33 research outputs found

    Ramified rectilinear polygons: coordinatization by dendrons

    Full text link
    Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic l1l_1-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either 4-cycles or paths of length at most 3. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group D4D_4), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.Comment: 27 pages, 6 figure

    On the connectivity and restricted edge-connectivity of 3-arc graphs

    Get PDF
    A 3−arc of a graph G is a 4-tuple (y, a, b, x) of vertices such that both (y, a, b) and (a, b, x) are paths of length two in G. Let ←→G denote the symmetric digraph of a graph G. The 3-arc graph X(G) of a given graph G is defined to have vertices the arcs of ←→G. Two vertices (ay), (bx) are adjacent in X(G) if and only if (y, a, b, x) is a 3-arc of G. The purpose of this work is to study the edge-connectivity and restricted edge-connectivity of 3-arc graphs.We prove that the 3-arc graph X(G) of every connected graph G of minimum degree ÎŽ(G) ≄ 3 has edge-connectivity λ(X(G)) ≄ (ÎŽ(G) − 1)2; and restricted edge- connectivity λ(2)(X(G)) ≄ 2(ÎŽ(G) − 1)2 − 2 if Îș(G) ≄ 2. We also provide examples showing that all these bounds are sharp.Peer Reviewe

    Cover Time and Broadcast Time

    Get PDF
    We introduce a new technique for bounding the cover time of random walks by relating it to the runtime of randomized broadcast. In particular, we strongly confirm for dense graphs the intuition of Chandra et al. (1997) that ``the cover time of the graph is an appropriate metric for the performance of certain kinds of randomized broadcast algorithms\u27\u27. In more detail, our results are as follows: begin{itemize} item For any graph G=(V,E)G=(V,E) of size nn and minimum degree deltadelta, we have mathcalR(G)=mathcalO(frac∣E∣deltacdotlogn)mathcal{R}(G)= mathcal{O}(frac{|E|}{delta} cdot log n), where mathcalR(G)mathcal{R}(G) denotes the quotient of the cover time and broadcast time. This bound is tight for binary trees and tight up to logarithmic factors for many graphs including hypercubes, expanders and lollipop graphs. item For any deltadelta-regular (or almost deltadelta-regular) graph GG it holds that mathcalR(G)=Omega(fracdelta2ncdotfrac1logn)mathcal{R}(G) = Omega(frac{delta^2}{n} cdot frac{1}{log n}). Together with our upper bound on mathcalR(G)mathcal{R}(G), this lower bound strongly confirms the intuition of Chandra et al.~for graphs with minimum degree Theta(n)Theta(n), since then the cover time equals the broadcast time multiplied by nn (neglecting logarithmic factors). item Conversely, for any deltadelta we construct almost deltadelta-regular graphs that satisfy mathcalR(G)=mathcalO(maxsqrtn,deltacdotlog2n)mathcal{R}(G) = mathcal{O}(max { sqrt{n},delta } cdot log^2 n). Since any regular expander satisfies mathcalR(G)=Theta(n)mathcal{R}(G) = Theta(n), the strong relationship given above does not hold if deltadelta is polynomially smaller than nn. end{itemize} Our bounds also demonstrate that the relationship between cover time and broadcast time is much stronger than the known relationships between any of them and the mixing time (or the closely related spectral gap)
    corecore