ 2: Yk-nZJ-n+NoOk-j]=-Noy.t, (C.ll) 
)•-~"» n=-OG 

from which ( U * y )J> j E; 0, can in principle be solved. - ( U * y )o then 
specifies, according to eq. (C.lO), the minimum mean-square error Emin. 
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A simulation study of intersymbol interference cancellation 

A SIMULATION STUDY OF 
INTERSYMBOL INTERFERENCE CANCELLATION 

Abstract 

The canceller of intersymbol interference is compared with its two main 
competitors in two distinct and representative environments. It is found that 
the canceller consistently lags behind the Viterbi detector in performance, 
and no longer improves upon the decision feedback equalizer in environ
ments which predominantly give rise to multiple bit errors. The effects of 
filter length reduction and of the stacking of serveral canceller stages are 
investigated. Large reductions appear to be tolerable without notably 
degrading performance, and stacking of several canceller stages can im· 
prove the transmission quality whenever single bit errors prevail. 

1. Introduction 

The idea of using preliminary decisions to assist in the detection of a 
transmitted data sequence dates back nearly two decades 1). During the last few 
years a growing consensus can be observed to designate its embodiment as a 
'canceller of intersymbol interference' 2.3). Various authors have studied per
formance aspects related to the canceller 24), the operation of which is now 
understood to the extent that a description of its optimal dimensioning and 
performance is available in which the influence of error propagation has been 
neglected 2.4). We will refer to a canceller that has been dimensioned in 
conformity with this description as ideal. The performance predicted for the 
ideal canceller corresponds to optimal isolated-pulse transmission quality2.4), 
which is well known to be beyond the reach of even the most powerfull type of 
receiver (viz. the Maximum-Likelihood Sequence Estimator, in its most popu
lar disguise as a Viterbi Detector) for certain classes of very dispersive chan
nels 5·6). Not surprisingly, simulations indicate that the transmission quality 
actually achieved by the ideal canceller drops far below the predictions, though 
still improving upon the decision feedback equalizer 3). The simulations that 
have so far been carried out 3) have concentrated upon channels for which 
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a Viterbi detector predominantly produces single bit errors (and thus essentially 
achieves optimal isolated pulse transmission quality 7). We will in this paper 
also study (considerably worse) channels for which the Viterbi detector produ
ces strongly correlated error sequences. Specifically for the latter type of 
channel it appears to be impossible to achieve relevant performance improve
ments over the DFE, even if a rather involved canceller optimization procedure 
is followed which takes account of the influence of erroneous preliminary 
decisions, and which leads to dimensionings that differ significantly from the 
ideal ones. 

The paper sets out with a description of a (discrete-time) system model that 
suits the problem at hand. A subsequent se.ction reports on a numerical assess
ment of the performance of the canceller and its "nested" extensions as well as 
of the DFE and the Viterbi detector for two distinct channels stemming from 
the area of digital magnetic recording. A concluding section finally attempts to 
recapitulate the essence of the acquired insights. 

2. System Model 

Fig. 1 depicts a model of a data transmission system employing intersymbol 
interference cancellation. This model can be regarded as the canonical equiva
lent discrete-time representation of a corresponding continuous-time system, 
from which it can be uniquely determined 7). Its operation can be described as 
follows. An input sequence bk consisting of uncorrelated binary digits drawn 
from the alphabet { -1, + 1} is applied to a discrete-time filtered signal channel 
having an impulse response fi. The received signal rk can be described as 

(1) 

in which '*' denotes linear convolution and nk is an additive white Gaussian 
noise sequence having variance No. The received signal rk is fed into both a 
receiver which produces preliminary decisions and a canceller stage. Such a 

nk 

bk Channel ~rk Matched Pre 
~ bit-by-bit bk - impulse ...,., ........ filter !--- equatrzer r---response detector 

fk f-k ck 

Receiver §.. Feed Feedback producing forward filter '- preliminary filter - '--- 1-
decisions pk qk 

Fig. 1. Discrete-time model of a system employing intersymbol interference cancellation. 
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stage is composed around three filters, which more or less independently 
combat noise, pre-cursive and post-cursive intersymbol interference. The re
ceiving filter suppresses noise in the incoming signal rk as well as possible, and 
provides in addition a signal delay that suffices for the receiver which produces 
preliminary decisions to carry out its task (for mathematical convenience we 
shall not consider this causality constraint in the sequel). It consists of a 
matched filter (having an impulse response /-~<:) cascaded by a preequalizer 
having an impulse response Ck (for the ideal canceller the preequalizer degene
rates, and noise suppression becomes its only objective). Pre- and post-cursive 
intersymbol interference are intentionally removed by means of feedforward 
and feedback filters (FFF and FBF) of length M and N, respectively. To this 
end their impulse responses Pk, -M ~ k 1, and Qk, 1 ~ k ~ N, must 
satisfy the condition 

Pk = (x * c)k, -M:::;;, k:::;;, 1, 
Qk = (x * c)k, 1 :::;;, k:::;;, N, 

in which Xk represents the channel autocorrelation function, i.e. 

xk = (f 4-)k all k, 

(2) 

(3) 

and where (f-)k ~ /-~<:, all k. Complete rem~val of intersymbol interference 
requires moreover that M and N are sufficiently large and that all preliminary 
and final decisions bk and bk propagating in the FFF and FBF are correct. · 

The combined action of the filters comprised in the canceller stage gives rise 
to a sequence of decision variables Zk given by 

which is fed into the bit-by-bit detector. Under the usual assumptions that bk 
and nk are statistically independent and that all relevant preliminary and final 
decisions are correct, the mean-square errors, defined as 

1:::, 
s = E {(Zk-bk)2}, (5) 

is easily seen to equal 

in which (h represents the Kronecker delta function, and in which the subscript 
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'_' again denotes time reversal. The FFF and FBF impulse responses which 
minimize this expression satisfy eqs. 2, while the optimizing receiving filter 
(f- * c )k approaches a matched filter when M and N tend to infinity 4). 

It is possible to arrive at a more realistic estimate for the mean-square error 
by extending eq. 6 with two terms which explicitly account for preliminary 
decision errors and their correlation with the noise sequence nk. The involved 
auto- and cross correlation sequences can be estimated by performing either 
measurements or an approximative theoretical analysis. Reformulating the 
so-obtained expression fore in matrix terms and performing a minimization, 
one arrives in a relatively straightforward fashion at the associated optimal 
impulse responses ck, Pk and Qk· When comparing this solution with the ideal 
canceller, several differences can be observed, including in particular a strong 
('causal') asymmetry in the overall system impulse response (x * c)k and a 
nonperfect match between the overall system and FFF impulse response. 
Unfortunately, we found these sizable changes in dimensioning to result in 
performance improvements which are at best marginal. For this reason we shall 
not dwell on further details of this approach. 

The performance comparisons presented in this paper have a bearing upon a 
discrete-time channel impulse response of which the spectral density 
X (Q) = I F(Q) 1

2 equals 

X('"')= 4 .. 2 '"'cosh 2nD(f-l Q I) I I :.~ sm n:.~ . h D ' Q ~f. sm n (7) 

This model naturally arises in an important class of digital magnetic recording 
systems 8). The parameter D characterizes the spatial information density on 
the magnetic medium, and ranges roughly from 0.1 to 3 in present systems. 
Fig. 2 depicts two typical (minimum-phase) impulse responsesfo which con
form to this characterization. The associated amplitude-frequency characteris
tics are shown in Fig. 3. The response of Fig. 2a corresponds to an information 
density D = 2.0, for which the Viterbi detector still achieves optimal isolated 
pulse transmission quality, and hence predominantly produces single bit er
rors 7•9). Using standard mean-square performance results (see e.g. ref. 7, 
eh. 6), the performance loss relative to the matched filter bound which the 
MMSE DFE incurs can be estimated as 1.4 dB at a signal-to-noise ratio Xol No. 
of 20 dB and in the absence of error propagation. The response of Fig. 2b 
characterizes the system at an information density which is some 65 percent 
larger than the density assumed in Fig. 2a, viz. forD= 3.3. For this density 
both the DFE and the Viterbi detector incur a significant performance loss 
relative to the matched filter boun:d. estimated as 4.4 dB (at a signal-to-noise 
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Fig. 2. Impulse response of (a) D = 2.0 channel, (b) D = 3.3 channel. 
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Fig. 3. Amplitude-frequency characteristics of(a) D 2.0 channel, (b) D = 3.3 channel. 

ratio of 20 dB and neglecting error propagation) and to 2.1 dB, respectively 9). 

3. Simulations 

The preliminary decisions bk can be produced by a receiver of any convenient 
type. Because of the preponderant influence upon the overall transmission 
quality of errors in the feedforward filter input signal we have in our simulations 
restricted attention to either the (MMSE) DFE or a preceding canceller stage 
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(thus allowing a 'nesting' of several stages) for providing the preliminary 
decisions. The filters of all DFEs and cancellers considered hereafter have been 
optimized with respect to the mean-square error measure of eq. 6. Moreover, 
we have consistently applied a preequalizer with a generous length of 16 bit 
intervals before and after the central tap, thereby virtually achieving infinite 
preequalizer length performance for all considered environments. 

The enormous amount of trellis states resulting from the long duration of the 
system impulse response forced us to apply a reduced state Viterbi detector. 
The reduction is achieved by maintaining a stack of a predetermined maximum 
size (in our case equalling 32), in which only the best surviving paths are 
stored. Whenever much noise is present there is a considerable probability that 
the correct path will drop outside the stack, which explains the poor perform
ance of the detector at low signal-to-noise ratios. At high signal-to-noise ratios 
a restriction of the stack size is much less problematical, and the detector is 
seen to approach its full stack size performance rapidly. 

(I) -CO 
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0 
"... 
(I) 

101
r-------------------------------------, 

@ 

Decision feedback 
equalizer 
Ideal canceller 
Nested canceller 

Viterbl detector 
with stacksize 32 
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5~~~~9~~~13~~ 5 

- signal-to-noise ratio (dB) 

Optimal canceller 

Yiterbi detector 
with 
stacksize 32 

Matched 
filter 
bound 

Fig. 4. Receiver performance characteristics for (a) D = 2.0 channel, (b) D = 3.3 channel. 

We now consider the simulation results for the D = 2.0 recording system 
according to Fig. 2a. The associated performance curves have been collected in 
Fig. 4a. Focussing upon the DFE curve it is seen that the predicted loss of 
1.4 dB relative to the matched filter bound is a realistic assessment of the true 
loss at SNR = 10 dB. The detrimental effects of error propagation are conse
quently at most marginal, even though the feedback filter length Nhas not been 
restricted. When this DFE is used to provide the preliminary decisions for a 
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subsequent canceller stage the overall transmission quality improves sig
nificantly, as can be observed from Fig. 4a. We observed that considerable 
reductions of particularly the FFF length (or, equivalently, complexity savings) 
were allowable without any notable degradation of the transmission quality. In 
fact, using an FFF and FBF of length 1 and 4, respectively, we obtained 
performances which were virtually indistinguishable from the (unrestricted 
FFF and FBF size) ones depicted in Fig. 4a. When the canceller is augmented 
with an additional, identical stage the resulting performance exhibits a further 
improvement of approximately 0.3 dB. Since the receiving filters of both 
stages are identical and operate upon the same signal there is no need to 
duplicate their hardware. Taking also the allowable small FFF and FBF sizes 
into account, it follows tha a 'nested' canceller design need not be significantly 
more complex than a 'basic' canceller comprising only one stage. We found 
that still deeper nestings do not cause any significant further performance 
improvement. 

Unlike the D = 2.0 channel, the errors produced by all the receivers for the 
D = 3. 3 channel are highly correlated, as Table I illustrates for a signal-to-noise 
ratioxo/ No of 12 dB. 

It is seen in Table I that the error sequence { 1 - 1 1} predominates in all 
receivers, as should be expected on the basis of Euclidean distance considera
tions 7). The average number of errors inside a burst comes close to the average 
burst length, indicating that error-free positions within a burst are rare. This is 
also reflected in the lower part of Table I, in which the cumulative error 
sequence distributions are presented. 

TABLE I 
Error statistics forD= 3.3 channel at SNR = 12 dB. 

Bit error rate 

Average burst length 

Average no. of errors 
inside a burst 

Cumulative error sequence 
distribution(%) 
{1} 
{1-1} 
{1-1 1} 
{1-1 1-1 1} 
{others} 

DFE 

1.2 X 10-3 

4.8 

3.7 

9 
7 

50 
11 
23 

Ideal Optimal 
canceller canceller 

1.2 X 10-3 1.0 X 10-3 

4.5 4.4 

3.7 3.6 

2 5 
13 15 
59 57 
12 10 
14 13 

Viterbi 
detector 

8.6 X 10-5 

4.3 

3.4 

11 
0 

71 
2 

16 
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The measured performance curves for the D = 3. 3 channel are depicted in 
Fig. 4b. The DFE feedback filter has been shortened to a length of 6 bit 
intervals, thereby exchanging a slight noise immunity degradation for a favour
able improvement in error propagation 10). The combined influence of error 
propagation and extra noise enhancement causes the DFE performance curve 
to be separated approximately 1 dB further from the matched filter bound than 
predicted. The Viterbi detector also suffers a (0.8 dB) larger loss than expec
ted, which we attribute to the relatively small stack size used and to the 
increased average length of error events. Using a canceller that has been 
optimized with regard to the mean-square error measure given by eq. 6 it is 
impossible to attain a performance improvement over the DFE for any combi
nation of FFF and FBF lengths. Only by applying the more involved optimiza
tion procedure outlined after eq. 6 are notable improvements feasible, the most 
favourable result of which is shown in Fig. 4b. We expect that the highly 
correlated error structure will prevent any bit-by-bit detection scheme from 
doing significantly better. 

4. Conclusions 

Although in this concise text we were not able to focus upon more than two 
distinct channels, we have actually performed simulations for a larger variety 
of environments, which all validate the following conclusive remarks. The 
canceller can achieve significant performance improvements over the DFE for 
all channels which predominantly give rise to single bit errors. For such 
channels, the augmentation of the canceller by one additional stage (which 
does not significantly increase complexity) gives rise to modest further 
improvements. Provided that the canceller is dimensioned appropriately it is 
feasible to reduce the length of its feedforward and feedback filters consider
ably (down to as little as 1 and approximately 4 bit intervals, respectively) at 
virtually no expense to the optimal performance. In contrast, channels which 
cause strongly correlated error sequences to arise appear to be essentially 
unsuitable for the application of the canceller. Contradicting the existing 
asymptotic predictions 2A), the canceller consistently lags behind the Viterbi 
detector in performance. 

86 



A simulation study of intersymbol interference cancellation 

REFERENCES 
1) I: Proakis, Adaptive nonlinear filtering technique for data transmission. Proc. IEEE Symp. 

Adaptive Processes, Decision and Control, 1970, pp. XV.2.1- XV.2.5. 
2) A. Gersho and T. Lim, · e cancellation of intersymbol interference for data transmis-

sion. Bell. Syst. techn. J. ), 1997-2021. 
3) K. Wesolowski, On the perfonnance and convergence of the adaptive cancellerofintersym-

bol interference in data transmission. Transact. IEEE COM-33 (1985), 
425-432. 

4
) S. Mueller and J. Salz, A unified theory of data-aided equalization. Bell Syst. techn. J. 60 

(1981), 2023-2038. 
5) G. F orn ey, Jr., Maximum-likelihood sequence estimation of digital sequences in the presence 

ofintersymbolinterference. Transact. IEEEIT-18(1972), 363 378. 
6) D. Messerschmitt, A geometric theory ofintersymbol interference- Part II: Performance of 

the maximum-likelihood detector. Bell. Syst. techn. J. 52 (1973), 1521- 1539. 
7) J. Proakis, Digital communications. McGraw-Hill Book Co., New York 1983. 
8) J. Bergmans, Density improvements in digital magnetic recording by decision feedback 

equalization. Transact. IEEE MAG-22 (1986), 157-162. 
9) J. Bergmans, Partial response equalization. Philips J. Res., vol. 42, no. 2, (1987), 

pp. 131- 172. 
10) D. Messerschmitt, Design of a finite impulse response for the Viterbi algorithm and decision 

feedback equalizer. Record ICC-74, June 17 19, 1974, pp. 37D1- 37D5. Minneapolis, 
MN, USA. 

87 



Data equalization 

PERFORMANCE CONSEQUENCES OF TIMING ERRORS 
IN DIGITAL MAGNETIC RECORDING 

Abstract 
In digital magnetic recording systems, timing errors may arise during play
back due to e.g. tape speed fluctuations, particularly at the high information 
densities encountered in the newest consumer-grade equipment. This paper 
studies the consequential performance degradations incurred by the most 
commonly used equalization and detection schemes, including the decision
feedback equalizer and-the powerful maximum-likelihood sequence detector 
(MLSD). For all methods studied, it is found that even relatively small 
timing errors may already induce serious performance degradations. Al
though the simplest methods are on the average somewhat less sensitive than 
the more powerful ones, the precise ranking depends strongly upon the 
information density. 

1. Introduction 

The advent of digital VLSI technology has enabled the development of 
high-density digital magnetic recording systems for e.g. digital audio 1), digital 
consumer-grade video 2), digital professional video 3) and high-definition 
digital television 4). The registration process in these systems proceeds at data 
rates of tens or even hundreds of megabits per second. At such rates it may be 
anything but simple to recover accurately the timing of the recorded waveform 
upon playback. This timing may fluctuate appreciably due to e.g. tape-head 
rubbing, tape tension variations, and, perhaps most importantly, fluctuations 
of the relative velocity of the (usually rotating) head and the registration 
medium 5). As a result, the (conventionally linear and fixed) receiver operating 
on th~ playback signal may suffer a serious performance degradation relative to 
the situation of perfect timing recovery, as both experiments 6) and simula
tions 7• 8) indicate. These fragmentary findings, illustrating the apparent impor
tance of the effect, underscore the desirability of establishing more structural 
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knowledge regarding the sensitivity to timing errors of the equalization and 
detection methods used in digital magnetic recording. The present paper is 
devoted to this. topic. Apart from several variants of the traditional linear 
equalizer, it also considers two more powerful methods that currently attract 
much interest, viz. the decision-feedback equalizer (DFE) 9-12) and the maxi
mum-likelihood sequence detector (MLSD) 18•14). In contrast to the linear and 
decision-feedback equalizer, the MLSD has an inherent decision delay, which 
complicates the accurate tracking (and therefore compensation) of timing 
jitter 15,16). 

The paper is constructed as follows. First, for an important practical class of 
digital magnetic recording systems, an equivalent discrete-time model is deri
ved which takes account of the effect of static sampling phase errors. Next, the 
performance of the methods considered is analysed in the situation where they 
have been dimensioned to perform optimally for the nominal channel characte
ristics, while the actual characteristics exhibit a given deviation thereof. (It can 
be noted that this approach implicitly assumes fixed or at most slowly adaptive 
receivers, and hence provides a pessimistic estimate of the true sensitivities in 
the presence of an adaptation mechanism which {partly) compensates for 
parameter variations 17)). This theoretical framework is finally specialized to 
the derived model and captured in numerical terms, revealing sensitivity 
figures which nearly invariably require sophisticated clock recovery schemes 
in order to allow full advantage to be taken of capabilities of the reception 
method used. As a large degree of generality is retained in the analysis of the 
distinct receivers, specialization of the results to other types of systems or 
variations should be a relatively straightforward undertaking. 

2. A discrete-time representation of the influence of sampling phase errors 

To illustrate their origen, fig. 1 depicts a part of a data transmission system 
suffering from timing errors. 

channEl 
impulse 
response 

h(tJ 

n(tJ whitEned matched filtEr 

matched 
filter 
hi-t) 

I k•a!T 
tJk whitening rk 

1---<....-'l:i,__;.+l filtEr 

'--~ 

Fig. l. Continuous-time model of a noisy dispersive channel followed by a matched filter, sampler 
and whitening filter. 
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A binary data sequence ak e { -1, 1}, whose symbols are spaced T seconds 
apart, is applied to a continuous-time noisy dispersive channel, which trans
forms ak into an output signal 

r(t) = 2: akh(t- kT) + n(t), (1) 
k~-<>J 

where h(t) is the impulse response of the channel, while n(t) is an additive white 
Oaussian noise signal with power spectral density No. For mathematical 
convenience, ak is assumed to be uncorrelated and statistically independent of 
n(t). 

In many instances, the digital magnetic recording process can be well 
approximated by the model of eq. (1) in conjunction with the mentioned 
(explicit and implicit) assumptions 18). This is true in particular for the impor
tant practical category of systems where use is made of an NRZ-like (e.g. 
8-to-10 19)) transmission code, longitudinal magnetization and a differentiating 
(gapped-ring core) playback head. For these systems, provided that the me
dium thickness and the gap size of the playback head are sufficiently small, the 
Fourier transform 

!:, !"' ( -j27rft) H(J) = h(t) exp T dt (2) 
_., 

of h(t) is, apart from a constant of proportionality without relevance to the 
present problem, given by 

I 
H(f) = T2(1- exp(-jmj))exp(-lrDIJ!), (3) 

where D is a normalized measure of the information density on the recording 
medium, ranging between approximately 0.1 and 3 in current systems 18). The 
somewhat unconventional Fourier transform definition (with/ dimensionless) 
is chosen here in order to simplify the following formulas. 

The received signal r(t) is fed into a filter·matched to h(t), and sampled at the 
symbol rate. In the absence of sampling phase errors, this is an information 
lossless procedure 20), which c~ be considered to form part of any receiver 
with an optimum dimensioning in e.g. the mean-square sense 22).0bviously, 
further linear processing needs to involve only discrete-time (transversal) 
filtering. In a practical (non-adaptive) implementation, the characteristics of 
the matched filter and all cascaded discrete-time (transversal) filters are usually 
combined into one continuous-time filter, the output of which is sampled at the 
symbol rate. As an interchange of the order of sampling and transversal 
filtering does not affect the resulting discrete-time output signal, it follows 
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· that the sensitivity figures for such a configuration are identical to those 
obtained for the somewhat less practical (but theoretically more convenient) 
sampler position of fig. 1. 

