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FOREWORD 

This report was prepared under contract NAS 8-11495 and is one of a series 
intended to illustrate analytical methods used in the fields of Guidance, 
Flight Mechanics, and Trajectory Optimization. Derivations, mechanizations 
and recommended procedures are given. Below is a complete list of the reports 
in the series. 
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The work was conducted under the direction of C. D. Baker, J. W. Winch, 
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1.0 STATEMENT OF THE PROBLEM 

The basic problem to which this monograph will be addressed is the gen
eralization of precise information regarding the trajectory of an observed 
vehicle and the coefficients of the math model employed in the prediction 
from a set of observations (different quantities, or the same type of meas
urement at different times) made of the vehicle. However, to completely 
define the nature of the problem to be discussed, it is necessary to outline 
the assumptions which are implicit in the analysis. First, the observations 
are assumed to have been contaminated with noise (errors) resulting from ran
dom errors in the itistruments and recording devices utilized for the measure
ments. Thus, if oc. ~c denotes the true value of any measured quantity and E 
the corresponding error, then the observable (o<.) is 

-~ 
d.... = c,(.· j- €-

(. (. .. 
Next, the number of linearly independent measurements is assumed to be greater 
than the number of the parameters being estimated. This assumption precludes 
the situations where no solution exists or where the solution is unique and 
leaves the general problem of obtaining 11best 11 estimates from the over-deter
mined system of equations. Finally, it is assumed that in the absense of the 
contaminating noise, a unique solution -would result which would relate the 
observables at the various measurement times. 

The rigorous problem implicit in this set of assumptions is highly non
linear. This nonlinearity is produced by the fact that most of the observa
bles (for example, range, range-rate ••• ) and the components of the instantan
eous position and velocity vectors (the estimated parameters) are both very 
complex functions of time; as a matter of fact, no analytic solution exists 
which relates this set of parameters as a function of time. Thus, the means 
employed to generate the desired estimate (commonly referred to as the method 
of differential corrections) will be iterative in nature. The first step in 
the process will be to define a nominal trajectory by some set of parameter 
(r0 , v0 ) which represents the observations within some allowable error. 

This definition avoids most of the mechanization problems by assuming that 
all of the nonlinear effects can be included in the reference trajectory with 
sufficient accuracy to allow subsequent computations to be precise. The 
second step is the approximation of the dynamics and the observation processes 
utilizing only the linear terms of the Taylor series as in Reference 1.1. 
That is: 

-'> 

S P ( t ') = cp ( t, tr,) S P (to) 

where P denotes the ordered vector of parameters being estimated; where 
f (t, t 0 ) is on n by n matrix of partial derivatives 

6~(i):: H(t)oP(I:) t€(i) 

1 



of the parameters at time t with respect to the same set of parameters at 
time t 0 ; 'Where H(t) is the matrix of partial derivatives of the observables 
with respect to the parameters being estimated at the epoch of the observa
tion; and where ( (t) is the vector of errors in the true observables. 

Finally estimates of the parameters at some selected epoch (T) will be 
generated. These estimates will be selected such that some measure of 
11 goodness 11 in the estimator is ma.x:i.mized 'When the available information 
regarding the statistics of the errors is provided. 

,.. 

The discussions of this monograph will be ordered to answer questions 
'Which arise regarding each of the steps in this process and will relate in 
detail the nature of the problem. To accomplish this objective, large amounts 
of the open literature have been reviewed. Though this material is generally 
referenced throughout the text to provide additional information on topics 
being discussed, some of the more pertinent references will be quoted in the 
following paragraphs to aid in establishing the nature of the discussions. 

The initial investigations will be directed to the task of generating a 
reliable first approximation to the true trajectory. This step will be per
formed by utilizing the material presented in a previous monograph (Ref. 1.3) 
and classical work, principally of Laplace and Gauss. In this material, the 
true trajectory is approximated by a nearly equivalent conie section to obtain 
the position and velocity vectors 'Which, if the force field were central, 
would yield the subset of the observables used to define the conic section. 
The solution is discussed in detail and precautionary steps which will assume 
more reliable solutions are presented. Thus, if no previous estimate of the 
trajectory or data from the vehicles guidance system at burnout are available, 
an accurate initial estimate can be generated. 

The discussions will then t¥!1 to the development of the "optimum" esti
mates of the deviation vector 6 P( t). Particular attention will center on the 
development of simple measures of the degree of optimality in the estimator 
and the generation of the estimation equations and estimation error for these 
measures. These discussions will parallel much of the material presented in 
the open literature, though some of the steps are different to facilitate 
comprehension of the simplest physical process. The classical least squares, 
weighted least squares, and minimum variance estimators will be derived; then 
attention will turn to modern estimation in a recursive mode. The concepts 
of Kalman as presented in Reference 0.1 (subsequently adopted by Schmidt in 
Reference 0.2) and Battin (Reference 0.3) will be reviewed carefully since 
estimation in this mode is capable of correcting for some of the approxima
tions made in developing the estimator itself. This latter observation is the 
result of the fact that the true trajectory (i.e., nonlinear) can be approxi
mated by a series of discontinuous arcs, each of 'Which obeys the linear model 
of the dynamics, to a better degree than a single arc satisfying the same 
linear model. 

The filter concepts outlined in the previous paragraph are based on intu
itive measures of 11optimality. 11 Further, they are tailored to problems 'Where 
the statistics involved are Gaussian, 'Where the dynamics can be adequately 
approximated by the linear model, and 'Where the optimum estimator is a linear 

2 



function of the deviations in the observables. Thus, the problem of estimation 
is reintroduced in a more complete analysis to explain the exact nature of 
the material which it follows, and to demonstrate the mechanism whereby some 
of the simplifications just enumerated can be eliminated. In the process, the 
problem is demonstrated to be equivalent to that presented by }liddleton in 
Reference 0.4. This material, while requiring a reasonable knowledge of 
statistical concepts, ties the general estimation problem into a verified 
analytic framework which is capable of demonstrating the effects of the avail
ability of all data pertaining to the process. 

Having thoroughly explored the general problem of estimation, attention 
turns to the development of material required to yield an estimate of the 
trajectory. To be specific, the matrices relating the dynamics at various 
times relative to the nominal trajectory (the~ Transition }Jatrix denoted 
by~(t, t 0 ) and the matrix presenting the error data for the observables are 
derived. The first of these developments progresses from the basic formula
tion of the transition matrix (for example, Reference 0.5) to the generation 
of an analytic form for the case of conic motion (for example, References 
0.6, 0.7, 0.B, 0.9). This development presents several alternate representa
tions of the desired matrix and discusses the weaknesses in them. The second 
development is an extension of the material presented in a previous monograph 
(Reference 1.1) which shows the functions involved in the process and refers 
to error data available in the literature for construction of the weighting 
matrix. 

The monograph concludes with a set of recommendations for the applica
tion of this material and one possible mechanization which will be selected to 
utilize the maximum amount of information in the data and to minimize the 
computational problems. 

3 
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2.0 STATE OF THE ART 

2.1 INITIAL ESTIMATES OF THE ORBIT 

Since the computational rationale proposed for determining precise 
values of the instantaneous elements for the space trajectory is built upon 
the concept of differential corrections, care must be exercised to assure 
that the initial estimates of the nominal trajectory are sufficiently precise 
to allow all of the partial derivatives to be evaluated accurately and to 
assure that the estimation error lies within the neighborhood about the 
true trajectory which is small enough for the process to converge. The 
purpose of this discussion will be to develop several such techniques and 
to discuss the sources of error. To be specific, the methods of Laplace 
and Gauss as well as methods involving the use of range and range-rate data 
will be presented in detail. The utilization of position and velocity 
information obtained directly from an integrating accelerometer (Reference 
1.1) will not be discussed at this time since this information can be 
be utilized only for those cases in which the trajectory is to be estimated 
from the epoch of injection to any other reference epoch (any other possibility 
requires updating burnout conditions to the epoch of problem initiation) and 
since the data thus provided need no further transformation (i.e., they can 
be utilized directly if transmitted to the ground or fed to the on-board 
computer). 

2.1.1 Data Provided Include Range 2 Azimuth and Elevation at Two Epochs 

For the case in which the ground-based radar utilized for tracking the 
satellite provides range, azimuth and elevation (or an equivalent set of data) 
as a function of time, the logic employed to obtain an estimate of the tra
jectory can be relatively simple. First, the station's position at the two 
epochs is computed (Reference 1.2) from 

H 

L 

= equatorial and polar radii of the reference ellipsoid 
for the earth 

= altitude of the station relative to the reference ellipsoid 

= Geodetic latitude of the station 

u1, u2, u3 = 3 components of the unit vector from the station outward 
along the direction inclined by the angle L to the equa
torial plane 
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"- A /\ 
U, E, N = the up, east, north unit vectors 

0 

0 

~Lj 
c.t>,;t L 0 

= right ascension of the station 

= G.H.A. plus longitude 

0 ~]{fl 

Then6 the Eosition of the satellite relative to the station is computed in 
the,._U, i,AN directions and transformed by substituting for U, E, Nin terms 
of X, Y, z. 

(1.2) 

At this point, the position vectors are defined as 

7 
(1.3) 

= 

and the velocity information is-derived by employing I.am.bert•s Theorem 
(Reference 1. 3). 

2.1.2 Data Provided Include Only Azimuth and Elevation (or Equivalent Data) 
at Three Epochs 

For the case in which only angular data are available, a complete reformu
lation of the problem is necessary. However, as in most of the problems 
discussed in this monograph, there is no unique means of reducing the data. 
The discussions of subsequent paragraphs will present two such schemes: the 
methods of Laplace and Gauss. 

These techniques were derived primarily for the case in which the orbit 
being determined was central relative to a body other than that utilized 
for the observations (the sun). Thus, when each technique has been prepared 
for the case for which it was originally intended, it will be extended to 
the case of primary interest - geocentric motion. 

2.1.2.1 Laplace's Hethod 

The discussions of Reference 1,3 showed that six arbitrary constants 

5 



were required to uniquely determine the motion of a body in a central force 
field. Thus, if the true force field is approximated by that produced by 
the dominant mass (or in the case of motion relative to the earth, by that 
produced by neglecting those terms arising from the nonspherical shape 
of the earth), a conic trajectory can be found utilizing three sets of 
observations composed of angular data (azimuth-elevation, right ascension
declination, etc.). 

-fa +it 
;-;-}t 

Consider the vector diagram and the corresponding equations below: 

.,. " 
=pf'+f'f' 

( r R) .. .,.. 
- r.3 -f Rl = r'/' 

A 

== -~ 

r3 

_. ••/\ A A' 
+ (-' - -'-) R = P/' f 2,,o;:' t;°f' 

r 3 R 3 

a--'I. (1.4) 

R 

" ...... where f' and R at the three epochs are lmown or observable and where the 
units of time have been selected so that the gravitational constant is one 
[ i.e. , -r = yµ ( t-t0 ) ]. Now if the three observations are acquired over 
a sufficiently small interval of time, the geometry of the problem can be 
approximated by expanding tJ in a Taylor series as follows: 

(1.5) 

• 

This series will be terminated at the third term so that the three observa
tions will completely define an initial estimate of Rand R. Further, the 
second time point will be utilized for time reference so that the maximum 
value of 1"' is kept small ( to assure the maximum accuracy in equation (1. 5)). 

Assume that three values of p ar,e utilized in conjunction with the series 
expansion (1.5) to yield values for Po and~ • Now crossing ff into ft and 
dotting into Equation (1.4) yields 

( I I)(" ...-- -) [ /\ ;., /\'] 
r3 - R3 ~ X ~ · R0 = /'o ~ X ~ · ~ 

0 0 

(1.6) 

In like manner, cross p into f' and dot Equation (1.4) 
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' 

( ~ 3 - ~ ) ( ;g X l -k;) = 2 rj [ i X ,§" , i] 
== -2i [ ~ x ,i ·A'] 

(1. 7) 

Now the procedure is to iterate Equation (1.6) and the law of cosines 

or 

__. 
r = 

r 2 = ,,o 2 ,. R2 - 2 R ~ ~ ""( 
(1.8) 

to solve for the correct value of \r\ at"(. This value of r can then be 
utilized in Equation (1. 7) to solve for Po 1 r0 can be found from 

The nature of the simultaneous solution of Equations (1.6) and (1.8) 
is explored in some detail in Reference 1.4. This material develops an 
iteration procedure based on a single angular variable. The result of this 
procedure is an iteration process which can rely on graphical techniques for 
initial estimates of the parameter being estimated. 

If the central body is the earth rather than the sun,differences in the 
formulation arise due to the fact that the acceleration of the observer is 
incorrect. For this case 

and Equation (1.6), which was solved iteratively with the law of cosines, 
becomes 

(1.6a) 

Similarly, Equation ( 1. 7), which was solved for P0 , becomes 

(1. 7a) 

The largest source of error in the process is the truncation of Equa
tion- (l.5) at the third term. This step means that the values of F0 and V

0 
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which are obtained from the process will not represent the conic providing 
the three observations to the best degree. Thus, it is generally desirable 
to differentially correct therevectors before assuming that a solution is 
known. This process is readily accomplished utilizing the material pre
sented in Section 2.4 of this monograph since 

(1.9) 

and 

(1.10) 

where e,.y = a vector of observed minus computed residuals at the three 
epochs (11, "12, Y3) 

H = the matrix relating errors in the observables to small errors 
in the position and velocity 

tX = a vector of position and velocity deviations (dr, dv) 

Thus, the vector of errors at the epoch '12 ( .L\X0 ) can be estimated as 

and the previously computed values of r 0 and V0 corrected 

_., __,. ___. 
Vo = Vo T ~Vo 

(1.lla) 

(l.llb) 

(l.llc) 

This second estimate of r 0 , V0 can now be utilized to generate a new error 
vector (~y) so that the process can continue until convergence is achieved. 

2.1.2.2 Gauss's Method 

In La.place's method, the approximations made to facilitate the solution 
were in the truncation of the Taylor series forP. Gauss approached the 
problem by making an approximation in the dynamics rather than in the geometry. 
The method proceeds as follows: Since the motion is assumed planar, any 
of the three radii can be expressed as some linear function of the other 
two, i.e., 
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Thus 

But the area of the triangle of sides ri 

A=[(. > 0] = 1/2 base x altitude 
1., = 1/2 ri (ri sincx. ) 

= 1/2 lri x rjl 

19 
~ 

I;: 

and rj is 

so that an alternate form of the solution for C1 is 

C. - [r2 J tj] 
I - rr✓ J lj] 

Similarly 

...>. ..... [ 

C _ 0X1z = 'ii !i] 
3-__.. ~ 

/'i X 1j ['7 J r3 J 

(1.12) 

(1.13) 

(1.14) 

These two scalar constants must now be related to the dynamics so that they 
can be determined. As a first step, consider the relation 

r 
or its equivalent 

(1.15) 

or 

This equation yields three linearly independent ecalar relations in the 
unknowns c., , c. 3 , A. ( ,i, = 1, 3 ) • 
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At this point the dynamics of the problem are introduced in the form 

r=rlo -,. 1 v; (1.16) 

where r
0

, V
O 

will be taken to be the position and velocity of the observed 
body at the second of the three observation epochs. However, it is incon
venient to introduce the exact functional forms for f and gas presented 
in Reference 1.3 since this procedure would require knowledge of the para
meters being estimated. Rather, series representations for these functions 
will be employed. reference 1.4 gives the form of these series through 
terms of the order T2 (higher order terms would introduce parameters of 
the motion for which no estimate exists at this point in the solution) as 

fi.· = I - 1'2 <J T· 3 (1.17a) 
.I 

Ji.= ~-(1-yr,, a-[/) (1.17b) 
tJ""= Y, 3 

~ (1.17c) 

where 

7; = Ifµ ( t:J - t2) 
7,; = r;;- ( t3 - i) 

½ = {;z;- ( lz -t,) 

Now the following cross products can be formed by employing Equations (1.16) 
~ ___,:I, ~ ~ 

~ x 'J =- J.1 r2 x tz 

= s,"i x t = -.7)~ x-rz 
= ( fJf X j 1 ia ) X ( { 3 ~ t- j3 ~ ) 

and the scalar constants c1 and c3 evaluated. 

C -- ;h 
I f I, J.3 - T3 ';/ I 

(1.18a) 

(1.18b) 
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But, since series expressions have been employed in each of the f and 
g, the various factors in these expressions can be developed in series in 
powers of T. This step is accomplished as follows: 

~ J 1 = ( I - Yz er- °T; 2 
) [ - !J ( I - J<,, 0-- ¼ 2 

) ] 

= - 7j ;- ½. <S- ~., f 12 o-- 7; 2 T 3 

f 73 = 7i - Yc, tI'" T/ - Jle 6"'" 7; ?/ 
where second-order terms in O--have been dropped. Thus, 

and 

l",7~ -t;3, = (T,t'3)-%,d'{7, 3
r3?; 2 7j t37;7./,,. ?;3) 

= ( 0 t 0J - ¼. ~ (0 ,,. ~ l 
= ?; - 1/6 o T_/ = 7z (1 - 1/~ <S"'- 7/) 

C = 
T, (1 - y,_ ~ T2) = 0 [tf¼o(?/- 0 2

)] 
I 

Tz. (1- '/4 oT_/) Tz 

C = T,(1-~.<>72 ) ,;:::::: ; [ / f 1/G ~ ( ~a _ ~2)] .3 Tz (1 - '/4 ~ T/) 

Finally, dotting Equation (1.15) by ~ x ; 3 yields 

[ 
A A -"] -~ ~ ·~ x,1 

(1.19a) 

(1.19b) 

where the unlmowns in Equations (1.19a), (1.19b), and (1.20) are~ and <J 
(i.e., l/r3)·. As was the case with the approach of Laplace, a solution to 
the problem is possible by iterating Equation (1.20) with the law of cosines. 
The velocity is then determined from Equation (1.16). As before, the solution 
can be differentially corrected to compensate for assumptions made in the 
development of the first estimate of the solution. 

In contrast to the method of Laplace, however, the method of Gauss is 
readily applicable to the task of determining geocentric orbits. Only a 
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change in notation is required. 

2,1.2,3 Modified Gauss and La.place Methods 

The fornrulations presented in the previous sections discuss the nature 
of the solution required to yield values of the position and velocity vectors 
at some epoch for the case where components of a unit vector from the observer 
toward the tracked body are given at three times. The procedures followed 
in these cases where either the dynamics or the geometry was approximated 
were detailed, and the nature or source of the errors was discussed. 

There are variations of these two techniques, however, which have been 
developed and mechanized. Several of these are discussed in References 
1,4 and 1.5. While some of these fornru.lations have definite merit, they 
generally add nothing to the knowledge of the processes being employed and 
can thus be deleted in the presentation of different techniques of analysis. 

2.1.3 Range and Range-Rate Data 

For geocentric satellites where there is an opportunity to accurately 
measure the range and range-rate (Doppler) of the vehicle with respect to 
the observer, an alternate logic is required. One version of the required 
mechanization will be developed in the following paragraphs to facilitate 
comparison with the previous material. 

Consider once again the equation 

l-=rrR 
or its scalar equivalent 

(1.21) 

and the first derivative with respect to time 

(1.22) 

But, the dynamics of this problem can be expressed as a function of time 
utilizing the f, g series (as was the case before) by expanding about the 
second of three observations as: 

7 ~ Ir;, 
-j =i;-t 
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Thus, 

r-P = fft;af 'i;·ft{Fj t-;i)tJjVo'° 

1.t -= f";:. t .,. , ro. # 

"1-°R =if;.i? t-j/t-:4 
- - fz 2 .... ...:.. r ·r ... lo .,. 21'3 lo ·ro -f ~2""°2 

r-i? = rrt-1? -1 3 ~ -i1 

Substitution of these approximations into the equations for range and 
range-rate yields 

and 

Pi= Fi!~ t _1o ~ f..ii-t- Ji J .. .,. Jj v/ -1- 1,-g .f? -tji; ·R 
t--f t;, ·I? i- J 'o ·Rf- R·R (1.24) 

which can, in turn, be written as 

(1.25) 

(1.26) 

where 
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a. = rz d = ff 
b :. Zfj e :. fj f, f 

C = ~z h = Jj_ _. 
p = Zf'R .... 

fRffR s = 
1) ..... 

7 
..:.. 

= 2jR = jR +jR 
Thus, since the only unknowns are·the components of r 0 , v0 (the coefficients 
are approximately known functions of time), three sets of these equations 
(three epochs) will yield a solution. 

C. 

This solution process is simplified for some cases of geocentric satellite 
motion, where the three observations are acquired over a relatively small 
time period, since several approximations can be made to simplify the pro
blem. First, it is noted that since the time interval on either side of 
the second observation is small, the position vector for the observer (R (t)) 
can b1 a~pro.ximated by R (t 0 ). Secondly, it is noted that the scalar pro
duct r · R is small at each of the three epochs for most of the problems of 
interest, since the two vectors are ne1:rly normal. Finally, because the 
time interval is small. and be(?aus_e r • R is small, the scala_r product can 
be approximated by the term <;J ~ • R ( one of the terms of r · R). For this 
case, a reasonable approximation of the components of ro and~ can be 
obtained by rewriting the solution in the form 

or 

f/- - /'i: 
~2 -1?/ 

2 P,.a -R, 

~P,-~-~ 

~,i-~•.R 

l:j~ -~-~ 

) = [M] x 

= 

. 2 f, 

r.,2 
z 

f.a 
.3 

f,lj 

2-F, 

2-lz 
2/j 

fL jz t3r.Fz. 'Jz;z fz 

~93 .,.9.J~ J,j3 IJ 
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0 

0 

(1.27) 
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...,. 
Thus, the parameters denoted by X can be evaluated by inverting the matrix 
Mas 

(1.28) 

The components of ro, Vo are then obtained in a straight forward manner. 

As was the case with the methods of Gauss and Laplace, a differential 
corrections process is required to adjust for errors in the representation 
of rand v as functions of the time from the reference epoch and in the 
assumptions made to obtain the first approximation of r 0 , v0 • 

The case in which range or range-rate data alone are acquired at six 
epochs can, of course, also yield values of r0 , v0 • These applications are 
special cases, however, of the material presented in the preceding paragraphs, 
and will therefore not receive special attention. 

2.1.4 Precautionary Numerical Operations 

Regardless of the approach taken in developing the initial estimate of 
the position and velocity vectors, ·the quality of the solution will be 
dependent on the quality of the data utilized and the time interval between 
the observations (the sensitivity of the solution to errors in the observables 
will increase as the time interval decreases). Thus, it is essential to 
assure that as many of the errors as possible have been adjusted. In particular, 

1. the affects of refraction 
2. the affects of signal propagation time etc. 
3. inclusion in the observations and instrument biases 
4. recording errors 
5. etc. 

must be determined and compensated for. However, these steps in themselves 
will not assure a good estimate since the sensors utilized for the observa
tions are not perfect. 

Therefore, normal practice utilizes a preliminary smoothing of the data 
acquired over three intervals of time to produce three estimates of the 
true observables in the sense of least squares (or weighted least squares). 
This smoothing can be accomplished by fitting the data to a line (if the 
intervals are small) but is normally accomplished by employing a parabola. 
The process is mechanized as follows; (assuming that the data in one interval 
obey the equation) 

(1.29) 
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where 

a, b, c 

• 

= ith observed value of one component 6f the observation 
vector in the interval A <.. t ~ B 

= coefficients of parabola utilized for the purposes of 
smoothing the data 

A matrix equation is now prepared 

[ / t_ I 

;;J m ........ : : 
y = ; 

t,, 

- T (t} 
(1.30) 

and the least-squares estimate of the coefficients are generated (Section 
2.2) 

{~} = [r 7
T J' r''? 

When this process has been performed for each component of observation vector 
in the interval A~ t ~ B, a smoothed estimate of the vector is prepared at 
an epoch in the interval (normally, t = (B - A)/2). At this point, the 
process is repeated for the other two intervals of time. As a final output 
then, there are three sets of smoothed estimates of the observables which, 
when utilized, will produce generally superior values of r0 , v0 • 
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2.2 ORBIT IMPROVEMENT 

2.2.1 Introduction 

The basic process for determining the position and velocity deviations 
from an estimated trajectory involves the measurement of any position, vel
ocity or time dependent set of parameters and the construction of the linear 
system of equations relating the observables to the parameters being esti
mated at the time of measurement. 

(2.1) 

[In this notation, oA (t) is them-vector of observed minus computed 
values of the observables; H (t) is an m by n (n is normally 6) matrix of partial 
derivatives of the observations with respect to the state which was developed 
in Reference 1.1; and 6X (t) is then-vector of state deviations. These 
equations normally do not completely determine the state since the observables 
collected at any one epoch generally number less than the number of components 
in the vector 6X (t). Thus, data collected at different epochs are referenced 
to some standard epoch through the use of the state transition matrix (Section 
2.4) as 

al Ct) = <(J (t) to ) cS t C to) 

So 

and the task becomes one of generating an estimate of 8X (tJ. 

(2.2) 

The estimation of 6X (t0 ) for the special case of an evenly determined 
set of data can, of course, be performed by simply inverting the set of equa
tions. For example, if 

1
0C\. 1 [H(i,)(p(itJt 0 )l 

&A = 5~2 :. H (i.z)lf'/ t 2 > io) 

6Qlo H(t.1,){f(tk>)iO) 

(2.3) 

= B 6l(io) 
where Sai denote scalar quantities and where the ti are not necessarily 
unique. Then, 

6.1_ Ct.,)= .a-1 6':d 
or 

(2.4) 
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However, since errors exist in the instrument utilized to perform the 
measurements, and in the mathematical model utilized to compute both the H (t) 
matrix and the computed values of the observables (used directly to define the 
observed minus computed residuals), the true and computed values of the state 
deviation vector 6 X (t0 ) will differ. Consequently, it will be necessary to 
distinguish between the three types of deviations employed in this analysis 
(actual, measured, computed). This distinction will be accomplished by 
adopting the notation 

bA = bti t ~ 
'Where ( ,-._/ ) denotes measured and 'Where 0( is the vector of er:i-ors in the 
observed data; and the notation 

si,, = sf Ctn) = & x_U,,J t sn 
'Where (" ) denotes computed and 'Where ~ is the vector of errors in the com
puted state deviation vector. 

Thus for ;Ji evenly determined set of data 

/\ 

0 ~n -= (f ( t,,)J to) 13-t s.J (2.5) 

and the error in computing~ is 

€ = p ( t,, J t.0 ) 8 -, °' 
This equation can be used to compute the covariance matrix of the estimation 
errors E from the covariance matrix of the measurement errors R. Adopting 
the notation 

E 

to mean ~expected value of the matrix s ~T , the notation 
R= <Xo<r 

to denotethe errors in the observables and using the material of Appendix A 
allows the matrix of estimation errors to be written 

(2.6) 

since 

2.2.2 Data Filterin
1
g Techniques 

In the introduction to this material, equations were derived for comput
ing the position and velocity perturbations 'When precisely six navigation sight
ings were made. Further, equations were derived that related errors in the 
observations to errors in the computed position and velocity deviations for 
this case. On evaluation of these error equations, it is found that errors 
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in the observables of relatively small magnitudes can produce errors in the 
computed position perturbations that are completely unacceptable. The 
question then arises as to how additional sighting might be used to obtain 
a better estimate. Several methods of accomplishing this objective will be 
considered. 

