and restricted edge-connectivity of 3-arc graphs

Camino Balbuena and Luis Pedro Montejano
Universitat Politècnica de Catalunya
Barcelona
Pedro García-Vázquez
Universidad de Sevilla
Sevilla

Abstract

A $3-\operatorname{arc}$ of a graph G is a 4-tuple (y, a, b, x) of vertices such that both (y, a, b) and (a, b, x) are paths of length two in G. Let \overleftrightarrow{G} denote the symmetric digraph of a graph G. The 3-arc graph $X(G)$ of a given graph G is defined to have vertices the arcs of \overleftrightarrow{G}. Two vertices $(a y),(b x)$ are adjacent in $X(G)$ if and only if (y, a, b, x) is a 3 -arc of G. The purpose of this work is to study the edge-connectivity and restricted edge-connectivity of 3 -arc graphs. We prove that the 3 -arc graph $X(G)$ of every connected graph G of minimum degree $\delta(G) \geq 3$ has edgeconnectivity $\lambda(X(G)) \geq(\delta(G)-1)^{2}$; and restricted edge- connectivity $\lambda_{(2)}(X(G)) \geq 2(\delta(G)-1)^{2}-2$ if $\kappa(G) \geq 2$. We also provide examples showing that all these bounds are sharp.

1 Introduction

Throughout this paper, only undirected simple graphs without loops or multiple edges are considered. Unless otherwise stated, we follow [10] for terminology and definitions.

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For every $v \in V(G), N_{G}(v)$ denotes the neighborhood of v, that is, the set of all vertices adjacent to v. The degree of a vertex v is $d(v)=\left|N_{G}(v)\right|$ and the

On the connectivity
and restricted edge-connectivity of 3 -arc graphs C. Balbuena et al.
minimum degree $\delta=\delta(G)$ of the graph G is the minimum degree over all vertices of G.

A graph G is called connected if every pair of vertices is joined by a path. If $S \subset V(G)$ and $G-S$ is not connected, then S is said to be a cutset. A component of a graph G is a maximal connected subgraph of G. A (noncomplete) connected graph is called k-connected if every cutset has cardinality at least k. The connectivity $\kappa(G)$ of a (noncomplete) connected graph G is defined as the maximum integer k such that G is k-connected. The minimum cutsets are those having cardinality $\kappa(G)$. The connectivity of a complete graph $K_{\delta+1}$ on $\delta+1$ vertices is defined as $\kappa\left(K_{\delta+1}\right)=\delta$. Analogously, for edge connectivity an edge-cut in a graph G is a set W of edges of G such that $G-W$ is nonconnected. If W is a minimum edge-cut of a connected graph G, then $G-W$ contains exactly two components. Every connected graph on at least two vertices has an edge-cut. The edge-connectivity $\lambda(G)$ of a graph G is the minimum cardinality of an edge-cut of G. A classic result due to Whitney is that for every graph G, $\kappa(G) \leq \lambda(G) \leq \delta(G)$. A graph is maximally connected if $\kappa(G)=\delta(G)$, and maximally edge-connected if $\lambda(G)=\delta(G)$.

Though the parameters κ, λ of connectivities give the minimum cost to disrupt the network, they do not take into account what remains after deletion. Even two graphs with the same connectivity κ, λ may be considered to have different reliabilities, since the number of minimum cutsets or edge-cuts is different. Superconnectivity is a stronger measure of connectivity, introduced by Boesch and Tindell in [8], whose study has deserved some attention in the last years, see for instance, $[1,6,7,19,20]$. A maximally connected [edge-connected] graph is called super- κ [super- λ] if for every cutset [edge-cut] W of cardinality $\delta(G)$ there exists a component C of $G-W$ of cardinality $|V(C)|=1$. The study of super- κ [super- λ] graphs has a particular significance in the design of reliable networks, mainly due to the fact that attaining superconnectivity implies minimizing the number of minimum cutsets [edge-cuts] (see [7, 20]).