In the presence of a normalized sampling phase error Lt, the sampler output 
Uk can be denoted as 

(4) 

where '*' and '_' denote linear convolution and time reversal, respectively, and 
x(t) is the autocorrelation function of h(t), i.e. 

x(t) ~ (h * h_) (t) = 
1 j"' IH(/)12 exp (i2f) df. (5) 

-00 

The filtered noise component Vk ~ (n *h..) ((k + Li)T) contained in Uk has an 
autocorrelation function 

E[v;Vj] = Nox((i- j)T), (6) 

where No is the spectral density of n(t). Per transmitted bit, an energy 

00 

Eh = / h2(t) dt = x(O) (7) 

is received. Using eq. (3) in eq. (5) it follows that 12) 

2 1 
x(O) = Ji D(D2 + 1). (8) 

The energy received per bit therefore decreases with the information density, 
particularly rapidly beyond D = 1. We now introduce the (discrete-time) 
notation 

x1 ~ x((k + Li)1) = (h * h_) ((k + Lt)T) (9) 

and define a sequence fi to be the causal minimum-phase factor of xt This 
sequence is unique and can be easily determined from the log power spectrum 
of x~ 21). It satisfies 

(10) 

91 



Data equalization 

where'*' and'-' again indicate linear convolution and time-reversal, this time 
in their discrete-time forms. By making use of eqs (9) and (10), we can 
equivalently write eq. (4) as 

(11) 

where nk is a white Gaussian noise sequence having variance No. According to 
eqs (11) and (10), the autocorrelation function of the noise component of uk 
equals NoX t and hence adequately describes the noise colouration by the 
matched filter cf. eq. (6). By denoting the convolutional inverse operator by 
means of the superscript '-1', we see that the noise component of uk can be 
whitened by means of a filter having an impulse response F1 (fig. 1). This 
yields a signal r;; of the form 

(12) 

(The notation n has been chosen here in order to stress the similarity with the 
continuous-time received signal r(t), which is also corrupted by white noise. It 
should be borne in mind, though, that rk is, in general, not a sampled version of 
r(t).) The cascade of matched filter, sampler and whitening filter is referred to 
as a whitened matched filter 13). In the absence of timing errors, its output is a 
sufficient statistic for the optimum detection of ak 13), and, in view of eq. (10), 
assumes the canonic form 

(13) 

The minimum-phase causal rootfi of x~ hence serves as an equivalent nominal 
discrete-time response for the system under consideration. In the sequel, we 
will find it useful to describe the effect of sampling phase errors in terms of a 
convolutional deviation fromfi.. To this end, we introduce a deviation impulse 

.:1 d . response e k, an wnte rk as 

(14) 

where ok denotes the Kronecker delta function. By comparing eqs (14) and (12) 
we see that e1 and x1 are interrelated as 

(xO * e.:l)k = xf- x~. (15) 

Hence ef can be uniquely determined from xf. e.g. by means of Fourier 
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transform techniques. Figure 2 depicts the system model conforming to eq. 
(14). 

channel 
ak impulse 

response 

'· deviation 
Impulse 

response 
e4 

Fig. 2. Equivalent discrete-time model of the system in fig. 1. 

For the class of recording systems under study, we will now derive the 
Fourier transforms of both x1 and e1, from which x1, e1 and fi can be easily 
calculated numerically. 

3. Transfer function of the equivalent discrete-time channel 

We define the Fourier transform XLl(Q) of x1 as 

/:;. .; Ll 
XLl(Q)= £.. xkexp(-2n!Jk) forall!J. 

k=-oo 
(16) 

XLl(Q) is periodic with period 1, and furthermore has a Hermitian symmetry 
because of the fact that x1 is real-valued 21). Hence it can be uniquely determi
ned for all Q from its behaviour in [0, !], which we will now consider. 
Applying Poisson's summation formula 21 ) to eq. (9), XLl(Q) and H(f) (cf. eq. 
(2)) are found to be interrelated as 

1 "' 
XLl(Q) = T n~"' JH(Q + n)J 2 exp (j2n L1(Q + n)). (17) 

By distinguishing between negative and non-negative values of n, the series 
contained in eq. (17) can be split in two semi-infinite geometric series, which 
can each be summed to yield for Q E [0, !1: 

XLI(!J)= 4 . 2 g[exp(-2n(D+jL1)(1-Q))+ exp(-2n(D-jL1)Q)] 
sm n 1-exp(-2n(D+jL1)) 1-exp(-2n(D-jL1)) · 

(18) 

By combining both terms and applying elementary hyperbolic and trigonome-
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tric identities, this expression can equivalently be written as 

4
. 2 nexp(j2nLIQ)sinh(2n(1-Q)D)+exp(-j2nLl(l-Q))sinh(2nQD) 

sm n :.~ 
cosh 2nD - cos 2n Ll 

= 8 sin2 nQ ex ( _ . 2nLI ( 1 _ Q)) [cos n Ll sinh n D cosh 2nD(! - Q) 
P 1 2 cosh 2nD - cos 2n Ll 

+ . sin nLl cosh n D sinh 2nD(!- Q) J 
1 cosh 2nD - cos 2n Ll · 

(19) 

In the absence of sampling phase errors, this rather unmanageable form sim
plifies to 

Xo(n) = 4 . 2 n cosh 2nD(!- Q) 
:.~ sm n :.~ . h D , sm n 

(20) 

in accordance with the results ofrefs 10 and 12. We now focus upon, the Fourier 
transform £Ll(Q) of the deviation impulse response e1. The frequency-domain 
version of eq. (15) reads 

(21) 

By inserting eqs (19) and (20) in eq. (21), we obtain a lengthy expression for 
£Ll(Q), which can be simplified for small Ll by expanding the Ll-dependent 
factors in a Taylor series and retaining only the constant and linear terms. 
Provided that D is not too small, so that the denominator of eq. (19) does not 
approach zero, this yields for Q e [0, !l: 

LJ _ • { _ sinh 2n Q D } 
E (Q) - 1 2n Ll Q 2 sinh n D cosh 2nD(!- Q) ' (22) 

the approximation error being of the order O(Ll 2). When D is also close to zero, 
expansion of £Ll(Q) gives the even simpler and frequency-independent approxi
mation 
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(23) 

Numerical calculations reveal that this approximation complies within 4 and 15 
percent in modulus with the true function for densities D up to 0.1 and 0.2, 
respectively, provided that ILl I ~ 0.5, and irrespective of Q. Expression (23) 
indicates a gain mismatch, which may lead to severe sensitivity problems when 
Ll is as large or larger than D, as we will see later on. 

4. Sensitivity of the linear equalizer 

In this section we consider a number of linear reception methods which all 
involve the use of a forward linear filter in conjunction with a (two- or 
three-level) symbol-by-symbol detector. 

4.1. Full-response equalizer 

The full-response equalizer, depicted in fig. 3, is a discrete-time filter (having 
an impulse response Ck for - oo < k < oo) which operates on the output signal rk 

of the whitened matched filter. It is dimensioned so as to suppress intersymbol 
interference (ISI) and noise as well as possible, producing a sequence of 
decision variables ak which is fed into a symbol-by-symbol detector, whose 
binary output sequence ak serves as an estimate of the transmitted data sequence 
ak. 

Fig. 3. Linear receiver. 

To simplify the following mathematical derivation, we will initially assume 
the equalizer to be zero-forcing, i.e. to eliminate all ISI prior to detection. In 
this case its transfer function C(Q) is given by 22) 

(24) 

where F(Q) denotes the Fourier transform offk· By inserting the time domain 
version of eq. (24) in eq. (14), we see that ak is given by 
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(25) 

This expression reveals that the decision variable comprises a filtered noise 
component with variance 

(26) 

Moreover, in the absence of sampling phase errors the overall system impulse 
response amounts to a Kronecker delta function, implying that the decision 
distance d/2, defined as the minimum distance between the (zero) dete_ctor 
threshold level and any possible value of the non-noise component 
(a * (a + ed))k of ilk, equals 1. An erroneous sampling phase does not affect 
the noise variance of ilk, but decreases d/2 to 

(27) 

as expansion of eq. (25) reveals. For sufficiently large signal-to-noise ratios 
x·g/No, the error probability Pr[E] achieved by the receiver assumes the 
form20.23) 

(28) 

where 

(29) 

For systems with spectral zeros (such as the one under consideration) the 
integral of eq. (26) diverges, and alternative methods are needed to achieve 
acceptable noise variances and thus bit error rates. One method is to modify 
slightly the dimensioning of the equalizer so as to allow some residual ISI in 
exchange for improved noise suppression. For the nominal channel, the mini
mum achievable mean-square error (MMSE) (i.e. the total power of noise and 
residual ISI) then amounts to 

05 
No 

fmin = I XO(Q) +M d!J, 
-0.5 ° 

(30) 
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and is attained by means of an equalizer transfer function 12) 

F*(Q) 
C(Q) = XO(Q) + No' (31) 

whose modulus is guaranteed to remain finite for any positive noise variance 
No. An estimate for the transmission quality achieved in this case can be 
obtained by naively assuming the error signal iik - ak to have a Gaussian 
distribution 12). For high signal·to·noise ratios, this leads to an error probability 
linearly proportional to Q( dl2ve;;:;;,), with d/2 = 1. The system under study has 
zero transfer at Q = 0 only, so that the new transfer function of the equalizer 
(cf. eq. (31)) essentially deviates from the zero-forcing one (eq. (24)) in being 
finite near Q = 0, as a result of which the overall system impulse response 
obtains a small de-offset. As practical full-response systems invariably use a 
de-restoring circuit and/or a de-constraint in the employed transmission code 
24), the effect of this offset on the detection process can be disregarded, 
allowing the Ll-dependent decision distance d/2 to be approximated by its 
zero-forcing value (27). 

4. 2. Optimum zero·forcing partial response equalizer 

A second means of reducing the noise enhancement entailed in full response 
linear equalization involves the use of partial response techniques, 25• 12) whic.h 
do not eliminate all ISI prior to detection, but rather create an integer-valued 
overall system impulse response g" extending over a small number of symbol 
intervals. In digital magnetic recording systems, the responses 

(32) 

and 

(33) 

designated Bipolar and Class IV partial response, respectively, are frequently 
applied 6• 8). Their respective Fourier transforms G(Q) are given by 

G(Q) = 1 - exp (-j 2n Q) = 2 exp (j n(t- Q)) sin n Q (34) 

and 
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G(Q) = 1 - exp (-j 4.n Q) = 2 exp (j .n(t- 2Q)) sin 2.n Q. (35) 

In order to create the desired correlation structure, the equalizer· must have a 
transfer function 

G(Q) 
C(!J) = F(Q)' (36) 

and since the spectral zeros atdc of IGI 2 coincide with those of X0 (cf. eq. (20)), 
the noise variance 

o.siGCD)Iz 
No J dQ 

-0.5 X0(!J) 
(37) 

will remain finite, as desired. For the Bipolar partial response, this integral can 
be evaluated analytically: 

2 
_ Jo.s sinhnD 

a - 2No 
0 

cosh(2nD(t- Q))d!J 

sinhnD ( nD) = V:o arctan tanh T . (38) 

This expression can be approximated for small D as 

(39) 

the approximation error being of the order O(D2). Being an estimate for the 
ternary data sequence 

(40) 

the equalizer output signal bk now nominally possesses three data levels, 
requiring a three-level symbol-by-symbol detector. (For the sake of simplicity, 
we will not concern ourselves with the additional precoding and square-law 
inverse mapping operations that are required to prevent error propagation when 
reconstructing eh from the detected ternary sequence .. The presence of these 
operations does not affect any of the results derived here 12)). Assuming the 
detector thresholds to be spaced halfway adjacen~ nominal data levels (i.e. at 
± 1), we have a decision distanc~ d/2 = 1 in the absence of timing errors, and 
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an error probability which is again linearly proportional to Q(d/2a) at high 
signal-to-noise ratios 12). According to eqs (14) and (36), a non-zero sampling 
phase induces a decision variable bk = (r * c )k of the form 

(41) 

whose noise content is not affected by ..d. By expanding the first term in the 
right-hand side of eq. (41) on the basis of eq. (40) as a weighted sum of bits 
ak- ; and next using eqs (32) and (33) to distinguish between the bits that 
determine bk and the ones that do not, the decision distance d/2 can be seen to 
degrade to 

d 
-2 = 1- max{(g * e4)t- (g * eu1)o, l(g * eu1)o + (g * eu1)tl}- 2: !Cg * eu1)kl 

k,.O,l 

where l = 1 and 2 for the Bipolar and Class IV partial responses, respectively. 
Here, the left and right braced terms are due to 'in phase' bits that give rise to 
bk = ± 2.and bk = 0, respectively. 

4.3. Raised cosine partial response equalizer 

The partial response equalizers considered above are optimum in the sense 
that they achieve the smallest possible noise enhancement of all zero-forcing 
Bipolar and Class IV linear equalizers, respectively. Unfortunately, as we will 
see, they may be quite sensitive to sampling phase variations, particularly 
when the channel has a large bandwidth. We now contrast these schemes with 
two partial response schemes that are applied in practice 6• 8). 

n(tJ 

Fig. 4. Continuous-time data transmission system employing partial response linear equalization. 

Unlike the other reception methods considered in this paper, these schemes 
cannot be decomposed in terms of a matched filter followed by a transversal 
filter. Instead, they explicitly limit the bandwidth of the continuous-time 
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received signal r(t) (see fig. 4) by means of an equalizer transfer function 

C(f) ~ G(f) Wf1(f) 
. - H(f) (43) 

where the partial response characteristic G(f) is given by eq. (34) or eq. (35) 
(with/replacing Q), while Wp(f) is a raised cosine characteristic of the form 

Wp(f)~ 

T, 
1-{3 

for 0 ~~~ -
2
-, 

. n 1-{3 1+/3 
!T[l- sm71(f-!)l for - 2-<J< - 2-, 

0, 1+/3 
forf~-2-. 

(44) 

Since Wp(f) satisfies the Nyquist-1 criterion 22), the system transfer function 
H(f) C(j) corresponds to (Bipolar or Class IV) partial response system opera
tion. 

As previously, the transmission quality achieved by these schemes assumes 
the asymptotic form Pr[E] cc Q(d/2a), where the L1-dependent decision distan
ce d/2 can be determined from the sampled system impulse response 
(h * c) ((k + L1)T) by decomposing it into a (Bipolar or Class IV) nominal 
system impulse response fk = gk and a deviation impulse response e1, as 
depicted in fig. 2. Making use of eqs (34), (35) and ( 43), it is easily verified that 

e~ = Wf1(k + L1)- <h, 

where wp(t) is the inverse Fourier transform of Wp(f), equal to 

( ) _ sin n (tiT) cos n {3 (tiT) 
wp t - n (tiT) 1 - (2{3 t!T)2 • 

(45) 

(46) 

Hence e~ is independent of the precise characteristics of the channel. In 
contrast, the noise variance a2 at the equalizer output is given by 

a2 = N_; _j"'IC(f}j2df, (47) 

and as C(f) depends explicitly upon the channel transfer function through 
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eq. (34) and eq. (35), the same must be true for the noise variance. Making use 
of eqs (3) and (34), the integral of eq. (47) can be evaluated analytically for the 
recording system under study, giving 

2_ No { :eD[ coshnf3D _ sinhnf3D J _ } 
a - nD e (2j3D)2 + 1 (2/3D)2 + 4 1 · (48) 

By expanding the D-dependent terms in this expression in a Taylor series, we 
find that forD close to zero 

(49) 

the approximation error being of the order O(D2). By comparing eq. (49) with 
eq. (39) we see that for small D and Bipolar operation, raised cosine reception 
will cause a much larger noise enhancement than reception on the basis of a 
matched filter. There is no contradiction in this observation: a bapdwidth
restricted raised cosine filter indeed manages to suppress incoming noise quite 
well, but at the same time it suppresses the data component of the received 
signal by such a large factor that its net performance is grossly inferior to the 
matched filter based equalizers, where a signal-to-noise ratio optimizing (and 
much larger) bandwidth is used. 

5. Sensitivity of the decision-feedback equalizer 

Instead of using a forward filter which potentially enhances the noise, the 
zero-forcing (ZF) decision-feedback equalizer (DFE) eliminates all intersym
bol interference by means of feedback filter (FBF) which is excited by the 
detected data sequence (fig. 5). 

Fig. 5. Zero-forcing decision-feedback equalizer. 
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Because the channel impulse response fk has minimum-phase, the forward path 
of the equalizer only contains a constant gain 1/fo which serves to normalize the 
decision distance d/2 in the absence of timing errors to 117•26). Provided that the 
FBF impulse response Pk matches the trailing part of the overall system impulse 
response, i.e. 

(50) 

all (trailing) ISI will be eliminated prior to detection as long as the decisions fed 
into the FBF are correct (The error propagation which arises if the latter 
condition is not met is generally not very serious at realistic signal-to-noise 
ratios 26•12).) Since even the zero-forcing DFE is perfectly capable of dealing 
with spectral zeros, a study of the ZF situation will reveal essentially the same 
information as consideration of the more complicated MMSE case. 

At high signal-to-noise ratios, the error probability achieved by the ZF DFE 
again becomes linearly proportional to Q(d/2a), where d/2 ideally equals 1, 
and where the variance a2 of the noise contained in the decision variable iik 

obviously equals 

az=No, (51) 

We recall thatfi can be calculated from the log spectrum of X0( !J). In particular, 
fo is given b¥ 21

) 

0.5 

fo = exp{t jmX0(!J)d!J}. (52) 
-0.5 

By using eqs (14) and (50), it is easily verified that the decision distance d/2 
degrades to 

(53) 

in the presence of a sampling phase error Ll. 

6. Sensitivity of the maximum-likelihood sequence detector 

The maximum-likelihood sequence detector (MLSD) ranks among the most 
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powerful receiver types conceivable 13). The MLSD, which directly operates 
upon the output signal (cf. (14)) of the whitened matched filter*), considers all 
allowable sequences ak, and finally selects that sequence ak which, after 
filtering by the assumed overall system impulse response fic, best resembles its 
input sequence rk **). More specifically, the detector minimizes the Euclidian 
distance 

la• g, 2: (rk- (a' *f)k)2 = ((r- a' *f)-* (r- a' *f))o (54) 
k=-00 

over all possible sequences ate. The simplest MLSD representative, viz. the 
Viterbi detector 13), realizes this minimization in a recursive fashion, thus 
omitting an exponential growth of processing effort as the message length 
increases. It can be seen from eqs (14) and (54) that whenever the filtered 
version (a' * j)k of an erroneous sequence ate is close (in the Euclidian sense) to 
the filtered version (a * f)k of the original sequence ak, the MLSD is likely to 
make errors, requiring only a small amount of noise nk or residual interference 
due to timing errors to cause confusion between the two. More exactly, an error 
will be made if la· <la, and the likeliness of this condition can be calculated by 
considering the difference of both distances. By making use of eqs (10), (14), 
(15) and (54), it is not difficult to show that 

la• - la = ((a - a')_* x-1 *(a - a'))o 

+((a- a')-* (x-1 - .xO) *(a+ a'))o 

+ 2(n_ * (a - a') * f)o. (55) 

In the absence of parameter variations the second term in the right-hand side of 
this expression vanishes, causing la· - la to depend exclusively upon the error 
sequence (a - a')k and no longer on the sum sequence (a + a')k. By introducing 
the notation 

M(a, a') g ((a - a')_* x-1 * (a - a'))o 

+((a - a')-* (x-1 .xO) * (a + a'))o (56) 

*) There exists an MLSD variant due to Ungerboeck 27) which operates on the sampled output of 
the matched filter of fig. I. Performing an equivalent detection process, the Ungerboeck MLSD has 
the same sensitivity behaviour as the one analysed here. 
**) It should be noted that this approach is only maximum-likelihood in the absence of timing 
errors, i.e. when the assumed system impulse response equals the actual one. 
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and 

D. 
V( a, a') = ((a -a')-* x0 *(a - a'))o, (57) 

la• - la is seen to be a Gaussian random variable with mean M(a., a') and 
variance 4No V( a, a'). Hence it is smaller than zero with probability 

Pr[la· - la< 0] = Q( M( a, a') ) = Q( d(a, a'))' (58) 
y4No V(aa') 2a 

where 

d2( ') ~ M 2(a, a') 
a,a V(a,a') (59) 

and 

(60) 

It is instructive to interpret the eqs (56) and (57) in the frequency domain. 
Making use ofParseval's relationship, we see that 

0.5 

M(a, a')= I IA(.Q)- A' (.Q)j2 Xd(.Q) d.Q 
-0.5 

0.5 

+ I [!A(.Q)j 2 -IA'(.Q)i2 + 2Im(A*(.Q)A'(.Q))] 
-0.5 

(Xd(.Q)- X 0(.Q)) d.Q. (6l) 

and 

0.5 

V(a, a')= I IA(.Q)- A'(.Q)i 2 X 0(.Q) d.Q. (62) 
-0.5 

Hence both M and V can be interpreted as a frequency domain weighted 
measure of the dissimilarity of ak and afc. We observe from eqs (61) and (62) 
that both M and V are insensitive to a shift of the time index k. For large 
signal-to-noise ratios the performance of the MLSD is dominated by· the 
combination of a and a' which yields the smallest distance 
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d ~n@ min d2(a, a') (63) 
a, a' 

of all possible combinations 13), i.e. 

(64) 

Since M( a, a') depends not only upon the error sequence (a - a')k but also upon 
the sum sequence (a+ a')k, the traditional methods for finding d~in 22•28) are not 
applicable here, and a 'brute force' computer search seems to be the easiest 
way to go. Some idea of the search effort requied for finding d::W, can be 
obtained by taking x1 - xZ to extend effectively from - L to U. For an error 
sequence ak - a!: which starts at k = 0 and has length K, it follows that 
((a - a')* (xtl - Xl))k then effectively equals zero outside the interval [ -L, U 
+ K-1]. With the aid of eq. (56), it is clear that M(a, a') is completely 
determined by values of ak and ak in the same time interval, so that both ak and 
ak may be taken equal to zero outside this interval for the purpose of distance 
calculations. For typical (high-density) values of L, U and K of 9, 10 and 5, 
respectively, this implies that no less than 2L + u3K 1 == 2 ·1 08 candidate pairs 
(ak, at) are to be considered. On a VAX 111780 computer, this computational 
load requires a considerable fraction of a CPU weekend in order to generate one 
of the .MLSD curves presented in the next section. 

