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CONSTRUCTION OF RATIONAL SURFACES YIELDING

GOOD CODES

ALAIN COUVREUR

Abstract. In the present article, we consider Algebraic Geometry codes on
some rational surfaces. The estimate of the minimum distance is translated
into a point counting problem on plane curves. This problem is solved by
applying the upper bound à la Weil of Aubry and Perret together with the
bound of Homma and Kim for plane curves. The parameters of several codes
from rational surfaces are computed. Among them, the codes defined by the
evaluation of forms of degree 3 on an elliptic quadric are studied. As far
as we know, such codes have never been treated before. Two other rational
surfaces are studied and very good codes are found on them. In particular, a
[57, 12, 34] code over F7 and a [91, 18, 53] code over F9 are discovered, these
codes beat the best known codes up to now.

MSC: 94B27, 14J26, 11G25, 14C20.
Keywords: Algebraic Geometry codes, rational surfaces, finite fields, linear
systems, plane curves, rational points.

Introduction

Algebraic Geometry codes have been first introduced by Goppa in [7] in 1981.
A few time after, Tsfasman Vlăduţ and Zink proved in [20] that some families
of error–correcting codes beat the Gilbert–Varshamov bound. This unexpected
result motivated hundreds of publications on Algebraic Geometry codes.

Goppa’s construction ([7]) provides codes from algebraic curves. This approach
is extended to arbitrary dimensional varieties by Manin in [21]. However, only
few results are known on codes on higher dimensional varieties. Indeed, if the
estimation of the minimum distance is an elementary task for codes on curves, it
becomes a very hard problem in the higher dimensional case. Therefore, most of
the known works on codes from varieties of dimension at least 2, deal with the
estimate of the minimum distance of codes on varieties having some particular
arithmetical or geometrical property. Among the others (the list is not exhaus-
tive), codes on quadric varieties are studied by Aubry in [1], the parameters of
codes on Hermitian surfaces are computed in [4] and [5] and lower bounds for
the minimum distance of codes from surfaces with a small arithmetical Picard
number are computed by Zarzar in [22].

The work of Zarzar [22] is of particular interest. It shows that surfaces with
a small arithmetical Picard number (i.e. the Rank of the Neron–Severi group)
provide in general codes with a good minimum distance for given length and
dimension. Basically, to have a high minimum distance, the global sections of
the line bundle L used to produce the code should not vanish at too many rational
points of the surface. If the arithmetical Picard number is small, the vanishing
locus of a global section of L cannot break into too many irreducible components
and hence cannot have too many rational points. The work of Zarzar should
be compared with that of Aubry [1] and Edoukou [6] in which codes on elliptic
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quadrics turn out to be better than codes on hyperbolic quadrics. Recall that
the first ones have arithmetical Picard number 1 and the other ones arithmetical
Picard number 2.

Therefore, surfaces with a small arithmetical Picard number seem to be suit-
able to produce good codes. On the other hand, the estimate of the minimum
distance remains a difficult task which is almost equivalent to a problem of esti-
mating the maximal number of rational points of an element of a linear system
of curves.

The purpose of the present article is to consider rational surfaces obtained
by blowing up the projective plane at few closed points. Such a surface has a
small Picard number. Moreover, since the surface is rational, the estimate of
the minimum distance is translated into a problem of point counting for plane
curves. For any curve, one can use the bound of Aubry and Perret [2]. This
bound is sharp when the base field is large. In addition, for plane curves and
the bound from Homma and Kim [11] is suitable and sharper that Aubry and
Perret’s one when the base field is small.

Using this approach, we first study codes on elliptic quadrics and are able to
give a lower bound for the minimum distance of the codes obtained by evaluation
of forms of degree 3. As far as we know, this study has never been done up to
now. Afterwards, we study the codes from two other rational surfaces. The first
one (the surface Y ) is the projective plane blown up at one rational point and a
closed points of degree 4. The second one (the surface Z) is obtained by blowing
up the projective plane at one closed point of degree 3. Both surfaces provide
good codes. In particular, the surface Z yields a [57, 12, 34] code over F7 and a
[91, 18, 53] code over F9 which both beat the best known codes given in [8] and
[12].

Outline of the article. Prerequisites on Algebraic Geometry codes on sur-
faces and maximum number of rational points of a curve are recalled in Section
1. Codes on elliptic quadrics in P3 are studied in Section 2, in particular, the
parameters of the code obtained by the evaluation of forms of degree 3 are esti-
mated. In Section 3, we present the construction of two other rational surfaces.
Explicit examples of codes on these surfaces are studied and turn out to be very
good. In particular, the second surface (the surface Z) provides two codes which
beat the best known codes up to now: a [57, 12, 34] code over F7 and a [91, 18, 53]
code over F9.

1. Prerequisites

In this section, we briefly recall some definitions and properties in algebraic
geometry and algebraic geometric coding theory. For further details, we refer the
reader to [9] and [15] for algebraic geometry and to [17] and [19] for Algebraic
Geometry codes.

