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Abstract
We give a polynomial time algorithm to decode multivariate polynomial codes of degree d up to
half their minimum distance, when the evaluation points are an arbitrary product set Sm, for
every d < |S|. Previously known algorithms can achieve this only if the set S has some very
special algebraic structure, or if the degree d is significantly smaller than |S|. We also give a
near-linear time algorithm, which is based on tools from list-decoding, to decode these codes
from nearly half their minimum distance, provided d < (1− ε)|S| for constant ε > 0.

Our result gives an m-dimensional generalization of the well known decoding algorithms for
Reed-Solomon codes, and can be viewed as giving an algorithmic version of the Schwartz-Zippel
lemma.
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1 Introduction

Error-correcting codes based on polynomials have played an important role throughout the
history of coding theory. The mathematical phenomenon underlying these codes is that
distinct low-degree polynomials have different evaluations at many points. More recently,
the intimate relation between polynomials and computation has led to polynomial-based
error-correcting codes having a big impact on complexity theory. Notable applications include
PCPs, interactive proofs, polynomial identity testing and property testing.

Our main result is a decoding algorithm for multivariate polynomial codes. Let F be a
field, let S ⊆ F, let d < |S| and let m ≥ 1. Consider the code of all m-variate polynomials of
total degree at most d, evaluated at all points of Sm:

C = {〈P (a)〉a∈Sm | P (X1, . . . , Xm) ∈ F[X1, . . . , Xm], deg(P ) ≤ d}.

When m = 1, this code is known as the Reed-Solomon code [3], and for m > 1 this code is
known as the Reed-Muller code [1, 2]1.

∗ Research supported in part by the National Science Foundation Graduate Research Fellowship under
Grant No. DGE-1433187, NSF grant CCF-1253886, and a Sloan Fellowship.

1 The family of Reed-Muller codes also includes polynomial evaluation codes where the individual degree
d is larger than |S|, and the individual degree is capped to be at most |S| − 1. We do not consider the
d ≥ |S| case in this paper.
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11:2 Decoding Reed-Muller Codes Over Product Sets

The code C above is a subset of FSm , which we view as the space of functions from Sm

to Fq. Given two functions f, g : Sm → F, we define their (relative Hamming) distance
∆(f, g) = Pra∈Sm [f(a) 6= g(a)]. To understand the error-correcting properties of C, we recall
the following well known lemma, often called the Schwartz-Zippel lemma:

I Lemma 1.1. Let F be a field, and let P (X1, . . . , Xm) be a nonzero polynomial over F with
degree at most d. Then for every S ⊆ F,

Pr
a∈Sm

[P (a) = 0] ≤ d

|S|
.

This lemma implies that for any two polynomials P,Q of degree at most d, ∆(P,Q) ≥ (1− d
|S| ).

In other words the minimum distance of C is at least (1− d
|S| ). It turns out that the minimum

distance of C is in fact exactly (1− d
|S| ), and we let δC denote this quantity.

For error-correcting purposes, if we are given a “received word” r : Sm → F such that
there exists a polynomial P of degree at most d with ∆(r, P ) ≤ δC/2, then we know that
there is a unique such P . The problem that we consider in this paper, “decoding C upto half
its minimum distance”, is the algorithmic task of finding this P .

1.1 Our Results
There is a rich history with several deep algebraic ideas surrounding the problem of decoding
multivariate polynomial codes. We first state our main results, and then discuss its relationship
to the various other known results.

I Theorem 1.2 (Efficient decoding of multivariate polynomial codes upto half their minimum
distance). Let F be a finite field, let S, d,m be as above, and let δC = (1− d

|S| ).
There is an algorithm, which when given as input a function r : Sm → F, runs in time

poly(|S|m, log |F|) finds the polynomial P (X1, . . . , Xm) ∈ F[X1, . . . , Xm] of degree at most d
(if any) such that:

∆(r, P ) < δC/2.

As we will discuss below, previously known efficient decoding algorithms for these codes
only either worked for (1) very algebraically special sets S, or (2) very low degrees d, or (3)
decoded from a much smaller fraction of errors (≈ 1

m+1δC instead of 1
2δC).

Using several further ideas, we also show how to implement the above algorithm in near-
linear time to decode upto almost half the minimum distance, provided d is not (1− o(1))|S|.

I Theorem 1.3 (Near-linear time decoding). Let F be a finite field, let S, d,m be as above,
and let δC = (1− d

|S| ). Assume δC > 0 is a constant.
There is an algorithm, which when given as input a function r : Sm → F, runs in time

|S|m · poly(log |S|m, log |F|) finds the polynomial P (X1, . . . , Xm) ∈ F[X1, . . . , Xm] of degree
at most d (if any) with:

∆(r, P ) < (1− o(1)) · δC/2.

Over the rational numbers, we get a version of Theorem 1.2 where the running time is
poly(|S|m, t), where t is the maximum bit-complexity of any point in S or in the image of r.
This enables us to decode multivariate polynomial codes upto half the minimum distance in
the natural special case where the evaluation set S equals {1, 2, . . . , n}.
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We also mention that decoding Reed-Muller codes over an arbitrary product set Sm
appears as a subroutine in the local decoding algorithm for multiplicity codes [17] (see Section
4 on “Solving the noisy system”). Our results allow the local decoding algorithms there to
run efficiently over all fields ([17] could only do this over fields of small characteristic, where
algebraically special sets S are available).

1.2 Related work
There have been many works studying the decoding of multivariate polynomial codes, which
prove (and improve) various special cases of our main theorem.

1.2.1 Reed-Solomon codes (m = 1)
When m = 1, our problem is also known as the problem of decoding Reed-Solomon codes
upto half their minimum distance. That this problem can be solved efficiently is very
classical, and a number of algorithms are known for this (Mattson-Solomon [5], Berlekamp-
Massey [4], Berlekamp-Welch [12]). The underlying algorithmic ideas have subsequently had
a tremendous impact on algebraic algorithms.

For Reed-Solomon codes, it is in fact known how to list-decode beyond half the minimum
distance, upto the Johnson bound (Guruswami-Sudan [6]). This has had numerous further
applications in coding theory, complexity theory and pseudorandomness.

1.2.2 Special sets S

For very special sets S, it turns out that there are some algebraic ways to reduce the decoding
of multivariate polynomial codes over Sm to the decoding of univariate polynomial codes.
This kind of reduction is possible when S equals the whole field F, or more generally when S
equals an affine subspace over the prime subfield of F.

When S = Fq, then Sm = Fmq and Sm can then be identified with the large field Fqm in a
natural Fq-linear way (this understanding of Reed-Muller codes was discovered by [8]). This
converts the multivariate setting into univariate setting, identifies the multivariate polynomial
code as a subcode of the univariate polynomial code, and (somewhat miraculously), the
minimum distance of the univariate polynomial code equals the minimum distance of the
multivariate polynomial code. Thus the classical Reed-Solomon decoding algorithms can
then be used, and this leads to an algorithm for the multivariate setting decoding upto half
the minimum distance. In fact, Pellikaan-Wu [7] observed that this connection allows one to
decode multivariate polynomial codes beyond half the minimum distance too, provided S is
special in the above sense.

Another approach which works in the case of S = Fq is based on local decoding. Here
we use the fact that Sm = Fmq contains many lines (not just the axis-parallel ones), and
then use the univariate decoding algorithms to decode on those lines from (1− d

q )/2 fraction
errors. This approach manages to decode multivariate polynomial codes with S = Fq from
( 1

2 − o(1)) of the minimum distance. Again, this approach does not work for general S, since
a general Sm usually contains only axis-parallel lines (while Fmq has many more lines).

1.2.3 Low degree d

When the degree d of the multivariate polynomial code is significantly smaller than |S|, then
a number of other list-decoding based methods come into play.

CCC 2016



11:4 Decoding Reed-Muller Codes Over Product Sets

The powerful Reed-Muller list-decoding algorithm of Sudan [9] and its multiplicity-based
generalization, based on (m + 1)-variate interpolation and root-finding, can decode from
1 − ( d

|S| )
1

m+1 fraction errors. With small degree d = o(|S|) and m = O(1), this decoding
radius equals 1− o(1)! However when d is much larger (say 0.9 · |S|), then the fraction of
errors decodable by this algorithm is around 1

m+1 · (1−
d
|S| ) = 1

m+1 · δC .
Another approach comes from the list-decoding of tensor codes [10]. While the multivariate

polynomial codes we are interested in are not tensor codes, they are subcodes of the code of
polynomials with individual degree at most d. Using the algorithm of [10] for decoding tensor
codes, we get an algorithm that can decode from a 1− o(1) fraction of errors when d = o(|S|),
but fails to approach a constant fraction of the minimum distance when d approaches |S|.

In light of all the above, to the best of our knowledge, for multivariate polynomial codes
with d > 0.9 · |S| (i.e., δC < 0.1), and S generic, the largest fraction of errors which could be
corrected efficiently was about 1

m+1δC . In particular, the correctable fraction of errors is a
vanishing fraction of the minimum distance, as the number of variables m grows.