However, before considering this material it will be noted that any or 
all of the various estimation processes can be employed. The choice, should 
however, depend on the amount of information known about the errors in the 
observables. Thus, attempts will be made to demonstrate the accuracy (estima
tion error) of each approach and to explain the differences in precision 
obtained in terms of the assumptions made in deriving the estimator. In all 
cases, however, the assumption of second order statistical distributions is 
implicit (the discussions repeatedly employ Appendix A). Thus, information 
pertaining to higher moments is not employed and the 11goodnessll of the estimator 
should be suspect for non-Gaussian errors. 

2.~.2.1 Least Squares Estimation 

The method of least squares is perhaps the oldest and most easily under
stood of the general techniques for smoothing over-determined sets of data. 
For this reason, it will be considered first. The logic behind this filter 
is that the squares of the deviations in the observed minus computed observables 
from the estimated straight line (in m-di.mensional space) defined by the 
equations 

(2.7) 

should be as small as possible. Alternatively, the moment of the deviations 
above the estimated line will equal the moment of the deviations below the 
line. This statement of the problem is equivalent to computing the line 
such that a comparison function equal to the summation of the squares of the 
differences in the observed and computed values of the values of f. A is 
as small as possible, i.e., 

;} 

- L e.2
:: o ex "-

ei are not defined. 

But, the sum of the squares of the measurement residuals L, can be written 
as 

I Klh "'XI 
L = g 7 g = e} t e; t e; r . . • ,- e! 

(2.8) 
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or, by direct substitution, as 

Thus, the variation in this scalar comparison function can be related to a 
variation in the estimate as follows 

(2.9) 

• 

L will have an extreme value if Li L = 0 for any value of 4SX • This will be 
the case if -o 

or solving for 

(2.11) 

The errors in the computed estimate 9f the state vector can now be 
related to errors in the measurement of oA 

-6A oA -t o< 

and 

6A = 8 EiX,, . 

Using Equation ( 2.11), 

= {BTBT 1B 7
( $A -f ~) - 6~ 

=(8
7
Br1 B 7 {8SJp t-~) -0X0 
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Then 

(2.12) 

Equation (2.12) can then be used to relate the covariance matrix of the 
estimation error to the covariance matrix of the measurement errors as 
follows: 

Therefore, 

E = (B
7
B)-18 1RB(B 7B)-1 

lt= ca 7ar1 B 7 t:A 

2.2.2.2 Weighted Least Squares Estimation 

(2.lJa) 

(2.lJb) 

The least squares estimate neglected information regarding the distri
bution of the measurement errors. Thus, if this information is known, a 
better estimate of them-dimensional line utilized to fit the data can be 
obtained. This estimate is generated by modifying the comparison function 
in such a manner that moments for the errors which correspond to the higher 
quality observations are weighted higher. That is, the comparison function, 
L, of the previous analysis becomes 

Q~ 
(2.14) 

- - - - + ,...._,..,____ 
O\n °"n 

or 

(2.15) 

where 
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ed 
A 

g = - B§_Xo (2.16) 
~ 

o<, ex, 0 - - - - 0 
0 ~ 

0(2. o<:2. 

u = 0 ' 
' 

' ' ' 
0 (2.17) 
~ 

0 0 0 c,(.n o< - fl 

In this equation the square of the measurement residual is weighted by a 
factor that is inversely porportional to the expected mean square value of 
the measurement error. Therefore, if the expected mean square measurement 
residual for a particular measurement is large, the contribution of the 
term to the comparison function will be small. 

• 

The weighted least squares (WIS) estimate of the state deviation vector 
can now be generated as in the case of the simple least squares problem. 
First, the comparison function is expressed in terms of the parameters of 
the problem 

L = ( &A - B &1,)7 tJ' ( £1 -B 81,) . 
(2.18) 

Then the first variation of the comparison function, L, with respect to 
the estimate of the state vector is formed 

Again, this equation can be written as 

f!L ~ -[c BTU-, 6d - B'U- 18 &1,)'4 ~F[rsTu-'6A -8 7U gfxof.1 lt] 
since 
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But, since both of the terms of this equation are scalars, the transpose 
of the bracketed term is equal to itself. This fact indicates that the loss 
function will have a stationary value when the estimate is chosen so that 

,"\ 

Or, solving this equation for SX 0 , the WIS estimate becomes 

The method of deriving the equations that are required to relate the 
measurement errors to the errors in the computed estimate is identical to 
that used for the least squares case. The estimation error is defined as 

€. 

therefore, from Equation 2.19 

(2.20) 

However, since 

Equation (2.20) reduces to 

The covariance matrix of the estimation error is thus 

~ 

If ~ ~T is defin~ to be R, then these equations may be summarized as 

f : [( B 7U---teF18 1U-1
] R [r 8 7 U-1BI 1 Bru-'] T 

ix= (8 7U-18)-18 7 U-I {J 
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Now, for the special case in which the measurement errors are uncorrelated; 
i.e., 

Then 

E = [( B 7 u-•ar' B' u-1
] u [ ( B' v-BT'BTu-1

] 

7 

But, since U is a diagonal matrix, 

/JT= {,) 

( u -1/T :. u -I 

and the covariance matrix of the estimation error becomes 

which reduces to 

l.2.2la) 

It is of further interst to note if the variances of the measurement 
errors are equal, then U can be written as 

U zI u-• ' -= 6'" and = cr-z. .L 

where a---2 is the variance of each of the measurements. The estimate for .5 X 
then becomes 

( ~ 8 7I B)-' _I B'I [A ~z a-2. -

= ( 8 78)-I 8 7 bA 
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This equation indicates that for the case in which the variances of the 
measurement errors are equal the weighted least squares estimate will reduce 
to the least squares estimate. 

2.2.2.3 Minimum Variance Estimation 

In developing the estimation equations for both the least squares 
and the weighted least squares filters, a loss function was utilized which 
was simply related to the moments of the errors. The estimation equation 
was then formulated. to minimize this loss function. In neither case was 
the statistical information pertaining to correlations in the components 
of the error vector ( ~ ) utilized. Thus, at this point a different approach 
to the problem will be formulated. To be specific, that estimate (defined 
as optimum) of the state deviation vector which is a linear function of the 
measurements, which minimizes each element of the estimation error covariance 
matrix and which corresponds to the constraint that the estimation error is 
not influenced by the quantity being estimated will be developed. That is, 
the form of the estimate is to be 

(2.23) 

But, 

A 

6 b = Jt + §.o ) 

Thus, by direct substitution, 

(2.24) 

so that the error in the estimate is 

(2.25) 

This equation indicates that if the error in the estimate is to be independent 
of the quantity being estimated., 5 i 0 , it is necessary that 

QB-I = O ( 2. 26) 
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The estimation error then becomes 

and the estimation error covariance matrix becomes 

or defining 

(2.27) 

The problem now is to determine Q such that it will minimize E subject 
to the constraint that 

OB-I =O 

This step can be accomplished by adjoining the constraint equation to E using 
matrix Lagrange multipliers as :follows. Since 

QB-I = D 
(2.28) 

where).... is an arbitrary n by n matrix multiplier that is not a function of 
Q. Thus 

F = £ -t ( QB - I) >i + [ ( QB - 1) /\] 
T 

(2.29) 

Now, recalling that RT= R, the first variation off ( = ll F) becomes 
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But the 6 Q are arbitrary. 
extreme value if 

Therefore, each element of E will have an 

(2.30) 

or 

(2.31) 

Thus, premultiplying by BT yields 

thus 1 

(2.32) 

so that 

(2.J3a) 

and 

(2.JJb) 

since both R and ( 13 7 R-, B) are symmetric. Thus, the minimum. variance 
estimation equation is 

A 

t5Jo= {BTR~1B)- 1B 7R-16A (2.34) 

It is interesting to note that when the errors in the measurements are 
uncorrelated (i.e., R = U), the minimum variance and weighted least squares 
estimates are identical. 
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Equations (2.27), (2.33a), and (2.33b) can be used to express the 
errors in the estimate as follows: 

therefore, in sunnnary 

(2.35) 

(2.36) 

In the development of these equations, Q was constrained to make E 
invariant with respect to the characteristics of S X0 Thus, these 
equations should be used to estimate 8Xo when the statistical characteristics 
of 5Xo are unknown. However, when the statistical che,racteristics of S~o 
are known, that is, if the covariance matrix of 8 Xo is known, this con
straint should be removed. When this is done, the-resulting estimation 
equation can be determined as follows. From Equation (2.25)> 

~ -
€oc.: = lqs-z] ~ [ Q8-I]T f- Q~' 

+[?B-I] ~ r;r t-q~[Qa-I]T 

Now, defining 

~ 

g1, ox;= V = ii~ 

and rewriting the estimation error yields 

£ = r;[BVB 7 rl?]Q'-q.8V-VB'c;> 7 1- V ( 2.37) 

The variation in E that is produced by a variation in Q is thus 

Lll = {aQ[(svs'+ R)Q'-sv]} +{ t5Q[(aV8 7 fl<)Q 7 -Bv]] 1 
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Again, if .1 £ is to be zero for the case where 8 Q is arbitrary 

(BVB 7 +R)QT- BV = O (2.38) 

that is, E will have an extreme value if 

(2,39a) 

Thus 

(2,39b) 

since R = RT and V = vT. 

The optimum estimate is now found by substitution into Equation (2.23) 

(2.40) 

The error in the estimate is determined using Equations (2.37) and (2,39b) 
as 

Thus summarizing, 

(2,41a) 

(2,41b) 

Equations (2.41) can be put into a form that makes comparison with 
Equations (2,35)and (2.36) much simpler since from Equation (2.39) 

q = V 8 7 
( B V B 1 t- R )-/ 

= ( B 7
/(-18 + v-1) -I ( 8 7Jr'B f v-l) V BT{/3 V Orf R )-, 
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Thus 

= (BTR-'B f v- 1)-
1(B 7f?- 1BVB 7 t-Brlr-1R)(BVB 7+/?)-I 

Q = (B 71?-'8r v-1)-'{BR-')(BV/3 7 -J-/?)(BVB' f R)-'. 

(2.42) 

The estimation equation can then be written as 

(2.43) 

Using Equation (2.41a) and (2.42), the error in the estimate can then be 
written in the form 

thus 

E V-<?BV 

= v- (BTl?-'B f v- 1y 1 gr R-'B V 

-: (B' l?-'g f v-1)-1 (B 11r'B -f- v-') V -(B Ji'-/ Bf v- 1T's 1.li'-1BV 

£ = (a.,.1r'o r v-'t' [ B 7 R-18 v,. I-BTR-1.B v] 

(2.44a) 

(2.44b) 

While Equations (2.41) and (2.44) differ considerably in form, they are 
equivalent and will yield the same results. Notice that·Equations (2.44) 
differ from the corresponding Equations (2.35 and (2.36) only through the 
presence of the additive term v-1; i.e., if v-1 = O, the equations become 
identical. 

Before leaving this discussion, it is worthy of note to demonstrate 
that the process employed in this technique to derive an optinrum estimate 
of 61_ (i.e., the minimization of a matr:ix) is equivalent to one which a 
scalar loss function is constructed. One such loss function could be the 
summation of the eigen-values of the covariance matr:ix (see Append:ix C). 
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Consider the scalar 

where A is an arbitrary vector whose dimensionality is n and where Eis 
then by n matrix of estimation errors. Since A is arbitrary, it can be 
independent of the parameters of interest so that 

f:JL = A '..1£A 

Thus, if AL:: O , .D.E must also be zero provided E is free of constraints. 
Thus, a sufficient condition for any scalar measure of a matrix to be 
mininrum is for ~E = 0. 

It is also worthy to note that no explicit assumption has been made 
regarding the distribution of the errors. True, only second order statistics 
are utilized so that the estirr.ate will not be optimum in a larger sense (use 
all of the information available) unless the errors are Gaussian. However, 
this estimate can be generated. A minimum variance unbiased measure of the 
performance degradation will be discussed in Section 2.3. 

Finally, it is noted that the minimum variance estimate generated in 
this manner is unbiased since the conditional expectation of the estimate, 
& 2_o , is ,5 ~o . 

2.2.2.4 Iterative Form of the Minimum Variance Estimator 

The equation that was derived in the previous section for computing 
the mv estimate was 

(2.45) 

This equation is useful when all of the measurements are to be processed 
at one time. Quite often, however, it is desirable to process the data 
that is currently available to formulate an initial estimate, and then to 
compute new estimates as additional data becomes available. This desirability 
arises from several distinct factors. First, the numerical operations 
themselves would be considerably simplified if only the most recent observation 
was being processed. (The amount of data can become staggeringly large.) 
Second, the trajectory i~ in fact, nonlinear so that errors of assumed 
linearity in the transition matrix and in the observation problem combine 
to make translation to the fixed reference epoch very inaccurate as the time 
from this epoch becomes large (this fault can be avoided if the reference 
trajectory is re-defined by adding the reference position and velocity to 
the computed deviations and restarting the estimation process). For these 
reasons, an iterative (or repetitive) form of the minimum variance estimator 
will be dev~loped. 
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The matrices contained in Equation (2.3.5) can be partitioned into 
sub-matrices as follows 

B= 

R= 

, ..... :~:] 

I I I R,, o o .. 'o I 
__ I _ L. _I_ _ _ t _. 

o: R2 1 o I ... Io 
--1-L 7 --- 1 -
o 1 0 I R31 , •. I 0 

I I -- --,-----
1 I I 
I • • I 

I 
I 
I I 

• 1 • I • I 
- -1- - - - I 

0 IO : 0: I f?,.. 

0\. 
--,-,.3--

- _&}_z. __ 

_ JJ1t _ 

where it is noted that the subscripts in these equations now refer to sets 
of quantities. Thus, 6 A 1 , refers to the first set of measurements, 
and 8 dn means the nth set of measurements. This notation contrasts with 
previous usage (Equations(2.2)and (2.3)) where the subscripts referred to 
individual measurements. It is, of course, understood that the matrices 
Band Rare partitioned so that the sub-matrices are conformable. This 
division guarantees that the required multiplications can be performed. A 
further assumption has been made concerning the R matrix in that the different 
sets of measurements are assumed to be uncorrelated. Correlation between 
the individual measurements of any measurement set is, of course, permitted. 
Under these assumptions, the inverse of R can be written as 
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-11 I I I 

_R,
1 

o Io I ... 10 
--11 I 

01RzOI ... 0 - _j_ ___ _L_ 

~-I = o I O I R; I . . . I 0 
-~ T 7--~-
- · I . I I . I . . 
:_ I_: l . _I - - _I - _, 
0 IO I O I I Rn 

as can be seen by considering the relation 

RR-,:::: J 

Now, the matrix product B 7R-1is 

and the product L3 7 R-
18 will then be 

B 'T -,a aT -la g 7 o""'a aTo-'B R .o = o, ~ J:;J, + 2 .t"I", oz f • • • r n "n n • 

or 

(2.46) 

The matrix product 8 7 
R-

1 
B becomes a function of the number of sub

matrices contained in the product. Therefore, let this product be defined 
as follows: 

- r -1 n r -, ./4 = 8 I? 8:::: ~ B· R,- D. L- ~ ,(. o, . 
,t.":;/ 

(2.47) 

The matrix .Tn can be written as 

,,,-, 
J,, = 2. 

i.: I 

T-1 'T -/ 
B,,: R; 6;: f o.,. R,, 13,, (2.48) 

and in iterative form as 
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- - - 1- n TR-, B 
Jn - Jn-1 L::Jn 11 n 

(2.49) 

-1~ 
Similarly, the matrix B' R 5!:)_ can be written as 

(2. 50) 

Now defining 

(2.51) 

the iterative form of §n will be, 

(2.52) 

Equations (2.45), (2.49), and (2.51) can be used to express the estimate 
of the state vector that is obtained by processing all of the data up to 
and including the nth set as follows: 

( 2. 53) 

and the estimate obtained from processing all data up to and including the 
(n-1) set is 

J.-, ~ 
,,_, ~ n-1 

(2.54) 

/\ 

The superscripts have been added to S~ to indicate the quantity of 

• 

measurement data used in making the estimate. But, substitution of Equations 
(2.49) and (2.52) into Equation (2.53) yields the estimate of o1~ as 

(2.55) 

from which 
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(2.56) 

But, from Equation (2.54), 

(2.57) 

Thus, Equation (2.56) can be written as 

1.7, t Br R-1 B ) ,/x'l,.,J -I.• n-1 n n n o - o ~-, 51~n-i) f B: R;,' <0,, 
= J, - cSX (n-Jj 8 7 R-'B t'x (n-;) n I _o f- ,, n n a _o (2.53) 

which reduces to 

(.J t 8 7 1r' B. ) s'x'")-= (J., .,. BT Ii'~,") S x<n-,) n-1 n ,, n _o n-, n n~ -o 

-1-87 R..,rG -a lx ,,,_,)) n n _n n _o • 

(2.59) 

Finally, multiplying both sides of Equation (2.59) by the inverse of(In_,+ 
BJ R~' Bn) yields 

c~) ,,..Cn-1) ( 7 -, ).., r -1/i "'cn-1
)) ( 6 ) 

o X0 -= ~X f- Jn-, t- B,, .R,, fJ,, 8,, R,, l oA,, -B,, f> X O , 2. 0 
- _o - -

where from Equation (2.49) 

(2.61) 

Equations (2.60) and (2.61) are the iterative equations that are required 
to compute the minimum variance estimate. 

In a similar manner, the recursive form of the covariance matrix for 
the estimation errors c~n be developed. Consider the non-recursive form 

£ == (B 71r'1J)-1 
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Comparison of this equation with Equation (2.47) shows that the covariance 
matrix of the error in the nth estimate is related to :Tn as follows: E,,= J,,,-, 
Thus, this substitution into Equations (2.60) and (2.61) yields: 

At this ~oint it is interesting to net e that the conditional expec
tation of s2~" is biased by the memory of all previous estimates. Further, 
if the time intervals between data points are approximately equal, and if 
the errors in the observables are comparable, the bias will increase as 
the number of data points increases. This fact may appear to be the result 
of an error, since the form of this estimate is a direct consequence of 
Equation (2.44). However, it is noted in the way of an explanation that 
the solution is biased only in a local sense. The result of the complete 
reduction problem will still be unbiased, since the initial conditions for 
the problem were unbiased; i.e., the matrix £0 -

1 was the null matrix rather 
than some initial estimate of this quantity. 

Now noting that 

& _x~) -= '" ct t. ) s x <n> 
.., 't" OJ /1 - 11 

S i'o(,,_,)::. t/1 ( 1 t. ) c A.(n-1) 
't" Co; n-1 °1. 11-1 

{f ( t,,J t11 _J =- ((F' (t.o J tn) I.P{ 60; t. 11 _ 1 ) 

Bn = ti,, ~( tn; t 0 ) 

allows the first of these equations (2.60) to be rewritten as 

But 
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(f(t.,,Jto)J;,-'e; -= [<P(t,,Jto) J,,-
1{{J'(t11JtO)] H,,7 

= J,,-1 ( t,,) H,t 
:: [ (f?(tn) t"_✓ ) J'>-1 Ctn_,) ff ( t,,; t,,_,) + H; R-;, II,,]-~~ 

and the estimator reduces to 

where 

= c/\xcn) + q [oA,,._ -H E~cnJ] 
0 ,,_, I\ ,, I') ;J-/ 

/\(n) 
&x 

n-1 = estimate of 6f at the epoch tn based on all 
information processed through t 1 ~~1 sets) n-

Q - [ J.ln) + H, o -1/1. ]-,H.,. D -1 
n == n -, n '"'l'I n I? n,, 

-r(f\) J 
Jn-r = estimate of at the epoch tn based on information 

processed through tn-1 

::: ct(t,,, tn_ ) J(n-1) d1'(t ..L ) 
J 1 ,, -, '-t" n J <.. n -1 

The second equation for estimation error then becomes 
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or 

(fl ( lo J tn) J ~n) (/Jr( Co J t,,) -= ((,' 7 
( tnJ t. 0 ) H,,7 1?

11
-t II,, f( t,, J t 

0
) 

= 

+ ,~(t t ) :r._(o) /A T(.J. ) I OJ l'l-1 ,,_, 'f' -,;,O; t,, -, 

f (,')(tn)t.,,_,) J;,(:;-,) ~ 7(-1:.n_,tn-,) 

r J"(.n) 
n-1 

Thus, in summary 

J.(n) ,,_, ::: ( ) {,n-1) -r( t ) (/) t nJ e.,,_1 J,,_, c/1 -1.,., J ,., -, 

= (l)(t,,.Jt,,_,) 8f;,:,-/)t-- Q,,[o&-H,, ~(tn.)~'1-,) ~K,,.,J 
T 

: JI,,, R~' Hn t Ji~/ 
. 
) 

This set of equations allows an estimate of the state to be generated for > 
the epoch tn from a priori estimate of the state at this epoch[ (f(tn;in-1) 6!:~',] 
and the observed minus computed residuals available attn, Further, since 
the initial conditions for J~0

) and .5_x 0 are specified, the process can 
be initiated at any time. However, the question exists as to how information 
which might be available at t 0 for J 0 l 0

) could be utilized. It might be 
argued that such a process is simply a continuation of some previous analysis 
and that the initial conditions could be substituted directly. However, this 
argument is not satisfying; and, therefore, a more rigorous proof will be 
constructed. 
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2.2.2.5 Schmidt-Kalman Filter Via Minimum Variance 

The development of the Schmidt-Kalman (Reference 0.1) estimation equa
tions is very similar to the development of the minimum variance equations, 
but differs .in the respect that an initial estimate of bX0 • 8X~ is assumed 
to be available for the purpose of biasing the estimator in a total sense 
toward a'.priori estimate. The optinrum estimate is thus assumed to beJLlin
ear function of both the a 4priori estimate~ and the measurements fi...A and 
is formulated to minimize the elements of the estimation error covariance 
matrix subject to the constraint that the estimation error is not a function 
of..§..&. 

The derivation of the filter equations will then require the following 
definitions: 

6 X~ = a ~priori estimate of ~ 

e~ = error in a' priori estimate of ..§.k, 
~ 

E 1 = e~ e~T = covariance matrix of a 1priori estimation errors 

And, as was stated, the form of the optimum estimate is assumed to be 

(2.64) 

where P and Qare chosen to fullfill the conditions discussed previously. 
But, 

/\ 

SJo -
and 

/\ I I ,,..., 

6!0 f eo J o ~o = 6 ~• f ~o , oA = 6A f- o< J ,,.._ 
~ = B6X0 ; so thQ.t. 5A = (3 '5 X" I- 0\ 

Thus, substitution of these definitions into equation (2.64) yields 

6X0 ff_ 0 = P6X0 t-P~: f- t;BSX. f. t7o{ > 

and the error in the estimate is obtained as 

(2.65) 

It can be seen from equation (2.65) that if the error in the estimate is 
to be independent of 5 X, then 

(P -1-913 -I) ~ o (2.66) 
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This constraint allows P to be detennined as a function of Q 

P =I-QB (2.67) 

and allows the form of the estimation equation (2.64) to be written as 

(2.68) 

Therefore, it remains to select Q so as to minimize the elements of the 
covariance matrix of .!!!Q• This task can be accomplished using equations 
(2.65) and (2.67), as rollows: 

~o = (I -t;B) e~ t- q ~ 
~ ~ - ~ 
~c,g; = (I-t;>B)~: g; T(I-QB)'t- Cy o<o< 7

c;,T 

~ ~ 
+ (I-QB) e; 0\ 7 Q 7 

f q ~~; (I-QB)' 

Now, defining 
~ 

0~T = R 
~ ~ ~ 

~ _ 1 T ( 1 T) T ( 
1 T)T -= LJ T §ci'.?S ::. u ihe.n ~ g_c, -= ~oo( = eo o<. 

allows the covariance of the estimation error to be written as 

[ = Q[Bc'B 7 r/? -Bu-urgTJQ 7 

-q[BE
1

-U 7 ]-[c'B 7 -tl}'.t 7 f£ 1 

(2.69) 

(2.70) 

The first variation of E with respect to Q is now required as the first 
step in obtaining the relationship for the optimum linear estimate. 

6E -={ cSQ[(BE~r,..R -BU-U7iJ 7)0 7 -(BE'-tlT)]] 

+{ 0Q[BE'B 7,..R-Bu-u7B 7 )Q 7-(sc'-ur)J}T 
But, SQ is arbitrary; thus, the elements of E will have an extreme value 
if 

or, solving for Q 

(2.71) 
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In most applications, the measurement errors and the errors in the 
a 1priori estimate of the state are uncorrelated 

Thus, Q becomes 

(2.72) 

The covariance matrix of the estimation error for this case can be determined 
from equations (2.70) and (2.72) as 

E =E' r Q [Bt8 7 
t-RJqr- CU3E 1-E'8 7(;r (2.73) 

:: c't-c ar[B~R]-'[at/SZ(R]Q7 -QBE1
-~7 

E =- e'- Q/3£ 1 
• 

Therefore, 

E = t 1 
- £' s T [ a E 'a 7 + R ]-'BE' 

where 

(2.74) 

These filter equations, (2.74), can be written in a different form, as 
follows: 

or 

Q: E 1 B 7 [BE 1B 7 i-R]-/ 

= (B'/r-'a tE'-1r'(B'R-1Bf-f 1
- 1)E 1B7 {BE 1B'tR}-1 

= (/3 71?"''8-f £ 1-1 )-/ ( B 7R-18 E' 8 7
1'- B 7R-1?)(Ec'B 7 rR)-1 

= (8 7,f<B f £
1

- 1)-
1 B 7/?-1(8l'B 7

-1-tf)( BE 1B 1rR)-1 
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Thus, the equation for E can be rewritten using equations (2.73) and (2.75) as 

E = £ 1 
- QBE/ 

or 

=- [( B7R-1B I- £ 1
-
1r'(8 7R-18 .,,£,-/)] .E' -[(B7R-'B tE'-1)BrR-I] BE' 

= (B
7
R-'Bt£'-1)-' [8_YBE1 r I -8~£'] 

(2.76) 

Thus, using equations (2.75) and (2.76), the set of equations analogous to 
(2.74) can be written as 

E = ( B 7 R-1 l3 f f '-I) -, 

"' A, [......., /\ (2.77) 
c5Xo = S X o t Q 6 A - B 6 x: ] 

Q = ( 8 7 R-I 8 f f'-1)-I 8 7 R-1 

Note that (2.77) requires the inversion of a matrix of the dimensionality of 
the state vector as opposed to the dimensionality of the observation vector, 
as was the case with equation (2.74). Also note that the estimation error 
for this case does not involve subtraction. The first of these differences 
is a definite disadvantage due to the fact that there is an increased chance 
for numerical error due to loss of significance when inverting. However, the 
second difference is an advantage since it avoids the problems associated 
with assuring positive eigen-values which might result as E approaches the 
null matrix in the other formulation. 