7. Performance comparison 

A useful reference for the comparison of equalization and detection methods 
is the Matched Filter bound, which sets an upper limit to the performance 
achievable by any reception method 22). The error probability corresponding 
to matched filter bound performance is linearly proportional to Q(y'SNR), 
where 

0 
SNR@ Xo 

No 
(65) 

is the signal-to-noise ratio of the output signal of the whitened matched filter. 
As we have seen in the previous sections, the error probability actually achie
ved by the reception methods considered here is linearly proportional to 
Q(d/2a), where d/2 and a can be calculated from XLl(Q) and No and hence 
depend upon SNR. We are thus led to define a quantity 
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(66) 

to be the effective signal-to-noise ratio loss of a reception method relative to the 
matched filter bound. By inspecting the expressions for d/2 and a2 derived in 
the previous sections, it can be easily verified that .:.:z:' is independent of SNR 
for all methods s.tudied except the MMSE full response linear equalizer. Apart 
from the reception method, .:.:z:' obviously depends on the normalized informa
tion density D and on the normalized sampling phase error .1. 

We now turn to the sensitivity evaluation that has been carried out on the 
basis of the theory developed in the preceding sections. To set the stage, fig. 6 
depicts the calculated dependence of upon D in the absence of sampling 
phase errors and for a realistic signal-to-noise ratio SNR of 20 dB. The 

~ 
.e 

(dB) 

Q2 Q5 

a 

2 
-D 

5 

Fig. 6. Effective signal-to-noise ratio loss .?versus normalized information density D for various 
receiver types at a signal-to-noise ratio SNR of 20 dB and in the absence of a sampling phase error. 
a. MLSD; b. Decision feedback equalizer; c. Full response linear equalizer (integrated detec
tion); d. Optimum zero-forcing Bipolar linear equalizer (amplitude detection); e. Raised cosine 
Bipolar linear equalizer (amplitude detection); f. Optimum zero-forcing Class IV linear equalizer; 
g. Raised cosine Class IV linear equalizer. 

impressive power of the MLSD is clearly illustrated by its capability to achieve 
matched filter bound performance up to D = 2.8. Beyond this density the 
channel amplitude distortion becomes so large that multiple rather than single 
bit errors dominate, causing a rapidly increasing loss. Despite its much simpler 
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implementation, the DFE actually lags quite closely behind the MLSD for 
densities between roughly ~and 3. Because of its large noise enhancement, the 
full response linear equalizer consistently performs considerably worse than 
the MLSD and DFE. The Bipolar and Class IV partial response linear equali
zers operating on the output of the whitened matched filter show up much 
better, and in fact closely approach the DFE performance at low and medium 
densities, respectively. As expected, up to densities of about 1, the raised 
cosine partial response equalizers (which use a typical value 8) of 0.5 for {J) are 
distinctly inferior to their whitened matched filter counterparts. 

The dramatic effect of a sampling phase error of no more than 10 percent of 
a bit interval is depicted in fig. 7. At low densities, the large bandwidth of the 

~ 
/. 

{dB) 

Or---------------------------~ 

-o 

Fig. 7. As fig. 6, but in the presence of a sampling phase error of I 0 percent of a bit interval. 

matched filter output signal causes narrow output pulses and a consequent large 
susceptibility to sampling errors for all receivers which operate on a sampled 
version of this signal. The only (partial) exception here is the full response 
linear equalizer, whose familiar insensitivity to gain mismatches 29) complies 
well with the dominant effect of timing errors in this density region (cf. eq. 
(23)). Around D = 0.5, this equalizer in fact incurs a noteworthy loss of no 
more than 1 dB relative to the ·..1 = 0 situation. Because of their considerable 
bandwidth restriction, a sensitivity-reducing pulse broadening occurs for the 
conventional (Bipolar and Class IV partial response) raised cosine equalizers, 
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allowing them to withstand a sampling phase error quite welL Nevertheless, 
their large noise enhancement still leads for all but the lowest densities to a 
performance comparable or inferior to the other receiver types. At medium 
densities (1 :;;;; D :;;;; 2.5), the mutual ranking of the receivers conforms largely 
to the L1 = 0 situation. As they undergo about 1 dB less degradation than the 
approximately 4 dB incurred by the linear types of receiver, both the DFE and 
MLSD show up remarkably well. Finally, at the high end of the density 
spectrum only the Viterbi detector succeeds in establishing a performance 
within the scale of fig. 7, indicating a substantial performance advantage over 
the linear and feedback receivers. 

At a fixed and relatively high density D of 2.5 (typical for the newest 
consumer-grade audio systems 1), we have calculated the performances of the 
receivers under study for sampling phase errors ranging from -25 percent to 
+ 25 percent of a bit intervaL Fig. 8 depicts the results. Because of their large 

~ 
.t. 

(dB) 

Fig. 8. Effective signal-to-noise ratio loss .5P versus normalized sampling phase error .1 for 
various receiver types at a normalized information density D of2.5 and a signal-to-noise ratio SNR 
of20 dB. a. MLSD; b. Decision feedback equalizer; c. Full response linear equalizer (integrated 
detection); d. Optimum zero-forcing Bipolar linear equalizer (amplitude detection); e. Raised 
cosine Bipolar linear equalizer (amplitude detection); f. Optimum zero-forcing Class IV linear 
equalizer; g. Raised cosine Class IV linear equalizer. 

noise enhancement, the Bipolar equalizers lag far behind the other types of 
receiver. The full response linear equalizer is, on the average, slightly better 
than its class IV counterparts, which either have a poorer nominal performance 
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or exhibit a larger sensitivitiy to phase errors. As it achieves a more than 2.5 dB 
better performance across .the entire range of phase errors considered, the DFE 
clearly outperforms all linear equalizers. In turn, the MLSD consistently 
achieves a similar improvement over the DFE. Unlike the other methods 
considered, the performance of the DFE depends upon the polarity of the phase 
error as a consequence of the asymmetrical overall system impulse response 
with which it deals. On the basis of fig. 8, in order for the performance to 
remain within 3 dB of its nominal value, the sampling phase generated by the 
clock recovery circuit should, irrespective of the receiver type, always be 
closer than 10 percent of a bit interval to its optimum value, and for some 
receivers even closer than 5 percent(!). 

Comparably stringent requirements can be deduced from fig. 9, which 
depicts a set of curves similar to fig. 8 for a (low) density D of 0. 2, characteristic 
for e.g. disk storage systems 30). As observed before, only the full response and 
raised cosine linear equalizers have some resistance against timing errors here, 
while the other receivers require phase accuracies better than 8 percent of a bit 
interval in order to achieve a performance within 3 dB of its nominal value. 
Much more than at D = 2.5, fig. 9 clearly reflects the negative side of the 
insensitivity meddle, viz. the substantial penalties in terms of nominal perfor
mance that apparently accompany robustness improvements. 
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(dB} 
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-a 

Fig. 9. As fig. 8, but at a normalized information density D of0.2. 
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8. Simulations 

To verify the results just described, we have performed a series of Monte 
Carlo simulations for normalized information densities D of 0.2 and 2.5 
(figs 10 to 13). At D = 0.2, the error characteristics measured for both ..:1 = 0 

t 

Fig. 10. Bit error rateBER plotted versus the signal-to-noise ratio SNR at a normalized information 
density D of 0.2 in the absence of timing errors. a. Matched filter bound; b. MLSD; 
c. Decision feedback equalizer; d. Full response linear equalizer; e. Optimum zero-forcing Bipo
lar linear equalizer. 

and ..:1 = 0.1 closely reflect the predictions of fig. 9, even though for computa
tional efficiency all forward path filters were restricted to a length of 33 
coefficients, centered around zero. Ideally having an integrating nature, which 
calls for a substantially longer impulse response, only the full response linear 
equalizer does not entirely achieve its anticipated performance. By comparing 
figs 10 and 11 it is seen that at D = 0.2 timing errors already seriously degrade 
the transmission quality at the smallest included signal-to-noise ratios. In 
constrast, at D = 2.5 the detrimental effects of timing errors become important 
much later, and in fact only reach about half of their anticipated value (expres
sed in decibels) at the highest SNRs included in figs 12 and 13. This phenome
non can be explained by noting that the small bandwidth of the D = 2.5 channel 
causes its impulse response to extend over many bit intervals and to change 
relatively slowly as a function of ..:1. The residual intersymbol interference 
caused by timing errors will therefore typically consist of a large number of 
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Fig. 11. As fig. 10, but in the presence of a nonnalized sampling phase error Ll of 10 percent. 

BER 

t 

Fig. 12. As fig. lO, but at a nonnalized infonnation density D of 2.5 and with curve e representing 
the optimum zero-forcing class IV partial response linear equalizer. 

small contributions. As they are independent, these contributions only rarely 
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Fig. 13. As fig. 12, but in the presence of a nonnalized sampling phase error Ll of 10 percent. 

add up to a large net interference value, and hence only become important 
when noise plays a background role, i.e. at high SNR's. For the same reason, 
the worst-case assessment of intersymbol interference employed in the effecti
ve signal-to-noise ratio loss Y yields overly pessimistic predictions for all but 
the highest SNR's, as comparison of figs 13 and 8 confirms. The MLSD curves 
of figs 12 and 13 have a bearing upon a reduced-state Viterbi detector of the 
Ungerboeck type 27). Using a stacksize of only 32 in order to achieve a 
nonprohibitive computational load, this detector sacrifices some performance 
relative to its full-fledged counterpart, particularly at low SNRs. As a result, its 
predicted matched filter bound performance for L1 = 0 is only achieved for 
SNRs in excess of about 10 dB, while similar ratios are needed at L1 = 0.1 in 
order to lower the influence of the stacksize reduction to negligible proportions. 

9. Concluding remarks 

We have investigated the performance of several equalization and detection 
methods in the presence of timing errors for a category of digital magnetic 
recording systems in which an NRZ-like transmission code is used in conjunc
tion with differentiating playback heads. In accordance with experimental 
observations 6• 14), all methods studied were invariably found to be sensitive to 

lll 



Performance consequences of timing errors in digital magnetic recording 

such errors. For example, at most information densities none of the schemes 
suffered less than 3 dB signal-to-noise ratio loss in the presence of a phase error 
as small as 10 percent of a bit interval. At low densities, particularly the 
methods that make use of a whitened matched filter were found to be very 
vulnerable to timing errors, yet achieved good or even excellent performances 
when these errors did not occur. Conversely, the full response linear equalizer 
and the partial response schemes that shape the overall characteristics of the 
systeem in a raised cosine form were found to suffer the smallest degradation. 
Unfortunately, their inferior nominal performance more than offsets this ad
vantage whenever sampling phase deviations remain within approximately 10 
to 15 percent of a bit interval. Although their nominal performances may differ 
greatly, we observed at medium densities that all methods tend to suffer 
comparable losses in the presence of realistic timing errors. Quite surprisingly, 
the DFE and MLSD were found to withstand sampling phase errors relatively 
well, particularly if their considerable vulnerability to other system parameter 
(e.g. gain and bandwidth) variations is taken into account 18• 29). Nevertheless, 
the considerable hardware investment, required for the MLSD in particular, 
can only be fully exploited (and hence justified) if sophisticated timing recovery 
schemes are used. 

These rather pessimistic findings naturally raise the question whether it is 
feasible to take account explicitly of sampling phase errors in the equalizer 
design process so as to incorporate a larger degree of tolerance, at the expense 
of a small performance degradation in the nominal situation. In a more general 
setting, this intriguing question (with an affirmative answer) is the subject of a 
companion paper31). 
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A METHOD OF DESIGNING ROBUST LINEAR PARTIAL 
RESPONSE EQUALIZERS 

Abstract 
As a 'next-best' alternative for adaptive equalizers, whose application may 
be precluded by e.g. high data rates and power consumption restrictions, 
this paper develops a method for the design of fixed linear partial-response 
equalizers that are optimally robust relative to a mean-square performance 
measure which takes account of system parameter variations. The method is 
exemplified for a class of digital magnetic recording systems suffering from 
timing errors, and is in many instances found to establish significant impro
vements in timing margin at a modest expense to the nominal performance. 

1. Introductio .. 

Besides intersymbol interference and noise, temporal and piece-by-piece 
variations of the channel characteristics are frequently an important problem in 
digital transmission and recording equipment 1·4). Application of adaptive equa
lization methods 5) can be regarded as the most natural solution to this problem. 
Prior to their advent in the second half of the sixties 6•7), other means were 
sought to make data equalizers proof against channel parameter variations. 
After work by Tufts and Berger8), directed towards reduction of the influence 
of timing errors, Gonsalves and Tufts 9) established the first general result in 
this field by deriving the full-response fixed linear data equalizer with an 
optimum performance (in the mean-square sense) averaged over a given proba
bilistic channel ensemble. Kaye 10) later generalized this work to channels with 
nonstationary statistics. In spite of their already recognized value9), these 
findings did not cover p~al response techniques, where a well-defined part of 
the arising intersymbol interference (ISI) is not attacked by equalization, but 
rather dealt with by means of-residue arithmetic ll- 14). In this way, significant 
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performance advantages may accrue relative to full-response equalization, 
where all ISI is eliminated prior to detection 15). Apart from a recurrence to a 
restricted segment of the theme 16), the robust data equalization problem has 
failed to spur research efforts in later years, partly due to the preferable 
alternative provided by adaptive techniques in the historically predominant 
application scenes of data equalization, viz. radio and line transmission 5). 

Meanwhile, the related area of robust signal equalization, wherein a fully 
stationary environment is assumed, has continued to bear fruit 17•19). As they 
neglect the cyclostationary nature of the data transmission process, the solu
tions concerned are of restricted value to the data equalization problem. For 
example, it is intrinsically impossible to make equalizers proof against timing 
errors on the basis of a performance measure which does not distinguish 
between different sampling phases. 

In recent years, digital magnetic and optical recording, with their associated 
data equalization problems, have become increasingly important discipli- · 
nes 20•21). Particularly in the upcoming generations of consumer-grade digital 
magnetic audio and video recording equipment, areal information densities are 
slowly increasing up to the point where ISI and noise together demand the 
limits of the capabilities of traditional equalization methods 20•22,23). While the 
'nominal' recording channel is relatively well defined 20•24), small variations 
due to e.g. fluctuating tape-to-head contact and timing errors may cause the 
conventionally applied equalizers to induce considerable and even intolerable 
degradations of the transmission quality 3•15•23•25). Unfortunately, high data 
rates (in the order of tens or even hundreds of megabits per second) and power 
consumption restrictions not seldom preclude adaptive techniques from being 
applied in these systems. For this reason, a renewed interest can be accredited 
to the topic of robust equalization. In this context, linear partial response 
equalization merits special consideration in view of its widespread application 
and also because its sensitivity figures are generally poorer than those of its full 
response counterpart3•15•23•25). The present paper deals with this subject. In a 
treatment which extends the one of Gonsalves and Tufts 9), it develops a 
method to design fixed linear data equalizers which are optimally robust 
relative to a mean-square performance measure which takes account of both the 
partial response used and the potentially occurring parameter variations.*) The 
adopted performance measure is first optimized in a discrete-time environment, 
leading w an instructive closed-form frequency-domain solution. The treat
ment is then extended into the continuous-time domain by deriving a set of 
equations which uniquely determines the optimally robust continuous-time 

*) To put the method on a solid mathematical basis, an appendix, contributed by A. J. E. M. 
Janssen, settles the arising existence and uniqueness questions. 
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equalizer and by outlining an efficient method for its numerical solution. To 
illustrate its merits, the so-identified design method is finally used to incorpora
te an optimum resistance to timing errors in linear data equalizers that are 
employed in a category of digital magnetic recording systems. Comparing the 
robust equalizers with their conventional counterparts, in many instances 
significant increments in timing margin are found to be accompanied by a 
modest performance degradation in the nominal situation, thus underscoring 
the usefulness of the method. 

2. The robustness problem 

Figure 1 depicts a discrete-time model of a system suffering from ISI and 
noise and plagued by channel parameter variations. (Though restricting the 
ensemble of solutions and therewith entailing some loss of optimality, this 
model is chosen here because of its simplicity. Later on we will be concerned 
with the more general continuous-time situation.) 

channel 
impulse 
response 

rt 

linear b. 
equalizer 

Ck 

symbol
by 

symbol 
detector 

Fig. l. Discrete-time eata transmission system employing linear equalization. 

A discrete-time data sequence ak e { -1, 1} is applied to a discrete-time 
channel, which transforms ak into an output sequence rk of the form 

(1) 

where'*' denotes linear convolution,Jf is the channel impulse response, and 
nk is an additive Gaussian noise sequence. In what follows, we will assume ak 
to be uncorrelated and statistically independent of nk (the former assumption 
can be easily relaxed so as to accomodate the effect of correlation due to e.g. 
nonlinear transmission codes 8). The channel impulse response Jf depends 
upon a parameter Ll belonging to an a priori known setS, which accounts for 
the presence of channel parameter variations. For instance, in the example to 
be considered later, Swill be the set of all possible sampling phase errors, and 
Jf will be the equivalent channel impulse response corresponding to a sampling 
phase error Ll e S. 
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For the sake of simplicity, we will restrict consideration to linear reception of 
the received data sequence. In this case a fixed linear equalizer, having 
coefficients Ck, - oo < k < oo , performs a linear filtering operation upon rk. 
transforming it into an output signal (see fig. 1) 

(2) 

Depending upon the dimensioning of the equalizer, bk can be made to resemble 
either the originally transmitted data sequence ak or a simple linear transforma
tion 

(3) 

thereof as well as possible. The latter case, referred to as partial response 
equalization15), involves the use of a partial response gk, whose @!-transform 

(4) 

normally assumes the form 

(5) 

(The case m = n = 0 corresponds to direct estimation of ak, referred to as full 
response equalization.) For small values of m and n, such as usually applied in 
practical systems, the transformed data sequence bk has only few (e.g. 3) 
amplitude levels. The detection of its estimate bk can therefore be performed by 
means of a relatively simple symbol-by-symbol detector, and should be follo
wed by an inverse mapping which attempts to reconstruct ak from its detected 
transformation lh. Since responses of the form (5) have zeros exactly on the 
unit circle, a precoding operation must be added at the transmitting end of the 
system in order for the inverse mapping to be memory less, thereby preventing 
error propagation from occurring. As they are not relevant to the forthcoming 
analysis, neither the precoding operation nor the inverse mapping are shown in 
fig. 1. 

Among the methods available for dimensioning the equalizer, a tractable and 
frequently applied one minimizes the mean-square error 

1::::. - 2 e (Ll) = E[(b- b)k] (6) 
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between bk and bk 2), where E denotes expectation. The optimum transfer 
function 

C(Q)~ i ckexp(-j2rrQk) (7) 
k=-"" 

of the equalizer equals 2·
15

) 

C(Q) 
pl*(Q)G(Q) 

I F<J (Q)! 2 + N(Q)' 
(8) 

where the superscript '*' denotes complex conjugation, N(Q) represents the 
power spectral density of nk, and G(Q) and F<J(Q) represent the Fourier 
transforms of gk and/1, respectively. Using the nominal value for A results in 
a system that performs optimally in the absence of variations, but whose 
satisfactory performance is to no extent guaranteed in all other situations. 

Rather than designing an equalizer to perform well for a single value of A, 
one might wish to accredit an importance measure to each possible value of 
A E S, and devise an equalizer which performs as well as possible averaged 
over S according to the specified distribution. In this way a well-defined degree 
of robustness would be incorporated in the design. Relative to a mean-square 
optimality criterion, we will now define this design problem mathematically, 
and subsequently derive its solution. 

3. Optimally robust linear equalization- the discrete-time case 

To accredit weight to the distinct possible values of A, we define a distri
bution function p(A) satisfying the usual constraints 

p(A);;::: 0 for all A, (9) 

and 

I p(A)dA = 1. 
.1 e S 

(10) 

Normally, p(A) will be selected to attain its maximum for the nominal value of 
A, and to be smaller for other values according to their likehood of occurrence. 
For a fixed equalizer, we can define an average mean-square error e as 

e~ j e(A)p(A)dA. (11) 
.1 e S 
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By expressing e(LI) in terms of the known system parameters as 

0.5 

e(LI) = I [IFLI(.Q) C(.Q)- G(.Q)I2 + N(.Q) !C<DWl d.Q (12) 
-0.5 

(cf. appendix A of ref. 15), this expression can equivalently be written as 

o.s 

e= I I [iP(.Q)C(.Q)-G(.Q)I2 +N(.Q)iC(DWlP(LI)dLid.Q, (13) 
-0.5 LieS 

and we are looking for the fixed transfer function C( .Q) which optimizes e. This 
problem can be easily solved by adopting a calculus of variations approach. We 
write C(.Q) as 

C(.Q) ~ C(.Q) + f.L V(.Q), (14) 

where C(.Q) and V(.Q) represent the optimum transfer function and an arbitrary 
deviation thereof, respectively. To identify C(.Q), we impose the requirement 

ae op, l,.=o = 0 for all V(.Q). (15) 

Using eq. (14) in eq. (13), we find after the application of some elementary 
differentiation rules that 

0.5 ;e l,..=o=2Re I V*(.Q)[ j {(IF.:1(.Q)j2 +N(.Q))C(.Q)- (16) 
f.L -0.5 .1 E S 

- p:l*(.Q) G(.Q)} p(LI) dLI] d.Q. 

In order for this expression to equal zero for all V(.Q) it is required that the 
quantity within square brackets vanishes for all .Q. Hence we conclude that 

C .Q = f.:JesP1*(.Q) G(.Q)p(LI)dLI 
( ) f.1es(jFLI(.Q)j 2 + N(.Q))p(LI)dLI. 

(17) 

According to eq. (17), the design of an optimally robust equalizer involves the 
calculation of an 'average matched filter' having the transfer function 
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F*(Q)@ I P*(Q)p(L1)dL.1 
LieS 

(18) 

and an average power density spectrum 

IF<D>l 2 @ 1 IFA<SJW p(L1) dLJ. 
deS 

(19) 

In this notation, the optimum equalizer transfer function assumes the simple 
and intuitively reasonable form (cf. eq. (8)) 

C(Q) = F*(Q) G(Q) 

IF(!J)I
2 + N(Q) 

(20) 

Using eq. (20) in eq. (13), the corresponding minimum mean-square error Emin 

is seen to equal 

Emin = (21) 

4. Optimally robust linear equalization · the continuous-time case 

Due to the shift-invariance of the discrete-time problem just studied, the 
transfer function of the optimally robust· data equalizer as given by eq. (20) has 
an elegant and simple appearance. Not surprisingly, a similar form was also 
obtained in ref. 17 using a continuous-time, stationary problem setting. As 
noted before, in data equalization decisions are taken at well-defined, equidis
tant moments, reflecting the cyclostationary nature of the data transmission 
process. By extending the treatment given so far into the continuous-time 
domain, we shall now uncover the consequences of cyclostationarity upon the 
resulting equalizer transfer function. To this end, we consider the continuous
time model of fig. 2, wherein a data sequence ak (whose samples have a 
temporal spacing T) is filtered by a continuous-time channel impulse response 
hLI(t) and further corrupted by an additive Gaussian noise signal n(t). 
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channel 
impulse 
response 

h.(t} 

nftl 

Fig. 2. Continuous-time data transmission system employing linear equalization. 