We thus believe it is worthwhile to investigate this problem, not only because of its basic
nature, but also because of the many different powerful algebraic ideas that only give partial
results towards it.

1.3 Overview of the decoding algorithm
We now give a brief overview of our decoding algorithms. Let us first discuss the bivariate
(m = 2) case. Here we are given a received word r : S2 → F such that there exists a codeword
P (X,Y ) ∈ F[X,Y ] of degree at most d = (1− δC)|S| with ∆(P, r) < δC

2 . Our goal is to find
P (X,Y ).

First some high-level strategy. An important role in our algorithm is played by the
following observation: the restriction of a degree ≤ d bivariate polynomial P (X,Y ) to a
vertical line (fixing X = α) or a horizontal line (fixing Y = β) gives a degree ≤ d univariate
polynomial. Perhaps an even more important role is played by the following disclaimer:
the previous observation does not characterize bivariate polynomials of degree d! The set
of functions f : S2 → F for which the horizontal restrictions and vertical restrictions are
polynomials of degree ≤ d is the code of polynomials with individual degree at most d (this
is the tensor Reed-Solomon code, with much smaller distance than the Reed-Muller code).
For such a function f to be in the Reed-Muller code, the different univariate polynomials
that appear as horizontal and vertical restrictions must be related in some way. The crux of
our algorithm is to exploit these relations.

It will also help to recap the standard algorithm to decode tensor Reed-Solomon codes
upto half their minimum distance (this scheme actually works for general tensor codes).
Suppose we are given a received word r : S2 → F, and we want to find a polynomial P (X,Y )
with individual degrees at most d which is close to r. One then takes the rows of this
new received word (after having corrected the columns) and decodes them to the nearest
degree ≤ d polynomial. The key point is to pass some “soft information” from the column
decodings to the row decodings; the columns which were decoded from more errors are
treated with lower confidence. This decodes the tensor Reed-Solomon code from 1/2 the
minimum distance fraction errors. Several ingredients from this algorithm will appear in our
Reed-Muller decoding algorithm.

Now we return to the problem of decoding Reed-Muller codes. Let us write P (X,Y ) as a
single variable polynomial in Y with coefficients in F[X]: P (X,Y ) =

∑d
i=0 Pi(X)Y d−i, where

deg(Pi) ≤ i. For each α ∈ S, consider the restricted univariate polynomial P (α, Y ). Since
deg(P0) = 0, P0(α) must be the same for each α. Thus all the polynomials 〈P (α, Y )〉α∈S
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have the same coefficient for Y d. Similarly, the coefficients of Y d−i in the polynomials
〈P (α, Y )〉α∈S fit a degree i polynomial.

As in the tensor Reed-Solomon case, our algorithm begins by decoding each column r(α, ·)
to the nearest degree ≤ d univariate polynomial. Now, instead of trying to use these decoded
column polynomials to recover P (X,Y ) in one shot, we aim lower and just try to recover
P0(X). The advantage is that P0(X) is only a degree 0 polynomial, and is thus resilient to
many more errors than a degree d polynomial. Armed with P0(X), we then proceed to find
P1(X). The knowledge of P0(X) allows us to decode the columns r(α, ·) to a slightly larger
radius; in turn this improved radius allows us to recover the degree 1 polynomial P1(X). At
the ith stage, we have already recovered P0(X), P1(X), . . . , Pi−1(X). Consider, for each
α ∈ S, the function fα(Y ) = r(α, Y )−

∑i−1
j=0 Pj(α)Y d−j . Our algorithm decodes fα(Y ) to

the nearest degree d − i polynomial: note that as i increases, we are decoding to a lower
degree polynomial, and hence we are able to handle a larger fraction of errors. Define h(α) to
be the coefficient of Y d−i in the polynomial so obtained; this “should” equal the evaluation
of the degree i polynomial Pi(α). So we next decode h(α) to the nearest degree i polynomial
(using the appropriate soft information), and it turns out that this decoded polynomial must
equal Pi(X). By the time i reaches d, we would have recovered P0(X), P1(X), . . . , Pd(X),
and hence all of P (X,Y ). Summarizing, the algorithm repeatedly decodes the columns
r(α, ·), and at each stage it uses the relationship between the different univariate polynomial
P (α, Y ) to: (1) learn a little bit more about the polynomial P (X,Y ), and (2) increase the
radius to which we can decode r(α, ·) in the next stage. This completes the description of
the algorithm in the m = 2 case.

The case of general m is very similar, with only a small augmentation needed. Decoding
m-variate polynomials turns out to reduce to decoding m− 1-variate polynomials with soft
information; thus in order to make a sustainable recursive algorithm, we aim a little higher
and instead solve the more general problem of decoding multivariate polynomial codes with
uncertainties (where each coordinate of the received word has an associated “confidence”
level).

To implement the above algorithms in near-linear time, we use some tools from list-
decoding. The main bottleneck in the running time is the requirement of having to decode
the same column r(α, ·) multiple times to larger and larger radii (to lower and lower degree
polynomials). To save on these decodings, we can instead list-decode r(α, ·) to a large radius
using a near-linear time list-decoder for Reed-Solomon codes; this reduces the number of
required decodings of the same column from d to O(1) (provided d < (1 − Ω(1))|S|). For
the m = 2 case this works fine, but for m > 2 case this faces a serious obstacle; in general it
is impossible to efficiently list-decode Reed-Solomon codes with uncertainties beyond half
the minimum distance of the code (the list size can be superpolynomial). We get around
this using some technical ideas, based on speeding-up the decoding of Reed-Muller codes
with uncertainties when the fraction of errors is significantly smaller than half the minimum
distance. For details, see Section 6.

1.4 Organization of this paper
In Section 2, we cover the notion of weighted distance, which will be used in handling
Reed-Solomon and Reed-Muller decoding with soft information on the reliability of the
symbols in the encoding. In Section 3, we state and prove a polynomial time algorithm for
decoding bivariate Reed-Muller codes to half the minimum distance. We then generalize the
proof to decode multivariate Reed-Muller codes in Section 4. Finally, in sections 5 and 6, we
show that decoding Reed-Muller codes to almost half the minimum distance can be done in
near-linear time by improving on the algorithms in Section 3 and 4.

CCC 2016
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2 Preliminaries

At various stages of the decoding algorithm, we will need to deal with symbols and received
words in which we have varying amounts of confidence. We now introduce some language to
deal with such notions.

Let Σ denote an alphabet. A weighted symbol of Σ is simply an element of Σ× [0, 1]. In
the weighted symbol (σ, u), we will be thinking of u ∈ [0, 1] as our uncertainty that σ is the
symbol we should be talking about.

For a weighted symbol (σ, u) and a symbol σ′, we define their distance ∆((σ, u), σ′) by:

∆((σ, u), σ′) =
{

1− u/2 σ 6= σ′

u/2 σ = σ′

For a weighted function r : T → Σ× [0, 1], and a (conventional) function f : T → Σ, we
define their Hamming distance by

∆(r, f) =
∑
t∈T

∆(r(t), f(t)).

The key inequality here is the triangle inequality.

I Lemma 2.1 (Triangle inequality for weighted functions). Let f, g : T → Σ be functions, and
let r : T → Σ× [0, 1] be a weighted function. Then:

∆(r, f) + ∆(r, g) ≥ ∆(f, g).

Proof. We will show that if t ∈ T is such that f(t) 6= g(t), then ∆(r(t), f(t))+∆(r(t), g(t)) ≥
1. This will clearly suffice to prove the lemma.

Let r(t) = (σ, u). Suppose f(t) = σ1 and g(t) = σ2. Then either σ 6= σ1 or σ 6= σ2,
or both. Thus either we have ∆(r(t), f(t)) + ∆(r(t), g(t)) = (1 − u/2) + u/2 or we have
∆(r(t), f(t)) + ∆(r(t), g(t)) = u/2 + (1 − u/2), or we have ∆(r(t), f(t)) + ∆(r(t), g(t)) =
(1− u/2) + (1− u/2). In all cases, we have ∆(r(t), f(t)) + ∆(r(t), g(t)) ≥ 1, as desired. J

The crucial property that this implies is the unique decodability up to half the minimum
distance of a code for weighted received words.

I Lemma 2.2. Let C ⊆ ΣT be a code with minimum distance ∆. Let r : T → Σ× [0, 1] be a
weighted function. Then there is at most one f ∈ C satisfying

∆(r, f) < ∆/2.