Also, note that this form of the estimation equation is exactly the same 
as that obtained by transforming the minimum variance estimator to the recur
sive mode. Improvement in the estimate can, however, be expected, since 
provision has been made to begin the process with values of J:;> and~, 
other than those employed in the minimum variance case. 

Finally, note that the estimators (2.74) and (2.77) are both biased. 
However, in contract to the recursive minimum variance estimates, this bias 
exists on the overall and local senses. This fact graphically displays the 
effect of a'priori information in the data reduction problem since the solu
tion is weighted in the direction of the available data. 

When the statistical properties of 8 X0 are known; i.e., 
,,,...,_,,,..._ 

I T T 

~o 8Xo -= W 
~ 

€.lo 0.. T = s ~=UT (2.78) 
- _o > 
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this additional information can be used to improve the estimate of ..§..k. The 
equations required to utilize this information can be obtained by simply 
removing the constraint equation (2.66). When this step is performed, the 
covariance matrix of the estimation error will be found from equation (~.6;) 
to be 

E = (P-t-QB-I) V(P-1-QB-I) 7
.,. PE'PT i- QRQ 7 

t- { (Pt- qg -I) WP T f (Pf QB -I) ..5Q T +r'NQ7 J 
r { (Pf t; B -I) w Pr -r P N q' r ( P + q B - I) s q 7

] 
7 

Equation (~.79) can be written in the form 

where 

A = V f £ I + W+ W7 

6 = BVB
7
t-/? -1BS -1- (B.J( 

C = BV+BW+ S 7 r{J' 

D =- av 1-s 7 

F = V f-W 7 

(2.79) 

(2.80) 

(2.81) 

The variation of E with respect to both P and Q can be written, using 
equation (2.80), as follows: 

l>E "'{&P[AP 7
f-C

7Q'-F]} t-{tSP[AP
1
f-C'Q 7-FJ] 7 

1-[~Q[6Q 7
+ c ? 7 -oJ} +{ tSQ[GQ'+ c P 7 -D]}' 

But, since .SP and lSQ are arbitrary, equation (2.82) indicates that 
8 E will be zero if 

AP
7 + C 7 9 7 =F 

CPT f-Gq.,. ==D 

Equation (2.83) can be multiplied by A-1 to yield 
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(2. 83) 

(2.84) 

(2.85) 



and this result can be rewritten as 

Now, subtracting equation (2.86) from (2.84) yields 

[ G - CA -1 C T] q Tc::. 0 - CA -IF 

Therefore, 

or 

since [G -cA-/cT]T= [6 7-C(A')-1c7
] =[G -CA-'c7] . 

Equation (2.83) now implies that 

Thus, 

P = [ F ' - Q C ] A _, ; St/?Ce A=AT. 

In summary, the equations required to formulate the estimate are 

A A 1 ,,.....,, 

0X0 :::PJX
0 

r QcSA 

where 
p = [f 7 -QC] A-, 

Q -=. [ D -cA-'r] 7 
[ G - CA-'C 7 ]-, 

A = V -tE' -;-Wf-W
7 

G = B VB 7 +R fBS -1-@3.5) 7 

C -=./3V +BWfS 7 -!-UT 

D = J3V r .5' 

F = V f- W 1 

,,..._,,..._.,. 
R = o<o<T 

~ - ,..._,..._,._ 
W= 6X

0 
e~' S: 8X 0 oJ..r 
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A number of alternate forms for P and Q exist and should be investigated to 
determine the form most suitable for a particular application. One such 
variation can be obtained from equation (2.84) by post-multiplying by cT G-1, 

and subtracting from (2.83). This process yields 

[A -C 7 G -, C] Pr ~ F - C 'G -'o 
from which 

or 

since A= AT and G = GT. 

(2.91) 

(2. 92) 

(2. 93) 

The corresponding expression for Q can be obtained using equations 
(2.84) as follows 

Thus, 

This derivation of the Kalman estimator employed a minimurn variance con
cept to arrive at the optimum estimate. If the statistics are Russian, this 
procedure will yield the optimum estimate in a larger sense (see Section 2.3) 
since the higher moments are zero. 

However, if the statistics are non-Gaussian, the resultant estimator (a 
biased minimum variance estimator) will not be optimum (again in the larger 
sense) since it neglects all knowledge of any higher order moments in the 
distributions of the errors. Thus future discussions will provide a reformu
lation of this problem from the standpoint of a much more general concept of 
loss and optimum estimate selection. This discussion (presented in Section 
2.J) will develop the specific case for Gaussian errors and will show that the 
resultant estimation is, in general, superior to any other which can be 
formulated. 
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2.3 STATISTICAL ESTIMATION THEORY 

2.3.l Introduction 

The discussions presented in section 2.2 lead to the simple development 
of a series of computational algorithms which defined an estimate of the state 
deviation vector in terms of a series of observations and the initial condi
tions. However, implicit in this material were the assumptions that 

l) the dynamical model was linear 

2) the observation model was linear 

3) the optimum estimate of the state deviation was a linear function 
of the observed minus computed values of the observables 

4) only second-order statistics were necessary. 

Further, the "loss" functions employed to develop optimum. estimates of 
the state deviation vector, while similar, were intuitive, thus giving rise 
to questions regarding the uniqueness of the estimates generated. For these 
reasons, it is now desirable to re-examine the estimation problem to demon
strate the manner in which these assumptions can be relaxed and to show that 
all of these estimators are special cases of a more general family of estima
tors. Specific attention will be focused on: 

1) the criteria to be utilized in determining the optimality of the 
estimate 

2) the statistical properties of the variables, and 

3) the form of the function relating the observables and the quantities 
being estimated. 

In general, the particular problems ~f interest are representative of a class 
of problems which is the subject of the general theory of parameters estimation 
as set forth in statistical decision theory. Therefore, the fundamental con
cepts of the theory of parameter estimation form a basis for an adequately 
unified approach to fulfill the present requirements. It should be noted that 
the simple derivation of filtering methods employs some of the basic concepts 
of the theory of parameter estimation explicitly, while others are almost 
always implicitly involved. However, when these concepts are not consistently 
employed on an explicit basis, their applicability and usefulness are not 
fully realized or exploited. In the subsequent sections on estimation, the 
basic concepts of the general theory of parameter estimation are presented 
for the primary purpose of formulating a more unified approach to determining 
filtering methods than the simple approaches outlined previously. The dis
cussions do not present an exhaustive treatment of the subject, nor is one 
intended; rather, primary emphasis is placed upon the basic concepts which 
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have general applicability and particular usefulness to the present problems. 
Nonetheless, adequately complete discussions of the concepts are presented so 
that extensions can be formulated and applied to those problems which require 
them. 

It should be emphasized at the outset that the problem of state estima
tion in space navigation and guidance is completely equivalent to the problem 
of transmission and reception of information in a noisy communication channel. 
All of the methods utilized for solving the latter problem are totally and 
directly applicable to the former one. Further, since extensive application 
of the general theory of parameter estimation has been made to the general 
problem of communications in the presence of noise, leading to a general 
theory of statistical communications, the same approach to state estimation 
will yield a general theory of statistical navigation and guidance, Should 
questions arise during the discussions, it is likely that answers can be 
found in References such as 0.4. 

In the discussions, it is assumed that the reader is generally familiar 
with the fundamentals of probability theory. To be specific, knowledge is 
assumed of: (1) continuous joint probability distribution and density func
tions; (~) marginal and conditional probability density functions; and (3) 
conditional expectations. Though an extensive knowledge of statistics is not 
required. This level of familiarity must be assumed since to do otherwise 
would require the development of all of the statistical concepts to be 
employed. Thus, should the terminology be unfamiliar, the reader is referred 
to any of a number of excellent references (References 0.4, 3.1, 3.2, etc.). 

The discussions begin (section 2.3.2) with basic notation and definitions, 
which are of particular concern to the present subject, and which are not 
necessarily emphasized in the fundamentals of probability theory. This 
material is followed (section ~.3.3) with a description of the basic problem 
to be considered in mathematical form and a discussion of some physical inter
pretations. 

In section ~.3.4, the rudiments of parameter estimation are discussed, 
and a basic description of the problem is given which emphasizes the under
lying concepts. These discussions define estimators, estimation error and 
basic properties of estimators. Properties of a 11good 11 estimator are then 
discussed to form a basic concept of estimation. Next, more general criteria 
for estimation are defined in terms of loss functions and associated risk. 
Properties of estimators which are based on estimator risk follow these dis
cussions. Finally, sufficiency of an estimator is discussed, a sufficient 
statistic is defined, and a test for sufficient statistics is given. 

The determination of particular estimators is discussed. in section ~.3.5 
with primary attention given to useful methods for determining estimators. 
The determination of minimum variance unbiased estimators by means of suffi
cient statistics and complete probability density functions is discussed, and 
the method of least-squares estimation is shown to yield minimum variance esti
mators under the condition of statistical independence of the sample. Attention 
then turns to the development of a lower bound for estimator variance and the 
deternd:-nation of Bayes estimators. The general solution (in terms of the 
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Bayes estimator) for the case of squared error loss is ·shown to be the con
ditional expectation. (More general loss functions are also considered.) 
Following this material, Bayes risk is discussed and a comparison of a Bayes 
estimator and a minimum variance estimator is given to illustrate the differ~ 
ence in the results. Finally, minimum risk estimation is discussed to 
emphasize the use of sufficient statistics in minimizing risk for the general 
class of convex loss functions. (Maximum likelihood estimation is discussed 
and shown to be equivalent to Bayes estimation with a simple loss function.) 

These discussions conclude (section 2.3.6) with the application of Bayes 
estimation to the case of many degrees of freedom. The first result is the 
formulation of the technique to develop the optimum estimator for the general 
vector case and for general statistical distributions. The second result is 
the extension of this material to the general linear case, where the statis
tics are Gaussian. This extension develops a proof that (under these assump
tions) the Kalman estimator is the optimum estimator. This fact could not 
be developed from the material presented in section 2.2. 

2.3.2 Basic Definitions 

It is the purpose of the following sections to develop a basic under
standing of the general problem of parameter estimation. This effort must 
necessarily begin with the following basic definitions of the essential 
elements of the problem. 

2.3.2.1 Random Processes 

A random process is defined herein as any phenomenon for which repeated 
observations, under a given set of conditions, do not yield identical results. 
In general, random processes are characterized by variations in outcomes for 
repeated equivalent trails. These variations in outcomes or observations are 
considered as the 11randomness 11 of the process, which is equivalent to uncertain
ty in the outcome of the process. As a contrary example, consider a process 
whose behavior is completely described by a lmown system of differential 
equations. Theoretically, it is possible to completely determine the 
behavior of such a process if a sufficient finite set of initial conditions 
are known. Thus, it would be possible to completely specify the future 
behavior of such a process if an adequate set of observations are made at 
some time. Such a process is said to possess deterministic regularity. How
ever, until such time that all physical laws are explicitly established for 
the microscopic and infinitesimal domains, the concept of random physical 
processes must be admitted, accepted, and dealt with. 

Alternatively, a random process could be defined as one which does not 
possess deterministic regularity, and subsequent outcomes cannot be predicted 
with certainty from a set of observations of the process. However, a random 
process can possess definite properties of behavior which make possible a 
description on a statistical basis. Such random processes are said to 
possess statistical regularity. In such cases, even though particular out
comes of the process cannot be specified, it is possible to specify the rela
tive frequency or probability of occurrence of outcomes for the process. That 
is, let y denote the outcome of a random process, then the process is 
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described by specifying the probability that y will lie in some arbitrary 
interval. The common notation is as follows: 

(3.1) 

In this notation P(a < y~ b) is referred to as the probability distribution 
function which is the probability that y lies in the interval a<. y.-!!::. b, and 
f(y) is the probability density function of y. 

Thus, random processes are explicitly described by specifying their 
probability density functions. In Section 2.3.3 a detailed mathematical 
description is given for random processes of particular interest in the pres
ent discussions. 

For the sake of notational convenience, "pdf" will be used to denote 
"probability density function" in the text, and "f(y) 11 will denote the pdf of 
yin equations. However, it should be noted that if x and y are two differ
ent random processes the pdf of x, f(x), is not equal to the pdf of y, f(y), 
even for y = x. 

2.3.2.2 Parameters 

If a random process possesses statistical regularity, then it can be 
described by specifying all of its statistical properties, which is equivalent 
to specifying the pdf of the process. The "parameters" of a random process 
are defined as the smallest set of elements which specify the statistical 
properties of the process or its pdf. In general, all statistical averages, 
or moments, of a random process are required to specify it. However, for 
many processes of interest, all moments are not required, and a smaller set 
of parameters suffices to specify the process. 

For example, in the case of a Gaussian distributed random process, it is 
only necessary to specify the mean and variance of the process, since the pdf 
of the process, f(y), is specified by these two parameters; i.e., if y is the 
outcome of a Gaussian distributed random process, then 

(3.2) 

where M and (l'--2 (the mean and variance of y, respectively) represent the two 
parameters which specify the pelf of a Gaussian random process. 

In general, the set of n para.meters which specifies the statistical proper
ties of the pdf of a random process will be denoted by Q = (Q1, Q2, ••• , Qn). 
The pdf of a random process will be shown as a function of the parameter set 
Qin terms of the conditional pelf, given Q; i.e., f(y/Q). For the Gaussian 
pdf Q = (Q1, Q2) = Cu, a--2) and f(y/Q) = f(';j/,u, c---2). 
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2.3.2.3 Random Samples 

A random sample is defined as a collection of observations or outcomes 
of a random process. Specifically, a random sample of size mis a set which 
contains as elements the results of m observations of a random process. A 
random sample will be denoted by Y = (n, Y2, ••• , Ym). It is important to 
note that a random sample has a joint pdf which essentially specifies the 
probability of the simultaneous occurrences of them observations. That is, 

P [a., < ;f, 5 h, j az < :Jz. ~ b2 ; • • • J a,., < ~,., ~ h,.,] = 

c, "~ h,.. 

f /· · · J F(j', J ;fz, · ·· ·1 ~,.,)d_J,., • · · d~z dJ, 
a., a2 t:2,,., 

(3.3) 

For convenience, the following notation will be used to denote the probability 
of simultaneous occurrences of a random sample of m observations. 

P[oCY)] = f fCY) d Y 
"IX.Y) 

(3.4) 

Where D(Y) is any m dimensional domain of interest, P[D(Y)] is the probability 
that the random sample will lie in D(Y), f(Y) is the joint pdf of the random 
sample Y, dY is an m dimensional infinitesimal, and it is understood that the 
integral must be performed over the domain D(Y). 

In general, them observations of a random sample can be statistically 
independent or dependent. The random sample is defined to be independent if 

f(Y/0) = f(~1/0) •f('jz/9)····/{t,.,/e) 

"" ) (3. 5) 
= i.7!; F{,~je 

where f(yi/Q) is the pdf, given the parameters Q, for a single observation of 
the random process. Otherwise the random sample is statistically dependent. 

As a particular example of f(y/Q), consider m independent observations 
of a Gaussian random process. For this case, 

f(Y/0) =- f{Y/,l,(.,o-2
) 

"' 
f(Y/0) :: {y2 ;°'"2)ex~ - z'a-2. f (!fi -µ)z] 

(3.6) 

2.3.2.4 Random Variables 

A random variable is defined as a real-valued function of F(y) which 
exists and is defined for each outcome of a random process. Of course, the 
outcomes for many random processes are actually random variables; i.e., 
F(y) = y. Such random processes are considered to be quantitative or numeri
cal processes, e.g., random voltages, pressures, errors, etc. On the other 
hand, random processes exist which are non-numerical, such as the tossing of 
a coin where the outcome is either a heads or tails. However, it is possible 
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to define a random variable for this random process by assigning numbers to 
the outcomes or by defining the random variable to the number of heads in m 
tosses of a coin, etc. 

The importance of the concept of a random variable lies in the fact that 
many of the arithmetic, algebraic and analytical operations which are defined 
for real-valued functions are meaningful for random variables, whereas they 
are not for the outcomes of all random processes. Thus, additions, subtrac
tions, multiplications, transformations, etc., are applicable to random 
variables. 

In general, if y possesses statistical regularity, then the random vari
able F(y) possesses statistical regularity. Thus, F(y) is generally specified 
by a pdf which is derived from that of y. The derivation of f (F(y)] from 
f(y) is, in general, not a simple transformation, except in the simple case 
of F(y) = ay for which f [F(y)1~ a• f(y), where a is a constant. However, 
the expected values of random variables are usually required, and the pdf of 
F(y) is not required since the expected value of any random variable F(y) can 
be determined from pdf of y as follows: 

a, 

E[FC~J] =JF(:J) f('j)d.J 
-oo 

where E denotes "expected value. 11 The conditional expectation of F(y), given 
Q, is defined as 

00 

E [F(j<)IB ];;_f F{JJ f(<j/B )dJ 

2.3.2.5 Statistic 

A statistic is a known function of a random sample of observations of a 
random process whose outcomes are random variables. It follows that a sta
tistic is a random variable; however, a random variable is not necessarily a 
statistic. For example, in the case of a Gaussian random variable y with 
unknown mean value ..u , the function y - µ is a random variable; however, it 
is not a statistic since ,u is not known. On the other hand, y - c, where c 
is a known constant, is a statistic. 

The important difference is that a statistic is defined as a known func
tion of a random variable sample set Y which does not contain any unknown 
elements. Thus, a particular sample Y specifies the statistic. Of course, 
statistics are not unique since many lmown functions of a random variable 
sample can be defined. In general, the set of statistics defined for the 
random variable sample set Y will be denoted by 
T(Y) = [T1(Y), T2(Y), T3(Y) ••••]. 

A statistic represents a transformation of the sample set Y from the 
space of random variable observations to the space of statistics. The trans
formation is not unique for a given statistic. For example, a statistic can 
be t~e simple linear sum of random variable observations in which case many 
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different sample sets transform into the same point in the statistic space 
(i.e., various sample sets can yield the same numerical value of the statistic). 

The conditional expectation of T(Y), given Q, is determined from the 
conditional joint pelf of Y, i.e., 

f[ l(Y)/0] =/T(Y)f(Y/0)dY 
y 

where the integral ism dimensional and must be performed over ally in Y. 

2.3.2.6 Complete Probability Density Functions 

In the consideration of parameter estimation, a question often arises 
concerning the uniqueness of the expectation of a random variable. This 
question can be resolved in terms of the property of completeness of pd.f's. 
A random process, y, is specified by its pelf, f(y/Q), which is a function of 
Q. For any interval of Q, A..::.. Q..:::.. B, f(y/Q) defines a family of pd.f's. The 
following definition defines a complete family of pd.f's. 

DEFINITION: let f(y/Q) 7 0 for any interval of a~ y ~band zero 
otherwise and let F(y) be a random variable defined on the interval a~ y < b 
and independent of Q. 

Now, if 

c [F{J)] = 0 (A< e<..B) 
if, and only if, F(y) = 0 for a~ y < b, then f(y/Q) is defined to be a com
plete family of pd.f's. Conversely, if there exists some F(y) which is not 
identically zero in a "'- y < b for which E LF(y)] =O for all A L.. Q <. B, then 
f(y/Q) is not a complete family of pd.f's. 

It should be noted that a pelf can be complete with respect to certain 
parameters. For example, consider the Gaussian pelf, f(y/u, 0'-'2 ), to wit, 

If the mean valueµ is known, then any random variable F{y) which is defined 
as an odd function aboutµ has zero expected value and, hence, f(y/µ., cs-2) is 
not complete with respect to a--2 for knownµ • On the other hand, if JA is 
unknown, then f(y/µ, a-~) is complete with respect to both ,u and o- 2 since 
the only F(y) which has zero expected value for all.u and <r-2 is given by 
F (y) l!!: 0. Of course, f (y / µ , 6'-2) is complete for known O"- 2 if ,u is unknown. 

The use of completeness can be demonstrated by considering f(y/ P, a--2) 
for a--2 = 1. Let F(y) = y2; then E [F(y)] = E(y2) = J,t2 + 1. The property 
of completen~ss determines that there is no other F(y) i y2 such that 
E(F(y)1 =A.',,!.+ 1. For if E[F(y)J = E(y2), then E[F(y) - y2J = O. But 
since f(y/M, 1) is complete, F(y) - y2 must be identically zero for ally; 
i.e., F(y) ~ y2. Thus, since f(y/µ, 1) is complete, the E[F(y)J is uniquely 
determined. 
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~.3.3 A Mathematical Description of Random Processes 

In order to promote an understanding of parameter estimation with respect 
to the particular problems of interest, a mathematical description is discussed 
in this section which describes, in general form, the set of random processes 
to be considered. 

~.J.3.1 A General Form 

For present purposes random processes will be defined in general form as 
follows 

~ :. .f (~) -f g (3. 7) 

where 
z = mxl Observation vector 

St = nxl Parameter vector 

.E = mxl Transformation vector 

!?. = mxl Noise vector 

Equation (J.7) defines a random process as a general non-linear function of 
the parameter vector St• The general linear case is defined by E.(S!) = AS!; 
i.e., 

(3.8) 

where 
A = m x n Transformation matrix 

The foregoing terms have the following properties. 

!?. Is always random 

St Is either random or non-random 

.E Is always non-random 

A Is always non-random 

z Is always random 

Thus, for present purposes, a random process is defined as the linear sum 
of two processes [(Q) and!?.• The process!?_ is always a random process. How
ever, since Eis always non-random, the process [(St) is randon if, and only 
if, St is random. It is extremely important to note that for non-random St, 
the process .E(S!) possesses deterministic regularity. Furthermore, the process 
.E(S!) possesses conditional deterministic regularity, given Q; i.e., for a par
ticular£, E.(£) is deterministically regular. Of course, z is always random 
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since! is always random. 

A more detailed discussion of the general form of random processes is 
given in subsequent sections. However, at present it is advisable to discuss 
some physical interpretations of the random process as defined herein. 

~.J.J.~ Some Physical Interpretations 

In the general form of a random process, the vector 2 represents the 
essential unknowns which are to be determined. For example, in the linear 
case, ,2 represents the "state" vector which is commonly used to denote the 
position and velocity deviations of a spacecraft from a reference trajectory. 
However, in the present definition~ is quite general and can represent other 
parameters such as the coefficients of a polynomial fit to data (as in the 
case of least-squares curve fitting) or the bias arising from a random pro
cess, etc. 

The vector !:.(2) represents some observable or measurable physical 
phenomena which is dependent on 2• In general, .E represents a set of known 
non-random functions of 2• In the case where 2 represents spacecraft position 
and velocity deviations from a reference trajectory, !:.(2) usually represents 
deviations of space measurements from the reference. In this case, !:.(2) 
usually becomes A2 where A is the matrix of first partial derivatives of space 
measurements with respect to spacecraft position and velocity. It should be 
noted that, in general, .Eis not necessarily constant; e.g.,!:. can vary as a 
non-random function of time. For example, 2 can denote trajectory injection 
deviations which are propagated into subsequent values of trajectory devia
tions as a function of time. In such case, !:.(2) is a function of a time
dependent transition matrix. 

The vector~ represents errors in measurements of !:.(2) or, equivalently, 
the uncertainty in observations. If the errors in measurements were not 
present, then,theoretically, the parameters 2 could be determined directly 
from the inverse of y:_ = !:.(2); i.e., for~= O, 2 = i-1 (z) where i-1 exists 
and y is an adequate set. However, in the general case,! is present and 2 
cannot be determined from i-1 without the risk of large errors in the results, 
e.g., in the linear case where y:_ = AQ + ~, A-ly = Q + A-1 ! and the error in 
taking Q = A-ly is A-1 ~ which could be large depending on the nature of A-1 

and!• 

The vector y:_ is a random variable vector which represents the random 
process in general. A particular value of y:_ represents a particular observa
tion of the random process. The totality of observations comprises a random 
sample set Y which contains all observations of the random process. The vector 
z and the set Y can be interpreted in two equivalent forms. In general, the 
totality of observations can be taken in a time sequence of simultaneous 
observations of the elements of z. In this case, Y contains the set of par
ticular observations of z, i.e., Y = (z1, ~, •••• , i£m). However, the vector 
y:_ can represent the totality of observations with the elements of Y as sub
vectors of y:_, in which case Y and y:_ are the same set. The particular inter
pretation of y:_ is selected on the basis of convenience for a particular 
problem. 
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2.3 .3 .3 An Ensemble of Non-Stationary Random Processes 

In the general form of a random process, as defined in equation (3.7), 
the term E(~) is dependent on~ and can vary as a function of time. Thus, the 
general form of random processes actually defines an ensemble of non-station
ary random processes. Each particular value of~ defines a particular member 
of the ensemble of random processes defined. Since E(~) can vary with time 
for any~, the ensemble members are non-stationary; however, if E(~) is inde
pendent of time, i.e., constant for all particular~, then each member of the 
ensemble is stationary, assuming that the random process!:, is stationary. 

Two important aspects of the ensemble of random processes should be 
strongly emphasized: First, it is important to note that when a set of obser
vations are made of a random process, a particular member of an ensemble is 
observed and determining~ is equivalent to determining which member of the 
ensemble has been observed. That is, during a sequence of observations,~ 
is a constant which, of course, is unknown. The object of making observations 
is to determine~, if possible. It should be noted that for each ensemble 
member, the deterministic regularity resulting from E(~) is reflected as 
statistical regularity in the observations z= .E(~) + !:.• 

. Second, it is also important to note that although~ is an unknown to be 
determined, certain information is often available concerning the behavior of 
~. Indeed,~ is often a random variable with known pdf. In such cases, it 
is possible to determine the probability of occurrence of particular members 
of the ensemble. In general, members of the ensemble occur with various 
probabilities and certain members can occur with zero probability. If~ is a 
random variable, then the ensemble of random processes is specified by the 
joint pdf of ~. Generally, ~ exists over some parameter space, ..n.. , and the 
pdf of~ determines the probability of occurrence of a particular~ in the 
parameter space .0.... 

2.3.4 Rudiments of Parameter Estimation 

2.3.4.l A Basic Description of Parameter Estimation 

The problem of parameter estimation can be described most succinctly in 
the following manner: 

1) A random process exists which is a function of or characterized by a 
set of parameters. 

2) The parameters are not explicitly known nor can they be directly 
observed. 

3) Knowledge of the parameters is required to perform some particular 
task. 

4) Observations of the random process can be made which yield a set of 
sample data. 