The so-arising received signal r(t) is applied to a linear equalizer with 
impulse response w(t), whose output is sampled at the moments kT. This yields 
a sequence of decision variables bk of the form 

bk= L ak-i(h<l*w)(iT)+(n*w)(kT), (22) 
i=-CtJ 

where '*' again denotes linear convolution, this time in its continum;ts-time 
form. As before, we assume ak to be uncorrelated, and statistically independent 
ofn(t). Using these assumptions, the mean-square error 

e(LJ) ~ E[(b- b)i] (23) 

between bk and bk = (a * g)k is found to equal 

i== -00 j;;;; -oo i= -oc 

+ E[(n * w)Z(kT)]. (24) 

To be able to express e(LJ) in frequency-domain form, we define the Fourier 
transform W(f) of w(t) as 

t::,. j"' ( -j2nft) 
W(f) = _"' w(t)exp T dt, (25) 

analogously define HLJ(f) to be the Fourier transform of h<l(t), and furthermore 
denote the power spectral density of n(t) as N(f). Chosen here because it 
simplifies the forthcoming formulas, the adopted Fourier transform definition 
is somewhat unconventional, involving a normalized and dimensionless fre
quency variable f. Applying Parseval's identity and Poisson's summation 
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formula 26) to eq. (24), we can express s(LI) in terms of HA([), W(f), N(f) and 
G(f) (as defined before, with f replacing Q) as 

1 "' "' 
c:(LI) =2 2: I HA*(f) W*(J)HA(f + n) W(f + n)df 

T n=-oo _., 

- 0~ - ~ I HA*(f)W*(f)G(f)df+ /IGCJ)I2df 
_., ~~ 

+ ~ I"'N(f)jW(f)l2 df. (26) 
-oo 

The average mean-square error 

e g J s(LI)p(LI)dLI (27) 
AeS 

thus becomes 

- 1 00 00 

e = - 2: I R,(f) W*(j) W(f + n)df 
T2

n=-"'-«> 

"' 0.5 - ~ I ii*(f) W*(f) G(f) df + /IGCJ)I 2 
df 

_., -0.5 

(28) 

where the average transfer function R(f) and frequency autocorrelation func
tion Rn(f) of the channel are defined respectively as 

R(j) ~ I HA(J)p(LI)dLI (29) 
<!eS 

and 

Rn(f) ~ I H"'* (f) HA(J + n) p(LI) dLI. (30) 
<leS 

To find the equalizer transfer function which optimizes e, we set 
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W(f) g W(f) + JJ. V(f), (31) 

where W(j) and V(/) represent the optimum transfer function and an arbitrary 
deviation thereof, respectively. The requirement 

(32} 

now serves to identify W(j). Making use of elementary differentiation rules, it 
is easily verified that 

A necessary and sufficient condition for this derivative to be zero for all V(f) is 
that the quantity in square brackets vanishes for all f. This means that 

~ n~"' Rn(f) W(f + n) + N(f) W(j) = ii*(f) G(j) for all/. (34) 

According to appendix A, this infinite set of equations has a unique solution 
W(j), provided that mild regularity conditions (including positivity and finite
ness of N(j)) are met. Generalizing upon the conventional nonrobust case 8• 15), 

eq. (34) indicates that the optimum equalizer can be decomposed into a 
continuum of matched filters (with prewhitening) and cascaded transversal 
filters. To see this, we define aL1-dependent transfer function 

CA(j) g G(j)- ~ n~ .. W(f+ n)H"(f+ n) (35) 

which is periodic injwith period 1 and hence describes a (symbol interval-spa
ced) transversal filter. Combining eqs (35), (34), (30) and (29), the ensemble 
average of the transfer function HA*(j)IN(j) of the matched filter with pre
whitening in tandem with CA (f) is seen to equal 

thus proving the conjecture. 
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According to eq. (34), W(f) is for any frequency [completely determined by 
samples of Rn. Hand G taken atfand all integer shifts thereof. For this reason, 
we are led to define two vectors U(Q) and W(Q) and a matrix M(Q) having 
components 

Ut (Q) g H*(Q + i) G(Q + l) for all i, (37) 

Wi (Q) g W(Q + i) for all i, (38) 

and 

Mu(Q) g ~ Rj-t(Q + l) + Oj-;N(Q + i) foralli,j, (39) 

respectively. In terms of these entities, (34) can equivalently be written as 

M(Q)W(Q) = U(Q) for all Q. (40) 

Imposing little more than the condition 0 < N(Q) < oo for all Q, appendix A 
proves that this matrix equation has a unique solution 

W(Q) = M-1(Q) U(Q) for all Q, (41) 

where •-I' indicates matrix inversion. By solving W(Q) for all Q e [ -t, tJ, 
W(f) is uniquel)C determined for allf(theorem A.2 of appendix A rigorously 

.asserts the correspondence of Jt'(Q) with W(f)). When N(f) has negligible 
content outside the interval [ -L, L], then only about 2L + 1 and (2L + 1)2 

components of U(Q) and M(Q) will essentially differ from zero, respectively. 
As the bandwith restrictions responsible for intersymbol interference auto
matically cause L to be relatively small, the numerical solution of eq. (40) will 
generally be quite practicable. A further saving of computation effort can be 
obtained by using the prior knowledge that w(t) must be real-valued, so that 
W(f) = W*( -[) for all f. Hence W needs to be determined for positive 
frequencies only, allowing the set of equations (40) to be roughly halved in 
size. To avoid aliasing distortion in reconstructing w(t) from W(Q), an appro
priate spacing has to be selected for the frequencies at which W (and hence M 
and U) are sampled, related to the temporal extent of w(t) as described in ref. 
26, pp. 7 4-76. Mutatis mutandis, a similar remark applies to the reconstruction 
of convolved versions of w(t), such as overall system impulse responses of the 
form (hA* W) (t). 
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Finally, using eqs (34) and (41) ineq. (28), the minimum mean-square error 
em1n achieved by the optimally robust continuous-time equalizer is found to 
equal 

~5 • 

Emin = /IG{.Q)I 2 d.Q - ~ jll* (/) G(j) W*(f) dj 
-0.5 -· 

where •T> and'"'' indicate transposition and component-wise complex conju
gation, respectively. This expression is reminiscent of its discrete-time coun
terpart eq. (21). 

S. A design example: resistance to timing errors in digital magnetic 
recording 

As a comprehensive example, we now apply the developed theory to a class 
of digital magnetic recording system suffering from timing errors. Conforming 
to a sizeable fraction of commercially available equipment, we confine oursel
ves to systems which use an NRZ-like transmission code, longitudinal magneti
zation and a differentiating playback head 20). When both the medium thickness 
and the gap size of the playback head are sufficiently small, the nominal 
channel transfer characteristicH0(f) of a recording system within this category 
assumes the form 24) 

H 0(f) = [1- exp (-j2nf)] exp (-n Dlfl) for allf, (43) 

where D is a normalized measure of the information density on the recording 
medium, ranging between roughly 0.1 and 3 in current systems. The noise 
signal n(t) present in the output signal of the playback head normally has a 
Gaussian distribution and a relatively flat spectral density 23• 20), taken equal to 
No for ~he purpose of the present analysis. For the partial response gk, we will 
consider the popular cases 

g(@f) = 1, (44) 

g(§) = 1-91' (45) 

and 
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g( ) = 1- §P, (46) 

whose application is referred to as Integrated Detection, Amplitude Detection 
and Partial Response Class IV Detection, respectively 3· 23). 

Having an optimum performance when its output is sampled at the nominal 
instants kT (cf. fig. 2), the conventional minimum mean-square error (MMSE) 
equalizer often incurs significant performance losses in the presence of samp
ling phase errors, i.e. when sampling erroneously takes place at the instants 
(k + LI)T, Ll =I= 0 24). The influence of sampling phase deviations can be 
accounted for by incorporating the time shift Ll Tin eq. ( 43) as 

= [1-exp(-j2:n:f)]exp(-:n:Difl)exp(j2JlLif) forallf. (47) 

To delimit the ensemble of possible channel characteristics, we define the setS 
to comprise the continuum of all sampling phase errors that are likely to occur 
in practice, i.e. 

/:::, s = [--e, e], (48) 

where 0 :::::;: e :::::;: t determines the maximum possible sampling phase deviation. 
A typical value of e would be 0.1 23). Furthermore, the phase error distribution 
p(LI) is defined to be uniform, i.e. 

p(LI} ~ 2~ for allLI e S. (49) 

Hence all possible sampling phase deviations are weighed equally strongly. 
Apart from the most natural continuous-time solution (to be considered 

shortly), one can in principle imagine the use of a discrete-time post-equalizer 
inserted between the sampler output and the detector input in an attempt to 
lower the effect of timing errors. Using the foregoing discrete-time results, we 
found that only for small densities D (up to about D = 0.5), where a timing 
error essentially induces a gain decrement 24), can some added resistance be 
achieved for the partial response schemes by increasing the equalizer gain as a 
precompensation for the expected gain decrement. In all other cases, discrete
time post-equalization turns out to be totally unrewarding, thus confirming the 
familiar restricted potential of (even adaptive) symbol-spaced transversal equa-
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lizers to withstand timing errors, and implicitly underscoring the practical im
portance of fractional tap spacing to accomplish insensitivity improvements 5). 

The optimally robust continuous-time equalizer can be determined from the 
average transfer functions B(f) and Rn(f) defined in eqs (29) and (30) of sec. 
4. Making use of eqs (47) and (49), these functions are seen to equal 

- sin 2n e J I I H(f) = [1- exp(-j2nf)] 2:t6>f exp(-nD f) forallf (50) 

and 

Rn(f) = 4 sin2 (:rf) si~ 2~e n exp[ -nD(Ifl +If+ nl)l forallnandf (51) 
:t"n 

in the recording situation under investigation. As a consequence, the vector 
U(Q) and matrix M(Q} defined in eqs (37) and ( 40) of sec. 4 have components 

. sin2n6>(Q + i) I .
1 U;(Q} = G(Q)[l- expU2n Q}] 2n6>(Q + i) exp(-nD Q + l) (52) 

and 

+ Noo(i- j) for all i andj and for alliDI =:::; t. (53) 

For large lil and ljl, the behaviour of these expressions is dominated by the 
contained exponential factors, which are smaller than about 1 percent of their 
maximum value 1 if DID + il and D[ID + il + ID + jll are larger than about 
1.5. Hence, even for a (small) density D'of 0.2, the dimensions of U(Q) and 
M(Q) can be chosen as small as about 17 and (17 x 17), respectively, while at 
a (relatively high) density D of 2.5 these figures reduce to a trivial3 and (3 x 
3). The numerical identification of the optimally robust equalizer is thus a 
computationally straightforward undertaking. Rather than in mean-square error 
terms, we will assess the performance of the equalizer in terms of the more 
meaningful effective signal-to-noise ratio loss 15). To this end, we first note that 
according to eqs (38) and (41), the noise variance a2 of the equalizer output 
signal can be written as 
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0~ 0~ 

a2 = ~o j WT(.Q) W*(.Q)d.Q =No j Ur(.Q)ArJT (.Q)Ari*(.Q) U*(.Q)d.Q. 
~ ~ ~ 

The second factor relevant to the performance of the equalizer is the residual 
intersymbol interference, which can be assessed for any Ll by writing the 
transfer function Q(.Q) of the sampled overall system impulse response qk in the 
form 

Q(.Q) = G(.Q) + E4 (.Q). (55) 

Defining a vector HA(.Q) to have components 

(56) 

and making use of eq. (38), eq. (55) and Poisson's summation formula 26), the 
deviation transfer function E4 (.Q) can be seen to attain the form 

(57) 

The inverse Fourier transform et of £A(.Q) determines the (.Ll-dependent) 
residual intersymbol interference prior to detection. More specifically, it deter
mines the minimum distance d/2 between any possible value of the non-noise 
component (a * (g + eA))k of the detector input signal and the nearest detector 
threshold level. In turn, d/2 directly governs the error probability at high 
signal-to-noise ratios as 2• 27) 

(58) 

where 

!:::. 1 /QO 
Q(x) = ... ~ exp(-y2/2)dy. 

v 2n x 
(59) 

For integrated detection (g( 91) = 1), d/2 can be expressed in e1 as 

(60) 
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while for amplitude and partial response class IV detection (g( §1) = 1 -
with l = 1 and 2, respectively) 

provided that the detector thresholds are located at± 1 24
). 

(61) 

To assess the performance of the equalizer, we normalize the effective 
signal-to-noise ratio (d/2a)2 of the decision variable on its optimum value 

().5 

SNR ~ - 1
- I IF0(!J)I

2 
d.Q 

NoT-o.s 

2 1 
- nNoT D(D2 +1)' 

(62) 

which corresponds to matched filter bound operation 15). The effective signal
to-noise ratio loss 

(63) 

is therefore bounded by ~ 1; a value of 1 indicating a performance that 
cannot be improved upon by any receiver. 

Proceeding numerically along the lines just sketched, we have determined 
for various sets of system parameters the optimally robust equalizer according 
to (41) and the corresponding L1-dependent effective signal-to-noise ratio loss 
sz:'. From these results, we shall first describe those related to the region of low 
information densities. For a density D of0.2 and sampling phase errors ranging 
from -25 to + 25 percent of a bit interval, fig. 3 depicts the effective signal-to
noise ratio loss sz:' incurred by several optimally robust continuous-time 
1 - §1 equalizers as well as by a conventional raised cosine 1 - scheme 
(the latter curve is taken from ref; 24, and has a bearing upon a transition 
parameter fJ of 0. 5). The raised cosine equalizer, which in ref. 24 was judged 
to be relatively insensitive to timing errors, lags far behind the robust equalizers 
for all values of t9 within the scale of fig. 3. Combining large tolerance 
increments with a modest degradation of the nominal performance, the depic
ted characteristics convincingly demonstrate the merits of the developed design 
method. To illustrate their spectral properties, fig. 4 depicts the amplitude-fre
quency characteristics of thb robust equalizers of fig. 3. Apart from having a 
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0.-------------------------------~ 

..{ (dB) 

-a 

Fig. 3. Effective signal-to-noise ratio loss Y versus normalized sampling phase error L1 for 
several continuous-time bipolar (1 - .@") equalizers. Signal-to-noise ratio SNR = 25 dB; 
Normalized information density D = 0.2. a. Minimum mean-square error equalizer (8 = 0); 
b. Optimally robust equalizer (8 = 0.1); c. Optimally robust equalizer (8 = 0.15); d. Raised 
cosine equalizer (/:1 0.5). 

somewhat increased average transfer magnitude (and hence noise enhance
ment), the robust equalizers also de-emphasize frequencies onwards of roughly 
the bit frequency in an apparent attempt to reduce phase ambiguities of the form 
exp U 2:n: Ll f), whose influence is proportional to f. 

Also at a (high) density D of 2.5, the continuous-time partial response 
equalizer is capable of establishing a robustness improvement, though con
siderably smaller in magnitude than at D = 0.2. Figure 5 illustrates this 
statement for the 1 - §f 2 equalizer and values of 8 ranging from 0 to 0.15. 
Interestingly, the 8 = 0.15 equalizer virutally coincides with the f3 = 0.5 
1 - §f 2 raised cosine scheme studied in ref. 24, whose performance characte
ristics are also included in fig. 5. This similarity suggests that partial response 
schemes such as applied in current high-density practice are close to optimally 
insensitive to timing errors, even though their sensitivity may still be unsatis
factory in absolute terms. 

A completely different conclusion applies to the full response (g( §f) = 1) 
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A(dB) 

i 

as 1.5 
--t 

Fig. 4. Amplitude-frequency characteristics A(f) of the optimally robust equalizers of fig. 3. 
a. e = O;b. e = O.I;c. e = 0.15. Thefrequencyhasbeennormalizedandthesymbolrate liT. 
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Fig. 5. Effective signal-to-noise ratio loss versus normalized sampling phase error Ll for 
several continuous-time partial response Class IV (I .!i'!.Y 2) equalizers. Signal-to-noise ratio SNR 
= 25 dB; Normalized information density D = 2.5. a. Minimum mean-square error equalizer(@ 
= 0); b. Optimally robust equalizer(@ = 0.1); c. Optimally robust equalizer ce = 0.15); 
d. Raised cosine equalizer (jJ = 0.5). 
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equalizer, whose resistance to timing errors is invariably favourable to the 
partial response schemes, and moreover increases significantly with increasing 
e, as fig. 6 reveals. For example, at a cost of only 0.3 dB in nominal 

0~----------------------------~ 

! 
~(dB) 

Fig. 6. Effective signal-to-noise ratio loss versus normalized sampling phase error .1 for 
several continuous-time optimally robust full response (g( .9J') = I) equalizers. Signal-to-noise 
ratio SNR = 25 dB; Normalized information density D = 2.5. a. e = 0; b. e :o 0.1; c. e = 
0.15. 

performance, the e = 0.1 equalizer can withstand sampling phase variations 
as large as 12 percent of a bit interval before its performance decreases by more 
than 3 dB relative to its nominal value, as opposed to 8 percent for the 
conventional ( e = 0) equalizer. The spectral characteristics responsible for 
this robustness improvement are visualized in fig. 7. Contrary to the low-den
sity 1 - !!!if situation just studied, the improved robustness is now apparently 
brought about by an increased transfer magnitude onwards of roughly the 
Nyquist frequency, just below which a decrement can be observed. 

More impressively than by means of the preceding graphs, the improved 
resistance to timing errors of the designed robust equalizers is reflected in their 
eye patterns. The figs 8 and 9 depict eye patterns that were constructed by 
computer simulation for the equalizers of figs 3 and 6, respectively. Achieving 
(nearly) the same noise suppression as the conventio~al MMSE equalizer and 
an even better timing margin than the raised cosine equalizer, the robust 1 -
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Fig. 7. Amplitude-frequency characteristics A(f) of the equalizers of fig. 6. a. 8 = 0; b. 8 
0.1; c. 8 0.15. The frequency has been normalized on the symbol rate liT. 

Fig. 8. Eye patterns for the equalizers of fig. 3. Signal-to-noise ratio SNR = 20 dB; Normalized 
information density D = 0.2. a. Minimum mean-square error equalizer (8 0); b. Optimally 
robust equalizer (fJ = 0.1); c. Optimally robust equalizer (8 = 0.15); d. Raised cosine equalizer 
(/3 = 0.5). 
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~ig. 9. ~ye patt~ms for the equalizers of fig. 6. Signal-to.:noise ratio SNR = 25 dB; Normalized 
mformat1ondens1tyD =0.2. a. 19 =O;b. 19 = O.l;c. 19 = 0.15. 

equalizers of fig. 8 apparently combine the 'best of both ·worlds'. Less specta
cularly but clearly visible, the robust full response equalizers of fig. ·9 achieve 
a larger timing margin at virtually no expense to the noise enhancement. 

6. Concluding remarks 

The preceding pages have indicated the feasibility and illustrated the useful
ness of equipping both partial and full response linear data equalizers with a 
well-defined degree of robustness. Explicitly using prior knowledge about the 
ensemble of possible channel characteristics, the presented equalizer design 
method involves the calculation of two average channel spectra and the ·inver
sion of a set of matrices, whose dimensions are proportional to the channel 
bandwidth and are usually small. The method optimizes the dimensioning of 
the-linear equalizer relative to a performance measure which takes the form of 
a mean-square error, averaged by means of a predefined weight function over 
the nominal channel and all possible deviations thereof. 
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To assess the merits of the design method, we have applied it to a class of 
digital magnetic recording systems employing an NRZ-like transmission code 
in conjunction with a differentiating playback head, and suffering from timing 
errors. For this category, we observed that considerable robustness improve
ments are frequently achievable at a modest cost in nominal performance. At 
low information densities, we found the optimally robust Bipolar (1 - 91) 
equalizer to be much less sensitive than its conventional minimum mean square 
error counterpart, which suffers a 3 dB loss in effective signal-to-noise ratio for 
sampling phase deviations as small as 8 percent of a bit interval. Sacrificing 
some 0.9 or 1.5 dB in the nominal situation, the optimally robust equalizers 
extended this range to a comfortable 15 and 19 percent, respectively. At high 
densities, only small robustness improvements were observed for the partial 
response types of equalizer, indicating that currently applied schemes are close 
to optimally insensitive, even though on an absolute scale their sensitivity may 
be unsatisfactory. In contrast, the full response linear equalizer was invariably 
judged to be distinctly superior to the partial response schemes in terms of 
robustness, while its robust versions improved the timing margin even further. 

As a final remark, we note that the one-dimensional development and 
examples presented in this paper can be straightforwardly extended to systems 
in which variations of a tractable multitude of parameters occur. 

Appendix A. Existence and uniqueness of solutions of the equations (34) 
and(40) 

In this applmdix we shall show that, under proper assumptions on Hand N, 
the eq. (34) has for every G e V(R) a unique solution We U(R). Here U(R) 
denotes the Hilbert space of square integrable functions on R with inner product 

"' 
(W, V)B ~ j W(x) V*(x) dx for W, V e V(R), (A.l) 

and norm 

(A.2) 

Furthermore, we shall show that, under proper assumptions on H, G and N, the 
eq. (40) has for every Q e [ -t. f] a unique solution W(Q) e F(Z). Here F(Z) 
denotes the Hilbert space of square summable sequences on Z with inner 
product 
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/:::,. "" . 
(W, V)z= 2: W(n) V*(n) forW, Ve P(Z), (A.3) 

and norm 

n=-ee 

/:::,. t 
IIWIIz= (W, W}z (A.4) 

It will also be shown that the procedure outlined in eqs (40) to (44) is, under 
proper assumptions, a valid one to obtain the solution of the eq. (34). In 
theorem A.l and theorem A. 2 the main results of this appendix are given. 