Furthermore, for this particular definition of weighted distance, there is a very natural
decoding algorithm, due to Forney, to find the unique f ∈ C in Lemma 2.2 [13]. For each
weighted symbol (x, u), we erase x with probability u. We then apply a standard decoding
algorithm that handles both errors and erasures. This successfully finds the unique codeword
f as long as 2E + F < ∆, where E denotes the number of errors and F denotes the number
of erasures. With this definition of weighted distance, the condition that ∆(r, f) < ∆/2 is
equivalent to the expected value of 2E + F being at most ∆.
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3 Bivariate Reed-Muller Decoding

In this section, we provide an algorithm for decoding bivariate Reed-Muller codes to half
the minimum distance. Consider the bivariate Reed-Muller decoding problem. We are
given a received word r : S2 → F. Suppose that there is a codeword C ∈ F[X,Y ] with
deg(C) ≤ d, whose distance ∆(r, C) from the received word is at most half the minimum
distance |S|(|S| − d)/2. The following result says that there is a polynomial time algorithm
in the size of the input |S|2 to find C:

I Theorem 3.1. Let F be a finite field and let S ⊆ F be a nonempty subset of size |S| = n.
Given a received word r : S2 → F, there is a O(n3 polylog(n, |F|)) time algorithm to find the
unique polynomial (if it exists) C ∈ F[X,Y ] with deg(C) ≤ d such that

∆(r, C) < n2

2

(
1− d

n

)
.

3.1 Outline of Algorithm
The general idea of the algorithm is to write C(X,Y ) =

∑d
i=0 Pi(X)Y d−i ∈ F[X][Y ] as

a polynomial in Y with coefficients as polynomials in F[X], and attempt to uncover the
coefficients Pi(X) one at a time.

We outline the first iteration of the algorithm, which uncovers the coefficient P0(X) of
degree 0. View the encoded message as a matrix on S × S, where the rows are indexed by
x ∈ S and the columns by y ∈ S. We first Reed-Solomon decode the rows r(x, Y ), x ∈ S to
half the minimum distance (n− d)/2 and extract the coefficient of Y d in those decodings.
This gives us guesses for what P0(x) is for x ∈ S. However, this isn’t quite enough to
determine P0(X). So we will also include some soft information which tells us how uncertain
we are that the coefficient is correct. The uncertainty is a number in [0, 1] that is based
on how far the decoded codeword Gx(Y ) is from the received word r(x, Y ). The farther
apart, the higher the uncertainty. A natural choice for the uncertainty is simply the ratio
of the distance ∆(Gx(Y ), r(x, Y )) to half the minimum distance (n − d)/2. In the event
that the Reed-Solomon decoding finds no codeword, we make an arbitrary guess and set the
uncertainty to be 1. Let f : S → F × [0, 1] be the function of guesses for P0(x) and their
uncertainties. We then use a Reed-Solomon decoder with uncertainties to find the degree
0 polynomial that is closest to f(X). This will give us P0(X). Finally, subtract P0(X)Y d
from r(X,Y ) and repeat to get the subsequent coefficients.

In the algorithm, we use REED-SOLOMON-DECODER(r, d) to denote the O(n polylogn)
time algorithm that performs Reed-Solomon decoding of degree d to half the minimum
distance [11, 12]. We use RS-SOFT-DECODER(r, d) to denote the O(n2 polylogn) time
algorithm that performs Reed-Solomon decoding of degree d with uncertainties to half the
minimum distance, which is based on Forney’s generalized minimum distance decoding
algorithm for concatenated codes [13].

3.2 Proof of Theorem 3.1
Correctness of Algorithm. It suffices to show that Qi(X) = Pi(X) for i = 0, 1, . . . , d, which
we prove by induction. For this proof, the base case and inductive step can be handled by a
single proof. We assume the inductive hypothesis that we have Qj(X) = Pj(X) for j < i.
Note that the base case is i = 0 and in this case, we assume nothing.

It is enough to show ∆(fi(X), Pi(X)) < n
2
(
1− i

n

)
. Then Pi(x) is the unique polynomial

within weighted distance n
2
(
1− i

n

)
of fi(X). So RS-SOFT-DECODER(fi(X), i) will output

Qi(X) = Pi(X).

CCC 2016
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Algorithm 1 Decoding Bivariate Reed-Muller
1: Input: r : S2 → F.
2: for i = 0, 1, . . . , d do
3: Define ri : S × S → F by

ri(X,Y ) = r(X,Y )−
i−1∑
j=0

Qj(X)Y d−j .

4: for x ∈ S do
5: Define ri,x : S → F by

ri,x(Y ) = ri(x, Y ).

6: Define Gx(Y ) ∈ F[Y ] by

Gx(Y ) = REED-SOLOMON-DECODER(ri,x(Y ), d− i).

7: σx ← CoeffY d−i(Gx).
8: δx ← ∆(ri,x, Gx).
9: end for

10: Define the weighted function fi : S → F× [0, 1] by

fi(x) =
(
σx,

δx
(n− d+ i)/2

)
.

11: Define Qi : S → F by

Qi(X) = RS-SOFT-DECODER(fi(X), i).

12: end for

13: Output:
d∑
i=0

Qi(X)Y d−i.

We first show that ri(X,Y ) is close to Ci(X,Y ) =
∑d
j=i Pj(X)Y d−j . Observe that:

ri(X,Y )− Ci(X,Y )

= (ri(X,Y ) +
i−1∑
j=1

Pj(X)Y d−j)− (Ci(X,Y ) +
i−1∑
j=1

Pj(X)Y d−j))

= (ri(X,Y ) +
i−1∑
j=1

Qj(X)Y d−j)− C(X,Y )

= r(X,Y )− C(X,Y ).

Hence,

∆(ri(X,Y ), Ci(X,Y )) = ∆(r(X,Y ), C(X,Y )) < n2

2

(
1− d

n

)
.

For each x ∈ S, define Ci,x(Y ) = Ci(x, Y ). Define ∆x = ∆(ri,x(Y ), Ci,x(Y )). Let
A = {x ∈ S|Gx(Y ) = Ci,x(Y )} be the set of choices of x such that Gx(Y ) = REED-
SOLOMON-DECODER(ri,x(Y ), d− i) produces Ci,x(Y ).
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Then, for x ∈ A, we have

δx = ∆(ri,x(Y ), Gx(Y )) = ∆(ri,x(Y ), Ci,x(Y )) = ∆x,

which gives us an uncertainty value of

ui,x = ∆x

(n− d+ i)/2 .

For x /∈ A, either we have Gx 6= Ci,x, or the Reed-Solomon decoder does not find a
polynomial. In the first case, Lemma 2.1 tells us:

δx = ∆(ri,x(Y ), Gx(Y )) ≥ n− d+ i−∆(ri,x(Y ), Ci,x(Y )) = n− d+ i−∆x,

which gives us an uncertainty value of

ui,x = n− d+ i−∆x

(n− d+ i)/2 .

Finally, in the case where the Reed-Solomon decoder does not find a polynomial, we get
an uncertainty value of

ui,x = 1.

This means that the contribution of the corresponding guess to the weighted distance
∆(fi(X), Pi(X)) is 1/2, However, we know that since no polynomial was found, ∆x ≥ n−d+i

2 ,
so the contribution to the weighted distance had the Reed-Solomon decoder found an incorrect
polynomial not matching the true codeword is 1− 1

2
n−d+i−∆x

(n−d+i)/2 ≥ 1/2. So for the purposes
of upper bounding the weighted distance ∆(fi(X), Pi(X)), we treat this case the same as
decoding to the wrong polynomial.

We now upper bound ∆(fi(X), Pi(X)):

∆(fi(X), Pi(X)) ≤
∑
x∈A

1
2

∆x

(n− d+ i)/2 +
∑
x/∈A

1− 1
2
n− d+ i−∆x

(n− d+ i)/2

≤
∑
x∈A

∆x

n− d+ i
+
∑
x/∈A

1− n− d+ i−∆x

n− d+ i

=
∑
x∈A

∆x

n− d+ i
+
∑
x/∈A

∆x

n− d+ i

=
∑
x∈Sm

∆x

n− d+ i

= ∆(ri(X,Y ), Ci(X,Y ))
n− d+ i

<
n2

2

(
1− d

n

)
1

n− d+ i

= n

2 ·
n− d

n− d+ i

≤ n

2 ·
n− i
n

= n

2

(
1− i

n

)
.
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Runtime of Algorithm

We claim that the runtime of our algorithm is O(n3 polylogn), ignoring the polylog |F| factor
from field operations. The algorithm has d+ 1 iterations. In each iteration, we update ri,
apply REED-SOLOMON-DECODER to n rows and apply RS-SOFT-DECODER a single
time to get the leading coefficient. As updating takes O(n2) time, REED-SOLOMON-
DECODER takes O(n polylogn) time, and RS-SOFT-DECODER takes O(n2 polylogn)
time, we get O(n2 polylogn) for each iteration. d + 1 iterations gives a total runtime of
O(dn2 polylogn) < O(n3 polylogn). J

4 Reed-Muller Decoding for General m

We now generalize the algorithm for decoding bivariate Reed-Muller codes to handle Reed-
Muller codes of any number of variables. As before, we write the codeword as a polynomial in
one of the variables and attempt to uncover its coefficients one at a time. Interestingly, this
leads us to a Reed-Muller decoding on one fewer variable, but with uncertainties. This lends
itself nicely to an inductive approach on the number of variables, however, the generalization
requires us to be able to decode Reed-Muller codes with uncertainties. This leads us to our
main theorem:

I Theorem 4.1. Let F be a finite field and let S ⊆ F be a nonempty subset of size |S| = n.
Given a received word with uncertainties r : Sm → F×[0, 1], there is a O(nm+2 polylog(n, |F|))
time algorithm to find the unique polynomial (if it exists) C ∈ F[X1, . . . , Xm] with deg(C) ≤ d
such that

∆(r, C) < nm

2

(
1− d

n

)
.