5) The set of . sample data provides the only means for determining the 
required parameters. 
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The foregoing is equivalent to the method of inductive inference, which 
is referred to as statistical inference when random processes are involved. 
That is, from a particular set of observations, conclusions are drawn which 
concern some general aspects of the process under observation. The method is 
depicted in Figure 2.J.l. It is a basic theorem of formal logic that the 
method of inductive inference is intrinsically uncertain. It is not possible 
to make generalizations with certainty on the basis of a set of particular 
observations. The situation is apparent when random processes are involved. 
Nonetheless, useful inferences can be made if the procedures involved are 
judiciously formulated. This is the general concern of the theory of statis
tical inference and the particular concern of statistical decision theory. 

In the general theory of statistical inference, the basic problem which 
is considered, is that of making a decision under existing conditions of 
uncertainty. Two types of uncertainty are recognized: randomness and the 
lack of knowledge concerning the state of nature. It is required to make a 
decision concerning the state of nature, and it is desirable to make the 
11best decision possible" under the circumstances. In effect, the decision is 
an estimation of the state of nature; thus, if the state of nature is deter
mined by a set of parameters, the decision problem of the parameter estimation. 

The foregoing situation is completely equivalent to the problem of deter
mining the set of parameters .2, of the random process iL = [(.2,) + ~- The 
uncertainty due to randomness is equivalent to the errors in measurements or 
observations, denoted by~, and the uncertainty due to the unknown state of 
nature is equivalent to that of the unknown parameters .2,. Of course, "best 
decision possible" is equivalent to 11best parameter estimation possible." 
Thus, the problem of parameter estimation becomes that of determining esti
mations of£ from a set of observation data which are 11best 11 with respect to 
some applicable criteria. Some comments concerning the general philosophy 
are in order. 

At the outset (before observations are taken) there exists uncertainty 
about the parameters .2,. However, some knowledge of .2, can exist a'priori since 
the pdf of£ is frequently known; i.e., the probability of occurrence of a 
particular£ can be known a'priori. Thus, in general, complete uncertainty 
concerning 2 does not exist at the outset. Nonetheless, in each particular 
case, it is required to know .2, with less uncertainty on greater certainty (as 
contrasted with absolute certainty) than exists a 1priori. The statistical 
regularity of the process, which is characterized by the parameter .2,, is 
present in the observations of the process; hence, the observations must con
tain intrinsic information concerning the parameters .2,. Thus, the object of 
parameter estimation becomes that of extracting information concerning .2, from 
the observations thereby decreasing the a 1posteriori (after observations) 
uncertainty of .2, or, equivalently, increasing the a 1posteriori knowledge of 2_. 
It is interesting to note that the problem is identically equivalent to the 
problem of information transmission and reception in the presence of noise, 
which is considered in the general theory of statistical communication. Indeed, 
the problem is one of extracting information concerning .2, from the observations 
z in the presence of measurement or observation error 2_. 
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In general, it is not possible to determine the parameters~ with abso
lute certainty (unless an infinite number of observations are made, which is 
generally not practical); thus, some residual or a 1posteriori uncertainty must 
be expected. The concept of "best parameter estimation possible" is equival
ent to the minimization of a 1posteriori uncertainty or the extraction of 
maximum information from the observations. 

In general, parameter estimations are derived from operations which are 
performed on the set of observations or random sample data. These operations 
are defined as estimators and are denoted herein by 6. The general procedure 
of parameter estimation is depicted in Figure 3.2. In the following section, 
estimators & are discussed in further detail. 

2.3.4.2 Estimator 

In general, an estimator o is a known function of statistics (see Section 
2.3.~.5) which provides an estimation of a parameter Q. Of course, an estima
tor is a random variable; in fact, estimators are a subclass of the class of 
statistics. (That is, an estimator is a statistic but a statistic is not 
necessarily an estimator.) In many cases the difference can be trivial; how
ever, in the consideration of parameter estimation, it is extremely important 
to consider all possible known functions of random samples, i.e., statistics. 
The ambiguity can be resolved by considering a statistic as an admissible 
estimator if its conditional expectation, given Q, contains Q explicitly. 
That is, if E(T/Q) = Q + b(Q), then the statistic Tis an admissible estimator 
6 for Q, where b(Q) is some function of Q, which is referred to as estimator 
"bias." It follows that 

E ( &/ t;) = e .;., b ( 0) J 

Thus, in general, admissible estimators can contain a "bias" term b(Q) which 
is a function of Q. However, all admissible estimators are not necessarily 
desirable since estimator bias, b(Q), whereas admissible, is not necessarily 
desirable in particular cases. 

It should be noted that the term "estimator" denotes a function, whereas 
"estimation" or "estimate" generally denotes a particular value of an esti
mator as a function of a particular random sample. 

There are two major objectives in the problem of parameter estimation. 
The first of these objectives is to determine parameter estimators 6 with 
minimum uncertainty; and the second is to appraise the estimator's uncertainty 
in terms of its magnitude and behavior as a function of significant factors; 
e.g., sample size, random process characteristics, etc. Estimator uncertainty 
is usually measured by estimator error, which is discussed below. 

2.J.4.3 Estimator Error 

In general, parameter estimations are inductive inferences and as such 
are always subject to uncertainty. The primary objective of parameter esti
mation analyses is to determine estimators with minimum acceptable uncer
tainty. In order to approach this problem on a mathematical basis, it is 
necessary to express estimation uncertainty in explicit mathematical form. 
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Thus, with each estimator there is associated an estimator error, denoted by 
£, which is defined as the linear difference of a parameters and its esti
mation, to wit, 

(3. 9) 

The problem of parameter estimation can be considered as equivalent to an 
analysis of estimator error. Thus, at the outset, several general properties 
of should be noted. First, estimator error is a function of the sample data 
set and the parameter Q; i.e., 

(3.10) 

Second, since£ is a function of random variables, it is a random variable and 
must be analyzed on a statistical basis, i.e.,E is specified by determining 
its pdf, f(€. ). Third, since€. is a function of Y and Q, f(E.) is a function 
of f(Y) and f(Q), to wit, 

((€) =- 6 [f(Y) 1 f(e)] (3.11) 

Fourth, the particular form of f( €. ) is dependent on the particular estimator 
6[T(Y)J. 

In the analysis of parameter estimators, primary emphasis is placed upon 
the statistical behavior o! estimator error. This behavior is dependent upon 
the characteristics of the random process (especially as a function of the 
parameters being estimated) and the particular form of the estimator as a 
function of the sample data. The ultimate objective in parameter estimation 
is to determine parameter estimators which yield acceptable behavior of the 
estimator error. Of course, suitable statistical properties of estimator 
error must be used as the object of analysis. The most significant properties 
are the first moment, first central moment, and second moment, which are 
usually referred to as the mean value, the variance and the mean squared value 
of estimator error, respectively. These quantities are defined below: 

(1) Mean value off= ~ 

E'. = E( E ) 

= j €. f( E.) d£ 
~ 

= E(o) - E(Q) 

= 6 - Q 
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(2) Variance of E. = V( E. ) 

V( E: ) = E( f. - C )2 

= [ (f_ - C )2 f( l ) d 
[ 

C3) Mean-Squared Value of E = f.2. 

(2- = E(~2) 

= /4 G.2 f(E:) de 

The mean value of l is commonly referred to as estimator bias and if 
£ = 0, then €. is considered u~biased. The mQ§t significant aspect of esti
mation error is the effect of£ on V(f) and f 2

• This effect is stated below. 

If for all Q, the conditional expectation of E. , given Q, is zero, then 
the mean-squared value of €. is equal to V( E. ) and the estimator variance, 
V(6 ). This can be shown in the following manner fE,;; denotes ~ectation with 
respect to Q and5-Q denotes the conditional expectation E(5/Q)j: 

€.= E9 f{E/e) 

E(Ele) ~ 6
9 

- e 
Thus, if E(E /Q) = 0 for all Q, then f = 0 and €.a = V( € ) • That e = V( 6) for 
E(£/Q) = 0 is shown below: 

€ z = Ee E ( € z; e) 

£ (c. 2/0) == E [ (o - e);e J 
=£[(&-Se -f g9 -0)2/0] 

= E {[(6-~)2-rz{o- '50 )( ~ -e)+(~;-0) 2 ]/e J 
= V(S/0) +£ {(02 ~-1- i"e;2 

+ z (ot0 -0t5 f~-~ )]Je] 

=- V (b/0) +0z f- ~
2 

- ~0%8 ~ ~ 
= V(S/0) f 0 2 -20~ f- ti 
== V(<S/0) f ( tS8 -e)z 

E(E2/0) :: V(tS/e) f £ z {€/0) 
(J.12) 
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The second term is the square of E(€/Q) and is always positive, thus, 

€2 2 V(6) 
(3 .13) 

with equality if E(£/Q) = 0 for all Q. Therefore, the following is true: 

I;f E(l/Q) = 0 for all Q, then (2- = V(() = V( S ). 

It should be noted that E(l/Q) = 0 for all Q is a sufficient condition for 
[ 2. = V ( E ) = V ( 6 ) • In general, the condition is also necessary if the pdf 
of Q is non-zero from all Q. On the other hand, if pdf of Q is zero for some 
1Eterval of Q, then E(C/Q) can be non-zero for the same interval of Q, and 
f- 2 = V(t. ) = V(6) • This is true because if f(Q) = 0 for some interval of Q, 

then those Qin this interval occur with zero probability and contribute 
nothing to the exnectation with respect to Q. It should also be noted that 
if c = o, theE: (. 2. = V( E.); however, it does not follow that£~ = V( o ) , 
since for 6 = Q it is not required that E((/Q) = o. 

2.3.4.4 Basic Properties of Good Estimators 

The primary motivation for the concept of a "good" estimator is derived 
from a consideration of the basic properties of estimator error discussed pre
viously. Consider three different estimators 61, D~ and o3 for a parameter 
Q. Let the estimator errors for the three estimators be denoted by €.. l, € 2 
and ( y respectively, and assume that they have the following properties for 
all Q. 

E(€1/Q) 

E(f2/Q) 

E(£3/Q) 

= 

-

= 

0 

0 

€.3 

V(€
1

) < V(E2 ) < V(€) 

The pdf I s of 6 1, 6 ~ and 6 3 are depicted below in Figure 2 .3 .3. 
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Figure 2.J.3: Illustration of Estimator pdf 1s 

Inspection of the pd.f's of 61 , o~ and o,~ leads to the conclusion that 
0 1 is the 11best 11 estimator of the three since 1.t has the minimum variance of 
the three and is unbiased. This conclusion is further substantiated by con
sidering the mean-squared values of € i, € 2 and f 3 • From equation (4.3) 
and the specified properties for f 1, E: 2 and f 3 it is seen that 

gz< E2<€2 
I Z 3 

Thus, it -would again be concluded that S l is the best estimator of 6' 1, c5 2 
and 6 3, since its estimation error has the minimum mean-squared value of the 
three considered. 

In the foregoing situation, there is no problem selecting the best esti
mator of the three considered. However, in the general case some difficulty 
can arise. Consider a fourth estimator 6 4 whose variance i~ less than that 
of 6 1 but which has a non-zero mean value; i.e., E(€JQ) = e4 =f O. Of the 
four estimators 6 4 is the one with minimum variance;7lowever, it is not 
necessarily the one with minimum mean-squared egor._That is.a....although 
V(€4) < V(E1), it is not necessarily true thatE,~ L £~ since € 4 =f o. 

Thus, in the set of all possible estimators for Q the one which has 
minimum variance does not necessarily have minimum mean-squared-error. How
ever, if the estimator with minimum variance also has zero mean value for all 

.. 

Q then the minimum variance estimator is also the one with minimum mean-squared-
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error in the subset. But, the nuru..mum variance estimator in this subset is 
not necessarily the minimum mean-squared-error estimator of the total set of 
estimators. 

It is apparent that, in general, some question exists concerning the 
selection of a "best" estimator. The final answer is usually dependent upon 
the particular problem being considered. Nonetheless, from the foregoing 
considerations some properties of "good" estimators can be formulated which 
actually classify or define sets of estimators as follows. 

2.3.4.4.1 Unbiased Estimators 

An estimator is defined as an "unbiased" estimator of Q if 

c(i/0) : 0 l'or a.II 0. 

It follows that an unbiased estimator has zero mean-value of estimator error, 
i.e., 

.E(e/@J = o -/'or a.II I;;. 

£.3.4.4.£ }ti.nimum-Variance Estimators 

An estimator is defined as a "minimum-variance" estimator of Q if it has 
the smallest variance of all estimators of Q, for all Q. 

~.3.4.4.3 Minimum-Variance Unbiased Estimators 

An estimator is defined as a "minimum-variance unbiased" estimator if it 
has the smallest variance of all unbiased estimators of Q, for all Q. 

~.J.4.4.4 Minimum Mean-Squared-Error Estimators 

An estimator is defined as a "minimum mean-squared-error" estimator of Q 
if it has the smallest mean-squared estimator error of all estimators of Q, 
for all Q. 

£.J.4.5 Loss Functions and Risk 

In the previous section, basic criteria for good estimators were based 
upon estimator bias and variance, and mean-squared value of estimator error. 
Although these criteria are generally acceptable, there always exists the 
problem of selection between a minimum-variance and a minimum mean-squared 
error estimator when they are different. Furthermore, these criteria lack 
generality in terms of total performance or behavior of an estimator. A more 
general form of estimator performance criteria is formulated from the follow
ing co~siderations. 

In the general situation of parameter estimation, there exists more pen
ality or "loss" which is associated with an incorrect estimation. If this was 
not true, then nothing essential could be gained by the efforts of determining 
and using good estimators. The loss can be measured in terms of a non-negative 
function of estimator error which is a monotonically increasing function of 
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estimator error magnitude. Any function of estimator error with these two 
fundamental properties is referred to as a loss function which will be denoted 
byL(£). Thus, a class of loss function is defined by 

L( E ) = 0 for £ = 0 

L(E:2) = L(Ei) for €2 = €.1 

L(£2) >L(€1) for \~\?-IE.ii 
L( f. ) = L(- £) 

It is not necessary to restrict loss functions to the class with these 
properties, although the class has general applicability. A class of loss 
functions can be defined more generally as non-negative, monotonically non
decreasing with a unique coincident minimum with estimator error magnitude. 
Such loss functions allow a cost of measurement to be included and are mini
mum, rather than zero, for f = o. Also, constant loss is allowed for an 
interval of estimation error e. 

Of course, negative loss would be considered as a gain; however, this is 
not allowed for non-zero estimator error and for zero error the loss is sim
ply zero or some minimum. Obviously, there are no unique loss functions of 
estimator error; thus, a particular loss function should be selected on the 
basis of a particular problem. I~ should be noted that "squared-error" is an 
acceptable loss function, i.e., f = L(E). Others can be as easily defined. 

The loss function L(f) measures the loss incurred in making an error£ 
in an estimation of Q where it is assumed that some appropriate L(£) can be 
defined for each problem of interest. Of course, L( £ ) is a random variable 
dependent on estimator error £ = 6 - Q. Thus, L( € ) = L(&, Q) is a function 
of 6 and Q and measures the loss incurred in estimating Q with 8. The aver
age value of L(6, Q) is the loss to be expected in using the estimator 6 for 
Q. Expected loss is generally referred to as the "risk" taken, i.e., the 
risk is expected to be lost on the average. The risk in estimating Q by 6 is 
a function of both Q and 6 and will be denoted by R(o, Q). It follows that 

R(&,0) =jL[bCY),e]f(Y/0)dY 
y 

Risk or average loss provides a rather general criterion of estimator 
performance. Of course, risk is always~ function of the particular loss 
function, whic~includes squared-error~ ; therefore, risk includes mean
squared error f. 2 as a particular case. In general, it is desirable to mini
mize the risk involved in estimating Q by 6 • Thus, for a particular loss 
L(o, Q) it is desirable to select an estimator 6 which minimizes the expected 
loss or risk in estimating Q. This leads to a class of estimators referred 
to as minimum risk estimators which are defined as follows. 

2.3.4.5.1 Minimum Risk Estimators 

An estimator is defined as a "minimum risk" estimator for the loss func
tion L(6, Q) if the expected loss or risk R(6, Q) is a minimwn for all Q. 
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There is no argument concerning the desirability of minimum risk esti

mators; however, difficulty frequently arises in finding such estimators. 
It is usually possible to find an estimator which has minimum risk for certain 
Q but which does not have minimum risk for other Q. A single minimum risk 
estimator does not exist. Such situations are untenable since Q is unknown 
beforehand. Thus, two alternate approaches are taken in minimizing risk. 
One approach is that of finding an estimator which minimizes the maximum risk. 
The other approach is that of finding the estimator which minimizes the 
expected value of risk over all Q. This leads to the following two classes 
of estimators; 

Minimum-Maximum Risk Estimators (Minimax) 

An estimator is defined as a "minimax" estimator if the minimum risk is 
a minimum. 

Minimum Expected Risk Estimators (Bayes) 

An estimator is defined as a 11Bayes 11 estimator if the expected risk over 
all Q is a minimum. 

The use of minimum expected risk was first introduced by Bayes and, 
therefore, such estimators are referred to as Bayes estimators. The expected 
risk is the expected value of R(o, Q) with respect to Q, i.e., 

EQ [R(o, Q)J = R lo (Y)] 

= /4 R(o, Q) f(Q) dQ 

where f(Q) is the pd! of!?,. From the equation for R(o, Q) it follows that 

R[MYJJ =f J L[o(YJ, e]F(Y/9)f(9)dYd9 

Thus, a Bayes ~siimator is one which minimizes R [ 6 (Y)]. 

A general preference from minimax or Bayes estimators cannot be given and 
could vary from one problem to another. However, there is an obvious disad
vantage with minimax estimators in that the Q of maximum risk (referred as the 
least favorable Q) for which the estimator 6 minimizes risk can occur with 
very small probability; thus, on the average, the minimax estimator can per
form very poorly. This disadvantage is overcome in the Bayes estimator. 
Thus, the Bayes estimator is generally more desirable. That is, the Bayes 
estimator makes use of the a 1priori knowledge of Q available in the pdf of Q 
to arrive at an estimator of minimum average risk. Bayes estimation will be 
discussed in further detail in Section ~.3.5.~. 

2.3.4.5.2 Estimator Properties Based on Risk 

Two properties of estimators are based upon estimator risk. These are 
estimator 11 efficiency11 and "consistency. 11 Estimator efficiency is a relative 
measure of estimator risk while estimator consistence is a property of rick as 
sample size increases. These two properties are discussed below. 
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Estimator Efficiency (Relative} 

Consi~er two estimators 61 and 6 2 with associated risks R( s1 , Q) and 
R(62, Q) with respect to a loss function L(S, Q). The relative efficiency, 
r(61,62) of a 1 to 6.a is the inverse ratio of their risks, i.e., 

/l.(o S) _ R(62 ,9) I, 2 - /") 
K (c5,,e) 

If r(61, 0 2) > 1, then O 1 is considered a better estimator than 6 2 and vice 
versa. However, it should be noted that r(S1 , o2) is a function of Q; there
fore, r(6'1, 6 2) can vary for different Q. That is, 61 can be better than c5 2 for certain Q and the opposite true for other values of Q. 

Estimator Consistency 

One fundamental property of a good estimator is that as sample size increases 
the risk should decrease and in the limit the risk should approach zero as 
sample size m increases indefinitely; i.e., 

Lim 12..,,, (8, B) = 0 
.,,,_, 00 

for "1/ 0 

An alternate 

Lim ,,,~-
statement of estimator consistency is 

PRoa [ 0 -.d '- 6.,,, < 0 +.6] = I for o.JI 0 

for A arbitrarily small. This statement is referred to as simple consistency. 
If the loss function is squared error, L( €. ) = £ 2 , then Rm (S, Q) = e:z. and 
the estimator, o , is termed squared-error consistent if m' 

L/,n £~ =- 0 for all e 
... • ... 

Since E: ~ = V ( o ) + ( Q - 6) 2, squared-error consistency implies that both the 
variance and bias of o approach zero for indefinitely large sample size. 
Estimator consistencies, in the previous context, concern behavior for indef
initely large samples. However, estimator consistence for finite sample size 
is equally important. This fact leads to the definition of a uniformly 
consistent estimator as one for which the risk decreases uniformly for 
increases in sample size, i.e., if Rm-t-1(o, Q) ~ R.m(6, Q), for all Q, then 6 
is uniformly consistent. 

2.3.4.6 Sufficient Statistics 

In general, an estimator 6 is a random variable which is used to deter
mine estimations of a particular Q from a random sample. The underlying 
principle is that the statistical regularity of a random process, which is 
characterized by the parameter Q, is demonstrated in a random sample of the 
process; thus, information concerning Q resides in the random sample. The 
purpose of the estimator is to extract this available information from the 
random sample. It should be apparent from the foregoing sections that various 
criteria do not directly measure the degree of utilization of the information 
available in the random sample. Of course, it is desirable that all of the 
available information is utilized by the estimator for Q. It could be strong
ly argued that estimators which fulfill certain of the criteria discussed 
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must utilize all available information; however, such arguments are largely 
hueristic, and some question remains. Fortunately, this question can be 
satisfactorily resolved by considering sufficient statistics. 

The basic argument is that in order to obtain information about Q sample 
data must be taken from a process which is characterized by Q. Sample data 
taken from a process which is independent of Qare useless in determining Q. 
Thus, if the pdf of a random sample is a function of Q, then the random sample 
is useful in determining Q; further, an additional random sample whose pdf is 
independent of Q provides no additional information for determining Q. By 
the same argument, if the conditional pelf of a set of data Y1, given a set of 
data Y2, is not a function of Q, then the data Y1 provides no additional infor
mation of Q. That is, the data Y1, given the data Y2, provides no additional 
information about Q if f(Y1/Y2) is independent of Q. This leads to the 
following definition for a sufficient statistic. 
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Definition: (Sufficient Statistic) 

Let Y be a random sample from a process with pdf dependent on Q, and 
let Ts be a statistic of Y (a known function of Y). Let T be any other 
statistic of Y which is independent of Ts. If, for each T, the conditional 
pdf of T, given Ts, is independent of Q, then Ts is a sufficient statistic 
for Q. 

Thus, it follows by the definition of a sufficient statistic, that the 
information available from the sufficient statistic cannot be increased 
by a statistic whose conditional pdf, given the sufficient statistic, is 
independent of Q. That is, since 'tJ/'be {(T/Ts) = o, no additional information 
is obtained from T, given Ts· 

The final conclusion is that estimators which utilize all available 
information in a random sample should be functions of sufficient statistics. 
(This is the reason for expressing estimators as a function of statistics 
in previous sections.) Indeed, estimators are desired which are actually 
sufficient statistics. It becomes apparent that if sufficient statistics 
can be determined, then they should contain the desired estimators. Fortunately, 
it is not too difficult to determine sufficient statistics by making use of 
the following theorem. 

If Ts is a sufficient statistic of the random sample Y, then the joint 
pdf of Y can be factored as follows: 

f ('f/3)= h(7s, 0)K(Y) 

where K(Y) is independent of Q. The theorem can be proved by the method 
of contradiction in the following manner. From the set of sample data Y of 
m elements, construct the set T(Y) of m independent statistics. Let each 
member of the statistics set have a single-valued inverse(i.e., Y = T-1 (Y)) 
and let J be the Jacobian of T-1 (Y). Now let f(T) = joint pdf of T and 
f(Y) = joint pdf of the set Y; then f(T) = f [T-1 (Y)J J. 

Assume that Ts is not a sufficient statistic and that f(Y) = h(Ts, Q) 
K(Y). Let T~ be any other statistic in the set T. It follows that 

FCfs) =f {(T)dr{r[r..,(Y)]JdT 
(T-~) (r-r,) 

rcr;,"fs> =f r[r-'cYHJdr 
[r-<r.~r,)J 
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and 

Now, if 

then, 

f (Y) = _[ t (YJ 0) dB 
e 

=-K(Y)jh(ls;0)de 
8 

= K(Y) H {ls; 0) 

it follows that, 

f(T.·/7:) = J;.HCTs,0)J<(T)JdT 
' s JH(T's,0)K(T)JdT 

T-(lj •1s) 

H(T5 , 0) J J J<(Y)dT 
= --,-c=---=-....,......,""" _r-~1, __ _ 

H o;; , 0 > J I 1< c Y, dt 
T•{T: • 7:) J •• 

f(T:jT.) = r-r. k(Y)dt 
' s f k (Y)dt 

r('r.+;) 

Therefore, f (Ti/Ts) is independent of Q. This observation contradicts 
the assumption that Ts is not a sufficient statistic. Therefore, Ts is a 
sufficient statistic if f (Y) = h (Ts, Q) K(Y). Thus, it is often possible 
to determine sufficient statistics by inspection from the joint pdf of the 
random sample set Y. 
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2.3.5 Determination of Estimators 

In the previous section, various criteria are discussed which can be 
used as measures of good estimators. These criteria can be generally classified 
as mini.mum variance and mininrum risk. In this section, particular attention 
is given to methods of determining estimators of mininrum variance and risk. 

2.3.5.1 Mininrum Variance Estimators 

2.3.5.1.1 Via Sufficient Statistics and Complete pdf 1 s 

In Section 2.3.4.6 it was concluded that, in order to utilize all 
available information in a random sample, an estimator should be a function 
of a sufficient statistic. As a corollary, it should follow that estimators 
which are functions of sufficient statistics possess certain criteria of 
good estimators. Indeed, it can be shown that, generally, an unbiased 
estimator which is a function of a sufficient statistic possesses smaller 
variance than an unbiased estimator which is not a function of a sufficient 
statistic. That is, let Ts be a sufficient statistic for G and let 61 
be an unbiased estimator of G which is not a function of a sufficient 
statistic. Then, it can be shown that there exists some function of Ts, 
6 (Ts), which is an unbiased estimator of G and which possesses smaller 

variance than the estimator 61. Therefore, in order to determine mininrum 
variance unbiased estimators, it is only necessary to consider estimators 
which are functions of sufficient statistics. This is shovm in the proof 
of the following theorem. 

THEOREM - Let Y be a random sample from a process with pdf dependent on G 
and let Ts be a sufficient statistic tor G. Let another statistic T be 
an unbiased estimator of G; i.e., E(T) = G. Then 

(a) E(T/Ts) is independent of G and is a statistic. 

(b) E[E(T/Ts)] =G 

(c) V (E(T/Ts)] < V(T). 