1.1. Notations. In what follows, X denotes a smooth projective geometrically
irreducible surface over a finite field Fq.

1.1.1. Divisors, linear equivalence and intersection product. The linear equiva-
lence between two divisors D,D′ on X is denoted by D ∼ D′. The Picard group
of X, which is the group of linear equivalence classes of divisors, is denoted by
PicFq

(X). If X is rational, then its Picard group is finitely generated and its
rank is called the Picard number of X.
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One can define a natural pairing on PicFq
(X) called the intersection product

([9] Chapter V, Theorem 1.1). Given two divisor classes D,D′ on X, their
intersection product is denoted by D.D′. Moreover, we denote by D2 the self-
intersection of the class D, that is D2 := D.D.

1.1.2. Invertible sheaves and line bundles. Recall that there is a one-to-one cor-
respondence between linear equivalence classes of divisors, isomorphism classes
of line bundles over X and isomorphism classes of invertible sheaves on X ([16]
Chapter VI §1.4). Given a line bundle L over X, its space of global sections is
denoted by H0(X,L).

Finally, given an integer m, we denote by OX(m) the m–th twisting sheaf over
X ([9] Chapter II, page 117). If m ≥ 0, then, given an embedding X →֒ Pr,
the space of global sections H0(X,OX(m)) is the space of the restrictions to
X of homogeneous polynomials of degree m in r + 1 variables. To this sheaf
corresponds a line bundle (up to isomorphism), which we also denote by OX(m)
for convenience’s sake.

1.2. Algebraic Geometry codes. First, let us recall the definition of an Alge-
braic Geometry code on a surface.

Definition 1.1 (Manin [21]). Let X be a smooth projective geometrically irre-
ducible surface over a finite field Fq and L be a line bundle overX. Let P1, . . . , Pn
be the set of rational points of X. The code CL(X,L) is defined as the image of
the map

(1) ev :

{
H0(X,L) → ⊕LPi

≃ Fnq
f 7→ (fP1

, . . . , fPn
)
.

Remark 1.2. Obviously, the above definition depends on the choices of coor-
dinates on the fibres. However, choosing other systems of coordinates yields
another code which is isometric to the first one for the Hamming distance. Thus,
to study the minimum distance of CL(X,L), the choice of coordinates on the
fibres does not matter.

1.3. The parameters of codes on surfaces. Let us recall briefly how to esti-
mate the parameters of a code CL(X,L).

• The length is elementary: it is the number n of rational points at which
sections of the line bundle are evaluated. In the present article, we always
consider the whole set of rational points of the surface.

• For the dimension, denote by S the space of global sections of L vanishing
at all the Pi’s (this space is in general zero in the following examples).
Then, the dimension k of the code is

k = dimH0(X,L)− dimS.

• The minimum distance d is

d = n−max
{
♯V (f)(Fq) | f ∈ H0(X,L) \ S

}
,

where V (f) denotes the vanishing locus of f .

Remark 1.3. Using the above notations. If one proves that

max
{
♯V (f)(Fq) | f ∈ H0(X,L) \ {0}

}
≤ n,

then the evaluation map described in (1) is obviously injective and hence S = {0}
and the dimension of the code is that of H0(X,L).
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Obviously, for such codes, the only parameter whose computation is hard is
the minimum distance. In general, one only looks for lower bounds. It is worth
noting that finding a lower bound for the minimum distance is equivalent with
finding an upper bound on the number of rational points of the vanishing locus
V (f) of an element f ∈ H0(X,L) \ S. Therefore, bounds on the number of
rational points of a curve play a central rule in the present article.

1.4. Bounds on the number of rational points of curves. Since the vani-
shing locus V (f) of f ∈ H0(X,L) is not always smooth and irreducible, the
classical Weil bound is not suitable for the present problem. However, Aubry
and Perret’s bound is suitable.

Theorem 1.4 (Aubry Perret [2]). Let C be a geometrically irreducible curve
over Fq with arithmetical genus pC , then

|♯C(Fq)− (q + 1)| ≤ pC⌊2
√
q⌋.

Proof. Denote by gC the geometric genus of C. From [2] §4.1, we have

|♯C(Fq)− (q + 1)| ≤ (pC − gC) + gC⌊2
√
q⌋.

Since gC ≤ pC and ⌊2√q⌋ ≥ 1, we get the result. �

Remark 1.5. Notice that a version of Aubry Perret’s bound exists for reducible
curves in [3]. However, in what follows, when we treat the reducible case, we
work component by component.

Aubry Perret’s bounds are sharp for large values of q but can be largely im-
proved when q is small. In addition, since we are looking for codes on rational
surfaces, most of the curves we will deal with are plane. For plane curves and
small values of q, one can use another bound. The following result has been first
partially conjectured by Sziklai in [18] and then proved by Homma and Kim in
[11].

Theorem 1.6 (Homma Kim [11]). Let d be a positive integer and C be a plane
curve of degree d without Fq–linear component. Then,

♯C(Fq) ≤ (d− 1)q + 1

except for the case q = 4, d = 4 and C is projectively equivalent to the curve

(2) K : x4 + y4 + z4 + x2y2 + y2z2 + z2x2 + x2yz + xy2z + xyz2 = 0.

In the exceptional case above, we have ♯C(F4) = 14.

The following corollary of Theorem 1.6 has been suggested by a reviewer.

Corollary 1.7. Let C be a plane curve of degree d which is not a union of d
lines, then

♯C(Fq) ≤ (d− 1)q + 2.