Note that to decode a Reed-Muller code without uncertainties, we may just set all the
initial uncertainties to 0. The algorithm slows by a factor of n from the bivariate case due to
having to use the RS-SOFT-DECODER instead of the faster REED-SOLOMON-DECODER
on the rows of the received word.

Proof. The proof is by induction on the number of variables, and closely mirrors the proof
of the bivariate case.

Base Case

We are given a received word with uncertainties r : S → F × [0, 1] and asked to find the
unique polynomial C ∈ F[X] with deg(C) ≤ d within weighted distance n−d

2 of r. This is
just Reed-Solomon decoding with uncertainty, which can be done in time O(n2 polylogn).

Inductive Step

Assume that the result holds for m variables. That is, assume we have access to an algorithm
REED-MULLER-DECODER(r,m, d) which takes as input a received word with uncertainties
r : Sm → F × [0, 1], and outputs the unique polynomial of degree at most d (if it exists)
within weighted distance nm

2
(
1− d

n

)
from r. We want to produce an algorithm for m+ 1

variables. Before we progress, we set up some definitions to make the presentation and
analysis of the algorithm cleaner. We are given r : Sm+1 → F× [0, 1]. View r as a map from
Sm × S → F× [0, 1], and write r(X, Y ) = (r(X, Y ), u(X, Y )).
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Suppose that there exists a polynomial C ∈ F[X, Y ] with deg(C) ≤ d such that

∆(r, C) < nm+1

2

(
1− d

n

)
.

View C as a polynomial in Y with coefficients in F[X], C(X, Y ) =
∑d
i=0 Pi(X)Y d−i. The

general strategy of the algorithm is to determine the Pi’s inductively by performing d+ 1
iterations from i = 0 to i = d, and recovering Pi(X) at the i-th iteration.

For the i-th iteration, consider the word

ri(X, Y ) =

r(X, Y )−
i−1∑
j=0

Pj(X)Y d−j , u(X, Y )

 .

Since r is close to
∑d
j=0 Pj(X)Y d−j , ri will be close to Ci =

∑d
j=i Pj(X)Y d−j . Our goal

is to find Pi(X), the leading coefficient of Ci when viewed as a polynomial in Y . For
each x ∈ Sm, we decode the Reed-Solomon code with uncertainties given by ri(x, Y ) and
extract the coefficient of Y d−i along with how uncertain we are about the correctness of this
coefficient. This gives us a guess for the value Pi(x) and our uncertainty for this guess. We
construct the function fi : Sm → F × [0, 1] of guesses for Pi with their uncertainties. We
then apply the induction hypothesis of Theorem 4.1 to fi to recover Pi.

Correctness of Algorithm

Suppose there is a polynomial C(X, Y ) =
∑d
i=0 Pi(X)Y d−i such that

∆(r(X, Y ), C(X, Y )) < nm+1

2

(
1− d

n

)
.

We will show by induction that the i-th iteration of the algorithm produces Qi(X) = Pi(X).
For this proof, the base case and inductive step can be handled by a single proof. We assume
the inductive hypothesis that we have Qj(X) = Pj(X) for j < i. Note that the base case is
i = 0 and in this case, we assume nothing.

It is enough to show ∆(fi(X), Pi(X)) < nm

2
(
1− i

n

)
. Then Pi(X) is the unique poly-

nomial within weighted distance nm

2
(
1− i

n

)
of fi(X). This means that REED-MULLER-

DECODER(fi(X),m, i) will output Qi(X) = Pi(X).
We first show that ri(X, Y ) is close to Ci(X, Y ) =

∑d
j=i Pj(X)Y d−j . Observe that:

ri(X, Y )− Ci(X, Y )

= (ri(X, Y ) +
i−1∑
j=1

Pj(X)Y d−j)− (Ci(X, Y ) +
i−1∑
j=1

Pj(X)Y d−j))

= (ri(X, Y ) +
i−1∑
j=1

Qj(X)Y d−j)− C(X, Y )

= r(X, Y )− C(X, Y ).

Hence,

∆(ri(X, Y ), Ci(X, Y )) = ∆(r(X, Y ), C(X, Y )) < nm+1

2

(
1− d

n

)
.
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Algorithm 2 Decoding Reed-Muller with Uncertainties
1: Input: r : Sm+1 → F× [0, 1].
2: for i = 0, 1, . . . , d do
3: Define ri : Sm × S → F× [0, 1] by

ri(X, Y ) =

r(X, Y )−
i−1∑
j=0

Qj(X)Y d−j , u(X, Y )

 .

4: for x ∈ Sm do
5: Define ri,x : S → F× [0, 1] by

ri,x(Y ) = ri(x, Y ).

6: Define Gx(Y ) ∈ F[Y ] by

Gx(Y ) = RS-SOFT-DECODER(ri,x(Y ), d− i).

7: σx ← CoeffY d−i(Gx).
8: δx ← ∆(ri,x, Gx).
9: end for

10: Define the weighted function fi : Sm → F× [0, 1] by

fi(x) =
(
σx,

δx

(n− d+ i)/2

)
.

11: Define Qi : Sm → F by

Qi(X) = REED-MULLER-DECODER(fi(X),m, i).

12: end for

13: Output:
d∑
i=0

Qi(X)Y d−i.

For each x ∈ Sm, define Ci,x(Y ) = Ci(x, Y ). Define ∆x = ∆(ri,x(Y ), Ci,x(Y )). Let
A = {x ∈ Sm|Gx(Y ) = Ci,x(Y )} be the set of choices of x such that Gx(Y ) = RS-SOFT-
DECODER(ri,x(Y ), d− i) produces Ci,x(Y ).

Then, for x ∈ A, we have

δx = ∆(ri,x(Y ), Gx(Y )) = ∆(ri,x(Y ), Ci,x(Y )) = ∆x.

And for x /∈ A, we have Gx 6= Ci,x, so

δx = ∆(ri,x(Y ), Gx(Y )) ≥ n− d+ i−∆(ri,x(Y ), Ci,x(Y )) = n− d+ i−∆x.

We now upper bound ∆(fi(X), Pi(X)):

∆(fi(X), Pi(X)) ≤
∑
x∈A

1
2

δx

(n− d+ i)/2 +
∑
x/∈A

1− 1
2

δx

(n− d+ i)/2

≤
∑
x∈A

∆x

n− d+ i
+
∑
x/∈A

1− n− d+ i−∆x

n− d+ i
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=
∑
x∈A

∆x

n− d+ i
+
∑
x/∈A

∆x

n− d+ i

=
∑

x∈Sm

∆x

n− d+ i

= ∆(ri(X, Y ), Ci(X, Y ))
n− d+ i

<
nm+1

2

(
1− d

n

)
1

n− d+ i

= nm

2 ·
n− d

n− d+ i

≤ nm

2 ·
n− i
n

= nm

2

(
1− i

n

)
.

Runtime of Algorithm

We claim the runtime of our m-variate Reed-Muller decoder is O(nm+2 polylogn), ignoring
the polylog |F| factor from field operations. We again proceed by induction on m. In the
base case of m = 1, we simply run the Reed-Solomon decoder with uncertainties, which
runs in O(n2 polylogn) time. Now suppose the m-variate Reed-Muller decoder runs in time
O(nm+2 polylogn). We need to show that the m+ 1-variate Reed-Muller decoder runs in
time O(nm+3 polylogn).

The algorithm makes d+ 1 iterations. In each iteration, we perform nm Reed-Solomon
decodings with uncertainties, and extract the leading coefficient along with its uncertainty
for each one. Each Reed-Solomon decoding takes O(n2 polylogn) time, while computing an
uncertainty of a leading coefficient takes O(n polylogn). So in this step, we have cumulative
runtime O(nm+2 polylogn). Next we do a single m-variate Reed-Muller decoding with
uncertainties, which takes O(nm+2 polylogn) by our induction hypothesis. This makes the
total runtime O(dnm+2 polylogn) ≤ O(nm+3 polylogn), as desired. J

5 Near-Linear Time Decoding in the Bivariate Case

In this section, we present our near-linear time decoding algorithm for bivariate Reed-Muller
codes.

I Theorem 5.1. Let α ∈ (0, 1) be a constant. Let F be a finite field and let S ⊆ F be a
nonempty subset of size |S| = n. Let d = αn. Given a received word r : S2 → F, there is a
O(n2 polylog(n, |F|)) time algorithm to find the unique polynomial (if it exists) C ∈ F[X,Y ]
with deg(C) ≤ d such that

∆(r, C) < n2

2

(
1− d

n
− 1√

n

)
.