Before presenting the proof for this theorem, a few comments concerning 
its meaning are in order. Part (a) states that the conditional expectational 
of T, given T, is a statistic for G. Part (b) states that this statistic 
is also an unEiased estimator for G, and Part (c) states that the variance 
for this estimator is smaller than that of T. Thus, for the criterion of 
minimum variance, the latter estimator is superior to the first. The proofs 
are as follows. Part (a): That E(T/Ts) is independent of G follows directly 
from the definition of a sufficient statistic. That is, if Ts is a sufficient 
statistic, then, by definition, the conditional pdf of T, given Ts, is 
independent of G. Moreover, f(T/Ts) is a function of the random sample Y 
and the conditional expectational E(T/Ts) is a known function of Y; thus, it 
is a statistic. Part (b): Since Tis an unbiased estimator of G; i.e., 
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E(T) = Q, it follows that 

E(T) = j Tl(Tj0) dT = Q 
-r 

= ff T 1(7;?;; e)dT d7s 
7,; 7 

Now, since Ts is a sufficient statistic 

where h (Ts; Q) is the marginal pdf of Ts. Thus, 

£(7) =/[ T/{T/T.s)h(Tsj 0)dTd7"s 
l.s I 

= I [1 {(7/~ )dT] h(Ts j B )d~ 
i_j I 

=-I [ E (T/ Zs)] h ( ;,_; j & ) d ~ 
l.5 

E ( T) = E [ E ( 7 /~) ] = 0 

Therefore, the conditional expectation of T, given T, is an unbiased 
estimator of Q if Tis an unbiased estimator of Q. Fart (c): To prove 
this part, let6 denote the unbiased estimator of Q which is E(T/Ts); i.e., 
cS =E(T/Ts). 

7 

V(7)-=- E [(T-0)2] =-£ [(7-6) 1-(45-0)J-

=-E [(~-el] 1-E [cr-&) 2
] 12E[(7-&)(S-~)] 

It can be shown that the last term is zero, to wit, 
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£ [ (T- E)(cS -e)] ~ J J<r- 6)($ -0)/'(T, l;,.1· 0) d T d!s 
~ T 

=-j[j(r-<5)/(T /Ts) d 7] ( i5 - 0) h {!sj 0) d (s 

].; T 

However, the term in brackets is zero since 6 = E(T/Ts), thus E [ (T - 6) 
(6 - Q)J = 0 and 

V(T) =£[Ch -0>2] -f E [(7- £)2
] 

V(T) :: V(c5) + E [er- o/J 

Since T =/=- 6, the second term is always positive, and it follows that 

V(T) > V(J) 

This theor~m establishes the following: The set S of unbiased estimators 
can be divided into two subsets, s1 and s2, which contain, respectively, 
estimators which are functions of sufficient statistics and those which are 
not. Estimators which are minimum variance unbiased estimators are found 
in s1, only. Of course, there can exist several estL'I!ators in s1, and a 
problem exists concerning the determination of the estimator witn minimum 
variance in S1, However, if the pdf of the sufficient statistic is complete 
(see Section 2.3.2.6), then the unbiased estimator is unique, and the set 
s1 contains a single' element which is the minimum variance unbiased 
estimator. This can be seen from part (b) of the previous theorem (where 
E(T/T8 ) is shown to be an unbiased estimator of G). The expectation of 
E(T/Ts) with respect to Ts is 

If the pdf of T, h (Ts; G), is a complete pdf, then E(T/Ts) is the unique 
unbiased estimator of G, which is a function of the sufficient statistic 
Ts. And, by part (c) above, E(T/Ts) is the unique minimum variance unbiased 
estimator of G. 

The foregoing will be illustrated with the following case. Let the 
random process of Section 2.3.3 be the particular case of y = G + e, where 
e is Gaussian with zero mean and variance 1. Let an independent random 
sample of size m be taken for estimating G. Thus, the joint pdf of Y becomes 
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- ..., ,., 
f(Y) -;; (2n-) ae41[-j f ( !1,,; -eJ<] 

= (2rt)- r tl1f[ -j rt, 1f-2rr:; ,-,nc92)] 

where Tis a statistic, i.e., 

,., 
T = L 'J.;, ,~, 

Now T can be shown to be sufficient since f(Y) = h(Ts, Q) K(Y) (see Section 
2.3.2.5); to wit, 

f(Y) = (z.11)-r; 4¥[+(,- ;9Je]~ [-~t. ;l] 
It immediately follows that Tis a sufficient statistic T for Q, The pdf 
of Ts is also complete, since it is Gaussian with mean value mG and variance 
m. Therefore, ik.follows that the unbiased estimator of G, which is a 
function of Ts = i :;J,., , is the minimum variance unbiased estimator of 
G. Of course, ,..,., .S = 1/m Ts is this estimator since E( 6 ) = Q and is a 
function of Ts· 

2. 3 . 5. 1. 2 Minimum Variance Via Least Squares 

The method of least squares is one of the most common methods of 
estimation providing linear estimations of parameters for a linear system 
(by minimizing the sum of residuals). If the random sample set is independent, 
then the linear least squares estimations become linear minimum variance 
estimators. This can be shown as follows: 

Let~= A£+~ where an estimator 6 for£ is desired, given 1, The 
least squares estimator o I.S minimizes the scalar product of the residual 
vector 11 = ~ - A §. LS; i.e., 

}.s (V T v') == ~ (¥-A .st.s) T ( 1 -A c:5'i..s) = 0 
-LS ~~ 

where the superscript T denotes transpose. Alternately, 

Thus, the least squares estimator is 
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where 

The expected value of 61.S is 

E ( §.1.) = <.pA_q 'f- tp c ( g) 

= (A7A)""'A 7AQ r lf'.E(g) 

£(§1..s) = e + Ci' E( f!:) = 1~s 

Thus, if the error vector~ is unbiased, then the least squares estimator 
§. I.S is an unbiased estimator of ~- The covariance matrix of § I.S is 
given by 

Thus, 

COV(~LS) = ( ~45 - §1.:J ( ~~s - ~s) 7 

(§LS-~)~ (q~ -~ -q> g) 

=t;(e-f) 

If the random sample is independent, then COV (~) = ~ 2I where o-2 is the 
variance of the vector ~- In this case, COV ( §. r.s) = o-2 Q QT = '1'-2 (ATA)-1 . 
Consider another estimator~ MV which has minimum variance and is not the 
least squares estimator §. I.S; i.e., let 

= CA§ 1-C~ 

where CA= I and C is the linear minimum variance estimator for Q. Thus, 
COV ( § MV) = "'2 ccT. Now consider the difference of Q and C as follows: 
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Thus, 

and 

( C - Q) ( C - Q) 7 = CC ' - QC r_ C Q 7 I- Q q 7 

.:: CC 7 
- ( A 'Ar'A TC T - CA (A1Ar1

f ~A(A7A)-' 

= CC' -(A 
7AF' -(A1Af1 t-(A AT' 

= CC 7 
- (A 7A)-1 

CC T ::: ( A A)-, f ( C -r.;) ( C - Q) T 

WV-(5;.,,,) = ~ 2
((

7
-::: 0' 2 (A 7AT1

f f5'2 (c~q)(C-Q) 7 

:::: CUV' ( ~ L..S ) -1- 0,.2( ( _ Q) ( C _ Cj) T 

Now, in order to minimize the variance of Q MV, which is the trace of COV 
( § MV), it is necessary to take C = Q, therefore, 

Thus, if the random sample is independent, the least squares estimator is 
a minimum variance estimator; also, if the vector~ is unbiased, then the 
least squares estimator is a minimum variance unbiased estimator. 

2.3.5.1.3 A Lower Bound for Estimator Variance 

In the previous sections it was tacitly assumed that unbiased estimators 
are desirable, whjch is not necessarily a valid assumption; therefore, it is 
informative to investigate the effect of estimator bias on a general basis, 
if possible. This investigation is possible through an inequality 
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of estimator variance as a function of estimator bias. Let 6 be an estimator 
for G which has the bias b(G); i.e., 

E(o) = e rb(eJ 

If 6 (Y) is a random variable of an independent random sa~ple Y, then it 
can be shown that 

1/(61 0) > 

mt: [ts ½ fC~/e)]
2 

where f(:1/G) is the pdf of the random process and m is the number of elements 
in Y. The estimator variance inequality follows from taking the partial 
derivative of E( 6 ) with respect to G, to wit, 

E(fi) = 0 I- b(0) 

= joCY)f(Y/0)dY 
y 

iJ E(~) 
J e - I f 

= ~a0 f•(Y){(Y/0)dY 
y 

:0 E(&) =- f J(Y) ;/0 f(Yj0) dY 1 

y 

assuming that the interchange of order is permissible. Since, for the 
random sample, Y, 

it follows that 

:e f(Y/0) = .S(Y) fCY/0) 

where 
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Thus, 

If d~ b(B) ::: j£(Y).5(Y) f (Y/0) dY 
y 

=£(8S) . 

However, 

E [ ✓-11 ( Y)] = E [ :e -0. l°('tt:/0) ] 

= I dt f('J;/0) d;;;, 
J,; 

=- :e(I) ::.o 

Thus, E( cS, S) is the covariance of 6 (Y) and S(Y); it follows that 

If ~ h{e) = urv [S(Y) S( yJl 
dt:l > J 

Using the inequality of covariance, i.e., 

it follows that 

V( 5) ~ [1 f ~ b(0)]2 

v[s(Y)] 
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But, V [ S(Y)] is simply the sum of variances for each si (Y); thus, 

V [ .S(Y)] =- mt[A/(Y)] 

v[ 5(YJ] :: mE [ :e kJ f"CJ/9 )j~ . 

Therefore, 

For constant estimator bias, independent of Q, the estimator variance 
bound becomes 

• 

It is generally desirable to achieve the lower bound for estimator variance. 
It is important to note that since the variance bound was derived from the 
covariance of 6 (Y) and S(Y), the lower bound occurs for 6 (Y), ( 6 (Y) is 
some linear function of S (Y) ) • 

At this point, it is illustrative to check the mininrum variance unbiased 
estimator derived in Section 2.3,5.1.1. The pdf for y was 

hence, 

~ f{'j/(;)) = [-J-'?(Zll)-~(~-0)
2

] 

} 0 w;. IC:;JS) = ';J - 0 

z 
E[fe ~.f{;/~)] = £( 1- e )2 

:: V(j) =- I J 
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Thus, 

I rn . 

Of course, this is the variance of 

I l"I 

o=- -L j· m . .L 
'--: I 

for f(j/Q) with variance 1. It is easy to show that if the variance of 
is o-- 2 instead of 1, then the estimator variance bound becomes 

V(o) ? 

And the lower bound is again achieved by the minimum variance unbiased 
estimator 

,.. 
$ = ..!.. 2 <J;, 

m ,-=-1 

2.3.5.2 Minimum Expected Risk Estimators - Bayes 

2.3.5.2.1 Bayes Function - A1Posteriori Risk 

The Bayes estimator, 6 for Q, is the estimator which minimizes the 
expected value of risk for some loss function. (See Section 2.3.4.5.) That 
is, a Bayes estimator minimizes R [ 6 (Y)] where 

R [ d(YJ] = J jL [ S(Y) e] :f(Y/0) f (e) d y c/0 
9 y 'J 

=J [ Ji_ [ iJ(Y); 0] :f (Y/0) /(0) d0] dy 
y 9 • 

Of course, the estimator which minimizes the inner integral is the Bayes 
estimator. The inner integral can be reduced further in the following 
manner. The produce f(Y/Q) f(Q) is the joint pdf of Y and G; i.e., f(Y, G) 
= f (Y/G) f(G). The marginal pdf of Y, f(y), .is given by 

-1.(Y) :: / :f {'Y_; ~)c/0 
s 
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The conditional pdf of G, given Y, f(G/Y) becomes 

/(8/Y) = 
F(Y.)$) _ 

-I( Y) -
f(Y/0) {Ce) 

F{Y) 

Thus, the expected risk R [ 6 (Y)) can be written as 

K [liCY)] •/ [ti [ S(Y), 0] /(0/Y) d0 l f(Y)dY 

: f a[s(y)]ltY)dY 
y 

where B [ 6 (Y)) is referred to as the Bayes function or the a' posteriori 
risk. This function is given by 

.8[S(Y)] =/L[J(Y) 1 ~]f(0/Y)d0. 
9 

Thus, a Bayes estimator minimizes the Bayes function or the a'posteriori 
risk. That is, a Bayes estimator minimizes the risk in estimating G given 

-

a particular sample set Y. The minimized average risk is the expected value 
of B [ 6 (Y) J over all Y. 

The procedure for determining a Bayes estimator is, generally, that 
of finding the estimator 6 (Y) which minimizes the integrand of B [ 6 (Y) J 
for all G, i.e., the Bayes estimator minimizes the product L [6 (Y), GJ 
f(G/Y) for all G. Of course, a Bayes estimator is dependent on the pdf's 
of the random process and the parameter G; hence, a Bayes estimator utilizes 
the a priori knowledge of G. Moreover, a particular Bayes estimator is 
dependent on the particular loss function used. The determination of a 
particular Bayes estimator is illustrated in the following example. 

EXAMPLE - Bayes Estimator 

Consider a scalar random process similar to that considered in Section 
(2.3.5.1.1); i.e., 

'1 = 0H!. 

where e is Gaussian with zero mean and variance of unity. Thus, 
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Further, let Q be Gaussian with zero mean and variance a'-2, i.e., 

ez 
f ( B) = I e - ~2 

, z."' (S" 

Now, let an independent random sample Y of m elements be used to estimate 
Q. The following results are obtained for f(Y/Q), f(Y) and f(Q/Y). 

where 

thus, 

Also, 

t(Y/~) =( Zrr)- l ~ [-J t, C;t;, - 0)2] 

= ( Zrr)-; vtf[-;_ (f. 1_~ - 20 t 4i -1- m&2.)] 
I, :.1 "' .I..,,, d 

_ C,., Up [ - ; ( S - z 0 1' m ~z) J 
C = ( 2 n-)- 'k , 5 = f 4 .2 o;,d 7 = L 'f. 

1.:.t d,t. ,,.·:, d" 

l(Y,e) = {(Y/e) F(9J • ;m•~{-i [ S -20T + {mt ,,'..2 ) e•]} 

= ~-~ [ - : s] Mf'{·i ~ m+ ;,)02 -zet\u JJ 
= ~M+~ {-H s - ;·]} eNf>{· MK) [" - I J2} 

K = fn + ..L &2 
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/(Y) -=£.. f(YJ0)d0 

= 

9 

C; M'/'[ -gs -; ij upl-i ( K) [0 - ; n 
f(Y) = c; ~{-i [s - ;J} (Kfi 

( ''Y) =- :l"(Yjt;) = ( K)~ tJA~ [- .L (K)[0 - T ]2] 
f 0, :F ( y) V"2rr - 7 2 K 

Considering the loss function as squared error, i.e., 1(6, G) = 
( 8 - G)2, B [ B (Y) J becomes 

B [~(Y) -=-/(s-0/{(8/Y)d& 
6 

E).."Panding and integrating, 

Using the calculus of variations, 

aB -r 
~'5 = 2 t5 - Z K = o . 

Thus, the Bayes estimator 88 is 

T 
8a = K -

I 
I 

m + 7F"z 

t - a-Z .f- . 
/J - 11-mc--2 f;:; ~I- } 

This estimator is seen to be a function of the sufficient statistic T. 
Further, the Bayes estimator is seen to be different from the minimum 
variance unbiased estimator derived in Section 2.3.5.1.1. The two estimators 
are listed for comparison. 
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,-z ,.,, 
$13 ::: . L. vt · 

I + /YI ,-z i..-=1 ;1, Bayes 

£ :: -' f_ /.,f, 
M m i-=-1 rf,t, minimum variance unbiased 

It is seen that the two estimators can be significantly different for 
small samples, though for indefinitely large samples they are approximately 
equal. Strictly speaking, if m O'-Z > > I , then 6 8 = Sm . In general, 

m a-2 
S=--cS 

IJ I + "1 (1'2 ,-, 

Thus, 

For the case where m a-- 2 = 1, 68 = ½ S • It should not be surprising 
that the Bayes estimator tends to be smaller than the mininrum variance 
unbiased. estimator since use has been made of the pdf of Qin deriving the 
Bayes estimator. 

It should be noted that the Bayes estimator is a mininrum mean-squared 
error estimator since a squared error loss function was used. It is also 
noted that the Bayes estimator is biased since the conditional expectational 
of 6 B is not Q, i.e. , 

Finally, it should be noted that for a-2-----+oo , i.e., a nearly uniform 
distribution for Q, BB= 6 M regardless of the sample size m. 

2.3.5.2.2 Mininrum Mean-Squared-Error 

In the previous section a Bayes estimator was derived for a particular 
case by minimizing the a'posteriori risk for a squared-error loss function. 
This procedure determined the mininrum mean~squared error estimator. It 
would be desirable to determine the Bayes estimator in a more general form. 
Fortunately, it is possible to determine a more general solution to the 
minimum mean-squared-error estimator which precludes some of the detailed 
steps involved in the method used previously. 

Consider the Bayes function for the squared-error loss function 
L ( O(Y), Q)= [cS (Y} - o]2; to wit, 
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B [ ,HY)] -:.j[ S(Y) -0]
2

f (0/Y)d0 

0 

Expanding the integrand, B [ 6 (Y)) becomes 

8 [ cS(Y)]-=/[ f> 2 (Y) -2 <S(Y) 0 i- 0 2
] f (9/ Y) dB 

0 

B [ ~(Y)] :: 1/( Y) /1(81 Y)de - 2 J( Y) /e :t( t;/ Y) d0 t-fa z f {s/y) de 
0 B ~ 

Now, differentiating with respect to 6 (Y) and equating the result to zero 
yields 

d 8 [S(Y)] 
c> S(Y) 

oCYjl(e/Y)d0 -fif(e/y)d0 = 0 

0 0 

Thus, the minimum mean-squared error estimator is given by 

£ e :F{@/Y) d& 
$(VJ =-e ____ _ 

f rc01vJdtJ 
=f & f( t;/y} dr; 

~ 

However, the right-hand member is precisely the conditional expectation of 
Q, given Y; i.e., 

a(Y) = E (0/Y) 

This form for the Bayes estimator makes it rather convenient to determine 
the Bayes estimator from the conditional pdf of Q, given Y, if its mean 
value can be recognized. 

Consider the particular case of the previous section wherein 
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/(0/Y) 

/0/y ~ - e- £ e;y) ' { ' [ J 1 ( ) Vzn v(e!Y/ ~ z. v(0/y) ( 

where 

V(B/Y) =K 
(j-2 

=----
/ 1- m (l"-2 

E (0/Y) = 
a--2 m 

l_-f_f'YJ __ 0"_2_ f j j • 

Thus, f(Q/Y) is Gaussian with conditional variance V(G/Y) and conditional 
mean E(G/Y). Of course, E(Q/Y) is the Bayes estimator as derived previously. 

It is informative to consider the Bayes estimator on a geometrical basis. 
For the case considered above, L [ 6 (Y), G] and f(Q/Y) are shown in Figure 
2.3.4(a), and their product, which is the integrand of B [6 (Y) J, is 
shown in Figure 2.3.4 (b). For this case it is seen that the Bayes estimator 
places the minimum of L [ 6 (Y), Q J in coincidence with the maxinrum of 
f(G/Y). 

In general, the Bayes estimator minimizes the area·under the product 
of L [ 6 (Y), Q] and f( Q/Y), since B [ 6 (Y)) is a mininrum. It is seen that 
for squared-error loss the mininrum area occurs for the minimum of the loss 
function being to coincidence with the conditional expectation of G, given 
Y, or the mean of f(Q/Y). However, this occurrence does not necessarily 
have to be coincident with the maxinrum of f ( G/Y), as it does in the Gaussian 
case. 
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.-- L (~ (Y), 0) = [~ (Y) - 0] 
2 

{(0/y) 
I 

E{SIY) 

(a) Squared-error loss and the Gaussian pdf 

[ J(Y)-0]
2
:f(e/ Y) 

E(0/Y) 

(b) Integrand of Bayes a 1posteriori risk 
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2.3.5.2.3 Bayes Estimator for Convex Loss Functions 

In the previous section, it was shown that the conditional expectation 
of G, given Y, is the Bayes estimator for the squared-error loss function. 
Of course, other loss functions are possible. Thus, some question arises 
concerning the Bayes estimator for some arbitrary loss function. It could 
be conjectured that the Bayes estimator for squared-error loss should 
possess desirable properties for loss functions similar to the squared
error loss function. Indeed, it can be shown that the squared-error loss 
function is a single member of a set of loss functions which has the same 
Bayes estimator. 

Consider the set of loss functions which are defined as follows: 

L(c.) = L for ~ = 0 
0 

1(€ 2) = L(E1 ) for t._. €, 

1(€2) > L (€,) for /€LI > jE,) 

L(E) = L (-E.) 

The loss functions are continuous symmetrical convex functions with symmetry 
about their minimums 1

0
• Let the conditional pdf f(G/Y) be factorable into 

a function of Y, f1 lYJ, and a symmetrical function o~ Q and Y such that 

where 

Now the a'posteriori risk becomes 

Taking the partial of B [ 6 (Y) ] with respect to 6 (Y) yields 

dB [ ~( y)] , ( [ ,n ,{ 
d ~(Y) :: -f,(Y);e ~ [e -J(Y)] ~(0 -e)J d0 

Since L( 6 - Q) is an even function of 6 , its derivatives is an odd function; 
thus, it is possible to set the first partial of B [ 6 (Y) J identically 
to zero by setting 6 (Y) = g(Y), i.e., 
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Therefore, the extremum of B [ 6 (Y) ] occurs for 

If B [ 6 (Y)] has a unique extreme,. then, of course, 6 (Y) = g(Y) is the 
Bayes estimator. Thus, if f 2 [ Q - ~(Y)] is un:iJnodal, i.e., has a single 
maximum value at Q = g(Y), then 6 (Y) = g(Y) is the Bayes estimator for, all 
convex functions L( 6 - G) defined above. Of course, for f(G/Y) as defined, 
g(Y) = E(G/Y). 

2.3.5.2.4 Determination of Bayes Risk 

A Bayes est:iJnator minimizes the a 'posteriori risk B [ 6 (Yl], given 
a random sample Y. This, in turn, minimizes the expected risk R ( 6 (Y)] over 
all Y. The minimum expected risk for a Bayes estimator is referred to as 
the Bayes risk. The Bayes risk can be determined from the expected value of 
the a'posteriori risk as a function of the Bayes estimator, to wit, 

R8 =jB(.58 )f(Y)dY 
y 

where RB is_the Bayes risk and 6 B is a Bayes estimator for some loss function. 
Of course, RB is dependent on the loss function. 

This equation provides the general means of determining the Bayes risk; 
however, there are two cases of particular interest. The first case is that 
for constant a'posteriori risk; i.e., quite often B ( 6B) is independent of 
the random sample Y. In this case, the expected value of B( 6 B) is s:iJnply 
B( 6 B); i.e., 

R13 = j B(tf/J) f(Y) d Y 
y 

= B ($13) f f(Y)dY 
y 

R0 = 13 (60 ) 

Thus, for a'posteriori risk (independent of Y) the Bayes risk is s:iJnply the 
a' posteriori risk B( 6 B). 

The second case is that of a squared-error loss function. In this 
case, the Bayes risk can be expressed in terms of the conditional variance 
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of G, given Y. That is, 

R8 = ff [ c5.a (Y) - 0 ]
2 

f (0/Y) f{v) de dY 
ye 

However, for squared-error loss, the Bayes estimator is E(G/Y) (see Section 
2.3.5.2.2), and the a'posteriori risk B [ 6B (Y) J is the variance of G, given 
Y; to wit, 

B [ "LJ (Y)] = V(0/Y) 

It follows that 

Ro "'JV(0/Y)f"{Y)dY 
y 

If V(G/Y) is independent of Y, then, as in the first case, 

Ra = V(BIY) -=- 13 [<5"13 (Y)] 

where V(Q/Y) is independent of Y. 

Consider the case previously discussed wherein Y = G + e with G and e 
Gaussian with zero mean values and variances ov?- and 1, respectively. The 
conditional pdf of Q, given Y, is 

( / )! "' 
f(B/Y), m::• ~,,_{-i(M+ ~,)[0 -!/;, n 

For squared-error loss, the Bayes estimator 6B is E(G/Y), to wit, 

6-2 ,.. 
c58 = E(0/Y) = -- L 'J -

If rn ~2 i=-t " 

The conditional pdf f(G/Y) is Gaussian with mean E(G/Y) and variance <S'z/(l-,n,a-2 ) 

which is the conditional variance of G, given Y. The a'posteriori 
risk becomes 
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It is seen that B [ 6 B (Y) ) is independent of Y, therefore, the Bayes risk 
for squared-error loss is 

Rs = V(0/ Y) -=-

It is seen that 

and 

Therefore, for the problem considered, the Bayes estimator is uniformly 
consistent. (See Section 2.3.4.5.) 

2.3.5.3 A Comparison of Minimum Variance and Bayes Estimators 

In the previous sections, two general classes of estimators are dis
cussed. These two classes are: (1) minimum variance and (2) minimum expected 
risk or Bayes. The class of minimum variance estimator contains the set or 
minimum variance unbiased estimators while the class of Bayes estimators 
contains the set of minimum mean-squared-error estimators. In general, 
these two sets can be disjoint since a minimum mean-squared-error estimator 
is not necessarily a minimum variance unbiased estimator. That is, biased 
estimators can exist which possess smaller variance than a In.1.n1.mum variance 
unbiased estimator. The situation can be clearly stated in the following 
manner. 

In Section 2.3.4.3 it was shown that the mean squared-error for an 
estimator· generally exceeds its variance, i.e., 

thus 

with equality if E(6 /G = G for all G. In Section 2.3.5.1.3 it was shown 
that a lower bound exists for the variance of an estimator; i.e., 
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Immediately, a question arises concerning the effect of estimator bias. 

It is seen that the lower bound for estimator variance can be smaller 
for a biased estimator than for an unbiased estimator. That is, for an 
unbiased estimator, the numerator in the variance bound is unity. However, 
for a biased estimator, the numerator in the variance bound can be either 
greater or less than unity for positive or negative bias, respectively. 
This follows since the denominator of the variance bound is unaltered by a 
particular estimator and is primarily dependent on the pdf f(Y/G) of the 
random process and the sample size m. 

Thus, if it is possible to achieve the variance lower bound with each 
of two estimators 6 1 and S 2 which have negative and zero bias, respectively, 
then the biased estimator 61 will possess smaller variance than the unbiased 
estimator 6 z. Therefore, although the mean squared-error of 6 1 is greater 
than its variance, it is still possible that the mean squared error of ts-1 
is less than that of o2, which is unbiased. That is, let E( 6 1/G)= KG 
and E( 6 2/G) = G, then 

where 

V(~/0) > 

v(~/0) ~ 

mo 
I 

mD 

J) = E[ ~~0 ~ .f(~j&)r 

If 6
1 

has negative bias K <. 1 and if 61 and O 2 both achieve their lower 
variance bounds, then 

Also, 

~) -=- V(t2 ) 

e 2 (61 ) > V (~) 
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From the foregoing it is entirely possible that 

Indeed, this can occur, as can be seen in the particular case considered 
in the previous sections wherein 

f(S) 

D = 

£ = M 

I 

where cS B = Bayes estimator and cS m = minimum variance unbiased estimator. 
It is easily shown that 

where 

rn a--2 
---0 
If m (f-' 

= I(& 

1'>1~2 
K = = 

I 

If m~2 I 
I f- ;;:;;:i 

c::::::./ 

Therefore, the Bayes estimator has negative bias. The variance bounds are 

V(E,111 /S) 2: 
I 

m 

It was shown in Section 2.3.5.1.3 that Om achieves its lower bound. But 
since 6 m is unbiased, it follows that 
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..L. 
111 

On the other hand, the Bayes risk for o B is its mean squared error, i.e., 

(See Section 2.3.5.2.4.) 