In order to measure the super edge-connectivity we use the following parameter introduced by Esfahanian and Hakimi [11]. The restricted edgeconnectivity $\lambda_{(2)}=\lambda_{(2)}(G)$ is the minimum cardinality over all restricted edge-cuts W, i.e., those such that there are no isolated vertices in $G-W$. A restricted edge-cut W is called a $\lambda_{(2)}$-cut if $|W|=\lambda_{(2)}$. Obviously for any $\lambda_{(2)}$-cut W, the graph $G-W$ consists of exactly two components

On the connectivity
and restricted edge-connectivity of 3-arc graphs
C. Balbuena et al.
C, \bar{C} and clearly $|V(C)| \geq 2,|V(\bar{C})| \geq 2$. A connected graph G is called $\lambda_{(2)}$-connected if $\lambda_{(2)}$ exists. Esfahanian and Hakimi [11] showed that each connected graph G of order $n(G) \geq 4$ except a star, is $\lambda_{(2)}$-connected and satisfies $\lambda_{(2)} \leq \xi$, where $\xi=\xi(G)$ denotes the minimum edge-degree of G defined as $\xi(G)=\min \{d(u)+d(v)-2: u v \in E(G)\}$. Furthermore, a $\lambda_{(2)}$-connected graph is said to be $\lambda_{(2)}$-optimal if $\lambda_{(2)}=\xi$. Recent results on this property are obtained in $[2,5,12,13,18,21,23]$. Notice that if $\lambda_{(2)} \leq \delta$, then $\lambda_{(2)}=\lambda$. When $\lambda_{(2)}>\delta$ (that is to say, when every edge cut of order δ isolates a vertex) the graph must be super $-\lambda$. Therefore, by means of this parameter we can say that a graph G is super- λ if and only if $\lambda_{(2)}>\delta$. Thus, we can measure the super edge-connectivity of the graph as the value of the restricted edge-connectivity $\lambda_{(2)}$.

Let \overleftrightarrow{G} denote the symmetric digraph of a graph G. For adjacent vertices u, v of $V(G)$ we use (u, v) to denote the arc from u to v, and $(v, u)(\neq(u, v))$ to denote the arc from v to u. A 3-arc is a 4-tuple (y, a, b, x) of vertices such that both (y, a, b) and (a, b, x) are paths of length two in G. The 3-arc graph $X(G)$ of a given graph G is defined to have vertices the arcs of \overleftrightarrow{G} and they are denoted as $(u v)$. Two vertices $(a y),(b x)$ are adjacent in $X(G)$ if and only if (y, a, b, x) is a $3-\operatorname{arc}$ of G, see [17, 22]. Equivalently, two vertices $(a x),(b y)$ are adjacent in $X(G)$ if and only if $d_{G}(a, b)=1$; that is, the tails a, b of the $\operatorname{arcs}(a, x),(b, y) \in A(\overleftrightarrow{G})$ are at distance one in G. Thus the number of edges of $X(G)$ is $\sum_{u v \in E(G)}(d(u)-1)(d(v)-1)$ so that the minimum degree of $X(G)$ is $(\delta(G)-1)^{2}$. There is a bijection between the edges of $X(G)$ and those of the 2-path graph $P_{2}(G)$, which is defined to have vertices the paths of length two in G such that two vertices are adjacent if and only if the union of the corresponding paths is a path or a cycle of length three, see [9]. Since $P_{2}(G)$ is a spanning subgraph of the second iterated line graph $L_{2}(G)=L(L(G)$) (see e.g. [14]), we have a relation between 3 -arc graphs and line graphs. Some results on the connectivity of P_{2}-path graphs are studied e.g. in $[3,4,15]$.

The purpose of this paper is to study the edge-connectivity, the restricted edge-connectivity and vertex-connectivity of the 3-arc graph $X(G)$ of a given graph G. The following theorem gather together the results on connectivity of 3 -arc-graph $X(G)$ obtained by Knor and Zhou [16].

Theorem 1 [16] Let G be a graph with minimum degree $\delta(G)$.
(i) $X(G)$ is connected if G is connected and $\delta(G) \geq 3$.

On the connectivity
and restricted edge-connectivity of 3-arc graphs
C. Balbuena et al.
(ii) $\kappa(X(G)) \geq(\kappa(G)-1)^{2}$ if $\kappa(G) \geq 3$.