Proof. If C does not contain any Fq–rational line, then it is a straightforward
consequence of Theorem 1.6. Assume that C contains Fq–rational lines and set
C = C1∪C2, where C2 does not contain any Fq–rational line and C1 is a union of
Fq–rational lines. Set r := deg(C1). By assumption on C, we have r < d. From
[14], we have ♯C1(Fq) ≤ rq+1 and, if C2 does not correspond to the exceptional
case of Theorem 1.6, then ♯C2(Fq) ≤ (d− r− 1)q+1 and we get the result using
Theorem 1.6.
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In the exceptional case: q = 4 and C2 is projectively equivalent to the curve K
described in (2). One checks easily that K(F4) = P2(F4) \ P2(F2). Therefore,
each F4–rational line meets C2 at least at one F4–rational point. Therefore, the
inequality holds in the exceptional case. �

2. Codes on an elliptic quadric surface

In this section, we study codes on elliptic quadric surfaces. We refer the reader
[10] Part IV, Table 15.4 and §15.3.ii for a definition of an elliptic quadric and
for the basic properties of this surface. The aim of this study is first to estimate
the parameters of such codes and second to motivate Section 3 in which other
rational surfaces yielding good codes are constructed.

2.1. Previous works on the topic. Codes of the form CL(X,OX(2)) on arbi-
trary dimensional quadric varieties are first considered by Aubry in [1]. After-
wards, the more specific case of codes CL(X,OX(2)) on quadric surfaces is studied
in depth by Edoukou in [6]. In both works, it appears that elliptic quadrics turn
out to be the ones which provide the best codes in terms of parameters. However,
as far as we know, there does not exist any work on the topic using the property
of rationality of these varieties.

2.2. Context and notations. In this section, we present a new approach for
the study of codes on smooth elliptic quadrics and state a lower bound for the
minimum distance of the code CL(X,OX(3)). This approach is based on the fact
that a smooth quadric in P3 can be obtained by blowing up P2 at 2 points and
then by blowing down the resulting surface along a line.

2.2.1. Construction of quadrics from the projective plane. Let P denote a closed
point of degree 2 of P2. After a base field extension, P splits in two conjugated
points p and pϕ defined over Fq2 , where ϕ denotes the Frobenius map. We denote

by L the unique rational line of P2 containing P . The surface X̃ is the surface

obtained by blowing up P2 at P . The blow up map is denoted by π : X̃ → P2.

We denote by L̃ the strict transform of L by π and by E the exceptional divisor.
Over Fq2 , the divisor E splits into a union of two conjugated lines e and eϕ.

On X̃, we have L̃2 = −1 and hence, by Castelnuovo’s criterion (x[9] Chapter
V, Theorem 5.7), this curve is the exceptional divisor of some blow up map.

Finally, the surface X obtained by blowing down X̃ at L̃ is isomorphic to an

elliptic quadric of P3. We denote by ψ : X̃ → X this blow down map and by Q

and H the respective images of L̃ and E by ψ. The divisor H is prime but splits
over Fq2 into a pair of conjugated lines denoted by h and hϕ.

X̃

π

ψ
X

P2

Figure 1 summarises the above described notations.
Now, let us summarise some properties of the involved surfaces

Summary

• About P2

(A) PicFq
(P2) ∼= ZL and L2 = 1.
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e eϕ

L̃
ψ

π

Q

hϕh

L

p pϕ

Figure 1. Illustration of the construction of X from P2.

• About X̃.
(B) PicFq

(X̃) ∼= ZE ⊕ ZL̃ and E2 = −2, E.L̃ = 2, L̃2 = −1.

(C) π⋆L = L̃+ E.
(D) E = e+ eϕ.

• About X
(E) H corresponds to the cut out of X by its tangent plane at Q.
(F) PicFq

(X) ∼= ZH, with H2 = 2.

(G) ψ⋆H = 2L̃+ E.
(H) H = h+ hϕ.

To estimate the minimum distance of functional codes on an elliptic quadric,
the two following lemmas are useful.

Lemma 2.1. Let D be an effective divisor on X containing Q and which is

smooth at this point. Let s be the positive integer such that D ∼ sH. Let D̃ be

the strict transform of D by ψ and D′ be the image of D̃ by π. Then,

(i) ♯D(Fq) = ♯D′(Fq);
(ii) D′ is singular at P with multiplicity s− 1;
(iii) D′ has degree 2s− 1.

Figure 2 illustrates the case s = 3.

Remark 2.2. The assertion “D is effective and D ∼ sH” is equivalent to “D is
a cut out of X by a surface of degree s which has no common component with
X”.

Proof of Lemma 2.1. Since π consists in blowing up P2 at a nonrational closed
point, it has no influence on the number of rational points. Thus ♯D′(Fq) =

♯D̃(Fq). Moreover, since D is smooth at Q, we have ♯D(Fq) = ♯D̃(Fq). This
proves (i).

Recall that H denotes the intersection divisor of X by its tangent plane at

Q and that ψ⋆H = 2L̃ + E. Therefore, the strict transform of H by ψ equals
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e eϕ

L̃

D̃

S

ψ

π

hϕh

Q

D

L

R

D′

p pϕ

Figure 2. The divisors D, D̃ and D′ for s = 3.