It follows that 

• 

I 

"1 f I 
tr2 

Thus, the Bayes estimator which has negative bias has smaller mean squared 
error than the minimum variance unbiased estimator cS m· Therefore, the 
variance of o B must be smaller than that for 6 m· Indeed, 8 B also 
achieves its variance lower bound. This can be shown as follows. 

V(66 /0) = c{[•s -E(58 /0)rje J 
: E {[ fn Kt 1~· - KB ]Je} 

" ;: E {[t, fr,: - me f;e} 
2 ,., ,,, } =;.£mi ,J-2m0.f 1.i tm 2

0
2 J;e 

::: K22 [t ( t ~;, )2 -2 n12 0 z -f m 2 0 z] 
rn ,.,., (/ 

93 



Thus, the Bayes estimator achieves its variance lower bound. 

The foregoing clearly demonstrates that a biased estimator can possess 
both variance and mean squared error which are less than those for a minimum 
variance unbiased estimator! 

The foregoing does not categorically settle the question of selecting 
a good estimator. If mean squared error is an indisputable criterion, then 
the Bayes estimator is preferential. On the other hand, if a situation exists 
where bias is highly deleterious, then a minimum variance unbiased estimator 
would be dictated. However, consideration should also be given teether 
criteria of evaluation; i.e., consistency, relative efficiency and the effect 
of sample size. 

For the case considered above, both estimators are uniformly squared
error consistent, i.e., the mean squared-error decreases uniformly with sample 
size m. The relative efficiency, using mean squared-error is 

..1... 
n, 

= -::. / f 
I 

The relative efficiency demonstrates the ~ffect of sample size m. Of 
course, if sample size is large, such that m ~ > > 1 then there is a small 
difference in efficiency. However, for small sample size and/or small o-2 
such that m a-2 < l, then a significant difference results. 

The foregoing demonstrates the improved performance for small sample 
size for the Bayes estimator over the minimum variance unbiased estimator. 
This improvement is derived from the use of the a'priori information in 
terms of the pdf of Qin the Bayes estimator (this information tends to 
bias the estimations of G toward its average value) which was zero in the 
case considered. The improved performance tends to overcome the lack of 
fidelity in statistical regularity demonstrated in small samples. That is, 
the statistical regularity of a random process is not faithfully demonstrated 
in small samples. The utilization of any available information can improve 
performance significantly. On the other hand, if a large number of samples 
are available, the statistical regularity is more reliably demonstrated 
and the use of additional information not as effective or critical. 
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2.3. 5 .4 Minimum Risk Estimation 

In general, risk is the expected loss in estimating a parameter Q by 
an estimator. It is apparent that risk is a measure of estimator performance, 
which provides a general criterion of minimization in determining estimators. 
A particular case of interest-is that of squared-error loss wherein risk 
becomes mean squared-error and an estimator of minimum risk is a minimum 
mean squared-error estimator. Of course, minimum risk estimators for loss 
functions other than squared error are equally important, and general 
properties of minimum risk estimators are of considerable interest. There 
are two general properties of minirrrum risk estimators which are of particular 
significance. These properties are: (1) generality of loss function and 
(2) dependence on sufficient statistics. That is, for a general class of 
convex loss functions, a minimum risk estimator must be a function of 
sufficient statistic. These properties are established below. 

2.3.5.4.1 Convex Loss Functions 

A convex function is illustrated in Figure 2.3.5 and can be described 
in the following manner. Let l(x) be a line which intersects L(x) at x = 
A and B. 

-r...._A ______ cL_ _____ s1:----------~x 

Figure 2.3. 5 

If, for all A and B, L(x) <. l(x) for A< x<B and if, for A= B = C, L(x) >l(x) 
for x, except x = C where L(x) = l(x) then L(x) is a convex function. 
Alternatively, through any point on a continuous convex function L(x) there 
passes a line ls(x) which lies everywhere below L(x). The line ls(x) is 
referred to as a "supporting" line for L(x). 
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An important property of a convex function of a random variable is 
that its expectation generally exceeds its value at the expectation of the 
random variable; i.e., if L(x) is a convex function and xis a random variable 
then 

£ [L (x)] 2: L[E(x)J 

This can be shown as follows: Let ls(x) be a supporting line of L(x) at 
the point E(x). Thus 

L(X) > -f5 (X) 
and 

E [ L(X)] ~ E ,IJ (X) 

However, since ls(x) is linear in x E [ ls(x) ] = ls [ E(x)] thus, 

E[L(X)] >.t.s[E(x)] 
Moreover, since ls(x) supports L(x) at E(x), L f E(x) J = ls t E(x)] thus, 

E [L(x)] > L [E(X)] , 

As a particular case consider x as estimation error f and L( E: ) as 
squared error loss; i.e., 

L(€)= €:2 

It follows that 

This result agrees with that of Section 2.3.4.3 wherein it was determined 
that 

on 

with equality for V( € ) = 0 which implies a constant £. • 

The preceding inequality of convex function expectation is fundamental 
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to showing the necessity of sufficient statistics for mininrum risk estimators, 
which is considered below. 

2.3.5.4.2 Hininrum Risk Via Sufficient Statistics 

In Section 2.3.5.1.1 it was shown that if T and Ts are an unbiased 
estimator and a sufficient statistic for Q, respectively, then E [ E(T/Ts)J 
is an unbiased estimator for Q; and the variance of E(T/Ts) is less than 
the variance of T. These results can be generalized in two respects. First, 
any function of G, U(G), can be considered; and, second, variance can be 
replaced by risk for convex loss functions. These results will be proved in 
the following theorem, which is an extremely important extension of the 
theorem of Section 2.3.5.1.1 concerning sufficient statistics and mininrum 
variance estimators. In effect, this theorem demonstrates the fundamental 
importance of sufficient statistics in determining estimators. 

THEOR~1: Let Y be a random sample from a process with pdf dependent on Q, 
and let Ts be a sufficient statistic for Q. Let T be another statistic 
which is an unbiased estimator for any function of G, U(G); i.e., E(T) = U(Q). 
Then 

(a) E(T/Ts)is independent of G and is a statistic 

(b) E [E(T/Ts)] = U(G) 

(c) R(T, G) 2: R(o s, G) 

where the risk is for convex loss functions and 6 Ls = E(T/Ts). 

Before proving this theorem, two comments are in order. First, it 
should be noted that biased estimators for Gare included since an unbiased 
estimator of U(Q) includes a biased estimator of G; i.e., the case U(G) = ke 
where k f= 1 is incl]J-ded. Second, 6Ls is an unbiased estimator of U(G), or a 
biased estimator of G, and 8 LS is an estimator which has less risk than T 
for all convex loss functions. 

The proofs of parts (a) and (b) of the theorem are direct extensions 
of the proofs given in Section 2.3.5.1.1. Part (a) is an obvious extension 
and part (b) follows. 
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E(r) = U(e) 

=-1. T f'(T j 9)dT 
T 

=firr(r; 7-3 j B)dTdJs 
- T 
~ 

=-I jT/(Tl7j)h {ljjB)dTd(s 
7:, .,. 

"'E[E(T/Js)] = l((B) 

Part (c) follows from the property of expectation of convex functions as 
shown in the previous section. Let L( 6, G) be a convex loss function with 
respect to the unbiased estimator 6 for U(G); i.e., for fixed G, 1(8, G) 
is a convex function of 6 • Taking the conditional expectation of L( 6, G), 
given Ts, it follows that 

£ [L (00)/Ts] 2 L [ E (7 IT..s)J B] 
~ L ( E,s JB) 

Taking the expectation over all Ts it is found that 

Therefore, 

,, 

The foregoing is extremely important since it establishes that minimum 
risk estimators are functions of sufficient statistics and, thus, only 
sufficient statistics need be considered in determining minirrn.un risk estimators. 
Furthermore, if the pdf of Ts is complete, then the unbiased estimator S 
of U( Q) which is a function of Ts is unique and the estimator of minimum s 
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risk for the class of convex loss functions. These results represent 
extremely important extensions of the significance of sufficient statistics 
in determining estimators. 

2. 3. 5. 5 Haxinrum Likelihood Estimators 

In general, maxinrum likelihood estimators are determined by maximizing 
a pdf. This method of estimation does not explicitly seek to satisfy criteria 
of estimation, rather, the method is based upon the premise of the most 
probable occurrence being observed most frequently. In effect, it is 
assumed that a random sample is always one of high relative probability. 
Nonetheless, the method is often equivalent to other methods of determining 
estimators, and similar results are often obtained. The method is discussed 
herein to show its significant similarities and differences with other 
methods. 

2.3.5.5.1 Principle of Maxinrum Ll.kelihood 

The principle of maximum likelihood is predicated upon a 11most likely 
occurrence" of a set of variables. In general, a pdf is a relative measure 
of the probability of occurrence of its variable. The particular set of 
variables for which the pdf is a ma.xinrum can be considered as a maximum 
likelihood set. Any pdf associated with a set of variables is considered 
to be a likelihood function for the set of variables; e.g., the pdf's 
f(Q/Y) and f(Y/Q) are likelihood functions for the variables Q and Y. If 
the likelihood function possesses a maximum value, then the particular set 
of variables for which the maximum value occurs is the set of most likely 
occurrence or maximum likelihood. This set of variables is referred to 
as the 11mode 11 of the likelihood function or pdf of the set of variables. 

The principle of maximum likelihood leads to the following method of 
estimation, which is based on maximizing a pdf as a function of a set of 
parameters Q. 

2.3.5,5.2 ~Iaxinrum-Ll.kelihood Estimator 

Let the likelihood function for a random sample Y be some pdf for Y 
as a function of a set of parameters Q. If the likelihood function has 
a maxinrum value for Q (Q is some function, 6 (Y), of the random sample, Y), 
then 6 (Y) is the maximum-likelihood estimator of Q, Thus, the maximum
likelihood estimator for Q is the one for which the random sample Y occurs 
with maximum likelihood. 

The method of maximum-likelihood estimation is depicted in Figure 
2.3.6. 
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f (Y/9) 

-----------

It is easily seen that a maximum likelihood estimator will, in general, 
be different from a Bayes estimator. However, for a simple loss function 
the methods yield equivalent results, as shown below. 

2.3.5.5.3 Bayes Estimator for a Simple Loss Function 

A simple loss function is defined as one which has zero loss for zero 
estimation errors and constant loss for all non-zero estimation error; 
to wit, 

L [ b CY) J e J = o 

=- K > 0 

6 (Y) = e 

J (Y) ~ e 

The Bayes function is 

B[o(Y)] = s L( <5JeJ f(e/Y)de 
e 
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Hence, B [ 6(Y)] is minimized by maximizing f(G/Y) at 8 = Q. The integrand 
of B [ 6 (Y) J is depicted in Figure 2.3. 7. Of course, this is exactly 
the maximum-likelihood estimator for f(G/Y). 

ma>e of 

t(SIY) 

mod~ of' 
f(~IY) 

Thus, it can be stated that the Bayes estimator for a simple loss 
function is a maximum-likelihood estimator. However, it should not be 
concluded that maximum-likelihood estimators are Bayes estimators. The 
difference lies in the likelihood function which is maximized by the 
maximum-likelihood estimator and the loss function used. That is, the Bayes 
estimator for a simple loss function maximizes f(G/Y) which is also a 
maximum-likelihood estimator. However, a maximum likelihood estimator can 
also maximize the conditional pdf f(Y/G), which is not a Bayes estimator. 
It should be noted that a Bayes estimator for simple loss can be the same 
as that for squared-error loss. That is, if the maximum value or mode of 
f(G/Y) occurs for E(G/Y), then the Bayes estimator is the same for both 
simple loss and squared-error loss functions. Therefore, if the mode and 
E(G/Y) of f(G/Y) are coincident, the maximum likelihood estimator for 
f(G/Y) is the Bayes estimator for squared-error loss, also. However, this 
is only true if E(G/Y) is equal to the mode of f(Q/Y). 

Consider the particular case of Section 2.3.5.2.1 wherein f(Q/Y) was 
Gaussian with 

E ( e/y) =-
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The maxirrmm of f(G/Y) occurs at E(Q/Y), therefore, the Bayes estimator is 
the same for both simple and squared-error loss. It is easily shown that 
the maximum likelihood estimator for both f(G/Y) and f(Y, G) are E(G, Y); 
however, if the likelihood function f(Y/Q) is used, then the maxinnun likeli
hood estimator is the same as the minimum variance unbiased estimator, 
l/111 z:1,U=1,MJ, determined in Section 2.3.5.2.1. 

In general, if the likelihood function is dependent on the a priori 
pdf for G, then the maximum likelihood estimator is the same as the Bayes 
estimator for a si~ple loss function, and both estimators utilize the 
a'priori information available concerning Q. If, on the other hand, the 
likelihood function is independent of the pdf for G, the a 1priori infor
mation concerning G is not utilized. However, it should not be concluded 
that Bayes estimators can generally be derived by the method of maximum 
likelihood. 

2.3.6 ~lication of Bayes Estimation 

2.3.6.l Introduction 

The discussions of the previous sections have established the criteria 
of value in defining estimators and measures of the 11 goodness 11 which results. 
This section is intended to conclude the discussion of estimation by 
applying the most general of the previously developed estimators (Bayes) 
to the general non-linear estimation problems. This application will, 
however, fall short of providing computational algorithms which can be 
utilized in analyses since the pdf's for the variables involved and the 
functional relationships between them must be specified. Thus, the special 
case of the general linear system of equations and Gaussian statistics will 
be developed. 

2.3.6.2 Non-Linear Case 

The general case of interest is defined by the follo~ring vector 
equation: (See Section 2.3.3.) 

i = F(f!_) + ~ 

The parameter vector~ contains n elements, and an estimator for each 
element is required. Thus, an estimator is denoted by the vector_§_. 
Estimation error is likewise a vector defined by 

€ ~ (~-.§') • 

A loss function for the estimation error vector_§__ is defined as a scalar 
function of some positive definite measure of the modulus of.£_; e.g., 
sum-squared-error, SSE, is a particular loss function which is defined by 
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or 

L(s.)=€ 7
~ 

where T denotes transpose. 

A more general loss function is defined in terms of the squared modulus 
of a linear transformation of _t __ ; i.e., 

L(€_)= €rBr,8€ 

= € 7 Me 

where Bis some linear transformation and Mis a real symmetrical matrix. 
In this case, 1(.§_) is a generalized quadratic loss function which is a 
positive semi-definite function with 1(..§_) = 0 if, and only if, ~ = 0 
for B ;/. 0. Of course, for M = I, 1(.§_) =SSE= LT~. 

In general, 1(g_) is a function of _§_ and 2_; i.e., 1( E ) = 1( S , Q). 
For generalized quadratic loss, 1(..§_, 2) becomes 

L (§.1 fi) = (~ -f!)T/'1(/!- ~) 

= $TM1. -2_j 7 /'10 f-§> 71'1~ • 

Note. This form exists because each of the terms involved is a scalar. 

The Bayes estimator £._B for generalized quadratic loss is the vector 
of estimators which minimize the expected risk or the a'posteriori risk, 
as discussed in Section 2.3.5.2. The Bayes function for this loss is 

BL~. <i)] =jL(i)B)l(!I~) de 
9 

=j(!_7 Ml-Z1_ 7 1'1! i-!!_7M£){(.i,/~)dtJ • 
b 

The Bayes estimator LB can be found by differentiating B ~(r)] with 
respect to_§_ and equating to zero, to wit, 
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~ B[~C.;t-)]:: ,:[ci7 Mg_-2tJ
7
M.i f07MB)f(~IJ)dtJ 

a~ a.w. 0 

=j(z11~ -ZMB){C.i/J)c/9 
e 

The resulting expression can be made identically zero for all n if 

or 

since 

tS ~Jer(011)do 
B 

Thus, it is seen that for a generalized quadratic loss function the Bayes 
est:ilnator ..£.Bis the conditional expectation of 2, given i; i.e., 

~ 8 =/ e f(~ll)dB -=-E (~l!J-) . 
{} 

This result is equivalent to that determined in Section (2.3.5.2.2) for the 
explicit case of a single parameter Q. 

The Bayes risk RB for ..Q_B is the expected value of B(_§_B) over all-:L,, 
i.e.' 

Re = E#- [B(~o>] 
-:: E ~ { E [ L ( ~ 8 J 0) / ,.J} 

For generalized quadratic loss, the Bayes risk becomes 
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Ra = ~ [ [< ~; M k.8 -2 ~;11~ "~TM~) { (~l;t-) d0] 

= E, [{ETM£{(~1#-Jd0 - ~: Ms8 ] 

= El [ t[ (.i 7 M~)lj] - ~; 1'1 l>8} 

~ = ~ { £ [ (~rM ~)/J]) - £1 ( §_;1'1 I9) 

If B(_§_B) is independent of y, then 

R8 = B(~8 ) = [" [L ( ~8 ) 0 )lj] 

1?8 ~ E[(§/M.€)/J] -cS~ 1'19-8 , 

It should be emphasized at this time that the results given above are 
not restricted to the linear case since the explicit form of the process 
does not enter into the determination of the Bayes estimator as the con
ditional expectation of 2, given y. However, it should be noted that the 
form of the process, as determined by f.(2), definitely enters into the 
determination of the E(~y); and, therefore, the Bayes estimator is dependent 
on the form of the process. That is, the conditional expection of 2, given 
y, is the Bayes estimator for a generalized quadratic loss function for any 
functional relationship of 2 and y. On the other hand, the specific form 
of the Bayes estimator is dependent on the form of f.(2). Further, the 
Bayes estimator can be a non-linear function of the observation vector y. 
Moreover, the Bayes estimator for a particular case is dependent on the 
statistics involved; i.e., the pdf 1s f(2), and f(~). Thus, it can be 
concluded that for a generalized quadratic loss function the conditional 
expectation of 2, given y, is the Bayes estimation which will minimize the 
expected risk. In a particular case, the specific form of the Bayes estimator 
is determined by the form of the process, f.(Q), and the statistical nature 
of 2 and~ as reflected in their pdf's. 

The determination of a Bayes estimator for the general case can be 
formulated by determining the conditional pdf, f(Wy), and its conditional 
expectation. This procedure will be outlined for the case that the 
statistical nature of Q and e must be known; i.e., the pdf's f(G) and 
f(~) are assumed available.- -
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First, the conditional pdf of y, given 2, is determined by considering 
f(,2) as a constant in the process y = f(2) + e. Thus, f(y2,) is derived 
from f(_~ _ _) by including the additional term f(2) in the expected value of 
~-

Second, the joint pdf of y and Q, f(v/Q) is formed. For the most 
common situation of statisticaily inctepencfent ~and~, f(y/2) f(2,). 

Third, the marginal pdf of y, f(y), is determined by integrating f(y, 2) 
over all 2, to wit, 

-f(~) =-j f(!Jfe)f ( !i.) d9 
~ 

Fourth, the conditional pdf of 2, given y, is formed by the standard 
form for conditional pdf' s, to wit, 

./( IJ:I r;). -F(e) 
-f(*) 

Fifth, the conditional expectation of 2, given y, is determined from 
f(2, i). Once f(9,/y) is determined., it is often possible to recognize the 
E(9,/y) by inspection; and, hence, the Bayes is directly determined. Other
wise, the general approach is to determine the conditional expectation by 
integrating, to wit, 

&8 = E (~ /J) =-/0 f (fl. I j.)c/0 
e 

The degree of difficulty in determining a Bayes estimator is 
directly related to the nature·and degree of complexity of the functional 
form of f(,2) which significantly affects the determination of f(y). Moreover, 
the form of the pdf's f(~) and f(2,) affect the determination of a Bayes 
estimator; and often the task can be somewhat difficult. However, the approach 
provides a general method of determining the optimum estimator using minimum 
expected risk as primary estimation criterion for generalized quadratic loss. 

In general, it is to be expected that the Bayes estimator will be a 
non-linear function of y, even in the case for a linear form of [(2) = A2,, 
depending on the statistical nature of 2. and ~- However, quite often it is 
highly desirable to utilize a linear estimator; and under such a constraint, 
the resulting estimator will not be a Bayes estimator though it is possible 
to determine the linear estimator which will minimize the expected risk. 
Such estimators would be sub-optimal in the sense that the Bayes estimator 
would possess uniformly smaller risk. The use of sub-optimal linear estimators 
must be considered on the basis of particular problems if the utilization 
of a non-linear estimator presents a difficult situation in terms of data 
processing an estimator mechanization in other respects. 
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On the other hand, the Bayes estimator can be a linear function of y_; 
and in such cases, no particular problem arises. This is particularly true 
for linear systems with Gaussian statistics. This case is of general interest 
and is discussed in detail below. 

2.3.6.3 J,inear Case, Gaussien Statistics 

The general linear case is defined by .E(~) = A2_, i.e., y_ = A2_ + ~, 
where A is a known matrix independent of 2_. However, A can be time dependent 
or, generally, non-stationary. For the case of Gaussian statistics, it can 
be shown that the Bayes estimator is a linear function of y_. This particular 
case is of general interest and is derived in detail herein. 

The pdf 1 s for£ and~ are assumed to be n and m dimensional multi
variate Gaussian pdf's with the following specification: 

£ ((l) = ~fJ 

V(o) = E ca - .,,, H 9 - .,,, ,r 
- • - fJ 

f. {~)= !'e 

V(e) = f (e _,,, )(e -"1. )T - . - . 
\·;h!c:'re, of course, V(G) and V(e) are the covariance matrices of £ and ~, 
respectively. 

Further, the pdf's f(y/£), f(y_, 2), f(y_) and f(2/y_), where 2 and 
e are assumed as statistically independent are: 

where 

-fi [ I T -1 ] 

f(!II~) = cm/V(e1/ exp Lt' K Vee>~ 

I 
C-= 

✓z.,, 

X= j-A~-!]e = 1-A~ +A'!19 -m'l={$-'Ei >-A(9-~•) 

/ V ( e) / == determinant of V ( e) 

f'11,B)=f(,/fl) ·F(0) 
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Rather than integrating f(;y_, 2) over all 2 to obtain f(;y_), it is easier 
to use the fact that ;y_ is the linear sum of two independent Gaussian random 
variables, hence, 

Now 

where 

and 

£('/:)=I.El= A,z,6 +me 

VC'I) =f(~- f.!!y)(!/- 7.!!f) 

=A V(0)Ar + V(e) 

W =- !i - rn1 
'i = ~ - ~9 

T 

The term Q(~, ;y_) specifies the conditional Gaussian pdf f(~;y_), and its 
general form is 

QC~,~> =(e-rrn,~>) v-
1

(9/'IJ [~ -E.ce,!S~ 

: (~ - Q
8

)T v-¥0/'f)({)-§B) 
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where V(Q/y) is the conditional covariance matrix of 2.,given ;y:. Thus, in 
order to determine the Bayes estimator, it is only necessary to determine 
the reduced quadratic form for Q(~, ;y:). 

Expanding Q(£, ;y:) in terms of!!: and y, it is found that 

Q rn,~) = ~([ v·te, •Arv-~e)A] ¥ -z v TAT v·te> y + 1~/ [v·'<e> - v·(y)] W 
T -I 

= ('f-1(.W) V (0j'f)(Y.-k.VJ/) 

where Kand v-1 (G/y) must be determined. It should be noted that the term 
K essentially determines the Bayes estimator since 

( ~ - J( w) = [ ~ - ?!19 - J(_ ( ~ - -m ~ ) J 

= [~ - r; {~/$ 1] 

(Y-'K.W) =[~- § 8] 

Thus, the Bayes estimator is 

§ 8 =- fCfzli> 

~e = ?!!9 + K(!J. - t!J~). 

The term K can be determined by expanding the second expression for 
Q(£, ;y:) 

and by eqt.:.2,ting terms in the hro F:'r,_;: - s 

•I T _, 

V ((}/'I.) I(.= A V(e) 

T -I ·I -/ 
K. V (0/'l-)K;:. V Ce)-V (~} 
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Thus, it is found that two solutions exist for K. The second equation yields 

Substituting the second equation into the third, it is seen that 

Kr AT= V Ce) [ V-{(e) -vtp] 
-, = I -V(e)V (~) 

Taking the transpose and substituting V(e) = V(y) - AV (G) AT, it is found 
that 

Thus, 

A K =- r - [ v < l/) - Av ( e > Ar] v -f v > 

= A V(0) AT V_,(l/-) 

The two 30lutions for K generally imply two Bayes estimators for the case 
being considered; however, it will be shown later that the Bayes estimator 
is unique and that K1 and K2 represent two equivalent forms of the same 
estimator. 

Several comments concerning the Bayes estimator for this case are in 
order. It is seen that the Bayes estimator for this case is a linear function 
of z; thus, .Q..J3 is a linear estimator. 

The matrix K is a "gain11 matrix which, in effect, specifies the 
weights in estimating£ that are given to the deviations in the observed 
y_ from its mean value ffiv· If the mean value ~ is actually observed, then 
the Bayes estimate for~ is the mean value of~; i.e., for y_ = ~'v' LB=~
On the other hand, if the observed y_ is identically zero, then the Bayes 
estimate for£ weights the mean value of y_ by the gain matrix K to form the 
estimate of£; i.e., for y_ = 0 

6 ==- me - k'.. m Lt. 
-8 - - (f 
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In general, the deviations of observed z from !!!y- are weighted by K to 
form the Bayes estimate .§.J3 as shown. It is easily shown that _§_Bis a 
biased estimator, to wit, 

f (§s/~) =-me+ K [E Cillt) - "l!'V] 

::: -m + K. [Ae t- )YI -111 ] 
-9 - -e -~ 

£ (~s/~) = 1!!9 + kA [ ~- 1rle] 

Of course, if KA = I, then E( S Rf~) = ~; and ~B would be unbiased. It is 
interesting to note that if v"{"e; = 0 which implies a constant~= me, then 
v-l(y) = (AV(G) AT)-1 and KA= V(G)Af (AV(G)AT)-lA = I, where A-1 exists. 
However, in this case 

or 
C 8 -I -{ 
u =-m + +A.,,,, -A-- =-0 -a -e -e '.!J't 

This is to be expected since, if~ is a lrnown constant, then£ can be 
determined exactly. 