The main results contained in this paper are the following:
Let G be a connected graph with minimum degree $\delta(G) \geq 3$.
(i) $\lambda(X(G)) \geq(\delta(G)-1)^{2}$.
(ii) $\lambda_{(2)}(X(G)) \geq 2(\delta(G)-1)^{2}-2$ if $\kappa(G) \geq 2$.
(iii) $\kappa(X(G)) \geq \min \left\{\kappa(G)(\delta(G)-1),(\delta(G)-1)^{2}\right\}$.
(iv) $X(G)$ is super $-\kappa$ if $\kappa(G)=\delta(G)$ and $\delta(X(G))=(\delta(G)-1)^{2}$.

2 Results on the edge-connectivity and restricted edge-connectivity of 3 -arc graphs

Let $X(G)$ be the 3 -arc graph of a graph G. If (ay) and $(b x)$ are adjacent in $X(G)$ then the edge $(a y)(b x)$ will be called an $a b$-edge (or ba-edge). Observe that $(a y)(b x)=(b x)(a y)$ but $(a y) \neq(y a)$ and $(b x) \neq(x b)$. For any edge $a b \in E(G)$ let $\mathcal{V}_{a b}^{a}=\left\{(a y) \in V(X(G)): y \in N_{G}(a)-b\right\}$. Observe that the induced subgraph of $X(G)$ by the set $\mathcal{V}_{a b}^{a} \cup \mathcal{V}_{b a}^{b}$ is the complete bipartite graph $K_{\left|\mathcal{V}_{a b}^{a},\left|\mathcal{V}_{b a}^{b}\right|\right.}=K_{d(a)-1, d(b)-1}$.

If W is a minimal edge cut of a connected graph G, then, $G-W$ necessarily contains exactly two components C and \bar{C}, so it is usual to denote an edge cut W as $[C, \bar{C}]$ where $[C, \bar{C}]$ denotes the set of edges between C and its complement \bar{C}.

Lemma 2 Let G be a graph and $[C, \bar{C}]$ an edge-cut of $X(G)$. Let $a b \in$ $E(G)$, if $[C, \bar{C}]$ contains ab-edges, then it contains at least $\min \{d(a)-$ $1, d(b)-1\}$ ab-edges.

Proof: Suppose that $(a y)(b x)$ is an edge of $[C, \bar{C}]$ such that $(a y) \in V(C)$ and $(b x) \in V(\bar{C})$. Then $\mathcal{V}_{a b}^{a} \cap V(C) \neq \emptyset$ and $\mathcal{V}_{b a}^{b} \cap V(\bar{C}) \neq \emptyset$. Let denote by $\left|\mathcal{V}_{a b}^{a} \cap V(C)\right|=r_{a} \geq 1,\left|\mathcal{V}_{b a}^{b} \cap V(C)\right|=r_{b} \geq 0,\left|\mathcal{V}_{a b}^{a} \cap V(\bar{C})\right|=\bar{r}_{a} \geq 0$ and $\left|\mathcal{V}_{b a}^{b} \cap V(\bar{C})\right|=\bar{r}_{b} \geq 1$. Moreover, these numbers must satisfy $r_{a}+\bar{r}_{a}=$ $d(a)-1$ and $r_{b}+\bar{r}_{b}=d(b)-1$. Furthermore, the number of $a b$-edges contained in $[C, \bar{C}]$ is $r_{a} \bar{r}_{b}+r_{b} \bar{r}_{a}$, that is,

$$
\begin{equation*}
|[C, \bar{C}]| \geq r_{a} \bar{r}_{b}+r_{b} \bar{r}_{a} \tag{1}
\end{equation*}
$$

On the connectivity and restricted edge-connectivity of 3 -arc graphs C. Balbuena et al.

If $r_{b}=0$, then $\bar{r}_{b}=d(b)-1$. As $r_{a} \geq 1$, (1) implies $|[C, \bar{C}]| \geq d(b)-1$ and the lemma follows. Similarly, if $\bar{r}_{a}=0$, the result is also true. Therefore, we can assume that $r_{a}, r_{b}, \bar{r}_{a}, \bar{r}_{b} \geq 1$. In this case $r_{a} \bar{r}_{b}+r_{b} \bar{r}_{a} \geq r_{a}+\bar{r}_{a}=d(a)-1$, and $r_{a} \bar{r}_{b}+r_{b} \bar{r}_{a} \geq r_{b}+\bar{r}_{b}=d(b)-1$, and the result holds.