5.1 Outline of Improved Algorithm
Recall that the decoding algorithms we presented in the previous sections make d+1 iterations,
where d = αn, revealing a single coefficient of the nearest codeword during one iteration. In
a given iteration, we decode each row of ri(X,Y ) to the nearest polynomial of degree d− i,
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extracting the coefficient of Y d−i and its uncertainty. Then we Reed-Solomon decode with
uncertainties to get the leading coefficient of C(X,Y ), when viewed as a polynomial in Y .

The runtime of this algorithm is O(n3 polylogn). Each iteration has n Reed-Solomon
decodings and a single Reed-Solomon decoding with uncertainties. As Reed-Solomon de-
coding takes O(n polylogn) time and Reed-Solomon decoding with uncertainties takes
O(n2 polylogn) time, we get a runtime of O(n3 polylogn) with d+ 1 iterations. To achieve
near-linear time, we need to shave off a factor of n on both the number of Reed-Solomon
decodings and the runtime of Reed-Solomon decoding with uncertainties.

To save on the number of Reed-Solomon decodings, we will instead list decode beyond
half the minimum distance (using a near-linear time Reed-Solomon list-decoder), and show
that the list we get is both small and essentially contains all of the decoded polynomials
we require for Ω(n) iterations of i. So we will do O(n) Reed-Solomon list-decodings total
instead of O(n2) Reed-Solomon unique decodings to half the minimum distance.

To save on the runtime of Reed-Solomon decoding with uncertainties, we will use a
probabilistic variant of Forney’s generalized minimum distance decoding algorithm, which
runs in near-linear time, but reduces the decoding radius from 1/2 the minimum distance to
1/2− o(1) of the minimum distance.

5.2 Proof of Fast Bivariate Reed-Muller Decoding
Proof of Theorem 5.1. As in the proof of Theorem 3.1, we write C =

∑d
j=0 Pj(X)Y d−j ,

and inductively find the Pi(X). Suppose that we have successfully found the first i of the
Pj(X) and are now trying to find Pi(X). Also as before, we fix x ∈ S and guess the value of
Pi(x) by Reed-Solomon decoding ri,x = r(x, Y )−

∑i−1
j=0 Pj(x)Y d−j to the nearest polynomial

of degree at most i within distance (n− d+ i)/2.

Reducing the Number of Decodings

To reduce the number of Reed-Solomon decodings, we will instead list decode past half the
minimum distance, and use the small list of polynomials we get to guess Pi(x) for the next
Ω(n) values of j. In the above setting, we have that ri,x : S → F is a received word for a
Reed-Solomon code Ci of degree at most di = d − i. Let t be the radius to which we list
decode, and let Li,x = {C ∈ Ci|∆(C, ri,x) < t} be the list of codewords within distance t of
ri,x. The radius to which we can decode while maintaining a polynomial-size list is given by
the Johnson bound:

n(1−
√

1− δi),

where δi = 1 − d−i
n > 1 − d

n = 1 − α is the relative distance of the code. By Taylor
approximating the square root, we see that the Johnson bound exceeds half the minimum
distance by Ω(n):

n(1−
√

1− δi) >n(1− (1− δi/2 + δ2
i /8 + 3δ3

i /16))
=n(δi/2 + (1− α)2/8 + 3(1− α)3/16)
= (n− d+ i)/2 + ((1− α)2/8)n+ cn,

where c = 3(1− α)3/16 is a positive constant. By a standard list-size bound as in the one in
Cassuto and Bruck [14], we see that if we set the list decoding radius t = (n − d + i)/2 +
((1 − α)2/8)n, then the size of the list |Li,x| < 1

c is constant. So the list decoding radius
exceeds half the minimum distance by Ω(n), and the list size is constant. By Aleknovich’s
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fast algorithm for weighted polynomial construction [15], the list Li,x can be produced in
time (1/α)O(1)n log2 n log logn = O(n polylogn). We will let RS-LIST-DECODER(r, d, t)
denote the Reed-Solomon list decoder that outputs a list of all ordered pairs of polynomials
of degree at most d within distance t to the received word r along with their distances to r.
Since the list size is constant, all of the distances can be computed in O(n polylogn) time.

For the next cn values of j, we search the O(1)-size list Li,x to find the nearest polynomial
of degree at most n− d+ j within distance (n− d+ j)/2 from rj,x.

Faster Reed-Solomon Decoding with Uncertainties

Once we have all the guesses for Pi(x), x ∈ S along with their uncertainties, we want to apply
a near-linear time decoding algorithm to find Pi(x). In the appendix, we give a description of
the probabilistic GMD algorithm that gives a faster Reed-Solomon decoder with uncertainties.
We will refer to this algorithm as FAST-RS-DECODER(f, i), where f : S → F× [0, 1] is a
received word with uncertainties, and i is the degree of the code. FAST-RS-DECODER(f, i)
will output the codeword within distance (n − i −

√
n)/2 (if it exists) with probability at

least 1− 1
nΩ(1) (the Ω(1) can be chosen to be an arbitrary constant, by simply repeating the

algorithm independently several times).

Correctness of Algorithm

View the received word as a matrix on S × S, where the rows are indexed by x ∈ S and the
columns by y ∈ S. For correctness, we have to show two things. First, that Algorithm 3
produces the same row decodings Gx(Y ) as Algorithm 2. Second, that the algorithm actually
extracts the coefficients of C(X,Y ) =

∑d
i=0 Pi(X)Y d−i when viewed as a polynomial in Y ,

i.e. Qi(X) = Pi(X) for i = 0, . . . , d. Define rj·2cn+k : S × S → F by

rj·2cn+k(X,Y ) = r(X,Y )−
j·2cn+k−1∑

i=0
Qi(X)Y d−i,

and define rj·2cn+k,x : S → F by

rj·2cn+k,x(Y ) = rj·2cn+k(x, Y ).

Then we want to show that in each of the d+ 1 iterations of (j, k), we have

Gx(Y ) = REED-SOLOMON-DECODER (rj·2cn+k,x(Y ), d− j · 2cn− k) .

It is enough to instead show that the list Lj,k,x contains all the polynomials of degree at
most d− j · 2cn− k within distance tj = (n− d+ j · 2cn)/2 + cn > (n− d+ j · 2cn+ k)/2 of
rj·2cn+k,x(Y ). Furthermore, we want to show Qj·2cn+k(X) = Pj·2cn+k(X).

We prove this by induction on (j, k). The base case is j = k = 0. For each row x ∈ S, we
have

L0,0,x = RS-LIST-DECODER(rj·2cn,x(Y ), d− j · 2cn, t0).

The induction hypothesis is that for every (j′, k′) < (j, k) in the lexicographic order,
we have Lj′,k′,x = {(C,∆(C, rj′·2cn+k′,x))|C ∈ Cj′·2cn+k′ ,∆(C, rj′·2cn+k′,x) < tj′} and that
Qj′·2cn+k′(X) = Pj′·2cn+k′(X). We will show the corresponding statements hold true for
(j, k).

If k = 0, then the fact that the algorithm extracted the correct coefficients thus far
means that the rj·2cn are the same in both Algorithm 2 and Algorithm 3. Since Lj,0,x =
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Algorithm 3 Decoding Bivariate Reed-Muller
1: Input: r : S2 → F.
2: Let c = ((1− α)2/8).
3: for j = 0, 1, . . . , d

2cn do
4: Let tj = n−d+j·2cn

2 + cn.
5: Define rj·2cn : S × S → F by

rj·2cn(X,Y ) = r(X,Y )−
j·2cn−1∑
i=0

Qi(X)Y d−i.

6: for x ∈ S do
7: Define rj·2cn,x : S → F by

rj·2cn,x(Y ) = rj·2cn(x, Y ).

8: Define Cj·2cn by

Cj·2cn = {C(Y ) ∈ F[Y ]| deg(C) < d− j · 2cn}.

9: Define Lj,0,x = RS-LIST-DECODER(rj·2cn,x(Y ), d− j · 2cn, tj).
10: end for
11: for k = 0, 1, . . . , 2cn− 1 do
12: for x ∈ S do
13: Define (Gx(Y ), δx) ∈ Lj,k,x to be the unique codeword (if any) with

δx <
n− d+ j · 2cn+ k

2

14: σx ← CoeffY d−j·2cn−k (Gx).
15: end for
16: Define the weighted function fj·2cn+k : S → F× [0, 1] by

fj·2cn+k(x) =
(
σx,

δx
(n− d+ j · 2cn+ k)/2

)
.

17: Define Qj·2cn+k : S → F by

Qj·2cn+k(X) = FAST-RS-DECODER(fj·2cn+k(X), j · 2cn+ k).

18: for x ∈ S do
19: Define

Lj,k+1,x = {(C −Qj·2cn+k(x)Y d−j·2cn−k, δC,x)
|C ∈ Lj,k,x,CoeffY d−j·2cn−k (C) = Qj·2cn+k(x)}.

20: end for
21: end for
22: end for

23: Output:
d∑
i=0

Qi(X)Y d−i.
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RS-LIST-DECODER(rj·2cn,x(Y ), d − j · 2cn, tj), the induction hypothesis on Lj,0,x is met
by the definition of RS-LIST-DECODER.