In general, V(e) 'f O, and an error~ exists in the Bayes estimate. 
The Bayes error iLl3 is 

~a = £13 - e 

= m0 +K(,--m!J)-e 

~ m0 - 0 -fK(y- m~) 

£
8 

-= {I - KA)(!t - l:!18 ) t K( g - ,n e) 

The conditional expectation of ~B' given£, is thus 
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E ( f: 8 I~) = ( m B - .i) it I< [ E ( £1 / 61) - my] 
= ( m8 -e)tK[ A§:f me-.e?~] 

~ (rnG -~) +KA(~ - 111€1) 

E(s.sle) = (I-KA)(§- 1>10) • 

The total expectation of -~Bis zero; i.e., 

E{s.g) = E[E(~8je)] 

= [I-KA][1110 -E{~)] 
= [J-KA](m0 -m0 ) 

E(s8 ) = 0 

The covariance matrices for~ and LB can be readily derived and one found 
to be equal, to wit, 

-T 

V(6tJ/fl)= E{[ ~8 -E(~8 1.€) J [ b0 -E(.£B/.~)] / 8} 
T 

V{c8/B)=£{[ s.a -E(f 8 /~)][ £8 -E(£8 l~)J Je} 
where 

=K[e.-m] - -e 

and, likewise, 

g_ 8 -E(£ 8 !~) =K[g -me]. 
Thus, ..Q.B - E(_[_B/Q) = .§....B - E(_§_B/~), and it follows that V( 5 B) = V(E B). 
The covariance matrices for SB and EB can be determined in explicit form 
by using the conditional expectation of ~B' given~, to wit, 
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Now, 

Thus, 

V(t8) = E[t [(~a ~~)/y J 1 
== t{V( §.6/ ~) 1 

V(€8 /1) :: E[(~ 8 - ~)( ~ 8 -~)
7
/ #] 

=£{[~-£(fr>/~)][ ~ -£(~/jJ]TI 1} 
:: V(Blj) 

V(€a I j) = ( v-'{s) f A 7 v-re) A y1 
• 

v(e8 ) = £ V( €.ol:t) 

V(€8 ) = ( v-'(6) 1A'" V-ce)A_)- 1
• 

Thus, the covariance matrices for _Q_B and.£ are actually independent 
of Kand are essentially dependent on the in~rinsic aspects of the problem; 
i.e., the covariance matrices of the parameters, 2; the measurement errors, 
~; and the transformation, A, of parameters 2 into observables,~· 

The Bayes risk can now be determined as follows: first, the generalized 
quadratic loss function is constructed 

L ( €) = £.,. m e. 

=(~D -§)TM{~o-e) 

L ( €) = [ .§ -E ( .i /if)] 
7

1'"1 [ li - E ( 0 / 1)] . 
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Next, the Bayes risk is defined 

Finally, the weighting matrix (M) must be selected. Consider the special 
case (of particular interest) where the risk desired is the sum-squared-error 
loss; i.e., M = I and 1(..§_) = .§_T_§_ = SSE. For this case, RB is the minimum 
mean-sum-squared error, 11MSSE. The SSE can be expressed as 

SSE =€;§..IJ =(~B-e,)T(.ia -0) 

=.57~ -2,STS--'&'!9 -a 9.9 -8 - T - - • 

The Bayes risk becomes 

1?8 = Ml-1SSE = Ef [(s; rs)/§] } • 
H0v,ever, it is seen from the equations for L(_~) that the M:VJSSE can be 
determined from the trace of the covariance matrix for .£.B; i.e., 

Ro = 1'11'1 SSE 

= TRA Cf [V(€8)] 

= TRACE [ v-'(e) f A' v-te)A ]-, 

From the foregoing it is seen that the Bayes risk and the covariances 
of the Bayes estimator and its error are not explicitly dependent on K. 
However, this does not mean that the minimum expected risk is obtained 
independent of K. Rather, the Bayes estimator as a function of K achieves 
the minimum expected risk, which is explicitly dependent on V(G), V(e) and 
A only. That is, the trace of V(t B) represents a minimum-mean sum squared 
error which is intrinsic to the problem, and the Bayes estimator achieves 
the MJvBSE. Thus, for the linear case since K has two solutions, there exist 
two equivalent forms for the Bayes estimator. 

The equivalence of K1 and K2 can be shown in the following manner. By 
inspection, it is seen that Kl can be derived from K2 by a series of 
elementary transformations (i.e., row and column operations of interchange, 
multiplications by scalar and additions); i.e., K2 = PK1Q where P and Q 
must be non-singular square matrices of proper order. Since 
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Kl = V(BI.Y) A Tv-ce) 

Kz: = V(~) ATV-'( :J) J 

P and Q can be selected by inspection as 

P == V(e) v-'(Bl.:f) 

q = v(e) v-1
( 'J) • 

Since P and Qare non-singular, K1 = p-lK2Q-1 • Thus, it is established 
that K1 and K2 are equivalent matrices; i.e., one can be derived from the 
other by a set of elementary transformations. In particular, it can be 
seen that K2 and K1 transform directly by two identity matrices P and Q; 
i,.e., let 

Then, 

.I • 

I<✓ = v-cel~) V( 01,J l<z I 

= v-'(01;1) [v-'(8)+ ATV-'(€)] vc0JArv-'(1) ·I 

~ v-'(s!J) [A' V -1.'f) f Arv-'(e)AV(9) A-,-V-'(.'f)] • I 

== v-f s/J) A'V-ce) [A l/(0)1{ir'(!J) f V(eJ v-'(~)]. I 

K,::: Kz [ (V{;,) - V(e) }lr'(f!) + V{e) V ... 
1(~j)]. I 

= Kz. [I - V(e) V-7!() f V(e) v-'(J) J · L 
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Thus, K1 and K2 are identically equivalent. Moreover, consider the two 
non-singular linear transformations represented by the square matrices 
K1A and K2A, These transformations represent a mapping of parameter space 
into estimator space, since 

~ = K<-t -13 d 

where, without loss of generality, the mean values of Q and e are assumed 
zero. Hence, for -y:_ = A£ + ~ 

2.3.6.3~1 Limiting Cases for Bayes Estimation in the Linear Case 

In general, the Bayes estimator utilizes the available information 
concerning both the parameter to be estimated and the uncertainty involved 
in the observations of a process. In determining the Eyes estimator, the 
pdf's of 2 and~ are generally required which represents the a'priori 
information utilized in the Bayes estimator. It is informative to consider 
the Bayes estimator for limiting cases where the a'priori information is 
unavailable. In such cases, it can be shown that the Bayes estimator 
becomes equivalent to other estimators, such as least squares and minimum 
variance. 

Two types of limiting cases will be considered which will be referred 
to as p2.rameter and observation uncertainty limiting. These limiting cases 
can be representing by null matrices for V(e), v-1 (e), V(G) and v-l(G), to 
wit, 

Lim V(e) =- 0 
Lim v-1( e) = o 
Lim V(Q) = 0 
Lim v-l(G) = 0 

HININUN OBS.C:rf\J ATION UNCERTAINTY 
MAXIMUM OBSERVATION UNCERTAINTY 
MINIMUM PARAMETER UNCERTAINTY 
MAXIMUM PARAMETER UNCERTAINTY 

That is, in the limit a null covariance matrix represents a constant, 
whereas a null inverse covariance matrix represents a uniformly distributed 
random variable. For these limiting cases, the following results are 
obtained. 

For the case of nunimum observation uncertainty, it is found that the 
parameters are determined exactly with zero risk. This is seen by considering 
the limit of~ for the limit of V(e), to wit, 
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= M9 + L,',., l<(Af? + e_ -Al:J9 -Me) 
- l,(eJ • O 

= Ma I- L/191 KA(f -t10 ) + L,'~ l<.(g -Me) 
- V(eJ • O v(e) • O 

=Ma+ L,',,, [vC&)A 7 Vl~ A{0-t:J9 )] +L,',., (vci;1JA
7
V[~ }L/,., (g-~) 

- V{'° • O v{a) • O 1/(e)• O 

:: 1'19 r L.(9) Ar L,',,., (V(}J A)( fz -M 0) + L; M ( 11(8) A 
7 

//(~) ) ' 0 
- ll(eJ • O v(e) • O 

= 1'10-+ll(B)AT(AV(9)A 7
)-

1A(~ -1'19) -f 0 

= Metv(s)ArA- 7 1/(sJ A-'A(~-M,,) 

= /'10 f .I(~-~&) 

For the case of maximum observation uncertainty, it is found that the 
observations are ignored and the Bayes estimator is the mean value of the 
parameters; and the Bayes risk is the sum of the variances of the parameters, 
to wit, 

L,',., i 8 =- !J e + L,',,, K ( !j - l'1 ~) 
ll(e)---tO V(e) • o 

= !:J 0 + t.,·,., v( 19/Y) A 7 V(e) ( ~ - M j) 
v(eJ • O 

= 1.;,., TRACE V(0/Y) 
Vce) • O 

= TRACE L,'p, 11(0/V) 
11<.e)~O 
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:: TRACE L,'M (V<BJ it-A 7V"c~A)-
1 

v-te)-tO 

== TRACE V(B) 

L_(,,,, ~ :: £ [{.@ -[1 B) \ ~ - M 0) J 
V(e) • O 

For the case of minimum parameter uncertainty, it is again found that 
the observations are ignored and the Bayes is again the mean value of the 
parameters; however, the Bayes risk is zero since the parameters are con
stants equal to their mean values, to wit, 

L,',., ~B 
V(9) --.o 

= l'1 e + ;_,',., K ( !:f - tJ'1) 
v(e)--, o 

=t2et Li,.,, v(e)A
7

V(~) (~-CJ~) 
l/(9J • O 

= M1,; I- o 

L,',,.,, 
v(e) -+O 

Rs= TRACE L,·,.., (1/(e) f AT v1e) 
1/(8)-+0 

: TRACE L,'M [_V(s) ]-, 
v(s) • o 

L ,-,., l{tJ = 0 
11(9)~0 

For the case of rnax:i.mu.rn parameter uncertainty, it is found that the 
Ba.yes estimator reduced in form to the methods of min:i.mu.rn variance, weighted 
least-squares and least-squares dependent on the characteristics of the 
observation errors. With out loss of generality, the mean values of ~ and 
~ will be taken as zero to show the direct equivalence of the Bayes estimator 
for m.a.xinrum parameter uncertainty and the estimators derived in Section 2.2.2, 
to wit, 
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L/,.,_ ~B-= L_:,., K('-t) 
V'{e) • O 1.rrsJ-10 '::T 

= L ,',., V( 0/y) A 7 tr(ej '-1 
v-t(s)• O ;;;-

= L ,',., ( II( er' iL A 7 V ..,,(e) A )--t A 7 V 
v-1(6',HO 

L/,.,, RIJ = T /?AC£ ( A 7 1/{e) AJ-1 

v-te)• o 

If the observation errors are statistically independent and stationary, 
i.e., V(e) = cre2 I, then the Bayes estimator for maximum parameter uncertainty 
is the same as the least-squares estimator as de1ived in Section 2.2.2.1. 
The Bayes risk for this case is o-e2 TRACE (ATA)- • 

If the observation errors are statistically independent and non
stationarJ; i.e., V(e) is a diagonal matrix, then the Bayes estimator for 
maximum parameter uncertainty is the same as the weighted-least-squares 
estimator as derived in Section 2.2.2.2. 

If the observation errors are generally statistically dependent and 
non-stationary, then the Bayes estimator for maximum parameter uncertainty 
is the sa~e as the minimum-variance estimator as derived in Section 2.2.2.3. 

From the results presented here, it follows that the estimators derived 
in Section 2.2.2 are mininrum-mean-sum-squared-error estimators if the observa
tion errors are Gaussian and if the parameters are uniformly distributed 
over the parameter space, which represents no atpriori information 
available concerning the parameters. 

2.3.6,3.2 Single Parameter Estimation 

The Bayes estimator given in the previous section is a generalization 
of the linear case considered in Section 2.3.5.2.1 for which y = G + e where 
G and e were Gaussian with zero mean values and variances er and 1, respectively. 
This previous example can, however, be considered as a special case of single 
parameter estimation. In order to demonstrate some of the general character
istics of Bayes estimation, this example will be considered on a more general 
basis. For single parameter estimation, the set of observations can be 
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written as 

where 1 is the unity column vector of order m whose components are each 
unity; i.e., 1. The components of~ are considered as the errors of 
observations, i.e., ei in the error in the observation Yi· The parameter 
Q is Gaussian with mean value .I( Q and variance <T ~/. The error vector is 
also Gaussian with mean value vector.He and covariance matrix V(e) as 
follows: 

The Bayes estimator 6B for Q is given by 

where 

.l!!J :: (a. l. .Ue t- ~e) 

K = a. v(0/Y) l'Vt e) 

v{0/Y),. [ ~ 2 +a21rv-1(e)1] 

The Bayes risk for sum-squared-error loss is minimum-mean-squared-error, 
MMSE, since_only a single parameter exists. Moreover, V(Q/Y) is a scalar, 
and MMSE = R1=< = TRACE V( Q/Y) becomes 

Rs = MMSE = TRACE v(e/Y} =- V(BIY) 

= [ ~2 + a 2 l 7 
£F (e)l ] 

The Bayes estimator can thus be written in the following form: 
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Consider the case of independent observations with equal mean values 
and variances for the observation errors; i.e., V(e) = e2 I and ..t( = 
(a.119 + ,,l/e). 1· Substituting and noting that 1T1 = m, it is fourid!that 

and 

v(01rJ, [ ~ 2 ra" lr( ~2) 1] 

T. T I 
.:!. v-te) = 1, - I 

- tfe2 

= 

-, 

The Bayes estimator is thus 

d/J =pe -q v(e/Y)( ~.2) .J.i:!.J fa V{B/Y)( ;.2) 1 7
~ 

= Pe - K ( 1 7J)(o. Pe+ J,le) +Kl 
7J 

,,., 
~8 = µ 8 - 1'1K{a.,tt9 -f Pe) -f K f !J;, 
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where K = a V{0/Y) (~2 ) 

a. 6:: 2 

= G 

(l;,2 f f1 a_ Z (J'; 2 e 0 

I 
= a[M+ (ji ] aa a:;2 

9 

The corresponding Bayes risk is 

R8 = MMSE 

a-,2 
= ~K 

a. 

For j( Q = .P = o and (T e2 = a = 1, 6 B and RB reduce to the results obtained 
. e ·t previously, to wi, 

with / f . 0-1 ;
1

) i = I t; ~ 

I 
• 

RB = 0 + ~2) 
For the more general case, the following comments are in order which 

illustrate some general characteristics of Bayes estimation. It is seen 
that the Bayes risk, or MMSE, is proportional to CT e 2 and inversely pro
portional to a2. However, as o-e2 becomes large without limit, the Bayes 
risk appro~ches a definite limit, i.e., 

- ;,;-Z 
Lim R8 = ue 
(S(JZ• tO 

The reason for this limit is found in the limit of K and 6 B as CT e 2 ~ 00, 
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1./,,,, K = O 
~2 -+00 e. 

and 

Thus, it is seen that as cre2 becomes indefinitely large, the observations 
are essentially ignored and the Bayes estimate of Q is taken as the mean 
value of Q. The risk in this case is a-g2 which is simply the uncertainty 
in Q as measured by(; Q 2. 

The results given above can be readily extended to the case of non
stationary observations where, in the variance and mean value of observation, 
err9r varies. In this case V(e) f <Te2 I and the Bayes estimator must be 
modified accordingly. Consider the case of independent observations with 
the mean value and variance of the error in each observation being ,tt. 
and ui2, In this case i 

a-z o 
I 0 0 0 

0 o-.z z. 0 0 0 

V(e)= 0 0 0 0 

0 0 0 0 

0 0 0 0 cr-,! 

and 
-2 

0, 0 0 0 

-l 
V le.) = 0 ISz.-Q 0 0 

0 0 0 

0 0 0 rr;; 

The term V(Q/Y) becomes 

'{&/Y) = -z f az L., -z 
( 

I ~ I )-J 
°e i: I °-2' 
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Also, 

and 

=t(~) . &. 
4: I ' 

The Bayes estimator becomes 

In this case it is seen that in the Bayes estimator for Q each observation 
Yi is "unbiased" by substracting tf i + a.Ilg from Yi and the resulting unbiased 
observation is weighted inversely proportional to the variance of the error 
in the observation. The unbiased, weighted observations are then summed 
and again weighed, multiplied by aV(Q/Y) and added to the mean value of Q, 
j(Q, to obtain an estimate of Q. In this manner, the observations which 
have error of large variance are essentially de-emphasized in the estimation 
of~- The Bayes estimator can thus be considered as a selective filter of 
observation data. 
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2.3.6.3.3 Recursive Bayes Estimators 

For reasons outlined in Section 2.2.2.4 and 2.2.2.5, it is frequently 
desired that a new estimate of the parameters be generated from a previous 
estimate and information acquired since this lost estimate. It might be 
argued that this step can be performed simply by utilizing the last estimate 
of the parameters and the covariance matrix of the estimation errors as the 
a'priori information or initial conditions for the continued process. This 
argument is predicated on the observation that an optimum estimate nrust be 
locally optimum to be optimum in the large. However, to demonstrate that 
this situation does in fact result in the optimum estimate it is essential 
that the risk for the estim.ate still be minimum. The following paragraphs 
were prepared in way of proof. 

Let the random sample Y of m observations be grouped in terms of subsets 
of m observations each, i.e., 

y ( !;J., J #z ; ... ;!J• J ••• J~J.) 
'.I 

where 

Each subset ~j of observations is related to the parameter vector Q as 
follows: 

The total observations can be written as a function of the parameter vector 
in partitioned form. In this manner the system-:£.= A~+§. becomes 

A, 

A· :; 
§ f 

e, 
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It becomes apparent that a Bayes estimator for Q can be determined for 
any particular subset or collection of subsets of observations. The objective 
of this effort, however, is to show that the Bayes estimator~~ for the first 
K subrfs of observations, YK = (n, :Y:z, ..... , YK) is an explicit funct:l.on 
of ~B - only. That is, the 'Bayes estl.IIlator can be determined in a "single
step II recursive form. This objective is readily accomplished for the case 
of observations which are statistically dependent within subsets but which 
are statistically independent between subsets. In this case the covariance 
matrix of the observation errors becomes a partitioned diagonal matrix; i.e., 

V(e), O 0 0 0 

0 V(~) 
2 0 0 0 

V(e) = 0 0 0 0 

0 0 0 v(e).; ·. 
0 0 0 0 vc1 

where V(e). is the covariance matrix for the observation error of the jth 
subset of ~bservations. 

The Bayes estimator _§_B for the total set of observations Y is 

Adding -Mg and premultiplying by (v-1(G) + AT v-1(e) A) it is found that 

Substituting for A and V(e), the previous equation becomes 

In a similar manner, it is found that 

where 
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1/(0/Y) ( _, 
= vce) 

and_§__~ is the ~~yes e~timator for the first K subsets of observations. 
Of course, 5 K-1. = 6 l. = ~B. Similarly, -s -s JI... 

( Y.1 -M~.) ., 

Similarly, 

v}s1Y)= v~-, {01r) 

By substituting vK-l(Q/Y) in terms of VK (Q/Y) it follows that 

Premultiplying by the inverse of vK(Q/Y) it is determined that 

From the foregoing it is seen that the Bayes estimator can be determined 
as a "single-step" recursive process in which the observations are processed 
sequentially provided the errors in the observables are not sequentially 
correlated. In this manner, if the Bayes estimate_§_~ and vK (Q/Y) are 
known and an additional set of observations ;y](+l are availableKi£r which 
AK+l' VK+1(e), and NeK+l are known, then the Bayes estimate .§_B can be 
determined recursively ~s follows: 

k .,. I 

Vk-1-1('"'/Y) : V ·t;yi f A v- /e) 11 
c, \,t j /c. L l • "1 L 

-,.; ""'' ,._ 'fl 
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lcn /t.. ( /cf/ )-I -le ) ( I A J k. ) 
Jo = ~o + v (r;;y) A.,(,.i, ~"' e lj-1::+1 - k f-1 -13 

where 

_y_l - lf /'1 
----;rk-1-1 - 7k+1 - - ek I-/ 

The initial ~onditions for VK(G/Y) and~~ are v 0 (G/Y) = v-l(G) and 
_§_~=~since A_'.Bis given by 

These initial conditions follow from the fact that (V(G/Y)-1 is the covariance 
matrix of G, given y. For the case of no observations, V(G/Y) = V(G) and 
the Bayes estimate is simply _Ng. 
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2.4 THE STATE TRANSITION MATRIX 

The navigational filters described in sections 2.2 and 2.3 required 
knowledge of the relationships between the state at various epochs so as 
to allow all observations to be referred to a given epoch or so as to 
allow for the generation of an a'priori estimate of the state at the epoch 
of the observation. Thus, this matrix is an explicit part of the navigational 
logic and will be discussed as such. It is noted before initiating these 
discussions, however, that there are many other applications for this matrix 
which will be explored in future monographs of this series (Midcourse 
Guidance). 

Consider the following nonlinear system of equations (which define the 
motion of the vehicle being considered) 

(4.1) 

where X is the "state" vector for the system commonly, r, v and ~ ( i~ -1T ) 
where -ZZ denotes the control applied to the system. Now onsi er a neighboring 
trajectory defined by the same system of equations and the vector displacement 
from a "nominal" solution 

B(t) = x -x
0 

(4.2) 

Combining these two notations, the time rate of change of the displacement is 
obtained as 

a(t):[fcx,t)-{(~ ,t)] +-[27(t)-!2;(t)] 

but since 6 ( t) is assumed to be small, / (x, t) 
linear combination of two functions, i.e., 

r(x,t) =(Cx.,t)-f~(x,t) . 
Now, the vector difference [,f (x,t)-f(x

0
,t~ 

Taylor series as 

( ( x, i) - I;(~ , t) = ~~ 8 
tJX . 

(4.3) 

can be represented by a 

(4.4) 

can be expanded in a 

(4. 5) 

Similarly, the vector function i (~, t) can be obtained from a Taylor 
series in terms of the state along the nominal trajectory ... 

~(x,t):: ~(xo,t) t ~ 8 (4.6) 

129 



Thus, the differential equations for the system become 

8= [~ + ::] 6 + (,s!X:.,t)+LIU(t)] 

t== ~ 0 

(4.7a) 

(4. 7b) 
- A(tJ "§ + f (t) . 

But, the trajectory for the motion under consideration itself is 
expressible (analytically and/or numerically) as a unique function of the 
position and velocity at some epoch, and as a function of the accelerations 
experienced relative to a nominal path (differences in the gravitational 
accelerations and in any applied thrusts). This set of relationships is 
represented by 

~ ..;.( -- ...:. 8..... 2.... ) r =r ~-,.8~ ,,;,.,. r;,,ua..,t. 

Thus, by a Taylor's expansion 

at gt r =- ;- +- - s -r ,. o ;- + c 1 c sa) 
n or;, o 'Jt o 

and 

(4.8a) 

(4.8b) 

(4,9) 

(4 .10) 

where 1 ( ca) is a set of linear functions which additively (due to the 
small assumed magnitude of the deviations) represent the effects of the 
differences in the perturbing forces, and where Band Care 3 x 6 matrices. 
These linear equations can, in turn, be expressed as 

= 

'iTr 
at 
aF -. 
o1;, 
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showing that, to the first order, the dynamics of the problem can be repre
sented by the two matrices (/J (t, t

0
) and 6 (t, t

0
). 

No!!, comparing the two equations for 6 and 6 L-equations (4.7) §:nd 
(4.11)_/, it becomes apparent that the fundamenta'.1 solution matrix L the 
state transition matrix, the matrix denote1 by ({) ( t, t

0
) J is the solution 

to the homogeneous equation obtained for F = 0. In order to define the 
nature of the term A (t,.,.t0 ) t ( 5 0. ) it is, however, necessary to 
consider the solution to 6 (t). 

Let f. ( t) denote the homogeneous part of the solution for 8 ( t). 
Then 

?(t) =-A(t)t(t) 

But 

Thus, 

(4.12) 

At this point, introduce the system of differential equations adjoint to 
this family 

A (t,J0 ) = -A (t, t 0 ) A(t) 
(4 .13) 

and note that 

Performing the substitution yields 

(4 .14) 
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which, upon integration, can be written as 

A(t, to) o(t) =A (t0 , t0 ) 8(t0 ) 

+JtA(7,to) F(r) dT 
to 

t ....,. 
- t5(t0 ) + f A(T, t0 ) F(r) d, 

to 

-1 
Multiplying by A (t, t

0
) now reduces this result to 

Finally, comparing the form of this equation to that given earlier 
L equation (4.nf] for S (t), it is apparent that 

and that 

(4.15a) 

(4.15b) 

(4.16) 

(4.17) 

(4.18) 

The preceding material clearly establishes the mathematical nature of 
the state transition matrix and, at the same time, introduces the adjoint 
equations as one means which might be employed to compute this matrix. The 
sections which follow will explore these avenues in some detail for the 
purpose of providing the state transition matrix as required in the naviga
tional filter. 
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2.4.1 Generating The State Transition Matrix 

2.4.1.1 By Direct Integration 

The introductory paragraphs to this section of the report showed that 
the state transition matrix obeys the differential equation (4.12) 

and the boundary conditions 

Thus, the desired matrix can be obtained directly by numerical integration of 
each element of the array. This procedure is completely adequate for most 
applications in which the task is concerned only with the reduction of 
observed sightings (fixed values of t

0
). 

However, there are applications (midcourse corrections, for example) in 
which the state transition matrix relating the state of the present epoch 
and a fixed future epoch (e.g., the epoch of rendezvous) is desired. For 
these applications, it is unnecessarily complex to require that the preceding 
integration be reperformed at each epoch (i.e., a new t 0 at each epoch). 
Rather, it is convenient to generate the desired solutions as follows: 

(4.19a) 

(4.19b) 

Thus, 

(4. 20) 

This technique requires that two integrations and an inversion be accomplished. 
First, the transition matrix !:_elating the arbitrary epoch (t0 ) and the fixed 
end time (T) is ~enerated. L This integration need be performed only once, 
providing that 6 (t) never leaves the neighborhood of the nominal trajectory 
about which the partials are evaluated_} Secondly, the transition matrix 
relating the arbitrary epoch (t

0
) and the epoch of the present state must be 

generated from the previous transition matrix, the differential equation, and 
the change in the time. Finally, the latter matrix must be inverted. 

The first two of the three steps outlined are relatively simple. However, 
the third involves a considerable amount of effort if normal matrix inversion 
techniques are employed. Thus, it is instructive to present a means of 
developing the inverse in an analytic manner from the transition matrix 
itself. This procedure, if employed, will avoid roundoff and loss of 
significance problems inherent in numerical techniques, in addition to 
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drastically simplifying the mechanization logic. 