Before we proceed to the proofs, we develop some notation. We drop all 
overhead ", we take T equal to one for convenience (and without loss of 
generality) and we usex e Rinsteadoffor Q ineq. (34) oreq. (40). The basic 
operators in eqs (34) and (40) are 

/:::,. ., 
(TH W) (x) = H*(x) 2: H(x + n) W(x + n) for x ER, We V(R), (A.5) 

n=-oo 

and 

UHW ~ (W, H*)z H* for WE P(Z), (A.6) 

with HE V(R), HE P(Z). Indeed, when we set 

THW~ J TH' Wp(L1)dLI for WE V(R), (A.7) 
.:leS 

and 

(A.8) 

we can write eqs (34) and (40) as 

TH W+NW= H*G for We V(R), (A.9) 

and 
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(A.lO) 

Here we have written.cf1 ~ (H,d(x + n))n E z, etc., and (NW) (x) ~ N(x) W(x), 
for x e R., (Nx W)(n) = N(x + n) W(n), etc .. Our aim is to find conditions on H, 
Nand G such that eqs (A. 9) and (A.lO) have unique solutions W E V(R.) and 
We f2{Z). This is achieved by requiring that the operators TH and UHx are 
bounded, self-adjoint, positive definite operators of V(R.) and P(Z), and by 
getting rid in a decent way of the multiplication operators N andNx in (A. 9) and 
(A.lO). The uniqueness and existence results follow then from the familiar fact 
that an equation Tf+ f= g inaHilbertspace ~has for every g e ~a unique 
solution f e ~ whenever the linear operator T is bounded, self-adjoint and 
positive definite. In ref. 29 one can find a readible account of the theory of 
linear operators of a Hilbert space. 

Proposition A.l 
(i) Let He V(R.), and assume that 

lJIH(x)~ ~ IH(x+n)l 2 forxe[-t.tJ (A.ll) 
n=-~ 

is essentially bounded: there is an M> 0 such that {xilJIH(x) >M} is a null set, 
and the minimum of all these M is the essential supremum, ess sup lJIH, of lJIH. 
Then TH is a bounded, self-adjoint, positive definite operator of V(R). 
Moreover, 

(A.12) 

(ii) Let H e f2(Z). Then DH, is a bounded, self-adjoint, positive definite 
operator of f2( Z). Moreover, 

11 - 11 ~ iiDH, Wllx -11 112 
UH., z- sup II II - H z· 

w .. o w z 
(A.l3) 

Proof 
(i) Let We V(R.). We shall show that THW e V(R). By periodicity of the series 
in eq. (A.5) we have 
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GO loo oo 

I j(TH W) (xWdx = I L jH(x +m)j2 j L H(x + n) W(x + n)j2dx. 
-oo 0 m=-oo n=-<» (A.l4) 

By the Cauchy-Schwarz inequality and the definition of IJIH we get 

oo I oo 

I j(TH W) (x)j
2
dx ~ I IJid(x) n~"'jW(x + n)j

2
dx, 

_., 0 

(A.l5) 

and the right-hand side is smaller than or equal to ess sup IJI:i · jjWjj2• This 
shows that TH We V(JR), the boundedness ofTH and inequality (A.l2). 

We next show that THis self-adjoint. Let W, V e V(JR). We shall show that 
(TH W, V)R = (W, TH V).R. We have 

(TH W, V)ll = I"" H*(x) V*(x) ni"' H(x + n) W(x + n)dx 
-oo 

= i I"'H(x)W(x)H*(x-n)V(x-n)dx 
n=-oo -oo 

"' ., (A.l6) 
= I W(x) [H*(x) n~oo H(x- n) V(x- n)]* dx = (W, THV)Il. 

-eo 

We finally show that THis positive definite. Let We V(JR). We shall show that 
(TH W, W>11 ~ 0. We have, with V(x) ~ H(x) W(x), 

(TH W, W)ll = ni"' I"' V(x) V*(x + n) dx. 
_., 

(A.17) 

If we let 

"' 
Z(t) ~ I V(x) V*(x + t) dx forte JR, (A.18) 

then we find by the Poisson summation formula (ref. 26) 

(TH W, W)R = 2: Z(n) = 2: z(n), (A.l9) 
n=-oc n=-oo 

where 
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00 

z(s) ~ I Z(t)exp(-j2nst)dt (A.20) 

is the Fourier transform of Z. Since z(s) = lv(s)il, with v the Fourier transform 
of V, it follows that (TH W, W)R ~ 0, and the proof of (i) is complete. 
(ii) This statement is completely trivial. 

For the measure-theoretic intricacies in the proof of the following proposition 
one may consult ref. 30. 

Proposition A.l 
(i) Assume that 1f.L1(x) is measurable as a function of (x, L1) e 1R x S, and that 

2b. I 2 CH= ess sup Pitp(..d) dL1 < oo. (A.21) 
LieS 

Then (A. 7) defines a bounded, self-adjoint, positive definite operator of V(lR). 
Moreover, 

(A.22) 

(ii) Let x e [ -t, tJ. and assume that H1 is measurable as a function of L1 e S. 
Furthermore, assume that 

ci(x) ~ I Plt(x)p(..d)d..d < oo. (A.23) 
.deS 

Then (A.8) defines a bounded, self-adjoint, positive definite operator of P(Z). 
Moreover, 

(A.24) 

Proof 
(i) The quantity (T El W) (x) is meas!lfable as a function of (x, ..d) e 1R X S when 
We V(Fi.). By the Cauchy-Schwarz inequality 

(I j(TFIW)(x)ip(L1)dL1)2 ~ I ICTifW)(x)l 2p(L1)dL1 forxeFi.. (A.25) 
LieS .deS 

By Fubini's theorem and proposition A.l (i) 
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.. 
I II<T !I W) (x)l2 

p(LI) dL1 dx E; 11 Wll ~ I ess sup IJiit p(LI) dL1 < oo. 
-oo .deS LIES 

(A.26) 

It follows from Fubini' s theorem that T !I W e V( B) for allmost all Ll, that 

I (Tfl W)(x)p(LI)dA (A.27) 
.dES 

is well-defined for almost all x eR and belongs to £2(E) as a function of x. 
Hence T HW is well-defined and belongs to V( E) for W e V( E), and also the 
inequality (A.22) follows. The remaining facts can be shown to hold noting 
that for W, V e V( B) 

( TH w, V)B = I (TII w, V)Bp(LI)dA (A.28) 
Ll ES 

and using proposition A.l (i). 
(ii) The proof of this is similar to the proof of (i). 

Proposition A.3 
(i) Assume that H<~(x) satisfies the conditions of proposition A.2 (i) and that 
V e V(E). There is a unique We V(E) such that TH W + W =V. Moreover, 

IIW11!1 ~ IIVIIB' 
(ii) Let x e [ -t, tl. assume that H~ satisfies the conditions of proposition A.2 
(ii) and that V e P(Z). There is a unique We P(Z) such that DH,W + W = V. 
Moreover, I!WIIz ~ I!VIIz-

Proof 
(i) The existence and uniqueness result follows from general Hilbert 
space theory, see ref. 29. The inequality 11 W1l11 ~·11 VI!B follows from !I Wll ! 
~ (TH W, W) 11 + (W, W)11 =(V, W)Rand the Cauchy-Schwarzinequality. 
(ii) The proof of this is similar to the proof of (i). 

We shall now reduce the general cases of eqs (A. 9) and (A.lO) to the special 
ones of proposition A.3. To this end we introduce the functions 

K<~(x) ~H~(x) andL21(x) ~HLl(x) for x e E 
N2(x) N(x) 

(A.29) 
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where it is assumed that N(x) is measurable and N(x) > 0 almost everywhere. 

TheoremA.l 
(i) Assume that HLl(x) and N(x) are measurable as a function of (x, L1) e JR. X S, 
that N(x) > 0 almost everywhere, that M~ ess sup N < oo and that CL< oo. For 
any G e V( JR.) there is a unique We V( JR.) such that eq. (A. 9) holds. Moreover, 

(A.30) 

(ii) Let x e [ -t. tl, assume that H1 is measurable as a function of L1 e S, that 
N(x + n) > 0, all n, that 

L 
M(x) = supN(x + n) < oo (A.31) 

n 

and that CL(x) < oo. For any Gx e F(Z) there is a unique Wx e F(Z) such that 
eq. (A.lO) holds. Moreover, 

I I I 

IIWxllz~ (Cl (x) + CL(x)Ci (x) M
2 (x))IIGxllz. (A.32) 

Proof 
(i) Consider the equation 

(A.33) 

where Y ~ N-t H*G. We shall show that the solutions Z of (A.33) and W of 
(A.9) are in one-to-one correspondence by means of the transformation 

l 
Z = N2W. We first note that K satisfies the conditions of proposition A.2. (i). 
This is so since CK ~ MCL. We next note that Y e V(JR). We have, more in 
particular, 

l 

IIYIIR~ ci IIGIIR· (A.34) 

It follows that for any G e V( JR.) there is exactly one Z e V(JR) which satisfies 
_l 

eq. (A.33). We shall now show that N 2Z e V( JR.). Indeed, it holds that 

(A.35) 
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(A.36) 

(A.37) 

_1 
Here eq. (A.36) follows readily from the definition. Hence N 2Z e £2(R}, and 

(A.38) 

. I -~ I 
By multiplying eq. (A.33) from the left by Jlii and using NI.T KZ= T H(Jti Z), we 

see that Nf Z is a solution of eq. (A.9). On the other hand, if Wis a solution of 

eq. (A.9), then~ WE L2(JR.) is a solution of eq. (A.33). Together with eq. 
(A.38), this establishes (i). 
(ii) The proof of this is similar to the proof of (i). 

Our final task consists of tying the solutions W of (A. 9) and the solutions w .. 
of eq. (A.lO) together. 

TheoremA.2 
Let G E L2(R} and assume that H and N satisfy the conditions of theorem 
A.l.(i). Let Wbe the solution of eq. (A.9). Then Gx e l 2(Z) for almost every 
x E [ -t, tl, and Hx, Nx satisfy the conditions of theorem A.l.(ii) for almost 
every x E I-t, tl. Moreover, if we denote lfx ~ (W(x + n))n,. z, then Wx E 12 

(Z), satisfies (A.lO) for almost every x E [ -t, tl and Wx = Wx for almost every 
X E [ -t, f]. 

Proof 
We have 

(A.39) 

Hence IIGxll ~ < oo for almost every x E [ -t, tl Moreover, measurability of 
HLl(x) as a function of (x, .d) E .JR. x S implies measurability of HLl(x + n) as a 
function of L1 e S for almost every x e [ -t, tl and n e Z, and 

esssupCZ(x) = esssup j IJIZLI(x)p(Ll)d.d ~ j esssup IJIZLI(x)p(.d)d.d = ci. 
LleS .deS 

(A.40) 
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Similarly, 

supN(x + n) ::;:;:esssupN (A.41) 
neZ 

for almost all x e [ -t, tl. Also, Wx e P(Z) for almost every x e [ -.t, tl. Final
ly, as the proof of proposition A.2.(i) shows, 

(A.42) 

for almost all x e [ -t, tl. Now the theorem follows from the uniqueness part of 
theorem A.l.(ii). 

Note 
Theorem A.l and theorem A.2 can be extended to cover the case where 
N(x) = 0 for x in a set of positive measure. In the assertion of theorem A.l. (i) 
we get the existence of aWe V(R) such that eq. (A.9) holds, and this W can 
be made unique by the requirement that W(x) = 0 whenever N(x) = 0. In this 

definition (A.29) and everywhere in the proof of theorem A.l.(i) where N-t is 
applied, we use the convention that 0/0 = 0, a/0 = oo when a ::/::. 0. The 
condition CL < oo implies that, for almost all x e E, H.d(x) = 0 for almost all 
.d e S when N(x) = 0. With this convention the proof of theorem A.l.(i) can 
be easily adapted. We see e.g. that the solution Z of the equation T KZ+ Z = Y 
satisfies Z(x) = 0 whenever N(x) = 0, and that eqs (A.35) to (A.37) are still 
valid. In theorem A.l. (ii) the solution Wx becomes unique when we require that 
Wx(n) = 0 whenever N(x + n) = 0. In theorem A.2 we must take the unique 
solutions Wand Wxofthe adapted theorem A.l. 
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ROBUST DATA EQUALIZATION, FRACTIONAL TAP 
SPACING AND THE ZAK TRANSFORM 

Abstract 

To counter intersymbol interference and noise, a data equalizer must be 
dimensioned in accordance with the characteristics of the transmission 
channel that it operates upon. Adaptive techniques can be a suitable 
means to this end, provided that the equalizer structure is sufficiently 
flexible. Alternatively, prior knowledge about the ensemble of possible 
characteristics may be exploited to equip a non-adaptive equalizer with 
a sufficiently robust dimensioning to withstand all possible parameter 
variations. For the most commonly applied types of data equalizer, viz. 
the linear equalizer, its partial response variants and the decision feed
back equalizer, this paper presents a unified derivation of their optimum 
adaptive and robust versions, using a mean-square measure of perform
ance. The analysis is carried out by using the Zak transform, which is a 
linear time-frequency signal representation stemming from quantum me
chanics. The comprehensive scope of the paper, which particularly for the 
decision feedback equalizer extends beyond previous treatments, serves 
to illustrate the pot4:;ntial of the Zak transform as a tool for use in cy
clostationary environments like the one encountered here. Among other 
things, the paper reveals that a restricted resistance to timing errors is 
unavoidabe in symbol interval-spaced linear equalization. Also, it dem
onstrates that the Zak transform matches the polyphase representation 
of fractionally-spaced equalizers, and as such enables one to derive the 
optimally robust linear and decision feedback equalizers in a convenient 
and elegant fashion. The latter results are quantified fot a class of digital 
magnetic recording systems suffering from timing errors. 

1. Introduction 

Equalization methods serve to counter the intersymbol interference (ISI) 
and noise which arise in many digital transmission and recording sys
tems 1- 3). They involve one or more linear filters, that must be adapted to 
the characteristics of the channel in order to ensure a satisfactory transmis
sion quality. In the presence of large variations or uncertainties relating to 
these characteristics, as encountered in voiceband modem connections 2), 

radio channels subject to multipath fading 3
) and ISDN subscriber loops 4), 
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it is often necessary to use adaptive techniques 5) in order to guarantee ad· 
equate performance levels. Also, to be able to cope with all possible im· 
perfections, the structure of the equalizer must be sufficiently flexible. In this 
respect, the fractionally·spaced equalizer has gained increasing attention over 
the last decade 5). This equalizer contains a transversal filter whose taps are 
separated by a fraction of the symbol interval. Its main advantage over the 
conventional symbol interval-spaced equalizer is its ability to cope with tim· 
ing errors 6-8). 

Although adaptive equalization methods are beyond doubt the most nat· 
ural and effective means to compensate for varying channel characteristics, 
it becomes difficult to incorporate adaptivity when high data rates, power 
consumption restrictions or limitations to costs of manufacturing are pres
ent. In situations like these, encountered in e.g. upcoming generations of 
consumer-grade digital audio and video recording equipment 9 •

10
), it may be 

more appropriate to devise a compromise equalizer dimensioning on the ba
sis of prior knowledge about the possible channel characteristics. For the 
linear equalizer, the optimum mean·square solution to this designproblem 
was found in the pre-adaptive era 11). Recently, these results have been ex
tended t9 the partial response variants of the linear equalizer, and have been 
applied to equip equalizers for a specific class of digital magnetic recording 
systems with an improved resistance to timing errors 12). 

In view of their intrinsically greater sensitivity to system parameter vari
ations 13), devising similar methods for more powerful equalizers than the 
linear one is more than just an academic exercise. In this respect, especially 
the decision feedback equalizer (DFE) merits attention in view of its rela
tive simplicity and its increasing popularity 4). The present paper finds its roots 
in efforts to solve this problem. After taking stock of several conceivable ap
proaches towards its solution, we observed that the so-called Zak transform, 
introduced in 1967 by J. Zak to solve certain problems in quantum mechan
ics 14), offers remarkable advantages in compactness and clarity over com
peting tools. The Zak transform is the Fourier transform of the sampled ver
sion of a signal, using the sampling phase as a second parameter*). As such 
it is a linear time-frequency signal representation, and is in between the 
Fourier transform for discrete-time signals and the Fourier integral for con
tinuous-time signals. This makes it especially useful as a tool for use in data 
transmission, where a data stream is converted into a continuous-time signal 
and decisions are taken at discrete, equidistant moments, so that continu-

*) Although it has up to now not been put to systematic use in the data transmission litera
ture, there are several examples of implicit occurrences of the Zak transform 5•

7
•8•15- 18). 
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ous- and discrete-time aspects are both present. It is a major aim of the 
present paper to ascertain these merits. We do this by showing that the Zak 
transform enables principal results in the area of adaptive and robust equal
ization to be derived in a general, compact and elegant fashion. Apart from 
rediscovering classical equalization wisdoms, we shall with remarkable ease 
add several new ones. For example, we shall use the fact that the Zak trans
form of any well-behaved signal has a zero somewhere in the unit square to 
prove in a very general way that linear equalizers are incapable of guaran
teeing satisfactory performance in the presence of timing errors. Also, we 
shall find that the Zak transform matches the polyphase representation of 
fractionally-spaced equalizers, and, as a main result of the paper, we shall 
use the Zak transform to derive the dimensioning and performance of the 
optimally robust DFE relative to a mean-square performance measure which 
takes account of the possible parameter variations. 

For the sake of clarity and conciceness, the paper will be devoid of math
ematical rigor. Some basic proofs are, however, included in the appendices, 
and rigorous validation of the remaining results should be fairly straightfor
ward. 

The paper is organized as follows. Section 2 introduces the Zak transform 
and its basic properties. Section 3 rederives Nyquist's classical first criterion 
for distortionless transmission with the aid of the Zak transform. In sec. 4, 
the Zak transform is used .to show that symbol interval-spaced linear equal
ization nearly always leads to a restricted resistance to timing errors. Section 
5 elaborates a polyphase description of fractionally-spaced linear equaliza
tion, and shows that the Zak transform matches this description. In sec. 6, 
the optimally robust versions of the fractionally-spaced linear equalizer and 
its partial response variants are derived. A similar derivation is carried out 
in sec. 7 for the DFE. In both cases, we use a mean-square performance 
measure which takes account of the possible channel parameter variations. 
In sec. 8 the results of sec. 6 and 7 are specialized to the conventional sit
uation where the equalizer is adapted to the instantaneous characteristicS of 
the channel. As a second limiting case, the situation where the tap-spacing 
approaches zero, corresponding to equalization without prior structural res
tictions, is analyzed in sec. 9. As a worked example, sec. 10 finally applies 
the theory to a class of digital magnetic recording systems with the object of 
providing non-adaptive linear and decision feedback equalizers with an op
timum resistance to timing errors. 
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2. The Zak transform 

This section provides a concise overview of definitions and properties re
lating to the Zak transform. A companion paper 19) is entirely devoted to 
this time-frequency signal representation, its properties and its potential ap
plications. 

The Zak transform ~x(r,!l) of a continuous-time signal x(t) is for all T 

and ll E lJif defined as 
00 

~x(r,n) ~ L x((r+ k)T)exp( -j21Tllk). (1) 
k- -oo 

According to this definition, the Zak transform can be interpreted as the 
discrete-time Fourier transform of a sampled version of x(t ), using a sam
pling interval T and a normalized sampling phase r. Because the frequency 
n is normalized on the sampling rate liT, ~x(r,n) is periodic inn with pe
riod 1, i.e. 

~x(r,n+ 1)=~x(r,n). 

Also, ~x(r, !l) is quasi-periodic in T with period 1, i.e. 

~x(r+ 1,!l) = exp (j21Tll)~x(r,ll). 

(2) 

(3) 

Hence, ~x(-r,n) is completely determined by its values on the unit square. 
(In fact, the Zak transform maps L 2(1Jif) injectively onto L2([0,l]2).) The Zak 
transform is information-preserving. For example, x(t) can for all tE lJif be 
recovered by integrating over n according to 

x(t) = fl ~x(!_,n)dn. Jo T 
(4) 

With the aid of the Poisson summation formula 20
), it is easy to show that 

for all T and !lE lJif 

1 "' 
~x(-r,ll)=- L X(ll+n)exp(j21Tr(ll+n)). 

Tn -x 

Here X(!l) is the Fourier integral of x(t), defined as*) 

X(n) ~ J~"" x(t) exp( -j21Tllt/T) dt. 

(5) 

(6) 

*) Although it is somewhat unconventional in that the frequency fl is dimensionless and nor
malized upon the sampling rate liT, definition (6) is chosen here because it simplifies the for
mulas in this paper. 
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As its right hand side is again a Zak transform (with unit sampling interval), 
eq. (5) can be combined with eq. (4) to show that X(il) can be determined 
from :!x( r,il) by integrating over r according to 

X(il)= T J
0

1
:!x(r,fi)exp(-j27Tilr)dr. (7) 

Remarkably, the Zak transform of any well-behaved signal has at least one 
zero somewhere in the unit square. This peculiar property is closely con
nected to the familiar sensitivity of symbol interval-spaced data equalizers 
to timing errors, as we will see later. 

For any two signals x(t) and y(t), we have the Parseval-like relations 

(8) 

and 

(9) 

where the superscript '*' indicates complex conjugation. 
For any signal x(t), we have that 

?lx_ ( r,il) = ?lx ( -r, -il) (10) 

and 

(11) 

where the subscript ' ' indicates time-reversal, i.e. x_(t) g x( -t) for all tE fR. 
When x(t) is real-valued, ?lx(r,il) is Hermitean in the frequency variable il, 
and 

(12) 

If a signal x(t) has no spectral content outside the interval 
LL 

2 ,.2] for some 

integer L, then both x(t) and X(il) are completely determined by the values 
of :!x(r,il) on L lines in the unit square with equidistant sampling phases. 
In particular 
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Also, if both x(t) and y(t) have no spectral content outside the interval 
L L 

[-- -] then 2 '2, 

for all ll E fR, (14) 

where '*' denotes linear convolution*). Taking x(t) = y( -t) in this expres
sion and using eq. (12), we finally have for any real-valued signal x(t) with 

L 
X(!l) = 0 for J!lJ > 2 that 

'?lx. x_ (O,!l) 

for all ll ER, (15) 

where (x * x_)(t) is the autocorrelation function of x(t). 