Suppose that $[C, \bar{C}]$ is an edge-cut of $X(G)$. Let denote by $\omega(\alpha)=\{e \in$ $E(G): e=\alpha \beta\}$ and define $\mathcal{A}=\{\alpha \beta \in E(G):(\alpha y)(\beta x) \in[C, \bar{C}]\}$. Then, as a consequence of the above lemma, we have $|[C, \bar{C}]| \geq|\mathcal{A}|(\delta(G)-1)$. Next we prove that $|[C, \bar{C}]| \geq(\delta(G)-1)^{2}$.

Lemma 3 Let G be a graph and $[C, \bar{C}]$ an edge-cut of $X(G)$. Let $a b \in$ $E(G)$ and suppose that $a b \in \mathcal{A}$. Then $|(\omega(a) \cup \omega(b)) \cap \mathcal{A}| \geq(\delta-1)^{2}$.

Proof: Suppose that for all $y \in N(a)-b$, $a y \in \mathcal{A}$. Then there are at least δ different ay-edges in $[C, \bar{C}]$, and by Lemma 2 the number of ayedges in $[C, \bar{C}]$ is at least $\delta(\delta-1)>(\delta-1)^{2}$. The same occurs if for every $x \in N(b)-a, b x \in \mathcal{A}$. Therefore we may assume that there exists $y_{0} \in N_{G}(a)-b$ such that $a y_{0} \notin \mathcal{A}$ and there exists $x_{0} \in N_{G}(b)-a$ such that $b x_{0} \notin \mathcal{A}$.

As $a b \in \mathcal{A},\left(a y^{\prime}\right)\left(b x^{\prime}\right) \in[C, \bar{C}]$ for some $y^{\prime} \in N(a)-b$ and $x^{\prime} \in N(b)-a$, and without loss of generality we may suppose that $\left(a y^{\prime}\right) \in V(C),\left(b x^{\prime}\right) \in$ $V(\bar{C})$. Suppose that $\left(a y_{0}\right)\left(b x_{0}\right) \notin[C, \bar{C}]$. Without loss of generality we may assume that $\left(a y_{0}\right),\left(b x_{0}\right) \in V(\bar{C})$ in which case $\left(a y^{\prime}\right)\left(b x_{0}\right) \in[C, \bar{C}]$ because $\left(a y^{\prime}\right) \in V(C)$. Then we can continue the proof assuming that there is an edge $(a y)(b x) \in[C, \bar{C}]$ such that $b x \notin \mathcal{A}$, i.e., there are no $b x$-edges in $[C, \bar{C}]$.

First suppose that $\mathcal{V}_{x b}^{x} \cap V(C) \neq \emptyset$. Let $B=\left\{x^{\prime} \in N_{G}(b) \backslash\{x, a\}\right.$: $\left.\left(x^{\prime} z\right) \in V(C)\right\}$ and $\bar{B}=\left\{x^{\prime} \in N_{G}(b) \backslash\{x, a\}:\left(x^{\prime} z\right) \in V(\bar{C})\right\}$. Observe that for all $x^{\prime} \in B \cup \bar{B},\left(x^{\prime} z\right)$ is adjacent to $(b x) \in V(\bar{C})$, and $\left(x^{\prime} z\right)$ is adjacent to $(b a)$. Hence the edge-cut $[C, \bar{C}]$ must contain $|B|$ different $b x^{\prime}$ edges. Moreover, since $(b a)$ is adjacent to every $\left(x b^{\prime}\right) \in \mathcal{V}_{x b}^{x}$ and $b x \notin \mathcal{A}$, then $(b a) \in V(C)$ because our assumption $\mathcal{V}_{x b}^{x} \cap V(C) \neq \emptyset$. Hence $[C, \bar{C}]$ also contains $|\bar{B}|$ different $b x^{\prime}$-edges yielding that $[C, \bar{C}]$ contains at least $|B|+|\bar{B}|+|\{a b\}|=d(b)-1 \geq \delta-1$ different bv-edges with $v \in N(b)$ and by Lemma 2, the result holds.