E. Since D contains Q and is smooth at it, it has a rational tangent line at
Q. Moreover, since h and hϕ are not defined over Fq, then D meets h and hϕ

transversally at Q. Since D ∼ sH, it meets h (resp. hϕ) at s−1 geometric points
(counted with multiplicities) out of Q.

Therefore, D̃ meets e (resp. eϕ) at s − 1 geometric points counted with mul-
tiplicities. This gives

(3) D̃.E = 2(s− 1)

Moreover, after contracting e and eϕ (i.e. applying π), the image D′ of D̃ is
singular with multiplicity s− 1 at p and pϕ, that is at P . This proves (ii).

Finally, since D is smooth at Q, we have

(4) ψ⋆D = D̃ + L̃ and D̃.L̃ = 1.

Indeed, recall that L̃ is the exceptional divisor of ψ. Moreover, since D′ is the

image of D̃ by π and since D̃ and E have no common component, then D̃ is also
the strict transform of D′ by π. Thus, since it has already been proved that D′

has multiplicity s− 1 at P , we get

(5) π⋆D′ = D̃ + (s− 1)E.

Since the degree of D′ equals the intersection product D′.L, using (B), (C), (3),
(4), (5) and [9] Chapter V, Proposition 3.2(a), we get

D′.L = π⋆D′.π⋆L = D̃.L̃+ (s− 1)E.L̃+ D̃.E + (s− 1)E2

= 1 + 2(s− 1) + 2(s− 1)− 2(s− 1) = 2s− 1,

which proves (iii). �

In our particular case, the following Proposition gives a sharper bound than
that of Homma and Kim (Theorem 1.6).
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Proposition 2.3. Let s be an integer such that s ≥ 2 and D ⊂ X be an Fq–
irreducible curve such that D ∼ sH. Then

♯D(Fq) ≤ q(2s− 2).

Proof. Step 1. Assume that D has at least one nonsingular rational point. Recall
that the automorphism group of an elliptic quadric acts transitively on its set of
rational points ([10] Part IV, Theorem 15.3.19). Thus, after applying a suitable
automorphism, one can assume that D contains Q and is smooth at it. From
Lemma 2.1, there exists a plane curve D′ of degree 2s − 1 which is singular
with multiplicity s− 1 at P (which has degree 2). Moreover ♯D′(Fq) = ♯D(Fq).
Therefore, as illustrated by Figure 2, the line L containing P meets D′ at a
unique other geometric point R. This point R is thus rational and smooth (it is

actually the image by π of the preimage S of Q by ψ
|D̃

: D̃ → D).

Now, consider the linear system of lines containing R. This linear system has
(q + 1) rational elements L1, . . . , Lq+1 which cover all the rational points of P2.
Among the Li’s, one finds the line L which meets D′ only at P and R and hence
meets D′ at only one rational point (the point R). Since D′ is smooth at R, the
tangent TRD

′ to D′ at R is rational and hence is one of the Li’s. Moreover, a
simple argument based on Bézout’s Theorem proves that TRD

′ 6= L. Finally, we
get

♯D′(Fq) ≤ q(2s− 2).

Step 2. If all the rational points of D are singular, then, from Lemma 2.4 below,
♯D(Fq) ≤ s(s + 1) − 2q. There remains to check that s(q + 1) − 2q ≤ q(2s − 2)
for all s ≥ 2 and q ≥ 2, which is elementary. �

Lemma 2.4. Let s be a positive integer and D ⊂ X be an Fq–irreducible curve
such that D ∼ sH. Assume moreover that the rational points of D are all singu-
lar. Then

♯D(Fq) ≤
{

1 if s = 1
s(q + 1)− 2q if s ≥ 2

.

Proof. If s = 1, then, D is a cut out of X by a plane. Thus, D is an irreducible
plane conic. Since it is assumed to be singular, it is a union of two conjugated
lines meeting at a single point which is the only rational point of D.

Now, assume that s ≥ 2. Choose two distinct rational points A,B of D (if they
do not exist, then ♯D(Fq) satisfies obviously the upper bound). Consider the set
of q + 1 rational plane cut outs H1, . . . , Hq+1 of X containing A and B. These
plane cut outs cover all the rational points of X and each one of them contains
A and B. Using that D is singular at all of its rational points, we obtain

D.(H1 + · · ·+Hq+1) ≥ 2♯(D(Fq) \ {A,B}) + 2(q + 1)♯{A,B}
⇒ 2s(q + 1) ≥ 2(♯D(Fq)− 2) + 4(q + 1)
⇒ s(q + 1)− 2q ≥ ♯D(Fq).

�

2.3. Application to the study of CL(X,OX(3)). For a fixed base field Fq,
the code CL(X,OX(3)) has length n = q2 + 1, which is the number of rational
points of X ([10] Part IV, Table 15.4). To compute the dimension and the
minimum distance of this code, we need Lemma 2.5 and Proposition 2.7 below.
The parameters of this code are summarised further in Theorem 2.8.
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Lemma 2.5. Let m be a nonnegative integer. The dimension of H0(X,OX(m))
is (m+ 1)2.