3. Nyquist's first criterion for distortionless transmission 

For a first illustration of the role of the Zak transform in data transmis
sion, we consider a signal x(t) in the form of the classical Nyquist-1 pulse, 
which is tailored for distortionless transmission in that 

(k T) t:, { 1, k = 0, 
X = 0, kEi.l, k::/=0. (16) 

Applying definition (1), we see that in order for eq. (16) to be fulfilled the 
Zak transform '?lx(T,ll) of x(t) should satisfy 

:Xx(O,ll) = 1 for all ll E R. (17) 

Because of eq. (7), this means that the Fourier transform X(ll) of x(t) should 
satisfy 

1 X 

- 2: X(ll + n) = 1 for all !lE fR. 
T n -x 

(18) 

This is Nyquist's celebrated first criterion for distortionless transmission 21 ). 

This remarkably compact derivation parallels the one of ref. 16, in which 
no explicit use was made of the Zak transform. Nyquist's other criteria for 

*) The symbol '*' will be used here to denote both continuous-time and discrete-time con
volution. It will be clear from the context which one is meant. 
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distortionless transmission can be derived in a similar and comparably com
pact way. 

4. Symbol interval-spaced Unear equaUzation and sensitivity to timing errors 

In this section, we shall use the Zak transform to study the influence of 
timing errors in the data transmission system of fig. 1, which uses a symbol 
interval-spaced linear equalizer. 

A discrete-time data sequence ak is transmitted over a noisy dispersive 
channel, which transforms ak into an output signal r(t) of the form 

"' 
r(t) = 2: akf(t- kT) + n(t), (19) 

k= -oc 

where f(t) is the impulse response of the channel, T is the symbol interval 
and n(t) is an additive noise signal. To suppress the noise, r(t) is fed into a 
receiving filter with impulse response w(t). The output signal of the receiv
ing filter is sampled once every symbol interval at the instants (k + ..:l)T, where 
..:1 E [ -0.5,0.5] accounts for the occurrence of timing errors. This yields a 
sampled signal uk of the form 

uk = (a * Jli)k + nk> (20) 

where 

If~ (f * w) ((k + ..:1)1) (21) 

is the sampled impulse response of the system, and 

nk ~ (n * w) ((k + ..:1)1) (22) 

is the filtered and sampled noise sequence. At any instant k, uk normally de
pends not only upon ak but also on adjacent data symbols due to the fact 
that fl is nonzero for several values k =t= 0. To eliminate this intersymbol in
terference (ISI), uk is fed into a discrete-time filter with impulse response ck, 
whose output signal 

nftJ 

rKelvlng 
filter 1--~•.....-4 
w(t) 

Fig. 1. Continuous-time model of a data transmission system using a symbol interval-spaced 
linear equalizer. 
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bk= (a *r* eh+ (n*ch (23) 

ideally resembles the transmitted data ak as well as possible. In order for bk 
to depend only upon ak, the convolution if* c)k should be a Kronecker delta-
function. This means that the transfer function · 

CO 

C(fl)~ }: ckexp(-j2'1Tflk) (24) 
k=-x 

should be the reciprocal of the Fourier transform 
CO 

Fil(fl) ~ }: ftexp( -j2'1Tflk) (25) 
k _, 

of the sampled system impulse response ff. Using eq. (21) to recognize ?l(fl) 
as the Zak transform ?£1• w (J,fl) of the cascade of channel and receiving fil
ter, this condition of perfect equalization can equivalently be denoted as 

1 
C(fl) = ?£ (.1 fl) 

f•w ' 

for all n. (26) 

From sec. 2 we now recall the fact that the Zak transform ?£1• w ( .:l,fl) of any 
well-behaved function (["' w)(t) has at least one zero in the unit square, say 
at (Jo,flo). If the instantaneous sampling phase error .:1 happens to be close 
or equal to .:10, then C( fl) will be large or even infinite in modulus near 
n = flo. As a direct consequence, all components of the noise signal nk with 
frequencies near no will be strongly enhanced, resulting in a poor or even 
inadequate transmission quality. 

To a large extent, this same conclusion still applies when partial response 
techniques are used, as we will show now. Partial response techniques are 
used e.g. to achieve desired spectral characteristics or an improved noise 
suppression 13•22), and are aimed at producing faithful estimates bk of a lin
early transformed version 

(27) 

of the transmitted data sequence. The partial response gk specifies the de
sired controlled ISI structure prior to detection. Its 9J-transform 

oc 

g(9J) ~ 2: gk 9Jk (28) 
k= _, 

can often be factored in (1 + 9J) and (1- 9J) terms. Particularly the re
sponses g(9J) = 1 + 9J, g(9J) = 1 9J and g(9J) (1 + 9J)(l- 9J) 1- 9J2 are 
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frequently encountered, and all lead to a ternary signal bk> so that a three
level symbol-by-symbol detector is needed. An inverse mapping (not shown 
in fig. 1) serves to reconstruct final estimates ak of ak from the detector out
put signal bk *). 

By comparing eqs. (23) and (27) we see that in order to create the desired 
ISI structure the equalizer should be dimensioned such that 

(JA * c)k gk. (29) 

In frequency domain notation, this condition amounts to 

G(D) 
C(D) = ?t (.a D)' 

f•w ' 

(30) 

where 

G(D) ~ L gkexp ( -j21Tflk) 
k= -00 

(31) 

in the Fourier transform of gk. Arguing as before, we see that excessive noise 
enhancement may occur whenever G(flo) * 0. For the popular partial re
sponses g(21J) 1 + 21J, g(21J) 1- 21J and g(21J) = 1- 21l2, G(D) can only be zero 
at n = 0 and n =t. Since the precise value of flo obviously depends upon 
the precise characteristics of both the channel and the receiving filter, G(flo) 
can at best occasionally be zero. In zero-forcing linear equalization, where 
the equalizer is dimensioned to create a desired ISI structure with complete 
fidelity, specific timing errors therefore unavoidably lead to a significant 
degradation of transmission quality, irrespective of the precise characteris
tics of the channel, receiving filter and partial response. 

The same restricted resistance to timing errors also exists when the equal
izer is dimensioned according to other criteria. For example, most adaptive 
equalizers attempt to minimize the mean-square error e between their out
put signal bk and the desired data signal bk 5). It can be shown (by extension 
of eq. (88) of sec. 8) that the smallest attainable error emin equals 

emin =I: l?tt.:~~fl)iz~,~~~~~~~~~,fJ) dfJ, (32) 

*) To make the inverse mapping memoryless and thereby prevent error propagation, one 
normally adds a precoder at the transmitting end of the system. More powerful (and compli
cated) decoding procedures, which take account of the correlation in the detector input signal, 
are also available but generally use the same equalizer dimensioning 23). These measures are 
not relevant to the considerations in this paper. 
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provided that the noise signal n(t) is white and has power spectral density 
N0, and that the data sequence ak is uncorrelated and statistically independ
ent of n(t). This expression is a generalization of eq. (41) of ref. 5. 

For realistic signal-to-noise ratio's and whenever the instantaneous sam
pling phase error .:1 is nonproblematic, the signal power-related term 
l~t•w(.:l,SJ)I2 will for all n be much larger than the noise-related term 
No~w•w (O,SJ), so that emin will be small. However, if .:1 comes close to .:10 , 

then for SJ==fl0 1~1.w(.:l,fl)i2 rapidly vanishes relative to No~w.wJO,fl), 
provided that ~w.w_(O,fl) strictly exceeds zero, as will normally be the case. 
This results in a large and possibly unacceptable increment of emin· 

If the equalizer-is not adaptive but rather has a fixed dimensioning that 
has been optimized for some predetermined value of .:1 (e.g . .:1 = 0), then 
eq. (32) of course gives an optimistic estimate of the true performance 
achieved by the equalizer. Consequently, a non-adaptive dimensioning leads 
to an even greater sensitivity to timing errors. 

On the basis of the foregoing arguments, we may conclude that symbol 
interval-spaced linear equalizers are intrinsically unable to cope with timing 
errors. It is worth noting that this finding is much more general than pre
vious ones 5•8•24) in that no restrictive conditions are imposed on e.g. f(t), 
w(t) and 8k· 

Before showing how the Zak transform can be used in fractionally-spaced 
equalization, we note that the Zak-transform ~f.w(4,SJ) of an even function 
([ * w)(t) has its zeros often concentrated on the line .:1 = 0.5 19). This sym
metry occurs e.g. when the receiving filter is a matched filter, so that if* w)(t) 
simply equals the channel autocorrelation function ([ * f _)(t). In this case, 
only relatively large timing errors (for which 1.:11 == 0.5) are likely to cause a 
large noise enhancement (this effect was indeed observed experimentally in 
ref. 25). Hence, besides the fact that it preserves all information, the use of 
a matched filter is attractive since the harmful effects of timing errors in 
adaptive symbol-rate equalization tend to occur only in the more extreme 
(and hence less likely) misadjustment situations. 

5. Fractionally-spaced linear equalization and the Zak transform 

In this section we shall derive the polyphase representation of the frac
tionally-spaced linear equalizer, we shall show that the Zak transform of an 
appropriately defined equalizer impulse response is directly related to it, and 
we shall derive a representation in terms of Zak transforms of the output 
signal of the equalizer. 

In the system depicted in fig. 2, transmission again takes place across a 
noisy dispersive channel. To account for the occurrence of parameter vari-
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nit) 

Fig. 2. Continuous-time model of a data transmission system using a fractionally-spaced linear 
equalizer. 

ations, the channel impulse is not deterministic, but depends upon a param
eter .:1 whose value is selected prior to transmission according to a given dis
tribution function. 

In fractionally-spaced equalization, the output signal 

u(t) ~ (r * w)(t) (33) 

of the receiving filter is sampled at an integer multiple LIT of the signalling 
rate 1/T*). Unlike the symbol interval-spaced situation just considered, this 
sampling rate is taken large enough to prevent aliasing distortion. To this 
end, Lis selected such that for all possible values of .:1 the channel transfer 
function 

l::,. foe -j21Tf2t 
F1l(f2) = .f(t) exp ( ) dt 

-oc T 
(34) 

vanishes outside the interval [-~, ~]. To reject the out-of-band noise com

ponents, the receiving filter is assumed to have the ideal low-pass charac
teristics 

W(n) ~ { 1, 1n1 E; ~· 
0, else, 

which corresponds to an impulse response 

. (1rLt) sm --
L T 

w(t)=T Lt 
(~) 

T 

(35) 

(36) 

*) For mathematical convenience, we shall confine attention to Tl L-spaced equalizers in this 
paper. By making use of the strong time-frequency symmetries of the Zak transform 19

), the 
forthcoming analysis can with modest effort be extended to the situation where the tap spacing 
is a ratiohal fraction of the symbol interval T. 

156 



·Robust data equalization, fractional tap spacing and the Zak transform 

Hence in particular 

where 8k is the Kronecker delta function 

0 f:lA{l, k=O, 
k- 0, kEZ,k=t::O. 

(37) 

(38) 

Since the receiving filter does not affect the data component of the received 
signal, combination of eqs. (19) and (33) gives 

u(t) 2: akf'1(t kT) + (n * w)(t). (39) 
k= -<>0 

The sampled version 

(40) 

of u(t) is applied to a discrete-time linear equalizer with impulse response 
Cm whose output signal bn is downsampled by a factor L. In this way a de
tector input signal bkL results with a sampling rate equal to the symbol rate. 
With eq. (40), we see that 

"' T 
bkL (u * c)kL = n~"' Cnu(kT- nL ). (41) 

To convert this expression into its polyphase counterpart, we subdivide the 
n-axis into adjacent intervals of length L. This yields 

n(t) 

I I 
I I 

Ct(I<L:!~r ! CLt.f.k 

CL-t,k 

Fig. 3. Data transmission system employing a polyphase fractionally spaced linear equalizer. 
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(42) 

where the polyphase sequences c1,k and Ut,k are for I E {O, ... ,L -1} and k E 
7L defined as 

(43) 

and 

~::,. (IT ) 
Ut,k = u L + k T , (44) 

respectively. Expression (42) reflects the possibility of implementing the 
fractionally-spaced equalizer by means of a bank of L polyphase symbol in
terval-spaced transversal filters, as depicted in fig. 3. 

Compared to the straightforward version of the fractionally-spaced equal
izer as depicted in fig. 2, where L - 1 out of L calculated output samples are 
neglected, the polyphase structure of fig. 3 represents an L-fold improve
ment of numerical efficiency 26). 

By using eq. (39) in eq. (44), we can decompose the signals u_1,k of fig. 3 
into their polyphase components as 

U-t.k = i ai:f(-lT +(k-i)T)+(n*w)(-
1
T +kT) 

i=-"" L L (45) 
= (a* f~t)k + n-t,h 

where the polyphase sequences ff.k and n1,k are for lE { 0, ... ,L - 1} and k E 7L 
defined as 

(46) 

and 

(47) 

respectively. 
Using eq. (45) in eq. (42), we conclude that the input signal of the detec

tor can be cast into the polyphase representation 

L-1 L-1 

bkL= L (a*:f-fHth+ 2: (n-t*Cth· (48) 
1=0 1=0 
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In frequency domain notation this gives 

L-1 L-1 

B(fl) = A(fl) L F~t(fl) Ct(fl) + L N_1(fl) C1(!2), (49) 
l=O l=O 

where B(fl), A(fl), F~t(fl), Ct(fl) and N_1(!2) represent the Fourier trans
forms of bku ak, f~t,k• c1,k and n_1,k> respectively. In this expression, we see 
with eq. ( 46) that Pin) is simply the Zak transform of the channel impulse 

response f'(t) evaluated at the normalized sampling phase - I' i.e. 

for all/ E {O, ... ,L -1}. (50) 

Similarly, CJ{fl) can be interpreted as a scaled version of the·Zak transform 
of a continuous-time impulse response c(t) representing the cascade of re
ceiving filter and equalizer. To show this, we combine (33) and (41) and write 
out the continuous-time convolution explicitly. This gives 

(51) 

By defining a continuous-time impulse response 

D. ~ nT 
c(t) = £.J Cn w(t- -) 

n=-x L 
(52) 

which reflects the combined effect of the receiving filter and equalizer, eq. 
(51) can equivalently be denoted as 

bkL = (r * c)(k T). (53) 

Hence, by applying the received signal r(t) to a continuous-time filter with 
impulse response c(t) followed by a symbol-rate sampling operation we would 
obtain the same detector input signal as in the digital configuration presently 
considered. With the aid of eqs (37) and (52) we see that at the instants 

l 
T= -,I E {O, ... ,L -1}, the Zak transform ::lc(T,fl) of c(t) equates to 

L 

I "" IT 
~c(-,!2)= L c(-+kT)exp(-j2'Tl'flk) 

L k=-x L (54) 
L "" L 

=-T L Ct,kexp(-j2'Tl'flk)=-C1(fl). 
k=-ao T 
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Hence, by evaluating ~c( T,il) at L appropriate equidistant sampling phases, 
we indeed obtain the transfer functions of all L polyphase equalizers. Not 
surprisingly, we observe with eq. (13) that these L lines also determine c(t) 
completely. 

Using eqs (50) and (54) in eq. (49), we finally have the desired Zak trans
form representation 

B(n) (55) 

of the detector input signal. This representation underlies the results of the 
following sections. 

In the absence of noise, eq. (55) indicates that for faithful reproduction 

of the transmitted data at the output of the equalizer, ~c({,n) should for 

I E { 0, ... ,L - 1} be selected such that 

TL-l I I - 2:~1<1(- -,il)~c(-,il) 1 for all{} E IR. (56) 
L t=o L L 

For L > 1, eq. (56) will be in general satisfied for a continuum of distinct 
. I 

chOices for {~lL' il)}, lE {O, ... ,L 1}. Hence, many different zero-forc-

ing fractionally-spaced equalizers exist, as opposed to the unique one for L 
= 1 *). Because (by assumption and construction, respectively) both fl(t) and 

c(t) have no frequency content outside the interval [ -~·~l we can apply 

property (14) to eq. (56). This yields the equivalent condition for distor
tionless transmission 

for all DE IR, (57) 

which is just the first Nyquist criterion as encountered in eq. (17) of sec. 3. 

6. The optimally robust fractionally spaced linear equalizer 

In this section, we derive the optimum linear equalizer relative to a mean
square error measure which accounts for channel parameter variations. Al
though the effect of residual ISI is more adequately described by means of 

*) Asa consequence, the matrix K(!l) defined in sec. 6 and analysed in appendix A will for 
N0 = 0 in general be singular. 
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an Lrnorm than by the L2-norm in this measure, reasons of analytical tract
ability motivate this choice. In sec. 10, we shall numerically elaborate a re
cording example wherein the relevance of the adopted quality measure is as
sessed (and largely confirmed). To facilitate the analysis, we shall assume 
(without loss of generality 27)) that the noise signal n(t) has a frequency-in
dependent power spectral density N0 and also that n(t), ak and .1 are statis
tically independent. Since the receiving filter is cf. eq. (35) an ideal anti-al
iasing filter, the former assumption implies that the noise signals n -t,h 

lE {O, ... ,L -1}, entering the L polyphase equalizer branches of fig. 3 are 
uncorrelated, and are moreover statistically independent of each other. Fur
thermore, their variance equals 

(58) 

In an appropriate dimensioning, the sampled output sequence bkL of the 
equalizer resembles the linearly transformed version bk =(a* gh of ak as well 
as possible. As motivated before, we shall be concerned in this paper with 
the optimization of the mean-square error 

(59) 

between bkL and bk, where the expectation is taken over the data, the noise 
and the ensemble of channel impulse responses. In frequency domain form, 
s can be written as 

(60) 

Making use of eqs (27) and (55), eq. (60) can be written as 

s =I: Ea [IA(n)l2] E.i [if% c:I1a (- ~, n)c:Ic(l, n)- G(n)j2 J dn 

f
l T2L-! 1 

+ 2 2: En [IN -t(n)l2] lc:Ic(-,n)l2 dn, 
o L t=o L 

(61) 

where use has been made of the statistical independence of the data, the L 
noise components and the channel parameter .1. Denoting the power spec
tral density of the data as M(n) and concluding from eq. (58) that the power 
spectral density of the noise components equals LN0, we can expand eq. (61) 
into 

l 
(L, n) X(k,l,n) 
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-2Re{;~~ ~c(~ ,ll)~j(- ~,ll) G*(ll)} + IG(l1)12 J dll, (62) 

where the kernel '?JC(k,l,ll) is defined as 

;;;;. k * l L N0 
'JC(k,t,.a)- ~r(- L,.a)~r (- L ,.a)+ T M(ll) sk-t 

for all k, lE Z and llE fR, (63) 

and where the overline denotes averaging with respect to the ensemble of 
channel impulse responses. Obtained here in a heuristic fashion, this expres
sion can actually be derived in a mathematically rigorous way. 

To optimize the Zak transform ~c( T,ll) of the equalizer with respect to 
e, standard variational arguments 28) can be applied to eq. (62), which lead 
to the L conditions of optimality 

TL-l k l 

L 
L ~c(-,.Q)'?JC(k,l,.Q) =?lj(--,.Q)G(.Q) 
k=O L L 

for all/ E {O, ... ,L- 1}. (64) 

To solve eq. (64), we define an L x L matrix K(.Q) having entries 

for all k,l E {O, ... ,L 1} (65) 

and two L-vectors ~c(.Q) and ~j(.Q) having entries 

for all k E {O, ... ,L- 1} (66) 

and 

for all k E {O, ... ,L- 1}, (67) 

respectively. In terms of these entities, eqs (62) and (64) can be represented 
more compactly as 

e = f
0

1 

M(ll) [~: ~I(ll) K(ll)~~(ll) 

- 2; Re {~I(ll)~j(ll) G*(.Q)} + !G(l1)12
] dll (68) 
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and 

(69) 

respectively, where the superscripts •T• and '*' denote transposition and 
component-wise complex conjugation, respectively. Appendix A shows that 
K(Q) is nonsingular, provided that N0 >0 and that the data sequence has 
finite power (so that M(Q) is bounded for all a E /R). In this case ~c(Q) can 
be solved for as 

(70) 

Using eq. (70) in eq. (68), the corresponding mean-square error smin is found 
to equal 

Bmin = J
0

1 
M( G) IG(D)I2 [1-~J(D)K- 1(D)~j(D)] dil, (71) 

where the superscript •-l• indicates matrix inversion. 
Because of eq. (14), which holds since both.f(t) and c(t) have zero spectral 

content outside the interval [- ~, ~ J, we see that the cascade of channel 

and equalizer satisfies 

where the last equality sign follows from eq. (70). According to eqs (3) and 
(4), the inverse Fourier transform of this expression specifies the system im
pulse response (.f * c)( t) at the nominal sampling instants t = kT. 

Although the calculation of K-1(fl) can (as we shall see later) in certain 
cases be performed analytically, it will generally involve the use of numer
ical techniques. Computational effort can be cut by a factor of nearly two 
by making use of the prior knowledge that the optimum impulse response 
c(t) is real-valued, so that ~A T,fl) must satisfy the symmetry condition (11). 
Hence the set of equations (69) can be roughly halved in size. 

For the nonrobust case, a precursor of the above results was obtained in 
ref. 8. By applying an appropriate transformation, the findings can be rep
resented in terms of Fourier rather than Zak transforms. This is shown in 
appendix B. In cases (as encountered in sec. 9) where an analytic descrip
tion of the A-dependent channel transfer function is available, this repre
sentation will be directly applicable and hence more useful for computa
tional purposes. 
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For future reference, we note that the factor 

(73) 

the inverse of which is contained in eq. (71), should be nonnegative for all 
n, since otherwise it would be possible to make a choice for G(fl) that would 
lead to a negative mean-square error. A somewhat stronger version of this 
fact is proved to hold in appendix A, and will turn out to be important in 
the DFE analysis in the next section. 

7. The optimally robust fractionally-spaced decision feedback equalizer 

We now augment the polyphase model of fig. 4 with a feedback filter (FBF) 
which enables previous decisions to assist in taking subsequent ones (fig. 4). 

Since only past decisions can effect the detection of the current symbol, 
the impulse response Pk of the FBF must satisfy the causality constraint 

for all -oo < k :,;;;; 0. (74) 

Assisted by the FBF, the DFE attempts to form faithful estimates iik of the 
transmitted data ak> which are then applied to a bit-by-bit detector*). To 
facilitate the analysis, we make the usual assumption that all decisions prop
agating in the FBF are correct. On the basis of this assumption, which is 
mostly satisfied under normal operating conditions 5), eq. ( 48) can be aug
mented to yield 

n(t) 

I 
1 I 
I I 

irk-If ~r ll j 

L-.l(~ 

Fig. 4. Data transmission system employing a fractionally spaced polyphase decision-feedback 
equalizer. 