If k 6= 0, then we know from the induction hypothesis that

Lj,k−1,x = {(C,∆(C, rj·2cn+k−1,x))|C ∈ Cj·2cn+k−1,∆(C, rj·2cn+k−1,x) < tj}.

We want to say that

Lj,k,x = {(C,∆(C, rj·2cn+k,x))|C ∈ Cj·2cn+k,∆(C, rj·2cn+k,x) < tj}.

We defined Lj,k,x in terms of Lj,k−1,x to be:

{(C −Qj·2cn+k−1(x)Y d−j·2cn−k+1,∆(C, rj·2cn+k−1,x))
|C ∈ Lj,k−1,x,CoeffY d−j·2cn−k+1(C) = Qj·2cn+k−1(x)}.

As Qj·2cn+k−1(X) = Pj·2cn+k−1(X), Lj,k,x is essentially obtained by taking the codewords
with the correct leading coefficients and subtracting off the leading term. We claim that
what we get is the set of all polynomials of degree at most d− j · 2cn− k within distance tj
of rj·2cn+k,x.

Consider any (G, δ) ∈ Lj,k,x. By definition of Lj,k,x, we know there exists a C ∈ Lj,k−1,x
with CoeffY d−j·2cn−k+1(C) = Qj·2cn+k−1(x) such that

(G, δ) = (C −Qj·2cn+k−1(x)Y d−j·2cn−k+1,∆(C, rj·2cn+k−1,x)).

So we have

C =G+Qj·2cn+k−1(x)Y d−j·2cn−k+1

δ = ∆(C, rj·2cn+k−1,x) < tj .

As CoeffY d−j·2cn−k+1(C) = Qj·2cn+k−1(x), we have deg(G) is at most d − j · 2cn − k.
Also, as rj·2cn+k−1,x = rj·2cn+k,x +Qj·2cn+k−1(x)Y d−j·2cn−k+1, we have ∆(G, rj·2cn+k,x) =
∆(C, rj·2cn+k−1,x) = δ < tj . Hence, G is a polynomial of degree at most d− j ·2cn−k within
distance tj of rj·2cn+k,x.

For the reverse inclusion, suppose G is a polynomial of degree at most d− j · 2cn− k at
distance δ < tj of rj·2cn+k,x. Then C := G+Qj·2cn+k−1(x)Y d−j·2cn−k+1 ∈ Lj,k−1,x. Since
CoeffY d−j·2cn−k+1(C) = Qj·2cn+k−1(x), we get that G = C − Qj·2cn+k−1(x)Y d−j·2cn−k+1 ∈
Lj,k,x, as desired.

It remains to show that Qj·2cn+k(X) = Pj·2cn+k(X). As in the proof of Theorem 4.1,
we show that ∆(fj·2cn+k(X), Pj·2cn+k(X)) < n−j−

√
n

2 , so that the output of FAST-RS-
DECODER(fj·2cn+k(X), j) is Pj·2cn+k(X). Using the first part of the induction we just
proved, we get the same fj·2cn+k(X) as in Algorithm 2. This means we can adopt a nearly
identical argument to get to this step:

∆(fj·2cn+k(X), Pj·2cn+k(X)) ≤ ∆(rj·2cn+k(X,Y ), Cj·2cn+k(X,Y ))
n− d+ j · 2cn+ k

.
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From here, we get:

∆(fj·2cn+k(X), Pj·2cn+k(X)) < n2

2

(
1− d

n
− 1√

n

)
1

n− d+ j · 2cn+ k

= n

2 ·
n− d−

√
n

n− d+ j · 2cn+ k

≤ n

2 ·
n− j · 2cn− k −

√
n

n

= n− j · 2cn− k −
√
n

2 .

Analysis of Runtime of Bivariate Reed-Muller Decoder

We run RS-LIST-DECODER d
2cnn = α

2cn = 4α
(1−α)2n times. Also, we run FAST-RS-

DECODER d = αn times. As both of these algorithms run in O(n polylogn) time, the total
runtime of the algorithm is O(n2 polylog(n, |F|)), after accounting for field operations. As
the input is of size n2, this is near-linear in the size of the input. J

6 Near-Linear Time Decoding in the General Case

A more involved variation of the near-linear time decoding algorithm for bivariate Reed-
Muller codes can be used to get a near-linear time algorithm for decoding Reed-Muller codes
on any number of variables:

I Theorem 6.1. Let F be a finite field and let S ⊆ F be a nonempty subset of size |S| = n.
Let β > 1

2 . Given a received word r : Sm → F, there is a O (nm · polylog(n, |F|)) time
algorithm to find the unique polynomial (if it exists) C ∈ F[X1, . . . , Xm] with deg(C) ≤ d

such that

∆(r, C) < nm

2

(
1− d+ (m− 1)β

√
n

n

)
.

As part of the algorithm for near linear time Reed-Muller decoding, we will need to
decode Reed-Muller codes with uncertainties to various radii less than half their minimum
distance. We require the following theorem to do such decodings efficiently.

I Theorem 6.2. Let F be a finite field and let S ⊆ F be a nonempty subset of size |S| = n.
Let β > 1

2 , and let e be an integer satisfying 0 ≤ e < n− d−mβ
√
n. Given a received word

with uncertainties r : Sm → F× [0, 1], there is a O
(
nm+1

e+1 · polylog(n, |F|)
)
time algorithm

to find the unique polynomial (if it exists) C ∈ F[X1, . . . , Xm] with deg(C) ≤ d such that

∆(r, C) < nm

2

(
1− d+mβ

√
n+ e

n

)
.

I Remark. The algorithm requires the use of the FAST-RS-DECODER to a radius that is
β
√
n less than half the minimum distance. As long as β > 1

2 , the FAST-RS-DECODER runs
in O(n polylogn) time.

Proof of Theorem 6.2. The proof is by induction on the number of variables m. The proof
of the base case of m = 2 is similar to the proof of the inductive step and will be handled
last. Assume the theorem statement is true for m, and let RM-UNC-DECODER(f, d, s)
denote the O

(
nm+1

e+1 · polylog(n, |F|)
)
time algorithm that finds the unique polynomial (if it
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exists) of degree at most d within distance s from f , where f : Sm → F× [0, 1] and s can
be written as nm

2

(
1− d+mβ

√
n+e

n

)
. We want to show that the theorem statement holds for

m+ 1 variables.
The algorithm proceeds as follows: As before, we write C(X, Y ) =

∑d
i=0 Pi(X)Y d−i,

and find the Pi iteratively. In the i-th iteration, decode row ri,x, x ∈ Sm to a degree d− i
polynomial within radius 1

2 (n− d+ i− β
√
n− e) to get Di,x(Y ). To reduce the number of

times we decode, we will instead decode to the larger radius 1
2 (n − d + i − β

√
n) and use

this decoding for e + 1 iterations. Construct the function fi : Sm → F × [0, 1] of (leading
coefficient, uncertainty) =

(
CoeffY d−i(Di,x), ∆(ri,x,Di,x)

(n−d+i−β
√
n−e)/2

)
. Finally, decode fi(X) to a

degree i polynomial within radius nm

2

(
1− i+mβ

√
n

n−d+i

)
to get Qi(X).

Proof of Correctness

We have to show Qi(X) = Pi(X). It is enough to show that

∆(fi, Pi) <
nm

2

(
1− i+mβ

√
n

n− d+ i

)
<
nm

2

(
1− i

n

)
.

Then Pi will be the unique polynomial of degree i within distance nm

2

(
1− i+mβ

√
n

n−d+i

)
of fi.

Since Qi is a polynomial of degree i within distance nm

2

(
1− i+mβ

√
n

n−d+i

)
of fi, Qi must be

equal to Pi.
When we decode ri,x to radius 1

2 (n− d+ i− β
√
n− e), there are four possibilities:

1. The decoding is unsuccessful. In this case, we set Di,x to be any polynomial of degree
n−d+i and set the uncertainty ui = 1. The contribution to ∆(fi, Pi) is ∆(fi(x), Pi(x)) =
1/2, which is bounded above by 1

2
∆(ri,x,Ci,x)

(n−d+i−β
√
n−e)/2 .

2. The decoding succeeds and is correct. In this case, Di,x = Ci,x, so ∆(fi(x), Pi(x)) =
1
2

∆(ri,x,Ci,x)
(n−d+i−β

√
n−e)/2 .

3. The decoding succeeds, but is the wrong codeword, whose leading coefficient disagrees
with that of the correct codeword. In this case, Di,x 6= Ci,x, so

∆(fi(x), Pi(x)) = 1− 1
2

∆(ri,x, Di,x)
(n− d+ i− β

√
n− e)/2

≤ 1− (n− d+ i)−∆(ri,x, Ci,x)
(n− d+ i− β

√
n− e)

≤ 1− (n− d+ i− β
√
n− e)−∆(ri,x, Ci,x)

(n− d+ i− β
√
n− e)

≤ ∆(ri,x, Ci,x)
(n− d+ i− β

√
n− e)

.