Proof. Let F be a homogeneous polynomial of degree 2 such that F (x, y, z, t) = 0
is an equation of X. The space H0(X,OX(m)) corresponds to the space of
homogeneous forms of degree m modulo the forms vanishing on X, that is the
multiples of F . Thus, we have the isomorphism

H0(X,OX(m)) ∼= H0(P3,OP3(m))/H0(P3,OP3(m− 2)).F,

which entails

dimH0(X,OX(m)) = dimH0(P3,OP3(m))− dimH0(P3,OP3(m− 2))

=

(
m+ 3

3

)
−
(
m+ 1

3

)
= (m+ 1)2.

�

Remark 2.6. Lemma 2.5 entails that the dimension of CL(X,OX(3)) has dimen-
sion at most 16. Since we must have n ≥ k ≥ 16 and n = q2 + 1, the study
of such codes makes sense only for q ≥ 4. It starts to be interesting for q ≥ 5.
Therefore in the following statements, we assume that q ≥ 5.

Proposition 2.7. Assume that q ≥ 5. Let C be an effective divisor on X such
that C ∼ 3H. Then,

♯C(Fq) ≤ max(3q + 3, min(4q, q + 1 + 4⌊2√q⌋)).
Proof. Using that PicFq

(X) is generated by H, we separate the proof in three
cases:

(i) C = C1∪C2∪C3, where the Ci’s are Fq–irreducible and are all three linearly
equivalent to H;

(ii) C = C1 ∪ C2, where C1, C2 are Fq–irreducible and C1 ∼ H and C2 ∼ 2H;
(iii) C is Fq–irreducible.

To treat these distinct cases, we need to compute the arithmetical genus of
a geometrically irreducible (possibly singular) curves embedded in X. For that,
we use the adjunction formula ([13] Chapter IV §2 Proposition 5) asserting that
the arithmetical genus of a geometrically irreducible curve (possibly singular) C
embedded in X is

pa(C) = 1 +
1

2
C.(K + C),

where K denotes the canonical class of X. From [9] Chapter II, Example 8.20.3,
we get K ∼ −2H. Therefore, if C is a geometrically irreducible curve embedded
in X, we get

(6) C ∼ aH =⇒ pa(C) = 1 + a(a− 2).

The case (i) is elementary, in this situation C is a union of 3 plane cut outs
of X. Such cut outs are plane Fq–irreducible conics and hence have either 1 (a
pair of conjugated lines) or q + 1 (a smooth plane conic) rational points. Thus,
in situation (i), ♯C(Fq) ≤ 3q + 3.

In situation (ii), as in the previous case we have ♯C1 ≤ q + 1. If C2 is not
geometrically irreducible, then its rational points are singular (they lie at the
intersection of irreducible components defined over Fq). Therefore, from Lemma
2.4, we get ♯C2 ≤ 2. Now, if C2 is geometrically irreducible, then, using (6),
one proves that pa(C2) = 1 and from Aubry and Perret’s bound, ♯C2(Fq) ≤
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q + 1 + ⌊2√q⌋. An easy computation proves that q + 1 + ⌊2√q⌋ ≤ 2q + 2 for all
q ≥ 2. Thus, we also have ♯C(Fq) ≤ 3q + 3.

In case (iii), if C is not geometrically irreducible, then, as in the previous
case, one proves that ♯C(Fq) ≤ q + 2 by using Lemma 2.4. If it is geometrically
irreducible, then using (6), one proves that pa(C) = 4 and from Proposition 2.3
together with Theorem 1.4, we get ♯C(Fq) ≤ min(4q, q + 1 + 4⌊2√q⌋). �

Finally, we are able to estimate the parameters of the code CL(X,OX(3)).
This is the purpose of the following theorem.

Theorem 2.8. Let X be an elliptic quadric over Fq with q ≥ 5. The code
CL(X,OX(3)) has parameters [q2 + 1, 16,≥ δ], where

δ = q2 + 1−max(3q + 3, min(4q, q + 1 + 4⌊2√q⌋)).
That is:

δ =





q2 + 1− 4q if q ≤ 7
q2 − q − 4⌊2√q⌋ if 8 ≤ q ≤ 13
q2 − 2− 3q if q ≥ 16.

Proof. The length has already been computed above. For the minimum dis-
tance, it is a straightforward consequence of Proposition 2.7. The dimension is
a straightforward consequence of Lemma 2.5 together with Remark 1.3. �

Table 1 gives the parameters of such codes for small values of q. In addition,
the lower bound for the minimum distance is compared with the best known
minimum distance for the same length and dimension. It shows that codes of the
form CL(X,OX(3)) are good compared to the table of the best known codes [8]
and [12].

q n k d Best d
up to now

5 26 16 ≥ 6 8
7 50 16 ≥ 22 26
8 65 16 ≥ 36 38
9 82 16 ≥ 48 52

Table 1. Parameters of CL(X,OX(3)), when X is an elliptic quadric.

2.4. A remark about the study of CL(X,OX(2)). The code CL(X,OX(2)) is
studied in [6] when X is a quadric of any kind. However, it is interesting to note
that the elliptic case can be easily obtained from our work. Using the previous
methods, one gets the following proposition which corresponds to [6] Proposition
6.6.

Proposition 2.9. Let X ′ be a quadric surface distinct from X, let C be the
intersection of X and X ′, then

♯C(Fq) ≤ 2q + 2

and this upper bound is reached. Thus, the parameters of the code CL(X,OX(2))
are [q2 + 1, 9, q2 − 2q − 1].

