11,318 research outputs found

    On the Minimization of Convex Functionals of Probability Distributions Under Band Constraints

    Full text link
    The problem of minimizing convex functionals of probability distributions is solved under the assumption that the density of every distribution is bounded from above and below. A system of sufficient and necessary first-order optimality conditions as well as a bound on the optimality gap of feasible candidate solutions are derived. Based on these results, two numerical algorithms are proposed that iteratively solve the system of optimality conditions on a grid of discrete points. Both algorithms use a block coordinate descent strategy and terminate once the optimality gap falls below the desired tolerance. While the first algorithm is conceptually simpler and more efficient, it is not guaranteed to converge for objective functions that are not strictly convex. This shortcoming is overcome in the second algorithm, which uses an additional outer proximal iteration, and, which is proven to converge under mild assumptions. Two examples are given to demonstrate the theoretical usefulness of the optimality conditions as well as the high efficiency and accuracy of the proposed numerical algorithms.Comment: 13 pages, 5 figures, 2 tables, published in the IEEE Transactions on Signal Processing. In previous versions, the example in Section VI.B contained some mistakes and inaccuracies, which have been fixed in this versio

    Performance Limits of Stochastic Sub-Gradient Learning, Part II: Multi-Agent Case

    Full text link
    The analysis in Part I revealed interesting properties for subgradient learning algorithms in the context of stochastic optimization when gradient noise is present. These algorithms are used when the risk functions are non-smooth and involve non-differentiable components. They have been long recognized as being slow converging methods. However, it was revealed in Part I that the rate of convergence becomes linear for stochastic optimization problems, with the error iterate converging at an exponential rate αi\alpha^i to within an O(ÎŒ)−O(\mu)-neighborhood of the optimizer, for some α∈(0,1)\alpha \in (0,1) and small step-size ÎŒ\mu. The conclusion was established under weaker assumptions than the prior literature and, moreover, several important problems (such as LASSO, SVM, and Total Variation) were shown to satisfy these weaker assumptions automatically (but not the previously used conditions from the literature). These results revealed that sub-gradient learning methods have more favorable behavior than originally thought when used to enable continuous adaptation and learning. The results of Part I were exclusive to single-agent adaptation. The purpose of the current Part II is to examine the implications of these discoveries when a collection of networked agents employs subgradient learning as their cooperative mechanism. The analysis will show that, despite the coupled dynamics that arises in a networked scenario, the agents are still able to attain linear convergence in the stochastic case; they are also able to reach agreement within O(ÎŒ)O(\mu) of the optimizer

    Performance Limits of Stochastic Sub-Gradient Learning, Part II: Multi-Agent Case

    Full text link
    The analysis in Part I revealed interesting properties for subgradient learning algorithms in the context of stochastic optimization when gradient noise is present. These algorithms are used when the risk functions are non-smooth and involve non-differentiable components. They have been long recognized as being slow converging methods. However, it was revealed in Part I that the rate of convergence becomes linear for stochastic optimization problems, with the error iterate converging at an exponential rate αi\alpha^i to within an O(ÎŒ)−O(\mu)-neighborhood of the optimizer, for some α∈(0,1)\alpha \in (0,1) and small step-size ÎŒ\mu. The conclusion was established under weaker assumptions than the prior literature and, moreover, several important problems (such as LASSO, SVM, and Total Variation) were shown to satisfy these weaker assumptions automatically (but not the previously used conditions from the literature). These results revealed that sub-gradient learning methods have more favorable behavior than originally thought when used to enable continuous adaptation and learning. The results of Part I were exclusive to single-agent adaptation. The purpose of the current Part II is to examine the implications of these discoveries when a collection of networked agents employs subgradient learning as their cooperative mechanism. The analysis will show that, despite the coupled dynamics that arises in a networked scenario, the agents are still able to attain linear convergence in the stochastic case; they are also able to reach agreement within O(ÎŒ)O(\mu) of the optimizer

    Distributed Coupled Multi-Agent Stochastic Optimization

    Full text link
    This work develops effective distributed strategies for the solution of constrained multi-agent stochastic optimization problems with coupled parameters across the agents. In this formulation, each agent is influenced by only a subset of the entries of a global parameter vector or model, and is subject to convex constraints that are only known locally. Problems of this type arise in several applications, most notably in disease propagation models, minimum-cost flow problems, distributed control formulations, and distributed power system monitoring. This work focuses on stochastic settings, where a stochastic risk function is associated with each agent and the objective is to seek the minimizer of the aggregate sum of all risks subject to a set of constraints. Agents are not aware of the statistical distribution of the data and, therefore, can only rely on stochastic approximations in their learning strategies. We derive an effective distributed learning strategy that is able to track drifts in the underlying parameter model. A detailed performance and stability analysis is carried out showing that the resulting coupled diffusion strategy converges at a linear rate to an O(ÎŒ)−O(\mu)-neighborhood of the true penalized optimizer

    CVXR: An R Package for Disciplined Convex Optimization

    Get PDF
    CVXR is an R package that provides an object-oriented modeling language for convex optimization, similar to CVX, CVXPY, YALMIP, and Convex.jl. It allows the user to formulate convex optimization problems in a natural mathematical syntax rather than the restrictive form required by most solvers. The user specifies an objective and set of constraints by combining constants, variables, and parameters using a library of functions with known mathematical properties. CVXR then applies signed disciplined convex programming (DCP) to verify the problem's convexity. Once verified, the problem is converted into standard conic form using graph implementations and passed to a cone solver such as ECOS or SCS. We demonstrate CVXR's modeling framework with several applications.Comment: 34 pages, 9 figure

    Linear estimation in Krein spaces. Part II. Applications

    Get PDF
    We have shown that several interesting problems in H∞-filtering, quadratic game theory, and risk sensitive control and estimation follow as special cases of the Krein-space linear estimation theory developed in Part I. We show that all these problems can be cast into the problem of calculating the stationary point of certain second-order forms, and that by considering the appropriate state space models and error Gramians, we can use the Krein-space estimation theory to calculate the stationary points and study their properties. The approach discussed here allows for interesting generalizations, such as finite memory adaptive filtering with varying sliding patterns
    • 

    corecore