4. The decoding succeeds, but is the wrong codeword, whose leading coefficient matches
that of the correct codeword. As in the previous case, Di,x 6= Ci,x, and we have:

∆(fi(x), Pi(x)) = 1
2

∆(ri,x, Di,x)
(n− d+ i− β

√
n− e)/2

≤ 1− 1
2

∆(ri,x, Di,x)
(n− d+ i− β

√
n− e)/2

≤ ∆(ri,x, Ci,x)
(n− d+ i− β

√
n− e)

.
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Algorithm 4 Decoding Reed-Muller with Uncertainties
1: Input: r : Sm+1 → F× [0, 1].
2: for j = 0, 1, . . . , d

e+1 do
3: Let tj = n−d+j·(e+1)−β

√
n

2 .
4: Define rj·(e+1) : Sm × S → F by

rj·(e+1)(X, Y ) = r(X, Y )−
j·(e+1)−1∑

i=0
Qi(X)Y d−i.

5: for x ∈ Sm do
6: Define rj·(e+1),x : S → F by

rj·(e+1),x(Y ) = rj·(e+1)(x, Y ).

7: Define Dj,0,x(Y ) = FAST-RS-DECODER(rj·(e+1),x(Y ), d− j · (e+ 1), tj).
8: Define δx = ∆(Dj,0,x(Y ), rj·(e+1),x(Y )).
9: end for

10: for k = 0, 1, . . . , e do
11: for x ∈ Sm do
12: if deg(Dj,k,x(Y )) ≤ d− j · (e+ 1)− k then

σx ← CoeffY d−j·(e+1)−k (Dj,k,x(Y )).

13: end if
14: end for
15: Define the weighted function fj·(e+1)+k : Sm → F× [0, 1] by

fj·(e+1)+k(x) =
(
σx,min

{
1, δx

(n− d+ j · (e+ 1) + k − β
√
n− e)/2

})
.

16: Define Qj·(e+1)+k : Sm → F by

Qj·(e+1)+k(X) = RM-UNC-DECODER(
fj·(e+1)+k(X), j · (e+ 1) + k,

nm

2

(
1− j · (e+ 1) + k +mβ

√
n

n− d+ j · (e+ 1) + k

))
.

17: for x ∈ Sm do
18: Define Dj,k+1,x : S → F by

Dj,k+1,x = Dj,k,x −Qj·(e+1)+k(x)Y d−j·(e+1)−k.

19: end for
20: end for
21: end for

22: Output:
d∑
i=0

Qi(X)Y d−i.
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Putting it all together, we have:

∆(fi, Pi) ≤
∑

x∈Sm

∆(ri,x, Ci,x)
n− d+ i− β

√
n− e

= ∆(ri, Ci)
n− d+ i− β

√
n− e

= ∆(r, C)
n− d+ i− β

√
n− e

≤
nm+1

2

(
1− d+(m+1)β

√
n+e

n

)
n− d+ i− β

√
n− e

= nm

2
n− d− (m+ 1)β

√
n− e

n− d+ i− β
√
n− e

≤ nm

2
n− d−mβ

√
n

n− d+ i

= nm

2

(
1− i+mβ

√
n

n− d+ i

)
.

Analysis of Runtime

The algorithm can be divided into two parts:
1. Constructing the fi, i = 0, . . . , d.
2. Decoding the fi to get the Pi, i = 0, . . . , d.

The dominant contribution to the runtime when constructing fi comes from all the
Reed-Solomon decodings with uncertainties we have to do to get the Di,x(Y ). For every e+ 1
iterations, we have to decode each row x ∈ Sm again. The total number of such decodings is
given by n

e+1 · n
m = nm+1

e+1 . Since each Reed-Solomon decoding with uncertainty can be done
in O(n polylogn) time via the FAST-RS-DECODER, we have that the runtime of this part
of the algorithm is O

(
nm+2

e+1 polylogn
)
.

To understand the runtime of the second part of the algorithm, we will compute the
runtime of decoding fi for some fixed i. Note that decoding fi is a Reed-Muller decod-
ing with uncertainties problem with m variables. So we will write the decoding radius
nm

2

(
1− i+mβ

√
n

n−d+i

)
in the form nm

2

(
1− i+mβ

√
n+ei

n

)
and apply the induction hypothesis to

get a O
(
nm+1

ei+1 · polylogn
)
runtime. We now need to compute ei:

ei =n
i+mβ

√
n

n− d+ i
− (i+mβ

√
n)

= (i+mβ
√
n)
(

n

n− d+ i
− 1
)

= (i+mβ
√
n)(d− i)

n− d+ i
.

The runtime for all d+ 1 iterations from i = 0, . . . , d is then

O

(
d∑
i=0

1
ei + 1 · n

m+1 polylogn
)
.
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It remains to bound
∑d
i=0

1
ei+1 from above:

d∑
i=0

1
ei + 1 ≤

d∑
i=0

min
(

1, 1
ei

)

≤ 4 +
d−2∑
i=2

1
ei

≤ 4 +
∫ d−1

1

n− d+ t

(t+mβ
√
n)(d− t)

dt.

The last inequality is a simple Riemann sum bound using the fact that the function
n−d+t

(t+mβ
√
n)(d−t) decreases then increases continuously on [1, d− 1]. Computing the integral is

a straightforward partial fraction decomposition:

n− d+ t

(t+mβ
√
n)(d− t)

= n

(t+mβ
√
n)(d− t)

− 1
t+mβ

√
n

= n

d+mβ
√
n

(
1

t+mβ
√
n

+ 1
d− t

)
− 1
t+mβ

√
n

≤ 1
α

(
1

t+mβ
√
n

+ 1
d− t

)
− 1
t+mβ

√
n

=
(

1
α
− 1
)

1
t+mβ

√
n

+ 1
α
· 1
d− t

So we have:∫ d−1

1

n− d+ t

(t+mβ
√
n)(d− t)

dt ≤
∫ d−1

1

[(
1
α
− 1
)

1
t+mβ

√
n

+ 1
α
· 1
d− t

]
dt

≤O
((

1
α
− 1
)

logn+ 1
α

logn
)

=O

((
2
α
− 1
)

logn
)

=O(logn).

So the runtime for all d+ 1 iterations is:

O
(
(4 +O(logn)) · nm+1 polylogn

)
= O(nm+1 polylogn).

This means the runtime for both parts of the algorithm is just O
(
nm+2

e+1 polylogn
)
.

Base Case

The algorithm for m = 2 is almost identical to that for general m, except that we decode
fi(X) to a degree i polynomial within the larger radius n

2

(
1− i+β

√
n

n

)
to get Qi(X). Note

that this radius is still less than half the minimum distance of the Reed-Solomon code of
degree i. The correctness of the algorithm follows from the fact that Pi is still the unique
polynomial within distance n

2

(
1− i+β

√
n

n

)
of fi.

We can again analyze the runtime of the two parts of the algorithm. The runtime for
finding the fi follows the same analysis as before and is O( n3

e+1 polylogn). For decoding the
fi, we simply call the FAST-RS-DECODER for d+ 1 different values of i. This has a runtime
of O(dn polylogn) ≤ O(n2 polylogn). So we get a total runtime of O( n3

e+1 polylogn). J
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The algorithm for general Reed-Muller decoding follows the same strategy as the algorithm
for Reed-Muller decoding with uncertainties to a radius less than half the minimum distance.
Recall that to get the fi in the algorithm, we only needed to Reed-Solomon decode to a
radius significantly less than half the minimum distance. We then saved on the number of
Reed-Solomon decodings by instead decoding to half the minimum distance and reusing that
decoding for many iterations. We now want to Reed-Muller decode to near half the minimum
distance. Using the same algorithm doesn’t save on enough Reed-Solomon decodings to
achieve near linear time. However, when there are no uncertainties in the original received
word, we can list decode efficiently to a radius significantly larger than half the minimum
distance. We then use the lists for many iterations to generate the fi before list decoding
again.

Proof of Theorem 6.1. In the case where the number of variables is 2, we are in the setting
of decoding bivariate Reed-Muller codes to near half the minimum distance, which can be
done in near-linear time by Theorem 5.1. Assume now that m ≥ 2 and that we have a
Reed-Muller code in m+ 1 variables.

The decoding algorithm for a m+ 1-variate Reed-Muller code is as follows: In the i-th
iteration, list decode row ri,x, x ∈ Sm to obtain a list Li,x of all degree ≤ d− i polynomials
within radius 1

2 (n−d+ i+ cn) along with their distances from ri,x, where c = (1−α)2

8 . Search
the list to get the degree ≤ d− i polynomial within distance 1

2 (n− d+ i) from ri,x, call it
Di,x(Y ). We use the lists for cn iterations before list decoding again. Construct function
fi : Sm → F × [0, 1] of (leading coefficient, uncertainty) =

(
CoeffY d−i(Di,x), ∆(ri,x,Di,x)

(n−d+i)/2

)
.

Decode fi(X) to a degree i polynomial within radius nm

2

(
1− i+mβ

√
n

n−d+i

)
to get Qi(X).

Proof of Correctness

As before, we want to show that Qi(X) = Pi(X). It is enough to show

∆(fi, Pi) <
nm

2

(
1− i+mβ

√
n

n− d+ i

)
.

