200,716 research outputs found

    A tabu search algorithm for dynamic routing in ATM cell-switching networks

    Get PDF
    This paper deals with the dynamic routing problem in ATM cell-switching networks. We present a mathematical programming model based on cell loss and a Tabu Search algorithm with short-term memory that is reinforced with a long-term memory procedure. The estimation of the quality of the solutions is fast, due to the specific encoding of the feasible solutions. The Tabu Search algorithm reaches good quality solutions, outperforming other approaches such as Genetic Algorithms and the Minimum Switching Path heuristic, regarding both cell loss and the CPU time consumption. The best results were found for the more complex networks with a high number of switches and links

    Energy Efficient Relay-Assisted Cellular Network Model using Base Station Switching

    Get PDF
    Cellular network planning strategies have tended to focus on peak traffic scenarios rather than energy efficiency. By exploiting the dynamic nature of traffic load profiles, the prospect for greener communications in cellular access networks is evolving. For example, powering down base stations (BS) and applying cell zooming can significantly reduce energy consumption, with the overriding design priority still being to uphold a minimum quality of service (QoS). Switching off cells completely can lead to both coverage holes and performance degradation in terms of increased outage probability, greater transmit power dissipation in the up and downlinks, and complex interference management, even at low traffic loads. In this paper, a cellular network model is presented where certain BS rather than being turned off, are switched to low-powered relay stations (RS) during zero-to-medium traffic periods. Neighbouring BS still retain all the baseband signal processing and transmit signals to corresponding RS via backhaul connections, under the assumption that the RS covers the whole cell. Experimental results demonstrate the efficacy of this new BS-RS Switching technique from both an energy saving and QoS perspective, in the up and downlinks

    Rearrangeable Networks with Limited Depth

    Get PDF
    Rearrangeable networks are switching systems capable of establishing simultaneous independent communication paths in accordance with any one-to-one correspondence between their n inputs and n outputs. Classical results show that Ω( n log n ) switches are necessary and that O( n log n ) switches are sufficient for such networks. We are interested in the minimum possible number of switches in rearrangeable networks in which the depth (the length of the longest path from an input to an output) is at most k, where k is fixed as n increases. We show that Ω( n1 + 1/k ) switches are necessary and that O( n1 + 1/k ( log n )1/k ) switches are sufficient for such networks

    Blocking behaviors of crosstalk-free optical Banyan networks on vertical stacking

    Get PDF
    Banyan networks are attractive for constructing directional coupler (DC)-based optical switching networks for their small depth and self-routing capability. Crosstalk between optical signals passing through the same DC is an intrinsic drawback in DC-based optical networks. Vertical stacking of multiple copies of an optical banyan network is a novel scheme for building nonblocking (crosstalk-free) optical switching networks. The resulting network, namely vertically stacked optical banyan (VSOB) network, preserves all the properties of the banyan network, but increases the hardware cost significantly. Though much work has been done for determining the minimum number of stacked copies (planes) required for a nonblocking VSOB network, little is known on analyzing the blocking probabilities of VSOB networks that do not meet the nonblocking condition (i.e., with fewer stacked copies than required by the nonblocking condition). In this paper, we analyze the blocking probabilities of VSOB networks and develop their upper and lower bounds with respect to the number of planes in the networks. These bounds depict accurately the overall blocking behaviors of VSOB networks and agree with the conditions of strictly nonblocking and rearrangeably nonblocking VSOB networks respectively. Extensive simulation on a network simulator with both random routing and packing strategy has shown that the blocking probabilities of both strategies fall nicely within our bounds, and the blocking probability of packing strategy actually matches the lower bound. The proposed bounds are significant because they reveal the inherent relationships between blocking probability and network hardware cost in terms of the number of planes, and provide network developers a quantitative guidance to trade blocking probability for hardware cost. In particular, our bounds provide network designers an effective tool to estimate the minimum and maximum blocking probabilities of VSOB networks in which different routing strategies may be applied. An interesting conclusion drawn from our work that has practical applications is that the hardware cost of a VSOB network can be reduced dramatically if a predictable and almost negligible nonzero blocking probability is allowed.Xiaohong Jiang; Hong Shen; Khandker, Md.M.-ur-R.; Horiguchi, S

    Impacts of Channel Switching Overhead on the Performance of Multicast in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising technology for next generation wireless networking. A WMN extends network coverage using wireless mesh routers that communicate with each other via multi-hop wireless communications. One technique to increase the network capacity of WMNs is to use routers equipped with multiple radios capable of transmitting and receiving on multiple channels. In a Multi-Channel Multi-Radio wireless mesh network (MCMR WMN), nodes are capable of transmitting and receiving data simultaneously through different radios and at least theoretically doubling the average throughput. On the other hand, the use of multi-radio and multi-channel technology in many cases requires routers to switch channels for each transmission and/or reception. Channel switching incurs additional costs and delay. In this thesis, we present a simulation-based study of the impacts of channel switching overheads on the performance of multicast in MCMR WMNs. We study how channel switching overheads affect the performance metrics such as packet delivery ratio, throughput, end-to-end delay, and delay jitter of a multicast session. In particular, we examine: 1. the performance of multicast in MCMR WMNs with three orthogonal channels versus eleven overlapping channels defined in IEEE 802.11b. 2. the performance of the Minimum-interference Multi-channel Multi-radio Multicast (M4) algorithm with and without channel switching. 3. the performance of the Multi-Channel Minimum Number of Transmissions (MCMNT) algorithm (which does not do channel switching) in comparison with the M4 algorithm (which performs channel switching)

    Method and apparatus for determining and utilizing a time-expanded decision network

    Get PDF
    A method, apparatus and computer program for determining and utilizing a time-expanded decision network is presented. A set of potential system configurations is defined. Next, switching costs are quantified to create a "static network" that captures the difficulty of switching among these configurations. A time-expanded decision network is provided by expanding the static network in time, including chance and decision nodes. Minimum cost paths through the network are evaluated under plausible operating scenarios. The set of initial design configurations are iteratively modified to exploit high-leverage switches and the process is repeated to convergence. Time-expanded decision networks are applicable, but not limited to, the design of systems, products, services and contracts

    Switching networks for bidirectional telephone systems

    Get PDF
    We consider two-stage bidirectional switching networks which have a minimum of switches. Results on the structure of such networks in terms of the number of switches per crosswire are established
    corecore