Proof. Two cases must be considered:
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(i) C is a union of two plane cut outs;
(ii) C is Fq–irreducible.

Case (i) yields ♯C(Fq) ≤ 2q+2 and this upper bound is reached when both plane
cut outs have q + 1 rational points and do not meet at rational points. Case (ii)
yields ♯C(Fq) ≤ q + 1 + ⌊2√q⌋ from Theorem 1.4 which is smaller than 2q + 2
for all q. �

3. Constructions of rational surfaces yielding good codes

Consider the case of the code CL(X,OX(n)) on an elliptic quadric. By the
blow up and blow down operation, the linear system associated to OX(n) on X
corresponds to a linear system in P2 having the closed point P as a base point.
Therefore, such curves defined over Fq cannot contain any rational line of P2 but
L whose strict transform is contracted. Thus, the elements of the linear system
cannot have too many Fq–irreducible components.

This is the motivation of the following examples. We will give some particular
linear systems of P2 whose Fq–rational elements cannot break into too many
Fq–irreducible components and compute the maximal number of rational points
of the elements of the linear system. Such a linear system provides a line bundle
L over a rational surface X obtained from P2 after some possible blow ups and
blow downs. The parameters of the code CL(X,L) on this surface arise from the
properties of the linear system.

3.1. The projective plane blown up at a rational point and a point of

degree 4.

3.1.1. Context. Consider the projective plane P2 and let P be a rational point.
Denote by ϕ the Frobenius map. Let l and lϕ be a pair of conjugated lines defined
over Fq2 and meeting at P . Denote by D the Fq–rational conic D := l ∪ lϕ. Let
R be a closed point of degree 4 of D. Over Fq4 , this point splits into 4 points

r, rϕ, rϕ
2

and rϕ
3

, where ϕ denotes the Frobenius map. The following picture
illustrates this context.

P

rϕ
l

rϕ
2

rϕ
3

r

lϕ

Definition 3.1 (The surface Y ). Let Y be the surface obtained from P2 by
blowing up P and R. We denote by π : Y → P2 the blow up map and by E and
F the exceptional divisors above P and R respectively.

Definition 3.2 (The line bundle Fi). Let i ≥ 4 be an integer. Let Λi be the
linear system of plane curves of degree i containing R with multiplicity at least
1 and P with multiplicity at least 2. Let Fi be the line bundle over Y associated
to the linear system π⋆Λi − 2E − F .

Remark 3.3. The linear system π⋆Λi− 2E−F is base point free for all i ≥ 4 and
very ample for i ≥ 5 (use [9] Chapter II, Remark 7.8.2).
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3.1.2. The code CL(Y,F4).

Theorem 3.4. The parameters of the code CL(Y,F4) are

[(q + 1)2, 8, q2 − q − 2].

Proof. The code has length n = ♯Y (Fq) = (q + 1)2.
For the dimension, we need to know the dimension of the linear system Λ4.

The dimension of the linear system of plane quartics is 14. The interpolating
condition at P imposes 3 constraints and the vanishing condition at R imposes 4
other constraints. These 7 constraints can be proved to be independent (details
are left to the reader) and hence the dimension of Λ4 is 7 and that of H0(Y,Fi)
is 8. Using Remark 1.3 together with Proposition 3.5 below, we see that the
dimension of the code is also 8.

The minimum distance d is given by Proposition 3.5. �

Caution. This example is pretty different from the former one since here a
divisor C ∈ Λi and the divisor C ′ := π⋆C − 2E − F have not always the same
number of rational points. Indeed, from C to C ′, the point P may “split” into
two distinct rational points or into a closed point of degree 2. Moreover, if C has
multiplicity ≥ 3 at P , then C ′ contains the whole curve E.

Proposition 3.5. Let C be a curve in the linear system π⋆Λ4 − 2E − F , then

♯C(Fq) ≤ 3q + 3

and the bound is reached.

Proof. Let B be the plane curve corresponding to C in Λ4 (i.e. B = π(C)). We
separate the proof in four distinct cases.

(i) B = B1∪B2, where B1 is an Fq–irreducible conic containing R and avoiding
P and B2 is a conic which is singular at P .

(ii) B = B1 ∪ B2, where B1 is an Fq–irreducible conic containing P and R
(notice that in this situation B1 = l ∪ lϕ and hence is singular at P ) and
B2 is an arbitrary conic.

(iii) B = B1 ∪B2, where B1 is an Fq–irreducible cubic containing R and P and
B2 is a line containing P .

(iv) B is an Fq–irreducible quartic containing R and singular with multiplicity
2 at P .

The four distinct situations are illustrated by the following pictures.

B1

B2

B1

B2

(i) (ii)
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B1

B2

B

(iii) (iv)

Let us make a few remarks about these distinct cases in order to make sure
they are the only possible ones. First, notice that for case (iii) if B1 is a cubic,
then it must contain P since B2 is a line and hence cannot be singular at P .
Moreover if B1 is singular at P , then, from Bézout’s Theorem, it would contain
l and lϕ and hence would not be Fq–irreducible. Thus, B1 must be smooth at
P and hence B2 must contain P . This situation is interesting since in this case
the multiplicity of B at P cannot be ≥ 3 and hence C cannot contain E. By the
same manner in case (iv), the curve B cannot be singular with multiplicity > 2
at P .