Second suppose that $\mathcal{V}_{x b}^{x} \subset V(\bar{C})$. Hence $\mathcal{V}_{b a}^{b} \subset V(\bar{C})$ because every $\left(b x^{\prime}\right) \in \mathcal{V}_{b a}^{b}$ is adjacent to every $\left(x b^{\prime}\right) \in \mathcal{V}_{x b}^{x}$ and $[C, \bar{C}]$ does not contain $b x$-edges. If $a y \notin \mathcal{A}$, reasoning for $a y$ in the same way as for $b x$ we get that $\mathcal{V}_{a b}^{a} \subset V(C)$. Thus as $\mathcal{V}_{b a}^{b} \subset V(\bar{C})$ it follows that $[C, \bar{C}]$ contains at least

On the connectivity
and restricted edge-connectivity of 3-arc graphs C. Balbuena et al.
$(d(a)-1)(d(b)-1) \geq(\delta-1)^{2} a b$-edges and the lemma holds. Therefore, suppose that $a y \in \mathcal{A}$.

We know that there exists $v \in N_{G}(a)-y$ such that $a v \notin \mathcal{A}$. As $\left(v a^{\prime}\right)$ is adjacent to $(a y)$ for all $\left(v a^{\prime}\right) \in \mathcal{V}_{v a}^{v}$ it follows that $\mathcal{V}_{v a}^{v} \subset V(C)$ (because $(a y) \in V(C)$ and $a v \notin \mathcal{A})$. Hence $\mathcal{V}_{a v}^{a} \subset V(C)$ because every $\left(a y^{\prime}\right) \in \mathcal{V}_{a v}^{a}$ is adjacent to $\left(v a^{\prime}\right) \in \mathcal{V}_{v a}^{v}$. As $\mathcal{V}_{b a}^{b} \subset V(\bar{C})$ it follows that $[C, \bar{C}]$ contains at least $(d(a)-2)(d(b)-1)$ ab-edges. Further, as $a y \in \mathcal{A}$, by Lemma $2,[C, \bar{C}]$ also contains at least $\delta-1$ ay-edges, yielding that the number of au-edges contained $|[C, \bar{C}]|$ is at least $(\delta-2)(\delta-1)+(\delta-1)=(\delta-1)^{2}$, and the lemma holds.

Theorem 4 Let G be a connected graph with minimum degree $\delta \geq 3$. Then

$$
\lambda(X(G)) \geq(\delta-1)^{2}
$$

Proof: Let $[C, \bar{C}]$ be a minimum edge-cut of $X(G)$ and $\mathcal{A}=\{a b \in E(G)$: $(a y)(b x) \in[C, \bar{C}]\}$. As G is connected and $\delta \geq 3$, then $X(G)$ is connected yielding that $|\mathcal{A}| \geq 1$. So considering $a b \in \mathcal{A}$, and using Lemma 3 we get $|[C, \bar{C}]| \geq(\delta-1)^{2}$, following the theorem.

The following corollary is an immediate consequence from Theorem 4, and from the fact that if G is a graph of minimum degree δ having an edge $x y$ such that $d(x)=\delta$ and $d\left(y^{\prime}\right)=\delta$ for all $y^{\prime} \in N_{G}(x)-y$, then the minimum degree of $X(G)$ is $\delta(X(G))=(\delta-1)^{2}$.

Corollary 5 Let G be a connected graph of minimum degree $\delta \geq 3$ having an edge $x y$ such that $d(x)=\delta$ and $d\left(y^{\prime}\right)=\delta$ for all $y^{\prime} \in N_{G}(x)-y$. Then the 3-arc graph $X(G)$ of G is maximally edge-connected.