We can use a similar analysis of ∆(fi, Pi) to the one in Theorem 6.2 to get to the following
step:

∆(fi, Pi) ≤
∆(r, C)
n− d+ i

.

So we have:

∆(fi, Pi) ≤
nm+1

2

(
1− d+mβ

√
n

n

)
n− d+ i

= nm

2
n− d−mβ

√
n

n− d+ i

= nm

2

(
1− i+mβ

√
n

n− d+ i

)
.

Analysis of Runtime

Decoding the fi over the d+1 values of i can be done in O(nm+1 polylogn) following the same
runtime analysis from Theorem 6.2. For constructing the fi, we do O(nm) Reed-Solomon
list decodings taking O(n polylogn) time each. Within any given list, we need to compute
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Algorithm 5 Decoding Reed-Muller
1: Input: r : Sm+1 → F.
2: Let c = ((1− α)2/8).
3: for j = 0, 1, . . . , d

2cn do
4: Let tj = n−d+j·2cn

2 + cn.
5: Define rj·2cn : Sm × S → F by

rj·2cn(X, Y ) = r(X, Y )−
j·2cn−1∑
i=0

Qi(X)Y d−i.

6: for x ∈ Sm do
7: Define rj·2cn,x : S → F by

rj·2cn,x(Y ) = rj·2cn(x, Y ).

8: Define Lj,0,x = RS-LIST-DECODER(rj·2cn,x(Y ), d− j · 2cn, tj).
9: end for

10: for k = 0, 1, . . . , 2cn− 1 do
11: for x ∈ Sm do
12: Define (Gx(Y ), δx) ∈ Lj,k,x to be the unique codeword (if any) with

δx <
n− d+ j · 2cn+ k

2

13: σx ← CoeffY d−j·2cn−k (Gx).
14: end for
15: Define the weighted function fj·2cn+k : Sm → F× [0, 1] by

fj·2cn+k(x) =
(
σx,min

{
1, δx

(n− d+ j · 2cn+ k)/2

})
.

16: Define Qj·2cn+k : Sm → F by

Qj·2cn+k(X) = RM-UNC-DECODER(
fj·2cn+k(X), j · 2cn+ k,

nm−1

2

(
1− j · 2cn+ k + (m− 1)β

√
n

n− d+ j · 2cn+ k

))
.

17: for x ∈ Sm do
18:

Lj,k+1,x ← {(C −Qj·2cn+k(x)Y d−j·2cn−k, δC,x)
|(C, δC,x) ∈ Lj,k,x,CoeffY d−j·2cn−k (C) = Qj·2cn+k(x)}.

19: end for
20: end for
21: end for

22: Output:
d∑
i=0

Qi(X)Y d−i.
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uncertainties for each element of the list. This also takes O(n polylogn) time for each list.
Finally, we update the lists at each iteration by identifying the elements with the correct
leading coefficient and taking away their leading terms. Since the list size is constant, and
there are O(nm) lists to update in each iteration, the updating takes O(nmd) = O(nm+1)
over d+ 1 iterations. Hence the total runtime is O(nm+1 polylogn) as desired. J

7 Open Problems

We conclude with some open problems.

1. The problem of list-decoding multivariate polynomial codes up to the Johnson radius
is a very interesting open problem left open by our work. Generalizing our approach
seems to require progress on another very interesting open problem, that of list-decoding
Reed-Solomon concatenated codes. See [16] for the state of the art on this problem.

2. It would be interesting to understand the relationship between our algorithms and the
m+ 1-variate interpolation-based list-decoding algorithm of Sudan [9]. Their decoding
radii are incomparable, and perhaps there is some insight into the polynomial method,
which is known to face some difficulties in > 2 dimensions, that can be gained here.

3. It would be interesting to see if one can decode multiplicity codes [17] on arbitrary product
sets upto half their minimum distance. Here too, we know algorithms that decode upto
the minimum distance only in the case when S is very algebraically special (from [18]), or
if the degree d is very small compared to |S| (via an m+ 1-variate interpolation algorithm,
similar to [9]).

Acknowledgments. We are grateful to Madhu Sudan for introducing this problem to us
many years ago.
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A Near-Linear Time Soft Decoding of Reed-Solomon Codes

In this section, we present a near-linear time algorithm to soft decode Reed-Solomon codes
to almost half the minimum distance. This result can be used to achieve near-linear time
decoding of Reed-Muller codes to almost half the minimum distance.

I Lemma A.1. Let F be a finite field and let S ⊆ F be a nonempty subset of size |S| = n.
There is a randomized algorithm FAST-RS-DECODER(r, d) that given a received word with
uncertainties r : S → F× [0, 1], finds the unique polynomial (if it exists) C ∈ F[X] satisfying
deg(C) ≤ d and ∆(r, C) < n−d−

√
n

2 with probability 3/4 in time O(n polylog(n)).

Proof. The near-linear time algorithm for FAST-RS-DECODER(r, d) is based on Forney’s
generalized minimum distance decoding of concatenated codes.

Given a received word r : S → F× [0, 1], suppose there is a polynomial f of degree at most
d such that ∆(f, r) < n−d−

√
n

2 . Let S = {α1, α2, . . . , αn}, and write r(αi) = (βi, ui), i ∈ [n].
We may view r as a set of n points (αi, βi) with uncertainties ui. The general idea of the
algorithm is to erase the i-th point with probability ui, and perform errors and erasures
decoding of the resulting Reed-Solomon code. We denote the errors and erasures Reed-
Solomon decoder by EE-DECODER(r′, d), which takes a received word r′ : S → F×[0, 1]∪{?}
and a degree d and returns the polynomial of degree at most d that is within n−d

2 of r′.

Algorithm 6 Fast Reed-Solomon Decoding with Uncertainties
1: Input: r : S → F× [0, 1].
2: for i = 1, 2, . . . , n do
3: pi ← RANDOM([0, 1]).
4: Define r′ : S → (F ∪ {?}) by

r′(αi) =
{
βi if pi ≤ ui
? if pi > ui

.

5: end for
6: g ← EE-DECODER(r′, d).
7: Output: g.
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We say that a point is an erasure if it is erased by the algorithm. We say that a point
(αi, βi) is an error if (α, β) is not an erasure and f(αi) 6= βi. Let E be the number of errors,
and let F be the number of erasures. As the resulting n− F points form a Reed-Solomon
code of block length n− F and degree d, the algorithm outputs f as long as

2E + F < n− d.

We will use Chebyshev’s inequality to show that 2E + F < n − d with probability at
least 3

4 . To help us compute the expectation and variance of 2E + F , we write E and
F as a sum of indicator random variables. Let A = {i ∈ [n]|f(αi) = βi} be the set of
agreeing indices, and let D = {i ∈ [n]|f(αi) 6= βi} be the set of disagreeing indices. Let
T = {i ∈ [n]|(αi, βi) is erased} be the set of erasure indices.

Then we can write

E =
∑
i∈D

1i/∈T

F =
∑
i∈[n]

1i∈T .

We then can show E[2E + F ] is less than n− d by a significant amount
√
n:

E[2E + F ] = 2
∑
i∈D

(1− ui) +
∑
i∈[n]

ui

= 2
∑
i∈D

(1− ui) +
∑
i∈D

ui +
∑
i∈A

ui

= 2
(∑
i∈D

(
1− ui

2

)
+
∑
i∈A

ui
2

)
= 2∆(f, r)
<n− d−

√
n.

Finally, we show that Var(2E + F ) is small:

Var(2E + F )
= 4Var(E) + 4Cov(E,F ) + Var(F )

= 4
∑
i∈D

ui(1− ui) + 4

E

∑
i∈D

∑
j∈[n]

1i/∈T∩j∈T

−∑
i∈D

(1− ui)
∑
j∈[n]

uj

+
∑
i∈[n]

ui(1− ui)

= 4
∑
i∈D

ui(1− ui) + 4

E

∑
i∈D

∑
j 6=i

(1− ui)uj

−∑
i∈D

∑
j∈[n]

(1− ui)uj

+
∑
i∈[n]

ui(1− ui)

= 4
∑
i∈D

ui(1− ui)− 4
∑
i∈D

ui(1− ui) +
∑
i∈[n]

ui(1− ui)

=
∑
i∈[n]

ui(1− ui)

≤ n

4 .

By Chebyshev’s inequality, Pr(2E+F ≥ n−d) ≤ 1
4 . Hence we have Pr(2E+F < n−d) ≥ 3

4 .
That is, with probability at least 3

4 , the algorithm outputs f .
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11:28 Decoding Reed-Muller Codes Over Product Sets

We now analyze the runtime of our fast Reed-Solomon decoder. The erasures can be done
in O(n) time. Also, as the EE-DECODER is essentially a Reed-Solomon decoder to half
the minimum distance, it runs in time O(n polylogn) [11, 12]. This gives a total runtime of
O(n polylogn). J

Note that by running the algorithm logn times, we get that with probability at least
1− (1/4)logn = 1− 1/nlog 4, we still find f in O(n polylogn) time.
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