Now let us treat these distinct cases. In case (i), the worst situation is when
B1 is smooth and B2 is a union of two rational lines containing P and which do

not meet B1 at rational points. Then C = B̃1+B̃2. The curve B̃2 is union of two

skew lines, thus ♯B̃2(Fq) = 2q + 2 and the curve B̃1 is isomorphic to B1. Thus,
♯C(Fq) ≤ 3q + 3 and this upper bound is reached since the worst case happens
for some C.

In case (ii), the curve B1 equals D = l ∪ lϕ. The worst situation is when B2 is
a pair of rational lines containing P . In this situation

C = B̃1 ∪ B̃2 ∪ E.
The curve B̃1 is a union of two skew conjugated lines over Fq2 and hence has no
rational points. Thus, ♯C(Fq) ≤ 3q + 1.

In case (iii), we have C = B̃1+B̃2 and the components are respectively isomor-
phic to B1 and B2. Thus, applying Corollary 1.7 to each irreducible component,
we get ♯C(Fq) ≤ 3q + 3.

In case (iv), from Corollary 1.7, we have ♯B(Fq) ≤ 3q+2. Moreover, as noticed

before, B has multiplicity exactly 2 at P , then C = B̃ and C contains at most 2
rational points above P . Thus, ♯C(Fq) ≤ 3q + 3. �

Table 2 gives the parameters of the code CL(Y,F4) for small values of q. In
the right column, the minimum distance of the best known code for the same
length and dimension is given. This shows that these codes are good.

3.2. The projective plane blown up at a point of degree 3.

3.2.1. Context. Consider the projective plane and a closed point P of degree 3
which is not contained in any rational line. After a base field extension, P splits

into three non collinear points p, pϕ and pϕ
2

, where ϕ denotes the Frobenius map.

Definition 3.6 (The surface Z). Let Z be the projective plane blown up at P .
We denote by π : Z → P2 the blow up map and by E the exceptional divisor.
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q n k d Best d
up to now

3 16 8 4 6
4 25 8 10 12
5 36 8 18 21
7 64 8 40 41
8 81 8 54 58
9 100 8 70 75

Table 2. Parameters of the code CL(Y,F4).

Definition 3.7 (The line bundles Li). Let i ≥ 3 be an integer. Let Γi be the
linear system of plane curves of degree i containing P . We call Li the line bundle
over Z associated to π⋆Γi − E.

Let us study some codes on Z.

3.2.2. The code CL(Z,L3).

Theorem 3.8. The parameters of CL(Z,L3) are

[q2 + q + 1, 7, q2 − q − 1].

Proof. Since Z is obtained from P2 by blowing up non rational points, it has
the same number of rational points as P2. Thus, the length is n = q2 + q + 1.
The linear system Γ3 has dimension 6 ([9] Chapter V, Corollary 4.4(a)), thus the
dimension of the code is k = 7. The minimum distance is given by Proposition
3.9 below. �

Proposition 3.9. Let C be an Fq–rational element of the linear system Γ3 (see
Definition 3.7). Then,

♯C(Fq) ≤ 2q + 2

and this upper bound is reached.

Proof. Consider the Fq–irreducible components of C containing P . Since P has
degree 3 and is not contained in any rational line, these Fq–irreducible compo-
nents are either a conic or an Fq–irreducible cubic. Thus there are two possibil-
ities.

(i) C = C1 ∪ C2 where C1 is an Fq–irreducible conic containing P and C2 is a
rational line.

(ii) C is an Fq–irreducible cubic.

The two distinct cases are illustrated by the pictures below.
In both cases, C is not a union of Fq–rational lines and the upper bound is a

straightforward consequence of Corollary 1.7. In case (i), if C2 does not meet C1

at rational points, then ♯C(Fq) = 2q + 2 and hence the bound is reached. �
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C1

C2

C

(i) (ii)

Table 3 gives the parameters of the code CL(Z,L3) for several values of q. The
right hand column gives the best known minimum distance for these fixed length
and dimension. This show that these codes for small values of q are as good as
the best known codes.

q n k d Best d
up to now

3 13 7 5 5
4 21 7 11 11
5 31 7 19 19
7 57 7 41 41
8 73 7 55 55
9 91 7 71 71

Table 3. Parameters of the code CL(Z,L3).

3.2.3. The code CL(Z,L4).

Theorem 3.10. The parameters of CL(Z,L4) are

[q2 + q + 1, 12, q2 − 2q − 1].

Proof. The length is n = q2 + q + 1 (as for CL(Z,L3)). The dimension of the
linear system Γ4 is 11, since the linear system of plane quartics is 14 and the
vanishing condition at P imposes 3 independent constraints (details are left to
the reader). Thus, the code has dimension k = 12. Its minimum distance is given
by the following Proposition. �

Proposition 3.11. Assume that q ≥ 4. Let C be an Fq–rational element of Γ4.
Then,

♯C(Fq) ≤ 3q + 2

and this upper bound is reached.

Proof. The curve C can be of the form:

(i) C = C1 ∪ C2 where C1 is an Fq–irreducible conic containing the point P
and C2 is a conic (possibly reducible);

(ii) C = C1 ∪ C2 where C1 is an Fq–irreducible cubic containing the point P
and C2 is an Fq–rational line;

(iii) C is an Fq–irreducible quartic.
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The three distinct situations are illustrated by the following pictures.