Figure 1 shows a 3-regular graph G with $\lambda(G)=1$ and its 3 -arc graph $X(G)$ which has $\lambda(X(G))=4=\delta(X(G))$. However $X(G)$ is not super- λ and hence is not $\lambda_{(2)}$-optimal. And Figure 2 shows a 3-regular graph G with $\lambda(G)=\kappa(G)=2$, and its 3-arc graph $X(G)$ which has $\lambda(X(G))=4$ and $\lambda_{(2)}(X(G))=6=\xi(X(G))$, i.e., this graph is $\lambda_{(2)}$-optimal. In what follows we give a lower bound on the restricted edge-connectivity $\lambda_{(2)}(X(G))$ where G is a graph having connectivity $\kappa(G) \geq 2$.

Two edges which are incident with a common vertex are adjacent.

On the connectivity and restricted edge-connectivity of 3-arc graphs C. Balbuena et al.

Figure 1: A 3-regular graph with $\lambda=1$ and its 3-arc graph.

Figure 2: A 3-regular graph with $\lambda=2(\kappa=2)$ and its 3 -arc graph.

Lemma 6 Let G be a graph with minimum degree $\delta \geq 3$ and vertex connectivity $\kappa \geq 2$. Let $[C, \bar{C}]$ be a restricted edge-cut of $X(G)$ and consider the set $\mathcal{A}=\{a b \in E(G):(a y)(b x) \in[C, \bar{C}]\}$. Then there are at least two nonadjacent edges in \mathcal{A}.

Proof: Clearly $\mathcal{A} \neq \emptyset$, because $X(G)$ is connected. Thus let $(a y) \in V(C)$ and $(b x) \in V(\bar{C})$ be two adjacent vertices in $X(G)$, which implies that $a b \in \mathcal{A}$. Since $[C, \bar{C}]$ is a restricted edge-cut, then there exist $\left(u y^{\prime}\right) \in V(C)$ and $\left(w x^{\prime}\right) \in V(\bar{C})$ adjacent to $(a y)$ and $(b x)$ in $X(G)$, respectively. Observe that we may assume that $u \neq w$ because $\delta \geq 3$. Since G is 2 -connected we can find a path $R: u=r_{0}, r_{1}, \ldots, r_{k}=w$ from u to w in $G-a$. As $\delta \geq 3$, there exists $v_{i} \in N\left(r_{i}\right) \backslash\left\{r_{i-1}, r_{i+1}\right\}$ for each $i=1, \ldots, k-1$. Moreover

On the connectivity
and restricted edge-connectivity of 3-arc graphs C. Balbuena et al.
we may choose $v_{0}=y^{\prime}$ and $v_{k}=x^{\prime}$. Then the path R induces in $X(G)$ the path $R^{*}:\left(u y^{\prime}\right),\left(r_{1} v_{1}\right), \ldots,\left(r_{k-1} v_{k-1}\right),\left(w x^{\prime}\right)$ (observe that if $k=1$ then $\left.R^{*}:\left(u y^{\prime}\right),\left(w x^{\prime}\right)\right)$. Since $\left(u y^{\prime}\right) \in V(C)$ and $\left(w x^{\prime}\right) \in V(\bar{C})$, it follows that $[C, \bar{C}] \cap E\left(R^{*}\right) \neq \emptyset$, hence $r_{i} r_{i+1} \in \mathcal{A}$ for some $i \in\{0, \ldots, k\}$. Since $a \notin V(R)$ then $a \notin\left\{r_{i}, r_{i+1}\right\}$.

Now reasoning analogously, we can find a path $S: u=s_{0}, s_{1}, \ldots, s_{\ell}=$ w from u to w in $G-b$ that induces a path S^{*} from $\left(u y^{\prime}\right) \in V(C)$ to $\left(w x^{\prime}\right) \in V(\bar{C})$. This implies that $[C, \bar{C}] \cap E\left(S^{*}\right) \neq \emptyset$, hence $s_{j} s_{j+1} \in \mathcal{A}$ for some $j \in\{0, \ldots, \ell\}$. Since $b \notin V(S)$ then $b \notin\left\{s_{j}, s_{j+1}\right\}$.

As $a b, r_{i} r_{i+1}, s_{j} s_{j+1} \in \mathcal{A}, a \notin\left\{r_{i}, r_{i+1}\right\}$ and $b \notin\left\{s_{j}, s_{j+1}\right\}$, it follow that al least two of the edges of $\left\{a b, r_{i} r_{i+1}, s_{j} s_{j+1}\right\}$ are nonadjacent.