*) Although it is in principle conceivable to reconstruct a linearly transformed version of ab 
it can be shown that this partial response approach can essentially never lead to a better trans
mission quality than is achievable by direct reconstruction of ak 13

). 
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L-l L-l 

ak = L (a*~~* Ct)k - (a* P)k + L (n -t * c1)~. (75) 
1=0 /=11 

Proceeding along the same lines as before, and denoting the Fourier trans
form of Pk as P(D), it is easy to show that the new mean-square error e can 
be denoted in terms of the vectorial Zak transforms ~c(D) and l!j(D) (as 
defined in eqs (66) and (67), respectively) as 

E = J
0

1 

M( D) [~:~[(D) K(fl)~~(D) 

-2Re {f~J(ll)l!ic(fl)(l + P*(fl))} + jl + P(D)i2] dfl. (76) 

Except for the factor 1 + P(D) which replaces G(D), this expression agrees 
with expression (68) for the partial response linear equalizer. Consequently, 
the feedback filter can be thought of as realizing an a priori unknown partial 
response, and from this point of view our present objective is the joint op
timization of the forward part of the equalizer and the partial response de
termined by the feedback filter. 

Identification of the optimally robust DFE amounts to finding the func
tions ~c(il) and P(D) which, subject to eq. (74), minimize e*). The solu
tion of this optimization problem is reproduced in appendix C, and centers 
around the spectral factorization of the function Z(fl) as defined in eq. (73). 
This factorization is possible because Z(D) is real-valued, strictly greater than 
one, and bounded for all DE /R, as appendix A proves when N0 >0 and when 
M( D) is bounded for all DE Ill. It results in a representation for Z(fl) of 
the form 

(77) 

where I'(D) is the causal minimum-phase root of Z(D), which is uniquely 
determined by Z(D) and can be easily determined numerically 20·29). Ac
cording to appendix C, the optimum receiving and feedback filters can for 
all DE Ill be represented in terms of I'( D) as 

~c(D) =!::_I'( D) K- 1(D)~i(D) 
T 'Yo 

(78) 

*) In many instances where an adaptive implementation of the receiving filter is beyond reach, 
it may still be feasible to implement the feedback filter adaptively, e.g. by making use of the 
table look-up structure 4). In deriving the optimum fixed receiving and feedback filters relative 
to a performanc.:- measure accounting for channel parameter variations, we are thus establish
ing a pessimistic estimate of the truly achievable transmission quality when an adaptive FBF is 
used. 
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and 

P(fl) = T(fl) - 1, (79) 
'Yo 

where 'Yo is the zeroth term of the inverse Fourier transform 'Yk of T(fl), given 
by 

'Yo = exp G Jl
1
ln Z(fl) dn} (80) 

(ref. 29, p. 161). As in the nonrobust situation 5), the minimum mean-sqaure 
error ~>min is found to be related to 'Yo as 

pm 
~>min =--z, 

'Yo 

where pm is the power of the transmitted data sequence, given by 

Pm~ J
0

1 

M(fl) dfl. 

(81) 

(82) 

· T(fl) 
By comparing eqs (78) and (70), we see that 1 + P(fl) =--can indeed 

'Yo 
be interpreted as the optimum partial response that we were implicitly look-
ing for. 

Because c(t) and the average channel impulse response f(t) have zero 

spectral content outside the interval [-~,~],we have from eq. (14) that 

the average system impulse response satisfies 

where the second equality sign follows from (C.ll) of appendix C. The in
verse Fourier transform of this expression specifies the average system im
pulse response (/H)(t) at the nominal sampling instants t= kT. 

Like for the linear equalizer, appendix B shows that these results can be 
cast into an equivalent Fourier transform representation, which offers com
putational advantages when .an analytic description of the .1-dependent 
channel transfer function is available. 

Before considering the limiting case L-oo, we will first specialize the re
sults obtained so far to the adaptive situation. 
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8. Fractionally-spaced equaUzation in the absence of channel parameter var
iations 

The presence of an adaptation mechanism enables the equalizer to be di
mensioned in accordance with the instantaneous impulse response f(t) of the 
channel. This situation can be accounted for in the foregoing sections by 
dropping all overbars and expectations with respect to the channel ensem
ble. In this case, the matrix K(l2) of eq. (63) is the sum of a full rank matrix 

LN0 • TM(!2) . 
TM(nl (wtth inverse LNo I) and a rank 1 matnx !!lj(!2)!1.J(n). Thus 

the matrix inversion lemma (in the mathematical literature also known as 
the Sherman-Morrison formula, ref. 30, p. 3) can be applied and we get 

T M(n) [ f!!;(n) !!J(n) J 
K- 1(!2) = I - L 1 . (84) 

LN0 T L ~~~ _ ~ !2)12 + ~ 
L k=O L' M(!2) 

Because IF(n)l = 0, 1121 ;a. I' we can use eq. (15) to simplify the sum con

tained in this expression as 

(85) 

where ([ * f _)(t) is the autocorrelation function of the channel impulse re
sponse f(t). With eqs (84) and (85), the function Z(!2) cf. (73) can also be 
evaluated explicitly: 

z(n) = 1 + M(n)~t•f_(o,n) 
No 

(86) 

Now the optimum fractionally-spaced linear and decision feedback equal
izers as well as their performance can be determined explicitly. Using eqs 
(84) to (86) in eqs (70), (71), (78), (80) and (81), we have that for the linear 
equalizer 

1 
G(n)~i< -f.n) 

~c(L,n) = 
?lt•f_(o,n) + M(n) 

for alll E {O, ... ,L 1} and nE /R, 

(87) 
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and 

f
l 2 

. = No!G(il)l dn 
Brmn No u, 

o l!l1•1_(0,il) +M( .D) 

(88) 

while for the DFE 

(89) 

and 

Bmtn = Pm exp {fl In [ ~ No ] dil}. 

o ?lt•f_(O,il) + M(il) 

(90) 

To convert these expressions into Fourier transform notation, we first ap
ply eq. (7) to show that 

1 "" 
?lf•f_(O,il) = T n~oo IF(il + n)l2 for all il. (91) 

We next note that besides F(il), the Fourier transform C(il) of c(t) is (by 

construction) also bandlimited to [- ~ 'IJ. Thus eq. (13) can be applied 

after multiplying the left and right hand sides of eqs (87) and (89) by 

exp( -j27rfil) and summing over alll. Together with eq. (91), this yields 

the conventional expressions 

C(il) = 
1 

"" F*(il) G(il) N, for all nE /R, (92) 

- 2: IF(il+n)l2 + - 0
-

T n= -oo M(.!l) 
and 

~0 F*(il) r(il) 
C(il) = 

1 
,., N, for all .a E fR (93) 

Tn~,.,IF(il+n)i2+ M(~) 
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for the linear and the decision feedback equalizer, respectively 3•31•13). Be
cause of eq. (91), we see at once that the performance expressions (88) and 
(90) coincide with the familiar ones for the continuous-time MMSE linear 
and decision feedback equalizers 3•31•13). Hence fractionally-spaced equali
zation yields the same performance as equalization without prior structural 
restrictions, provided that the tap spacing L is chosen sufficiently large to 

guarantee that IF{Jl)l = 0, I!JI ;a:~. Since emin does not directly depend upon 

f(t) but only on its autocorrelation function if* f _)(t), which is not affected 
by time shifts of f(t) as induced by timing errors, we conclude that, unlike 
the symbol interval-spaced situation considered before, timing errors can be 
compensated for without loss of performance. 

9. Optimum equalization without prior structural restrictions 

For the adaptive fractionally-spaced equalizers, we have just shown that 
beyond a certain oversampling factor L, determined by the characteristics 
of the channel, performance and dimensioning expressions arise which co
incide with their continuous-time counterparts. The optimally robust contin
uous-time equalizers can be obtained on the basis of the results of secs 7 and 
8 by letting L grow infinitely large. This limiting operation turns sums into 
integrals, because for any continuous function ~( -r,Jl) 

T L-1 l J:1 
lim - 2:~(--L,Jl) = T ~(--r,Jl)d-r. 

L-+or; L 1=0 0 
,(94) 

By way of example, we shall for the linear equalizer briefly review the con
sequences of this limiting operation for the preceding analysis. Using eq. (94), 
we see that expression (62) now becomes 

e = fo1 M(Jl) [ yz Jot h1 ~c(~-t,Jl)~:C -r,Jl)'J(,(~-t,-r,Jl) d~-td-r 
-2Re {T t ~c(-r,Jl)?ij --r,Jl) G*(Jl)dT} + IG(Jl)IZ] d!J, (95) 

where the kernel 

in which 8( T) is the Dirac delta function, is the continuous-time counterpart 
of 'JC(k,l,!J) as defined in eq. (63). The associated condition of optimality 
(cf. eq. (69)) can be denoted in operator notation as 
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(97) 

where Kx(l1) is the integral operator associated with 'Xx(fL,T,l1), operating 
on the time variable only. For an account of the theory of linear operators 
in a Hilbert space the reader is referred to ref. 28. Because (cf. appendix A) 
'JLAfL, T,l1) is positive definite if N0 > 0 and if M( l1) is bounded for all .n E 

IH, '!1-c(T,l1) can (cf. eq. (70)) be solved as 

Like eq. (71), this solution leads to a minimum mean-square error 

Smin =I: M(.n) IG(l1)12 z- 1(l1) d.n, (99) 

where the function Z(l1) (cf. eq. (73)) is now given by 

zc.n) = [ 1-I: ~j(T,.n)(K~ 1 ~/)(T,.n)drr
1 

(100) 

To specialize eqs (98) and (99) to their nonrobust versions, it suffices to 
drop the overbars in eqs (95), (96) and (97). For ~c( r,.n) this yields the in
tegral equation 

T'!li( -T,l1) fol ~~(- fL,l1)~c(fL,l1) d~J-+ M~~) ~c( T,l1) 

=G(l1)~i(-r,l1), (101) 

which should be satisfied for all rE [0,1] and all l1E fR. It can be confirmed 
by inspection that the continuous-time version 

'!le( T,l1) = G( {1) '!li (- r,.n) 
No 

~f.t_(O,l1) + M(l1) 

(102) 

of eq. (87) provides the desired (and expected) solution, which can be used 
in eq. (95) to re-assert that the corresponding minimum mean-square error 
is given by eq. (88). 

The DFE analysis of secs 7 and 8 can also be extended to L - oo by in
corporating minor modifications, similar to the ones above. Although for di
dactic reasons we have presented the continuous-time analysis here as a lim
iting case of the fractionally-spaced analysis, it is by no means necessary to 
take this somewhat lengthy detour. This is exemplified in ref. 32, where the 
optimally robust continuous-time DFE is derived in a direct and compact 
way. 
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10. Improvement of resistance to timing errors in digital magnetic recording 

For a class of digital magnetic recording systems suffering from timing er
rors, we shall in this section compare the merits of the robust equalizers found 
in secs 8 and 9 with those of their conventional counterparts. 

We first describe the transfer characteristics of the systems, which use an 
NRZ-like transmission code, longitudinal magnetization and a differentiat
ing playback head. When both the thickness of the magnetic recording me
dium and the gap size of the playback head are sufficiently small, the nom
inal transfer characteristic F(il) of a system within this class assumes the 
form 33) 

F(il) = (1- exp ( -j27Til)) exp ( -11' Dlill), (103) 

where D is normalized measure of the information density of the system, 
ranging from roughly 0.1 for low-density (e.g. rigid disk-drive) systems to 
about 3 for high density (e.g. R-DAT 34)) systems. 

For numerical convenience, we shall take the recorded data sequence ak 

to be uncorrelated, so that M(il) = 1. For the purpose of the present com
parison, this assumption is sufficiently valid in e.g. R-DAT-systems, where 
an 8-to-10 transmission code 35) is applied. 

In the presence of timing errors (i.e. when sampling erroneously takes 
place at the instants ( k + Ll) T with k #= 0, cf. sec. 4), conventional MMSE 
equalizers often incur significant performance losses 36•37). The influence of 
sampling phase errors can be accounted for by incorporating the normalized 
sampling phase Ll in eq. (103) as 

Ft.(n) ~ F(il)exp(j27TLlil) 
= [1- exp( -j27Til)]exp( -7TDiill)exp(j27TLlil) for all n. (104) 

For mathematical convenience, we shall assume the values of Ll to be uni
formly distributed in the interval [ -8,8], where @E [O,!l determines the 
maximum possible sampling phase deviation. A typical value of Ll would be 
0.137). 

Because in this case an explicit description of the Ll-dependent system 
transfer characteristics is available, the optimally robust data equalizers can 
be most easily identified in their Fourier transform representation as de
scribed in appendix B. It is easy to see that the vector F(il) and the matrix 
K(il) of appendix B have components 

_ sin27TB(il+ i) 
F;(il)=[1-exp(-j27Til)] Z7T8(il+i) exp(-7TDiil+il) (105) 
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and 

_ 1 2 sin21r8(i - i) .
1 

I I I 
K;,i(ll) = 4 Tsin (1ril) Z1rB(i _ j) exp( -1rD[ il+i + ll+j]) + 

N0 8i-j• (106) 

respectively 12). The components of K(ll) are real-v~lued, which facilitates 
numerical effort. 

For a given density D, the minimally required oversampling factor L can 
be determined by imposing the condition that the energy outside the band 

[- ~ , ~] of F( n) is an insignificant fraction of the total energy. On the 

basis of eq. (103) it can be seen that for even L this fraction equals 
exp ( -7r D L ). Hence a suitable even value of L can be determined as 

In 10 a 
L = zr- Z01r Dl, (107) 

where ·r 1' denotes the integer ceiling function, while a is the maximum frac
tion of out-of-band energy expressed in dB, fixed at -40 in the forthcoming 
calculations. Thus, at a high density D of 2.5 it suffices to take L = 2, while 
for a (very small) density D of 0.2 a relatively large oversampling factor of 
about 16 is needed. Involving the inversion of a set of 16 x 16 matrices, even 
the latter value of D does not pose insurmountable numerical problems. 

Using the results of appendix B, we have determined for various values 
of D and 6 the optimally robust data equalizers and their performance. In 
our calculations, we have assumed a fixed signal-to-noise ratio 

SNR ~ (f * f_)(O) 
No 

(108) 

of 25 dB. To assess the performance of the equalizers we have used the ef
fective signal-to-noise ratio loss ;,£, as defined in refs 12 and 36. This meas
ure, which can be easily determined numerically, quantifies the performance 
loss of a receiver relative to the matched filter (zero ISI) bound 3), assessing 
residual ISI in terms of its L1 norm. As such, it is more meaningful than the 
.i-dependent mean-square error, which reflects the power of the residual ISI. 
For realistic signal-to-noise ratios, an improvement of ;£ of one dB corre
sponds to an improvement of the bit error rate of roughly an order of mag
nitude. 

At a (medium) density D of 1, the performance of the full response linear 
equalizer (having g(q]j) = 1) is distinctly inferior to its partial response coun-
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Fig. 5. Effective signal-to-noise ratio loss:£ versus normalized sampling phase error .<1 for the 
Bipolar linear equalizer (g(S!JJ) = 1 - S!JJ). Signal-to-noise ratio SNR = 25 dB; Normalized in
formation density D=l; a) @ = 0; b) @ = 0.05; c) @ = 0.1. 

+ 
,/. 

(dB} 

Or---------------------------~ 

-.4 

Fig. 6. Effective signal-to-noise ratio loss :£ versus normalized sampling phase error 4 for the 
Class IV partial response linear equalizer (g(S!JJ) 1 - 9J2). Signal-to-noise ratio SNR=25 dB; 
Normalized information density D=l; a) @ 0; b)@= 0.05; c)@ 0.1. 
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~ 
i 

(dB) 

Or-----------------------------, 

-Q2 -0.1 

Fig. 7. Effective signal-to-noise ratio loss S£ versus normalized sampling phase error .<:1 for the 
decision feedback equalizer (DFE). Signal-to-noise ratio SNR=25dB; Normalized information 
density D=l; a) 8 0; b) @ = 0.05; c) @ 0.1. 

terparts and the DFE 13). For conventional and optimally robust versions of 
the latter equalizers we have evaluated the effective signal-to-noise ratio loss 
when sampling phase variations occur ranging from -25 percent to +25 per
cent of a bit interval T (figs 5 to 7). Comparing the €J = 0 curves of1igs 5 
to 7, we see that the Bipolar and Class IV partial response linear equalizers 
(having g(2il) = 1 2D and g(2il) = 1 - 2il2 , respectively) have comparable 
performances and that the DFE is some 1 dB better. For the €J = 0 equal
izers, timing errors apparently induce significant performance losses, which 
amount to some 4.5 dB for realistic sampling phase errors with j.dj = 0.1. At 
an expense of some 0.4dB to the nominal performance, the robust equal
izers with @= 0.05 manage to restrict these losses to 3dB for the 1 - 2il2LE 
(fig. 6), to 2dB for the 1 - 2D LE (fig. 5), and to a mere 1.5 dB for the DFE 
(fig. 7). At a further expense of 0.6 to 0.8 dB, the @ = 0.1 equalizers main
tain a useful performance level over an even wider range of operating con
ditions. For example, under adverse conditions with IL11 = 0.15, the@= 0.1 
equalizers outperform their conventional counterparts by 2.5 to 3 dB, cor
responding to a bit error rate which Is several orders of magnitude smaller. 

To show the reason for the decreased performance in the nominal situa
tion, figs 8 and 9 depict the amplitude-frequency chracteristics jC(!J)I of the 
1 '2lJ and 1 '2lJ2 equalizers of figs 5 and 6, respectively. Similarly, fig. 10 

174 



Robust data equalization, fractional tap spacing and the Zak transform 
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Fig. 8. Amplitude frequency characteristics IC(Jl)l of the Bipolar (1 - 9l) linear equalizers of 
fig. 5. a) e = 0; b) e = 0.05; c) e = 0.1. 
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Fig. 9. Amplitude frequency characteristics IC(D)I of the Class IV partial response (1 9l2
) 

linear equalizers of fig. 6. a) @ = 0; b)@= 0.05; c) @ = 0.1. 

depicts the receiving filter amplitude-frequency characteristics JC(O)J of the 
DFE's of fig. 7. In order to enable a direct comparison these figures have 
the same 0 dB level. Compared to the e = 0 characteristics, the reduced 
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0.--------------------------. 

I Cl 
(dB} 

t -10 

-1S 

-20 

-52 

Fig. 10. Receiving filter amplitude-frequency characteristics IC(.D)I of the decision feedback 
equalizers (DFE's) of fig. 7. a) @ = 0; b) e = 0.05; c) e = 0.1. 

to 
(f*C)(t} 

t as 
9K 
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-1.0 _, -2 0 2 ' 6 
- t/T 
--• K 

Fig. 11. Nominal system impulse response (j*c)(t) created by the Class IV partial response 
(1 - '2ll2) linear equalizers of fig. 6. a) e = 0; b) e = 0.1; The desired sampled impulse re
sponse gk is also depicted (dashed). 

transfer magnitude of the @ = 0.05 and @ = 0.1 characteristics at frequencies 
roughly below the Nyquist frequency n = 0.5 is traded off against a consid
erably larger transfer magnitude at higher frequencies, so that a net incre-
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ment of the noise enhancement results. Apart from a degradation of the 
nominal performance, this high-frequency emphasis leads to a significantly 
smaller quantity of residual ISI in the presence of timing errors. This is clar
ified in fig. 11 for the Class IV partial response LE and in fig. 12 for the DFE. 

From fig. 11, we see that for 8 = 0 the overall system impulse response 
if* c)(t) indeed approximates the desired 1 - 121J2 response {shown dashed) 
accurately when sampling takes place at the nominal instants tiT= k. How
ever, the resemblance rapidly deteriorates in the presence of sampling phase 
errors (which amount to a shift of if* c)(t) relative to gk)· This causes in
creased residual ISI and thus a decreased transmission quality. In contrast, 
for 8= 0.1 the system impulse response ifH)(t) has a considerably smaller 
slope in the vicinity of the nominal sampling instants tiT= k, so that the 
effect of modest sampling phase errors is less detrimental. Similar remarks 
apply to the 8= 0 and 8= 0.1 curves of fig. 12. In this figure, we see that 
in the absence of timing errors, the post-cursive ISI which shows up in the 
trailing part of the system impulse response if H)(t) is perfectly compen
sated by the action of the feedback filter (with impulse response Pk)· While 
for the 8 = 0 DFE a small shift of the timebase already leads to significant 
compensation errors (and hence residual ISI), the small slope of ifH)(t) 
around the post-cursive nominal sampling instants causes these errors to be 
much smaller for the 8 = 0.1 DFE. 

The combined effect of increased noise enhancement and decreased re-

1.0 
ff,.c)ftJ 

t 0.5 
PK 

• I 
I 0 

-0.5 

-t.O 

-I. -2 0 2 t. 6 - t/T --· K 

Fig. 12. Nominal system impulse response if*c)(t) created by the DFE's of fig. 7. a) 9 0; 
b) 9 0.1; The corresponding feedback filter impulse responses Pk are also depicted (dashed). 
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a 

b 

Fig. 13. Eye patterns for the Class IV partial response linear equalizers of fig. 6. Signal-to-noise 
ratio SNR=25dB; Normalized information density D 1. a)(!!) 0; b)(!!) 0.1. 

a 

b 

Fig. 14. Eye patterns for the decision feedback equalizers of fig. 7. Signal-to-noise ratio 
SNR=25dB; Normalized information density D = 1. a)(!!)= 0; b) (!!) 0.1. 
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~ 
J:. 

(dB) 

0~--------------------------~ 

Q2 ar 0 0.1 
-.4 

Q2 

Fig. 15. Effective signal-to-noise ratio loss!£ versus normalized sampling phase error .:1 for the 
decision feedback equalizer (DFE). Signal-to-noise ratio SNR=25 dB; Normalized information 
density D=2.5; a) €> = 0; b) €> 0.05; c) €> = 0.1. 

0~--------------------------~ 

!Cl 
(dB) 

i -10 

-15 

-20 

-Q 

Fig. 16. Receiving filter amplitude-frequency characteristics !C(.O)! of the decision feedback 
equalizers of fig. 15. a) e = 0; b) e 0.05; c) e 0.1. 

sidual ISI in the presence of timing errors is most clearly illustrated by means 
of eye patterns. Figs 13 and 14 depict eye patterns that were constructed by 
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computer simulation for the equalizers of figs 5 and 7, respectively. For 
maximum visual clarity, the DFE used for the construction of fig. 14 con
tains a hold function which causes changes of the FBF output signal to occur 
only midway the nominal sampling instants tiT= k. Looking at figs 13 and 
14, we see that the @=0.1 eye patterns are indeed somewhat more noisy, 
but clearly more robust to timing errors than their @ = 0 counterparts. 