C1

C2

C1

C2

(i) (ii)

C

(iii)

In these three cases, C is not a union of Fq–rational lines. Then, the upper
bound is a straightforward consequence of Corollary 1.7. In case (i), if C2 is a
union of two Fq–rational lines which do not meet C1 at rational points (it is
possible as soon as q ≥ 4, the details are left to the reader), then ♯C(Fq) = 3q+2
and hence the upper bound is reached. �

Table 4 gives the parameters of this code for several values of q. Comparing
the minimum distance with the best known minimum distance for a fixed length
and dimension, we see that these codes are almost as good as some best known
codes in [8] and [12]. In addition, we get a [57, 12, 34] code over F7 which is up
to now better than the best known code for these fixed length and dimension.

q n k d Best d
up to now

4 21 12 7 7
5 31 12 14 14

7 57 12 34 33

8 73 12 47 48
9 91 12 62 62

Table 4. Parameters of the code CL(Z,L4).

Computer construction using Magma. A Magma script to construct such
a [57, 12, 34] code is available on http://www.lix.polytechnique.fr/Labo/

Alain.Couvreur/doc_rech/bestF7.mgm.
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Actualisation of the tables of best codes and generation of other best

codes. The [57, 12, 34] code over F7 has been sent to www.codetables.de. The
code has been proved by computer to be equivalent to a consta-cyclic code (in-
variant by shifting by one position and multiplication of the first bit by a fixed
constant). Moreover, by computer-aided calculation, the minimum distance has
been confirmed to be 34. Afterwards, using classical operations on codes (short-
ening, puncturing, concatenation...) Markus Grassl from www.codetables.de

provided ten new codes beating the best known minimum distances. These new
best codes are available on www.codetables.de.

3.2.4. The code CL(Z,L5).

Theorem 3.12. The parameters of CL(Z,L5) are

[q2 + q + 1, 18, q2 − 3q − 1].

Proof. The length is n = q2 + q + 1 (as for CL(Z,L3)). The dimension of the
linear system of plane quintics is 20. The vanishing condition at P imposes 3
independent constraints and hence the dimension of Γ5 is 17. Thus, the code
has dimension k = 18. Notice that, in order to have n ≥ k, the integer q must
be above 4. The relevant cases appear for q ≥ 5, which is what is assumed from
now on. The minimum distance of the code is given by the following result. �

Proposition 3.13. Assume that q ≥ 5. Let C be an Fq–rational element of Γ5,
then

♯C(Fq) ≤ 4q + 2

and this bound is reached.

Proof. The curve C can be of the form:

(i) C = C1 ∪ C2, where C1 is an Fq–irreducible conic containing the closed
point P and C2 is a cubic (possibly reducible);

(ii) C = C1 ∪ C2, where C1 is an Fq–irreducible cubic containing P and C2 is
a conic (possibly reducible);

(iii) C = C1 ∪C2, where C1 is an Fq–irreducible quartic containing P and C2 is
a line;

(iv) C is an Fq–irreducible quintic.

The pictures below illustrate these different cases.

C2

C1

C1

C2

(i) (ii)
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C1

C2

C

(iii) (iv)

Since the curve C cannot be a union of Fq–rational lines, the upper bound is
a straightforward consequence of Corollary 1.7. In case (i), if C2 is a union of
three concurrent Fq–rational lines which do not meet C1 at rational points (it
is possible as soon as q ≥ 7), then ♯C(Fq) = 4q + 2. If q = 5, then the bound
is reached in situation (iii). Let us give an explicit example. Assume that P is
defined by the equations x2+xz+yz, xy+yz+z2 and 4xz+y2. Then the upper
bound is reached by the curve of equation

x(x4 + 2x3y + 3x3z + 3x2y2 + 4x2yz + 3x2z2 + 2xy3+

4xy2z + xyz2 + 3xz3 + 2y4 + 4y3z + 2y2z2 + 4yz3 + 2z4) = 0,

which has 22 rational points. �

Table 5 gives the parameters of CL(Z,L5) for some values of q. It shows that
these codes are almost as good as the best known codes. In addition over F9,
we get a [91, 18, 53] code which is better than the best known codes up to now.
Indeed, for this length and dimension the best minimum distance given by [8]
and [12] is 52.

q n k d Best d
up to now

5 31 18 9 9
7 57 18 27 27
8 73 18 39 40

9 91 18 53 52

Table 5. Parameters of the code CL(Z,L5).

Computer construction using Magma. A Magma script to construct such
a [91, 18, 53] code is available on http://www.lix.polytechnique.fr/Labo/

Alain.Couvreur/doc_rech/bestF9.mgm.

Actualisation of the tables of best known codes. The [91, 18, 53] code over
F9 has been sent to www.codetables.de. It has been proved to be equivalent to
a cyclic code over F9 and its dimension has been confirmed to be 53 by computer-
aided calculations.
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[19] M. Tsfasman, S. Vlăduţ, and D. Nogin. Algebraic geometric codes: basic notions, volume

139 ofMathematical Surveys and Monographs. American Mathematical Society, Providence,
RI, 2007.
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