Theorem 7 Let G be a graph with minimum degree $\delta \geq 3$ and vertex connectivity $\kappa \geq 2$. Then $X(G)$ has restricted edge-connectivity $\lambda_{(2)}(X(G)) \geq$ $2(\delta-1)^{2}-2$.

Proof: Let $[C, \bar{C}]$ be a restricted edge-cut of $X(G)$ and consider the set $\mathcal{A}=\{a b \in E(G):(a y)(b x) \in[C, \bar{C}]\}$. From Lemma $6, \mathcal{A}$ contains two nonadjacent edges $a b$ and $c d$. By Lemma 3, the number of $a u$-edges and $b v$-edges, $u, v \in N(a) \cup N(b)$ contained in $[C, \bar{C}]$ is at least $(\delta-1)^{2}$, and the number of $c u$-edges and $d v$-edges, $u, v \in N(c) \cup N(d)$ contained in $[C, \bar{C}]$ is at least $(\delta-1)^{2}$. If $|[\{a, b\},\{c, d\}] \cap \mathcal{A}| \leq 2$ then $|[C, \bar{C}]| \geq 2(\delta-$ $1)^{2}-|[\{a, b\},\{c, d\}] \cap \mathcal{A}| \geq 2(\delta-1)^{2}-2$. If $3 \leq|[\{a, b\},\{c, d\}] \cap \mathcal{A}| \leq 4$ then we may assume without loss of generality that $a c, b d \in \mathcal{A}$, hence, by applying Lemma 3, the number of au-edges and $c v$-edges, $u, v \in N(a) \cup N(c)$ contained in $[C, \bar{C}]$ is at least $(\delta-1)^{2}$, and the number of bu-edges and $d v$ edges, $u, v \in N(b) \cup N(d)$ contained in $[C, \bar{C}]$ is at least $(\delta-1)^{2}$. Thus,

$$
\begin{aligned}
|[C, \bar{C}]| & \geq 2(\delta-1)^{2}-|[\{a, b\},\{c, d\}] \cap \mathcal{A}|+2(\delta-1)^{2}-|[\{a, c\},\{b, d\}] \cap \mathcal{A}| \\
& \geq 4(\delta-1)^{2}-8 \\
& \geq 2(\delta-1)^{2}-2
\end{aligned}
$$

since $\delta \geq 3$. Hence the theorem is valid.
Figure 3 shows that $\lambda(G) \geq 2$ is not enough to guarantee that $\lambda_{(2)}(X(G)) \geq$ $2(\delta-1)^{2}-2$. In this example G is a 4-regular graph with $\lambda=2$ and $\kappa=1$, but $\lambda_{(2)}(X(G))=12<16$.

The following corollary is an immediate consequence from Theorem 7, and from the fact that if G is graph of minimum degree δ having an edge

On the connectivity and restricted edge-connectivity of 3-arc graphs C. Balbuena et al.

Figure 3: The 3-arc graph of a 4-regular graph with $\kappa=1$ and $\lambda=2$ with $\lambda_{(2)}(X(G))=12$.
$x y$ such that $d(x)=\delta, d(y)=\delta$ and such that every $w \in\left(N_{G}(x)-y\right) \cup$ $\left(N_{G}(y)-x\right)$ also has degree δ, then the minimum edge degree of $X(G)$ is $\xi(X(G))=2(\delta-1)^{2}-2$.

Corollary 8 Let G be a graph of minimum degree $\delta \geq 3$ and vertex connectivity $\kappa \geq 2$ having an edge xy such that $d(x)=\delta, d(y)=\delta$ and such that every $w \in\left(N_{G}(x)-y\right) \cup\left(N_{G}(y)-x\right)$ also has degree δ. Then the 3arc graph $X(G)$ has restricted edge connectivity $\lambda_{(2)}(X(G))=\xi(X(G))=$ $2(\delta-1)^{2}-2$.

