291,118 research outputs found

    Decoding Cyclic Codes up to a New Bound on the Minimum Distance

    Full text link
    A new lower bound on the minimum distance of q-ary cyclic codes is proposed. This bound improves upon the Bose-Chaudhuri-Hocquenghem (BCH) bound and, for some codes, upon the Hartmann-Tzeng (HT) bound. Several Boston bounds are special cases of our bound. For some classes of codes the bound on the minimum distance is refined. Furthermore, a quadratic-time decoding algorithm up to this new bound is developed. The determination of the error locations is based on the Euclidean Algorithm and a modified Chien search. The error evaluation is done by solving a generalization of Forney's formula

    Decoding Reed-Muller codes over product sets

    Get PDF
    We give a polynomial time algorithm to decode multivariate polynomial codes of degree dd up to half their minimum distance, when the evaluation points are an arbitrary product set SmS^m, for every d<∣S∣d < |S|. Previously known algorithms can achieve this only if the set SS has some very special algebraic structure, or if the degree dd is significantly smaller than ∣S∣|S|. We also give a near-linear time randomized algorithm, which is based on tools from list-decoding, to decode these codes from nearly half their minimum distance, provided d0d 0. Our result gives an mm-dimensional generalization of the well known decoding algorithms for Reed-Solomon codes, and can be viewed as giving an algorithmic version of the Schwartz-Zippel lemma.Comment: 25 pages, 0 figure

    Toric surface codes and Minkowski sums

    Get PDF
    Toric codes are evaluation codes obtained from an integral convex polytope P⊂RnP \subset \R^n and finite field \F_q. They are, in a sense, a natural extension of Reed-Solomon codes, and have been studied recently by J. Hansen and D. Joyner. In this paper, we obtain upper and lower bounds on the minimum distance of a toric code constructed from a polygon P⊂R2P \subset \R^2 by examining Minkowski sum decompositions of subpolygons of PP. Our results give a simple and unifying explanation of bounds of Hansen and empirical results of Joyner; they also apply to previously unknown cases.Comment: 15 pages, 7 figures; This version contains some minor editorial revisions -- to appear SIAM Journal on Discrete Mathematic

    Construction of Rational Surfaces Yielding Good Codes

    Get PDF
    In the present article, we consider Algebraic Geometry codes on some rational surfaces. The estimate of the minimum distance is translated into a point counting problem on plane curves. This problem is solved by applying the upper bound "\`a la Weil" of Aubry and Perret together with the bound of Homma and Kim for plane curves. The parameters of several codes from rational surfaces are computed. Among them, the codes defined by the evaluation of forms of degree 3 on an elliptic quadric are studied. As far as we know, such codes have never been treated before. Two other rational surfaces are studied and very good codes are found on them. In particular, a [57,12,34] code over F7\mathbf{F}_7 and a [91,18,53] code over F9\mathbf{F}_9 are discovered, these codes beat the best known codes up to now.Comment: 20 pages, 7 figure
    • …
    corecore