For a high density D of 2.5, it was shown in ref. 12 that among the linear 
equalizers only the full-response variant could for @ * 0 be equipped with 
an appreciably better resistance to timing errors. For the sake of brevity, we 
shall not review these results here. For both the conventional DFE and its 
robust version, fig. 15 depicts the effective signal-to-noise ratio loss incurred 
at D = 2.5 in the presence of sampling phase errors. Although some margin 
against timing errors can be added by choosing @ > 0, fig. 15 clearly indi
cates that significant improvements are beyond reach. Interestingly, the .::!
dependent mean-square error does exhibit significant improvements for 
@>0. This observation confirms our initial doubts about the ability of the 
adopted quality measure to quantify residual ISI accurately. Nevertheless, 
the robust DFE still outperforms its linear counterparts, as can be seen from 
figs 5 and 6 of ref. 12. Like forD= 1 (fig. 10), the main difference between 
the receiving filter amplitude-frequency characteristics of the robust DFE and 
the conventional one is the increased emphasis of the lowest and highest fre
quencies. This is illustrated in fig. 16, whose OdB level coincides with that 

1.0 
{f*c)(t) 

t 0.5 
PK 

• I 
I 0 

-0.5 

-1.0 _, -2 0 2 6 8 10 
-t/T 
---K 

Fig. 17. Nominal system impulse response (jH)(t) created by the DFE's of fig. 15. a) 8 = 0; 
b) 8 0.1; The corresponding feedback filter impulse responses Pk are also depicted (dashed). 
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of fig. 7 of ref. 12, so that a comparison is allowed. The system impulse re
sponse lf*c)(t) of the robust 6=0.1 equalizer differs particularly for t;o;.O 
significantly from its 6 = 0 counterpart, as shown in fig. 17. As before, the 
e = 0.1 equalizer achieves a favourable reduction of the slope of <f* c)(t) at 
the post-cursive nominal sampling instants t/T = k. Unfortunately, this advan
tage is largely offset by the significantly increased duration of the trailing part 
of <f* c)(t), which leads to a larger number of residual ISI components in the 
presence of timing errors. 

11. Concluding remarks 

The quadratic performance measure used in this paper makes the prob
lem of finding the optimally robust linear and decision feedback equalizers 
analytically tractable, but has the disadvantage that the residual intersymbol 
interference is quantified in terms of its power rather than the more relevant 
Lrnorm. Thus, while the foregoing results will often lead to significant im
provements of robustness (cf. figs. 5 to 7), it may happen (as indeed ob
served in sec. 10 and fig. 15) that significant improvements in mean-square 
terms lead to a negligible acual improvement of robustness. 

Although we have confined attention to the reception part of the data 
transmission problem in this paper, one might expect from the preceding 
pages that the Zak transform can be comparably useful for analyzing other 
aspects of data transmission. In fact, it seems reasonable to conjecture that 
the Zak transform is a natural tool for use in any environment where both 
continuous-time and discrete-time aspects play a role, digital audio and video 
systems perhaps being major examples. For further reading on the Zak 
transform, its properties and its relations wih the Fourier integral, the Wig
ner distribution and other signal representations we refer the reader to a 
companion paper 19

). 

As a final remark, we note that the Zak transform bears some similarity 
to the eye pattern, which is often used in data transmission as a display tool 
and also maps a continuous-time signal by means of a periodic overlap pro
cedure onto a unit interval in which only sampling phases can be distin
guished. In view of this similarity and its information lossless nature (as op
posed to the non-invertible nature of the eye pattern), it seems rewarding 
to explore the value of the Zak transform as a display tool in data trans
mission. 

Appendix A. Regularity of K(.O); positiveness and boundedness of Z(.O) 

In this appendix we shall show that, under proper conditions on N0 and 
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M( .a), the inverse K- 1({l) of the matrix K({l) as defined in eq. (65) exists. 
Subject to slightly stronger conditions, we shall furthermore show that the 
function Z(.a) as defined in eq. (73) is positive and bounded. We shall nei
ther in this appendix nor in the following ones question ourselves whether 
the functions under consideration are well-behaved, rapidly decaying, and 
the like. Such properties can be readily guaranteed by casting the treatment 
into a (more voluminous) Hilbert space framework and imposing some weak 
additional conditions of regularity (cf. e.g. the appendix of ref. 12). 

We first develop some notation. We shall denote the inner product of two 
L-vectors U and V as 

(U,V) ~ urv*, 

and the norm of an L-vector U as · 

(A.l) 

IIUII ~ V(U:U). (A.2) 

Let e!t4(.a) be the L-vector with components 

1::::. l 
?:tri(.a) = ?LF(- L,n) for all/ E {0, ... ,L- 1}. (A.3) 

In terms of elF( .a), the matrix K({l) as defined in eq. (65) can equivalently 
be defined as 

(A.4) 

where I is the L x L identity matrix, and EA[·] denotes averaging with re
spect to the ensemble of channel impulse responses. Let the vector ~j({l) 
be as defined in eq. (67), and let the L x L matrix Q({l) be defined as 

Q(n) ~~;(.a) ~J(n). (A.5) 

Proposition A.l 

Let N0 > 0 and let M({l) be bounded for all n E fR. Then the matrix K({l) 
- Q({l) is for all nE fR positive definite with eigenvalues no smaller than 
L N0 

TM(.a)' 

Proof 

It can be observed from eqs (A.4) and (A.5) that the matrices K(n) and 
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Q(!l) are both Hermitian. Hence the same must be true for their difference. 
From eqs (A.4), (73) and (A.5), we have that for any L~vector x 

xT[K(!l) - Q(!l))x* 

= E[x,~F(!l))2] - (x,E[~1i!l)]f + T ~~~) llxll2
• (A.6) 

Since the variance of any stochastic variable can never be smaller than the 
square of its average, it follows that for all x 

(A.7) 

and because::.~) is strictly positive, it follows that K(!l)- Q(!l) must be 

positive definite. For any Hermitian matrix K(!l) - Q(!l), 

minxT [K(!l) - Q(!l)]x* = A.ninC!l) llxll2, (A.8) 
x;O<O 

where A.nJn(!l) is the smalles eigenvalue of k(!l) - Q(!l). From eqs (A.7) 

and (A.8), we conclude that Amin(!l) is at least equal to~ M~~)' 

Proposition A.2 

Let the conditions of proposition A.l apply. Then K(!l) is non-singular. 

Proof 
By repeating the argument of proposition A.l for the quadratic form 

xTK(!l)x* it follows that K(!l) is positive definite with smallest eigenvalue 
L N0 

at least equal toT M(!l) > 0. Thus K(!l) must be non-singular. 

Proposition A.3 

Let the vector ~A !l) for all n E lllf have a nonzero norm II~A !l)ll. Let N0 

> 0 and let M(!l) be bounded for all !lE R. Then the quadratic form 
~J(!l)K- 1(!l)~j(!l) assumes a value in the interval (0,1), i.e. 

O<~J(!l)K-1(!l)~j(!l)<l. (A.9) 

Proof 

Since K- 1(!l) exists, 11~1(!l)ll =fr. 0 and M~~) > 0, we have that 
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According to proposition A.1, K(fl) - Q(fl) is positive definite with eigen

values at least equal to~ M~~) > 0. For this reason, the right hand side of 

eq. (A.10) can be lower bounded as 

LNo IIK-1(fl):!j(fl)l!2 ~ ([K(fl) - Q(fl)] K- 1(fl):!j(fl), K-1(fl)~j(fl)) 
TM(fl) 

= (:!J(fl), K-1(fl) !!ljfl)) 
- (Q(fl) K-1(fl)~j(fl), K- 1(fl)~j(fl)) 

= ~J(n) K- 1(n)~j(n) 

-II~J(fl)K- 1(fl)~j(fl)ll2 (A.ll) 

where the last equality follows from eq. (A.5). Since the function f(x) 
x(1 - x) is positive only in the interval (0,1), we conclude from eqs (A.10) 
and (A.ll) that eq. (A.9) must hold. 

Corollary 

The function Z(fl) ~ [1- ~J(fl) K-1(fl) :!J(fl)]-1 is, subject to the con
ditions of proposition A.3, strictly greater than one and bounded for all 
ne R. 

Appendix B. Frequency domain representation of the optimally robust equal
izers 

In this appendix we derive the frequency domain representation of the 
optimally robust equalizers from their Zak transform representations de
rived before. For mathematical convenience, we shall take L to be an even 
integer, so that L/2 is an integer. The case of odd L can be similarly handled 

by using a set {- L; 1 
, ... , L; 1} and an interval [- ~.~] instead of 

{- ~ , ... , ~ 1} and [0,1], respectively, in what follows. Before stating and 

proving the results, we first introduce the frequency domain entities of in
terest. 

184 



Robust data equalization, fractional tap spacing and the Zak transform 

Let C(.O) and Fil(.Q) be the Fourier transforms of the receiving filter and 
channel impulse responses c(t) and .f(t ), respectively, and let the £-vectors 
C( .0) and Fil( .0) be defined as 

L L 
C1(.0) ~ C(.O + i) for all i E { -

2
, ... ,

2 
-1} and .OE [0,1], (B.1) 

and 

L L 
for all iE { - 2, ... ,2 -1} and .OE [0,1], (B.2) 

respectively. It can be observed from these definitions that C(.O) and Fil(.Q) 

describe the potentially nonzero components (for which 1.01 <~)of W(.O) 

and Fil( .0). Denote 

for all .OE [0,1], (B.3) 

where Ea[·] denotes averaging with respect to the ensemble of channel char
acteristics. Similarly, let K(.O) be the L x L matrix 

K(.O) ~ .!:.Eil[Fa•(.a)Fil7(.0)] +~I for all .OE [0,1], (B.4) 
T M(.O) 

with I the L x L identity matrix. Finally, let R(.O) be the L x L matrix with 
entries 

for all/E {O, ... ,L -1}, 

ne{-~, ... ,~-1} and.OER. (B.5) 

Proposition B.l 

Let K(.O) be defined as in eq. (65). Let N0 > 0 and let M(.O) be bounded 
for all nE R. Then K(.O) as defined above is nonsingular, and we have for 
.OE [0,1] that 

(B.6) 

Proof 

By making use of the fact that for integer n 
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L-1 [ 

2: exp(j2Trn-) 
t=o L { 

L, n = 0 mod L, 
0, else, 

(B.7) 

it can be easily verified that R(fJ) is nonsingular for all nE /Ff, and that 

for all fJ E IR. (B.8) 

Thus we have that 

A(fJ) ~ [RT(fJ) K-1(fJ)R*(fJ)]-l 

= ~zRT*(n) K(n) R(n) for all fJ E [0,1]. (B.9) 

This inversion is always possible because K(fJ) is nonsingular according to 
appendix A under the given conditions. Applying eq. (B.5) to expand the 
right hand side of this expression, we see that the components A 1.nCfJ) of 
A(fJ) are given by 

1 L-lL-1 1 n 
A;.j(fJ) = 2 2: 2: exp(i27r(fJ+i)-) K1,n(fJ)exp( -j2Tr(fJ+j)-) 

L /=On=O L L 

for all i,j E { -~, ... ,~- 1} and nE [0,1]. (B.10) 

By making use of eqs (7), (63), (65) and (B.7), and the fact that pl(fJ) = 

0, jnj > ~' it can be easily verified that 

A ·(fJ) = 2_ E[Ft.(n + i) pt.'(n + 1')] + _! ~ (). · 
'·1 T2 T M(fJ) r-J 

for all i,jE { -~, ... ,~-1} and fJ E [0,1]. (B.ll) 

Comparing eq. (B.ll) and eq. (B.4), we see that 

1 -
A(fJ) = TK(fJ), 

and by combining eq. (B.12) with eq. (B.9), eq. (B.6) follows. 

Proposition B.2 

(B.12) 

Let N0 > 0 and let M(fJ) be bounded for all n E /Ff. Let K(fJ) and 
eE1(fJ) be defined as in eq. (65) and (67), and let Z(fJ) for nE [0,1] be given 
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by (see eq. (73)) 

Z(!J) ~ [1- ~J(!l)K-l(!J)~j(!J)rl. (B.13) 

Then Z(!J) can alternatively be written as 

for all !J E (0,1]. (B.14) 

Proof 

By applying eq. (5) to the Zak transform ~r(T,fl) evaluated at the in-

stants T = -f, I E {O, ... ,L -1}, it follows that 

_ I 1 ~ _ . -r ) I) 
~~( --,!J) =- L.J F(!J+ n)exp(-J2,,JJ+n -L for all !J E /R, (B.15) 

L T n= -oc 

where F(!J) = E..:1[F..:1(!J)], compare eq. (B.3). Because F(!J) vanishes out

side the interval [- ~, ~ J , this expression can be more compactly written 

as 

~Jfl) = ~R(!J)F(!J) for all !J E (0,1], (B.16) 

where R(!J), F(!J) and ~Jfl) are defined in eqs (B.S), (B.3) and (67), re
spectively. Using eq. (B.16) in eq. (B.13), we now have that 

Z(!J) = (1 - ;
2 

J?T(!J) RT(JJ) K- 1(!J) R*(!J)F*(!J)r 1, (B.17) 

and with proposition B.1 (B.14) is established. 

Proposition B.3 

Let N0 > 0 and let M(!J) be bounded for all n E /R. Let K(!J) and 
~Jfl) be defined as in eqs (65) and (67). Then the optimally robust linear 
equalizer satisfies 

C(!J) = G(!J)K-1(!J)F*(!J) for all !J E (0,1]. (B.18) 

Proof 
By translating eq. (52) to the frequency domain and making use of eq. 

(54), we see that 
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C(/2) 
TL-l l l 

W(IJ)L 2: ~c(L,n)exp(-j27T/2-) 
t=o L 

for all 12 E /R. (B.19) 

Since W(fl) equals zero outside the interval [- I•IJ. C(D) can only in

side this interval assume nonzero values. These can be grouped into the L
vector C(/2) as defined in eq. (B.1), so that the nontrivial part with 1121 ~ 
L 

2 of eq. (B.19) can be denoted more compactly as 

for all 12 E [0,1]. (B.20) 

By combining this expression with the one for the Zak transform of the op
timally robust linear equalizer (70), we see that 

for all!} E [0,1], (B.21) 

and by applying eq. (B.16) and proposition B.1 the proof is complete. 

Note 
The expressions (B.6) and (B.18) have previously been derived in ref. 12 

without the aid of the Zak transform. 

Proposition 8.4 

Let N0 > 0 and let M(fl) be bounded for all n E /R. Let K(D) and 
!!1(n) be defined as in eqs (65) and (67). Then the optimally robust DFE 
satisfies 

and 

C(fl) = T(n) .K-1(12)F*(I2) 
'Yo 

for all nE [0,1]. 

P(D) r(/2) - 1, 
'Yo 

(B.22) 

(B.23) 

where r(/2) is the unique causal minimum-phase root of Z(/2) as given in 
proposition B.2, and 'Yk is the inverse Fourier transform of T(/2). 

Proof 

The proof of this proposition is similar to the one of proposition B.3. 
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Appendix C. Identification of the optimally robust decision feedback equal
izer 

In this appendix we shall determine the vectorial Zak transform ~c(fl) of 
the receiving filter and the Fourier transform P(fl) of the feedback filter 
which minimize the mean-square error 

e~ J
0

1

M(fl) [~:~J(fl)K(fl)~:(n) -2Re{f~J(fl)~c(fl) 
(1 + P*(fl))} + 1(1 + P(fl)i2 J dfl, (C.1) 

subject to the causality constraint 

Pk = 0 for all k,;;;;; 0 

on the inverse Fourier transform Pk of P(fl). 

(C.2) 

Before stating and proving the results, we outline the notation used in this 
appendix. Apart from the vectorial Zak transform ~c(fl), we shall use the 
polyphase impulse responses c1,k as defined in eq. ( 43) to describe the re
ceiving filter. The feedback filter will be descibed by means of its Fourier 
transform P(fl) or, equivalently, by its impulse response Pk· Finally, the av
erage channel will be described in terms of both its vectorial Zak transform 
~,t(fl) and its polyphase impulse responses 

- t:,. rm 1 f -t,k = E,;.11 ((-L + k)T)] for all! E {O, ... ,L - 1}, 

where E,;.[.] denotes averaging with respect to the channel ensemble. 

Proposition C.l 

The conditions 

and 

L-1 

Pk = 2: (ft * c,)k 
1=0 

for all fl E /R, 

for all k;:;;.: 1, 

are necessary for the receiving and feedback filters to minimize e. 

Proof 

(C.3) 

(C.4) 

(C.5) 

Condition (C.4) follows immediately from eq. (C.l) by variation with re-
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spect to the components ~c(~,ll), lE {O, ... ,L - 1}, of ~c(ll). Condition. 

(C.S) follows by. translating eq. (C.1) into the equivalent time domain 
expression and variation with respect to the coefficients Pi• j ;:;;:, 1. 

Proposition C.2 

Let Z(ll) be defined as in eq. (73), i.e. 

Z(ll) = [1 - ~J(Il) K~1(1l)~j(ll)]~ 1 , 

and let I'(ll) be the causal minimum-phase root of Z(ll), for which 

Z(ll) = jl'(ll)!Z. 

(C.6) 

(C.7) 

Then I'(ll) exists when N0 > 0 and when M(ll) is bounded for all n E R, 
and the receiving and feedback filters which optimize e cf. eq. (C.1) have 

and 

P(ll) =:: I'(ll) - 1 
'Yo 

for all(} ER (C.8) 

for all ll ER, (C.9) 

where 'Yo is the zeroth term of the inverse Fourier transform 'Yk of I'(ll). 

Proof 

The existence of a causal minimum-phase root I'(ll) of Z(ll) is governed 
by the Paley-Wiener condition 20) 

fl . 

0 
lnZ(Q)dll> -oo, (C.lO) 

which is certainly satisfied when Z(ll) is strictly greater than one and bounded 
for all ll. According to appendix A, this is so when N0 > 0 and when M(ll) 
is bounded for all n E R. Thus having ascertained the existence of I'(ll) 
(which can be calculated from Z(ll) by means of e.g. the recursive proce
dure described in ref. 38), we next express I'(ll) in eq. (C.8) with the aid 
of eq. (C.9) in terms of P(ll). This demonstrates that ~c(Q) and P(ll) as 
given by eqs (C.8) and (C.9) jointly satisfy eq. (C.4). These functions also 
satisfy eq. (C.S), as we shall now de.monstrate. To this end, we first combine 
eqs (C.8), (C.9), (C.6) and (C.7) to show that 
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T 7R>T 1 1 1 
L ;;r.f ~c(.O) = 'Y}r(.O)- r"'(.O)] = 1 + P(.O)- 'YoT*(fl)" (C.ll) 

Making use of eqs. (50), (54), (66) and (67), the inverse Fourier transform 
of this expression is seen to equal 

L-1 1 
~ ift * ct)k = 6k + Pk- -'Y:k for all k, (C.12) 
t=o 'Yo 

1 
where 'Yk" 1 is the inverse Fourier transform of r(.O)' Because r(il) has min-

imum-phase, the sequence 1:1< must be anticausal. Thus fork~ 1, eq. (C.12) 
coincides with eq. (C.5). This concludes the proof. 

Proposition C.3 

The minimum mean-square error emin achieved by the optimally robust DFE 
equals 

Emin = ~ = Pm exp {-J
0

1

ln Z(Q) dil}, 

where pm is the power of the transmitted data sequence, i.e. 

Pm~ J: M(fl)d.Q. 

Proof 

Combination of (C.8) and (C.6) ascertains that 

(C.13) 

(C.14) 

L 2 lr(fl)l2 1 C 1 
~[(fl)K(il)~;(.O) = T2 'Yfi [1- Z(fl)] = T2 'Yfi [Z(fl)- 1]. (C.15) 

Using eqs (C.15), (C.ll), (C.9), (C.7) and (C.14) in eq. (C.1) we obtain the 
first equality of eq. (C.13). The second one is a standard result from spectral 
factorization theory (ref. 29, pp. 161-162). 
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Data equalization 

Samenvatting 

Systemen voor transmissie of registratie van digitale informatie hebben 
vaak te kampen met intersymboolinterferentie (ISI) en ruis. Data-egalisatoren 
dienen om de ongewenste gevolgen van deze verschijnselen te minimaliseren. 
Met behulp van een of meer filters vormen zij schattingen van de verzonden 
datasymbolen, waaruit beslissingen genomen worden met behulp van een 
detector. 

Dit proefschrift handelt over de toepassing van partiele-responsie tech
nieken in data-egalisatie. Deze technieken behelzen het introduceren van be
perkte en bekende ISI en het detecteren van gecorreleerde datasymbolen met 
een toegenomen aantal data-niveau's, waaruit de oorspronkelijke datasym
bolen worden teruggevonden door middel van een deterministische terugtrans
formatie. Het proefschrift toont aan dat deze indirecte aanpak kan leiden tot 
systemen die beter bestand zijn tegen ruis en minder lijden aan foutvoort
planting. 

Bij de beschouwingen over data-egalisatie wordt vervolgens de robuustheid 
van data-egalisatoren betrokken, dat wil zeggen bun capaciteit om naar be
horen te functioneren bij variaties van de systeem-parameters. Deze eigen
schap is in het bijzonder van belang wanneer data-egalisatoren niet adaptief 
kunnen worden uitgevoerd, zoals het geval kan zijn bij hoge datasnelheden, of 
wanneer de toelaatbare vermogens-dissipatie beperkt is. Bij deze be
schouwingen wordt de robuustheid van diverse conventionele egalisatie- en 
detectiemethoden geanalyseerd en worden geoptimaliseerde robuuste versies 
van de meest gangbare data-egalisatoren afgeleid, waarbij als kwaliteitscri
terium een gemiddelde kwadratische foutmaat geldt. 

De resultaten van de analyse worden gei1lustreerd met kwaliteits
vergelijkingen voor een klasse van digitale magnetische registratie-systemen. 
Daartoe wordt allereerst een eenvoudige tijddiscrete karakterisatie van deze 
systemen afgeleid. Naast conventionele egalisatiemethoden worden ook ISI
compensatie en detectie van de meest waarschijnlijke reeks va,n verzonden 
datasymbolen in deze vergelijkingen betrokken. 
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