Acknowledgement

Research supported by the Ministry of Science and Innovation, Spain, and the European Regional Development Fund (ERDF) under project MTM2008-06620-C03-02/MTM; also by Catalonian goverment under proyect 2009 SGR 1298.

On the connectivity
and restricted edge-connectivity of 3-arc graphs C. Balbuena et al.

References

[1] C. Balbuena, M. Cera, A. Diánez, P. García-Vázquez and X. Marcote. On the restricted connectivity and superconnectivity in graphs with given girth. Discrete Math., 307(6):659-667, 2007.
[2] C. Balbuena, M. Cera, A. Diánez, P. García-Vázquez and X. Marcote. Sufficient conditions for λ^{\prime}-optimality of graphs with smaill conditional diameter. Inf. Process. Lett., 95:429-434, 2005.
[3] C. Balbuena and D. Ferrero. Edge-connectivity and super edgeconnectivity of P_{2}-path graphs. Discrete Math., 269(1-3):13-20, 2003.
[4] C. Balbuena and P. García-Vázquez. A sufficient condition for P_{k}-path graphs being r-connected. Discrete Appl. Math., 155:1745-1751, 2007.
[5] C. Balbuena, P. García-Vázquez and X. Marcote. Sufficient conditions for λ^{\prime}-optimality in graphs with girth g. J. Graph Theory, 52(1):73-86, 2006.
[6] C. Balbuena, K. Marshall and L.P. Montejano. On the connectivity and superconnected graphs with small diameter. Discrete Appl. Math., 158(5):397-403, 2010.
[7] F.T Boesch. Synthesis of reliable networks-A survey. IEEE Trans. Reliability, 35:240-246, 1986.
[8] F. Boesch and R. Tindell. Circulants and their connectivities. J. Graph Theory, 8:487-499, 1984.
[9] H.J. Broersma and C. Hoede. Path graphs. J. Graph Theory, 13:427444, 1989.
[10] G. Chartrand and L. Lesniak. Graphs and Digraphs. Third edition. Chapman and Hall, London, UK, 1996.
[11] A.H. Esfahanian and S.L. Hakimi. On computing a conditional edgeconnectivity of a graph. Inf. Process. Lett., 27:195-199, 1988.
[12] A. Hellwig and L. Volkmann. Sufficient conditions for graphs to be λ^{\prime}-optimal, super-edge- connected, and maximally edge-connected. J. Graph Theory, 48:228-246, 2005.

On the connectivity
and restricted edge-connectivity of 3-arc graphs \quad C. Balbuena et al.
[13] A. Hellwig and L. Volkmann. Sufficient conditions for λ^{\prime}-optimality in graphs of diameter 2. Discrete Math., 283:113-120, 2004.
[14] M. Knor and L. Niepel. Connectivity of iterated line graphs. Discrete Appl. Math., 125:255-266, 2003.
[15] M. Knor, L. Niepel and M. Malah. Connectivity of path graphs. Australas. J. Combin., 25:175-184, 2002.
[16] M. Knor and S. Zhou. Diameter and connectivity of 3-arc graphs. Discrete Math., 310:37-42, 2010.
[17] C.H. Li, C.E. Praeger and S. Zhou. A class of finite symmetric graphs with 2-arc transitive quotients. Math. Proc. Cambridge Phil. Soc., 129:19-34, 2000.
[18] S. Lin and S. Wang. Super p-restricted edge connectivity of line graphs. Information Sciences, 179:3122-3126, 2009.
[19] J. Meng. Connectivity and super edge-connectivity of line graphs. Graph Theory Notes of New York, XL:12-14, 2001.
[20] T. Soneoka. Super edge-connectivity of dense digraphs and graphs. Discrete Appl. Math., 37/38:511-523, 1992.
[21] Z. Zhang. Sufficient conditions for restricted-edge-connectivity to be optimal. Discrete Math., 307(22):2891-2899, 2007.
[22] S. Zhou. Imprimitive symmetric graphs, 3-arc graphs and 1-designs. Discrete Math., 244:521-537, 2002.
[23] Q. Zhu, J.M. Xu, X. Hou and M. Xu. On reliability of the folded hypercubes. Information Sciences 177:1782-1788, 2007.