Consider a linear system (expressed in cartesian coordinates) described 
by the following equation 

& =A(t) i(t) (4.n) 

where 6 ( t) is an even-ordered state vector composed of a set of output 
variables and their derivatives; and A(t) is•a coefficient array for the 
system composed of square, symmetric, even-ordered subarrays of the following 
form 

A{t) = r o __ ~_A_'.• 1 ri, I O 1 (4.22a) 

This form for A(t) is representative of motion in conservative force fields. 
To be specific 

A,i =-I 

A =!.2... = .A,/ [rz, a r r, 

for motion in the vicinity of 

&(t)=q;(t,t0 ) &(t0 )= ---1-- &{te)• 
[

(P,, : ~2j 
tfl2, : ?2~ 

(4 .22b) 

(4.22c) 

(4.23) 

If equations (4.22) and (4.23) are substituted back into equation (4.21), the 

folloW)_[;,~ id;,:lity-resJ ~ [ ~, :: l 
tf1t ~ iJ r f&, ... .lj 

and upon expansion, equation (4.24) yields 

f11 = f/J21 

tp,z. =- {f)e.z 
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Equations (4.25) may now be operated on to produce an equivalent set of 
differential equations. This operation is performed as follows: 

r . T 
(j}z, ~=~I ~I 

• ' T Jf T 
f:i, <7!, = ~ ar o/, = 

T • T 

<11, ~,=~ 
•T T 

1/, 1¾1 = ~I ~I 

or 

d( r T ) 
dt ~I C/1, - (P,, ~I := Q 

(4.26a) 

(4.26b) 

Similarly 

T T 
~2 t/1, -{8:z ¢1, = C z (4. 27) 

(4.28) 

T T C 
r/1, ~JZ - ~I ~:Z = 4 ' (4. 29) 

Finally, the results of the integration can be restated in matrix 
notation as 

and the constant arrays resulting from these integrations may now be 
evaluated by substituting the initial conditions 

t;q1 (o) = ~R (0) • I 

~z(o) = ~, (o) =o . 
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This step produces 

C,=0 (4.31a) 

(4.31b) 

(4.Jlc) 

(4.Jld) 

and reduces equation (4.30) to the identity matrix. But, the only matrix 
which can be utilized to reduce an arbitrary square matrix to I is its inverse. 
Thus, 

T -~:] ~.2 
<f}-'(t, t

0
) = (4.32) 

T -~, (/J,, . 
Equation (4.32) is important for general linear systems in that it 

provides an analytic means of constructing the inverse transition matrix 
directly from the elements of the known transition matrj x by rearrani;,;ement 
of terms and the change of a few si"1"'s. In conc-Jusion, it is noted that the 
true meaning of V1.e terms A12 and A21 L-equation (4.12)J was never employed, 
anQ on]y s;mrrnetry is required. Thus, there is an immediate generalizati0n 
providinl! that an arbitrary system can be described by equatior. (4.22). (Tr, 

general, this formulation is possible only in term:::. of inertial coordinates.) 

2.4.1.2 By Integration of the Ad.ioint Equations 

The differential equation for the ad,ioint matrix was shown to be 

(4.33) 

with boundary conditions 

Further, the inverse of the adjoint matrix was shown to be the transition 
matrix. Thus, the adjoint enuation can be integrated and the result inverted 
by employing the analytic inverse property developed in the previous 
paragraphs to :yield the transition matrix. 

This technique offers little in the problem where observed sightings 
are being sequentially reduced (fixed t 0 , variable T). However, if the 
problem also involves the generation of midcourse guidance commands (fixed T, 
variable t 0 ) so that both '-P (t, t 0 ) and cp (T, t) are required, an 
adaptation of the adjoint technique is equally as suited to the problem as 
the more straightforward approach. 
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Define the time to go as 

so that 

and 

dt = -dt 70 

~ ( ) _ d&(t) 
6 t - di. 

y.o 
d~lo = - f(T-t ) 
dt 1° · 

Now, substituting into 

8(t) = A(t) cS(t) 

yields 

t(r-t) =-A(T-t) 'a(T-t ) 70 "fo '10 , 

But, 

g ( t.) = rp-1 
( T, t) 8 ( T) :. rp ( t, T) 6 ( T) . 

Thus, 

and the system of adjoint equations is 

(4 .34) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

-1 
But at the epoch t = O, <P (T, T) and thus t.p (T, T) or A (T, T) is the 
identity matrix go 

A (T, T) =I . 
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Therefore, the ad.joint equation expressed in terms of the tjme-to-go can be 
integrated from tgo = 0 (backward in real time) to the epoch in question to 
yield Cf (t, T). 

Note is made before leaving that this process involves successively 
small values of tgo• Thus, it is either necessary to store these successive 
values of .A. (ti, T) or to construct these successive matrices as follows: 

$ ( t) == (f} ( t, T) t (T) 

E(t,)-= tp(ti,t) o(t) 

Thus, S (ti) = (f) (ti. , t ) {f ( t, T) t (1) 

: (/) (t.l· J T) 8 (T) 

2.4.2 The State Transition Matrix For Conic Motion 

The preceding paragraphs have presented several means of determining 
the state transition matrix for the true motion. However, the amount of 
effort required is considerably in excess of the amount normally spent in 
preliminary analysis, or in those cases where only moderate precision is 
desired. For this reason, an approximate logic for constructing this matrix 
will be developed based on the two-body solution of the equations of motion. 
This development is justified since the deviations from the true and conic 
trajectories will agree to a higher degree than the trajectories themselves 
(i.e., the error introduced by neglecting the variations in the perturbing 
forces is small compared to the magnitude of the variation in the state of 
the system produced by erroneous initial conditions). 

The development of the matrices of partial derivatives to relate the 
first order variations (from the noll'j_nal conic trajectory) in the state at 
two arbitrary epochs will be accomplished in four steps: 

1. Circular orbits (rotating and inertial coordinates) 
2. Elliptic and hyperbolic orbits (rotating coordinates) 
J. Elliptic and hyperbolic orbits (inertial coordinates) 
4. Approximate method of including the effects of trajectory 

perturbation 

As will be apparent, the material of these discussions is related and 
sometimes overlaps. However, as will also be noted, there are computational 
problems associated with some of the functions, and significant differences 
in the coordinate systems employed in the analyses.which combine to suit a 
given formulation to a given task to a higher degree than is possible with 
any single step • 
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2.4.2.1 Circular Motion (Rotating and Inertial Coordinates) 

Consider the perturbation equation 

- - -r =- r; -,.11,r 

and its second derivative with respect to time 

under the substitution of central force field dynamics. 

Thus, 

.. . . _,,u 
"t: + ll"°F = 
0 r.., 

0 

;ll 
=--

r." 0 

,,,{.I [ ( r: •Ar)](... .-) =- ~.9 /-.3 o ,-,,a 1a rllt'° 

:... .h [.... (""' -; ""] 8 =- - r;,S Ar- 3 ,;· 8 t;, 

..,,u [ ,._ ,.-r] -= --- I - 3 1:. r: Ar-r:.9 " 0 
0 

( "' AT where I the identity matrix) and r
0 

r
0 

are 3 by 3 matrices. 

(4 .39) 

(4.40) 

Now assuming that the eccentricity is small (i.e., 0 = UJ= ~ = ( ; 3 )'lz 
produces the equation ° 

(4.41) 
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But, as has been shown, this equation possesses the solution 

Thus, an explicit solution for ({J (t, t ) can be obtained (for circular 
motion) by noting (from the previous equ~tion) that 6 r can be expressed as 

by substituting this representation back into the differential equation (4.41). 
First, however, a simplifying assumption will be made in that the coordinates 
selected will be centered at the nominal position and rotating with the 
satellite so that 

and 

x =- re, ( t) 
"' ... ;..( ) Z = r (0) X t;, 0 
A .. C-
y = 2 X.A 

i='4JY 
,.:. 
Y= -wx. 
;.. 
Z=O 

At this point, the derivatives of /::;r (t) are formed and substitution 
into the differential equation will be accomplished. 

~ .A ~ ·""' A .A "' 
~r =F,X t-F,-z. +-fjYt- Fz Y+-J;Z +- ~~ 

=(F,-eu!=z)i +-(Fi+wF,)Y+ I=_, i 

ll. f = ( F, -w ~) -x l- ( 1 + u) F,) y I- F's i 
1-(F,-GJ~)wY-(~ rwF,)wx 

=(i=, -2 wFi -w~ F,) x 
+(/=,, rt wF,· -f#i F,,) y .,. ~ ; 

~ ,.. '3..,_· 
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Now 

and 

So, equating the components of equations (4.42) and (4.43) yields 

F,-zw~ -w~lf ~ Zw 2 F, 

or 

~ +ZwF, - w2 Ii= -(.,)1.~ 

Fs =- -w 2 ,=, 

F,-3w 2 F,-2(.µF2 =O 

~ +Zf..JF,=O 
.. :z 
F.,+lv Fj=O 

These three second order scalar equations define the time dependent 
coefficients of Ar. 

(4.43) 

(4.44a) 

(4.44b) 

(4.44c) 

Note that the third of these equations is uncoupled from the first two, 
and thus may be integrated directly. The solution is: 

F; (t) = s C40 uJt .,. T ..4U'l-Wt. (4.45a) 
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But 

Thus, 

~ (t) = f; (0) , t =0 

,5(t)=1(o) , t=O . 

S =- ~ (0) 

r = 1 co,;GJ 

Now, integrating the second equation 

1(t) =-iw F,(t)-1-1 (o) +2wt=;(o) 

(4.45b) 

(4.45c) 

and substituting into the first allows the following solution to be developed: 

where 

Thus, 

F,-3w2 F,-Zw(-2wF,+i:2 (0) +:lwF,CoJ)=O 

F, +- a.ii F, =- 2. tu /:i ( 0) +- .q w a F, ( o) 

F, (t) = s' Cllowt + T~ (ut 

z . 
+- F~(O)+-"IF,(O) 

CA) 

F,(t) -=-F, (OJ, t =O 

F,(t)=-F,(0), t=O 

s' == -~ r:fl (o) -3 F, co) 
(,,; 

r'= F,(O) 
C,) 
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and 

or 

Thus, 

F, ( t) = F, ( 0) [4 - 3 l!iXJ. w I: ] 

+ F:z co> [~ - ~ e.Do wt] (4.47) 

1-i:, CO) [~ ~ eut] 
Substituting this lat~er equation into the first integral of F2 yields 

~(t)= F,(O) [-6ev(1-~wt)] 

+Fz(O) [-C3-4c.oowt)] 

-2 F,(0) [ .4Ul ">t] 

Fj_ (t) = - F, (0) [6 eut -6 ,<U.in wt] 
- ~CO) [3t - : Ai,,t.wt] 

Z F, CO) 
1' -'---- CbO wt t- C 

G.) 

:::: F,CO) [6(A.ii,revt-<ut)] 

+ F~(O) [~ (4 ..dUt r.ut - 3 wt>] 

+F,(o>[: Cl>O e.vt] -,.c • 
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Finally, employing the boundary conditions 

yields 

or 

Thus, 

F,(0) I +C = !=~ (0) 
w 

2 F, (0) 
C-=- ~(O) -

PJ. (t) = F, ( 0) [ 6 ( 4«i,t <.u t - G.rt ~ 

-,..1 (OJ ~ (4.auz G.Jt - 3 C&Jt>] 

+F,<o>[: (C40 wt-1) J-,.~ (O) 

(4. 50) 

The extension of this analysis to the case in which inertial rather 
than rotating coordinates are utilized is obtained simply by noting that the 
first derivatives of & can be expressed as 

where 

A= F, 

a= Fa 

C = F.3 

X= ~Ct) 
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coordinates 



or where 

inertial 

coordinates 
C=~ 

x, 9,Z= ~(O),Zx:i, Pa <:o)x ?(O). 

In this latter case, of course, the initial conditions for the functions F
1 • F3 become 

F (0) = t:,. r (0) · X.(O) (4.52a) 
I 

fi (0) = 1J. t(O) · Y'(O) (4. 52b) 
;\ 

F;(O) = Llr(O) • Z(O) 
3 

F,(O)-= IJ.°P<0)·.6X(O)+w~(O) 

• • A 

Fz. (0) = t:.r(O) · Y(O) -C..JF,(O) 

1coJ =/jPCO) ·ZCO) 

(4.52c) 

(4.52d) 

(4.52e) 

(4.52f) 

The results of this process are presented in Tables 2.4.1 and 2.4.2 for 
the cases of rotating and inertial coordinates, respectively. 
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dr 4-3c.,owT 0 

df 6 (Ai,n u.J T - GJ T) I 

dj 0 0 

--
..... dv 611 ( C-IX:J ~ r-1) 0 ~ 
0) 

df 0 

0 

2 

THE STATE TRANSITION MATRIX FOR CIRCULAR 
MOTION - ROTATING COORDINATES 

Table 2.4.1 

0 

O, ;j(4AVTlwT-3wT) t ({!.()owT-1) 

C.bOWT 0 0 

0 4e,c,o wT-3 - 2 .4Ul'l- w T 

0 0 

0 dr 

0 df 

f, .4Vl'l wT dj 

0 dv 

0 dr 



dx 

dy 

dz 

::. -~ 
~ dx 

dz 

THE STATE TRANSITION MATRIX FOR CIRCULAR 
VOTION - INERTIAL COORDINATES 

2. - C,O.5 wt SIN u.l t 

2 StNwt-3wt 2c.o.swt -, 

0 0 

w(3wt-s1Nwt) w(t- c.os wt) 

w(c.o.swt-1) -w(sJNwi) 

0 0 

A A 

X ~ lo ( o) 

" /\ /'\ ,'\ 

LJ =- r0 (O) X r0 (0) x r0 (o) 

A .I\ A 

z ::: ro(o)x (o(o) 

Table 2.4.2 

0 

0 

c.os wt 

0 

0 

-w.s,Nwt 

.SINWt 
w 

2 cos wt -2. 
w 

0 

Z - e,osw t 

- SIN wt 

0 

£(1-co..swt) o 
w 

di (~5/N wt -Jud) 0 

0 SINI.Nt 

UJ 

3wt. - 2 .s1N wt 0 

2(.0JWt -/ 0 

0 c.o.swt 

dx 

dz 

dx 

d' 'j 

di. 



2.4.2.2 Elliptic and Hyperbolic Motion (Rotating Coordinates) 

2.4.2.2.1 Elliptic Motion. The complete description of the motion in an 
elliptic orbit is obtained from the following set of equations: 

r 

a 

p 

e 

(t-tp) = 
n 

(cp-w) 

C<. ( I - e Ul:l E) 

rJ.A. (2 -U - rv2 )-, 

(rv W1 <f )2 ,t.r1 

(! - !- ) 1/z. 

(E -e. 4Ut-E)n-1 

,(A 'lz a -3/z. 

= radial distance 

semimajor axis 

semi parameter 

eccentricity 

time from periapse 

mean motion 

true anomaly 

tp angle in the plane of motion measured from the ascending 
node 

w 

i 

V 

argument of periapse 

un. -\ UH. L ur:i ,8) 

~-,( C::/:) 

~ = azimuth 

inclination 

longitude relative to 
the ascending node 

Thus, by straightforward differentiation, the column vector representing 
the change in the elements can be constructed for a given set of errors 
occurring in the initial position and velocity vectors. Now, since the 
modified constants of the motion (a + 1:,,. a, etc) are known, the implied 
variations in the position and velocity vectors at all subsequent times can 
be obtained by solving the six simultaneous equations for these quantities 
in terms of the lmown errors in the elements. This process, like the first, 
is direct though slightly involved. 

The transition matrix, i.e., the matrix of partials relating errors in 
the state vector at any epoch to errors in the state at a given epoch, is 
readily constructed from these two matrices by direct substitution; that is, 

BC = '9/ (t,, T) 8, 

=~ (t:z, T) oc 
= ~ ie., 6x, 
!! g, ( t;i, t,) s, 

(4. 53) 

(4 .54) 
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,. 

Thus, the analysis will turn to the development of the two matrices denoted 
r-e--t 

2 
and t-0-1 1 • 

2.4.2.2.1.1 fir, t,.V = f ( t::. a"' l!.e ••• A.fL ). Expansion of 
those equations required to define the components of t::, r and .Av in terms 
of variations in the elements will be presented on the following pages. 
These expansions and the associated substitutions are presented in detail to 
facilitate a rapid understanding of the process, to demonstrate the manner 
in which computational difficulties can arise, and to establish the means of 
inverting the process to define the changes in the elements as a function of 
the changes in the position and velocity. 

Thus, 

Consider first the radial distance 

I'" 
dr=-da+-a.e 4i.hz.E. d£-a.(,l)o£ de 

a 
But, t rather than Eis the independent variable of the analysis. Thus 
Kepler's equation must be differentiated. 

I r I • 
dtp =- -- - dE +-- .4Vn £ de. 

11 a 11 

Now, substitution yields 

dr = [r - 3 ea M.,4/A'l. £] da 
a. 2 r 

(t.-tp) d/J.. 
a. 

-,. [ -a. ux, E: , a.;e ,,dJAI, 2 £] de 

+ [- /'/a; e ..4i.#z F] dt p • 

(4.55) 

(4.56) 

Now, consider the displacement in the circumferential direction (i.e., per
pendicular tor but in the plane of motion). 

tp:=.9+CJ 

rd(f = rd0 +- rd GJ 
(4. 57) 
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where 

or 

re 

-A.in 9 dB =::;r~ [u- e ~) da. - Z a e de -dr J 
p-r [ 

- rtea rd~ ;-edr] • 

Substituting for dr in terms of dE reduces this equation to 

I [ tr--a./-o.~e~ r de=- -
4'#t0 r e2 

Now, substituting for dE yields 

rd 0 = [- ~ P M ] da 
Z r /;-e" 

[ 
<r-a)-i-a~ e~ 

.,. - ---'----- + 
AWn S( re~) 

[ 
pan ] + - ..L~== dt r /1- el' P 

.E!!:. .4UIE] 
r ..fi=e'I" de 

(4.58) 

The next step in the analysis is the construction of the errors in the 
planar components of the velocity vector. The rotating axes for this 
application will be selected along, and perpendicular to, the direction of 
the velocity itself. Consider the energy equation 

r (4.59) 

dV = - 1
- [- z ~ dr +- .,,,u da] 

Zv r~ a. 2 
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.. 

.. 
substituting for dr 

[ Z.,tt .b 3 eaM (2b)] Zvdv= -- +--- +- -r--AMtE -;i: da ra a.~ 2 

+ [ -1- £..,ll Z..,a a2 e 
AML 2 £ ] d e a. (:,(X) £ - --r2 r~ r 

+[ 2.,(,( lla.~e AUtE] y-2 r dtp 

or 

dV == - - + - - - e M ~e dQ. [ 
V .J .,,ti a_ ] 

t.a. Z rzv r 

(Li.. 60) 

Finally, consideration of ~hP- angular momentum will provide the infor
mation necessary to construct the variation in the velocity perpendicular 
to the nominal direction 

..bp Z_..ap 
Z - dr + -- dv - 2...ttptQ.lfl ~ d 1 

r V 
(4.61) 

[
u-e.t) 

= 2~p Zp da. -
ae ] 

p de 

so that 

vd~ = y_ [ dr + ~ +-':__:de - da.] 
~ ";- y- V p j_o. • 
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Substitution of previously derived expressions and the ider,tity aur- E/eu,,. 'o = 
~ / e. now reduces this final equ.ation to 

vd 1 = ~ ~ v~~ ✓1-e:i' (1- :V.t)] do. 

(4.62) 

The development of the variation in the out-of-plane angle and the 
azimuth (or the corresponding position and velocitv perpendicular to the 
plane of motion) will be accomplished in a slightly different manner 
(Ref. 4.1). Since the dimensionality of this subset of variations is two, 
and since these variation£ are independent of the in-plane variations, this 
set and the inverse set L i.e., 4c., 4Q =f(eiB;.li t.p J will be derived 
simultaneously in the following paragraphs. 

Consider the sketch 

.. 

L = Latitude 

/3 = Azimuth 

'I 

X 

Now, employing the law of cosines for the spherical triangle involving the 
colatitudes and def' 

-
CQC (90 -L-dL) = c.oo(90-LJ c.oo dY, 

+ .,d,n ( 90-L) .4,1,?'l d~ Cb<J(90-;S) 
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• 

: . 
which is approximately 

.teU1>1.L r Ct>oL dL = ~ L - C4<J L ..,,u;,v ,6 d~ 

or 

(4.63) 

But, from spherical trigonometry 

so that 

C,IXJL ~,,d d _,,.:1,14'lJL.4i4V,<3 
di= - ---- ,8 r ----- dL 

...cUnJi ~i. 
(4.64) 

The error in the node ( d-D- ) is obtained by considering the projection 
of the erroneous trajectory on the reference plane, i.e. 

C4<J(-'5 rd.&) 
Cb<J(V rdv-d.a) = . (. J•) 

.AUt, l1'aL 

which is approximately 

or 

But 

:::.: ( ~ .,(3 - . .,4Ut),;8 d;&) (I- e.,.ii di) 
.AJ,i/lVi 

.4,(.#1.),d (t40_,&~i,) 
-4UW v ( dv -d.n.) = --- d.4 +- ----- di 

~l .,4Mt)i, 

. ( ~ ( 90 + ,/.3) 
..4trt,, dv) = ----- ,4,i4Z, df/' 

~ (90-L-L!.L) 
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,. 

so 

(4.66) 

Thus, 

dn. = - ,JU();d d-4 - ~,d ~i dl + CIIO~ d(J 
Atin, v ~ i. .Ak#l,l° ,4,t,ft) 7,.) C4<J I-

or 

[ 
tMt 4 C4o ,,d f!.llf i ~ L ] -1,1 

d.n. = - ,I._ - - J + Up 
£.a« V ~i ia,t 1/ (4.67) 

.,. [ Coo..d r C#'li ~L ~~.&l dP 
C40 '- ta« 71 ,.u,,c; 1. J • 

These variations can be written in the form 

[;;J = [::. :::] (:] 
(4.68) 

Thus, solving for the column vector ( d ,B , d 'f ) is possible by computing 
the inverse matrix 

-a.,.,, 
a.,, J /A/ 

The results of this process are 

(4.69) 

and 
di/ a,[~ L too,4] dfl. 

+[=~ (e,/zi. e.,t.t4-I)] di 
(4.70) 

These results are summarized in Table 2.4.3. 
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dr 

rd¢ 

rdlJI 

= 
~ 
C,11 
C,11 dv 

vdlf 

vdp 

£. _ 3a eM s1NE 
a 2r 

- 3pl'1 

Zr~ 

0 

- - - - -

-v + 3µ ea.M s1N £ 
Za Z r3V 

- -

THE LINEAR RELATIONSHIPS BETWEEN ELEttlENT ERRORS AND STATE 
ERRORS FOR ELLIPTIC MOTION - ROTATING COORDINATES 

Table 2.4.2 
1-acosE I -azen.s1NE lo I I 

+tlze S!N2£ 
0 

I I r I I I r 
I- - - - - -1- - - - -I -1- -+ 
I I - e_an Ir I I 
a SIN f {I -,. Pf, ) 0 
I~ r I rY 1 - ez I I I 

I- -1- - - - -I -1- + 
0 

I 0 lo I . 11 r SIN1c.in:Zi, c..tn2,8-I 

I I I SINL I 

- L 
_,_ 

- - - - - _J _,_ 
- - - - J_ 

I 
I 1,(4, co.sf 

r 2 v I µ4Zen 51N£ 0 0 

I -Pa2e s11V2£ I y?v 
r3v 

I I 
- - - - - - - - - - - - - - - - - - -

I I I I 
-avcosB( ) I --..3vaM~ (1- ,t1ft 2) I rtan .r J- Plrv

2 
1-va2nV /- e 2

{/ - µ/. 2/ 0 0 
2 r2 rv l + ve. I rz rv I I ian6'(J- e2 ) 

I I I I 
- - - - - - - - - - - - - -· - -
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0 

0 

rco.!.L c.os r; 
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0 
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I (S/N.(, 

0 0 0 0 
I c.o.sL 

I - Vs1NL. Slfv2,,g e-tn ;_ SIN/I) 
I I 

M = n(t -t..p) 

• 

d~ 

de 

dlp 

dw 

d.i.. 
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do. 

dw 

di. 

d.a. 
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2.4.2.2.l.2 Ila, I:). e . • . b,e.. ) = ( 1::::.r, 6 v). The de-
rivatives required to construct the linear equations representing the inverse 
of those presented in Table 2.4.3 were, for the most part, presented in the pre
ceding section. Thus, the development of this section will be much simplified. 

The first variation of interest will be in the semimajor· axis. This 
equation was presented intact as: 

da.. (4.71) 

The variation in eccentricity is from the equation defining the 
variation in the flight path angle, simply by substituting to eliminated~ 
from the equation. That is, 

de = _e l.a&,.--f TAN ~ d tJ1 - dV - drr] 
ae [2a. \7'" 

or, upon substituting ford~ 

(4.72) 

= P eos E o'r + 2,.e. eos E tlv + .r.. SIN 0 (Vd lf') , 
y°;l rv ~ 

The development of the change in the epoch of periapse passage initiates 
with Kepler's equation in the form (presented previously) 

dtp-= -.3M o'a.. + SINE de - Y- dE 
2 7t. a. -11,.-- 1l. Q. 

This time, however, it is necessary to substitute for dE in terms of dr, 
dv . Thus, 

y

d£ 

= a(1- e COSE) 

/ [ da..Y- - r- o'Gt. + a. COSE de] 
= a.e SINE 
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or 

da_ + [SINE - rcosE' J de 
'll.tt ha.e SINE 

+ [- '{" ] d r . 
11. a,2. e 5/N £ 

Now, eliminating d~ and de from the equation by substitution, and combining 
terms yields 

dtp = 
[
-3 Ma.. 

1t, y-Z 
+ SINE (P eosE -I- .!.. ) ] dr 

1? r r e 

r lt-ez 
nva.e 

The final equation required is obtained by noting that 

tj; = B +w 

so that 

or 

cos ( ¢ - w) = a. ( 1- e2) - r 
er 

dlJ= _I_ [ P da.. + c-2a., _ P-r) de 
s1Ne e¢r y- e2 r 

-f-(=-L_ 
er 

- P- r ) d r] + d ¢ 
e y-2 
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Now, once again substituting for da and de yields 

dW = 
s1~0 {[ :er 

(2y-~~) - p - (z:, 1- p- rya. -<! P] dr 
e r.2. ely- a.erZ 

[ ~ e V«-.;) -(z:, P- y-) .2(a-Y')P ] dV + +--a er _..,/4( e 2 r Y"VtZ- e 

-1- [ - (2 a, T P- Y- ) ( __!:_ 
y- ezr ea. 

which reduces to the following 

dw = SIN0 
e Y-

dr + 2 SIN0 dV 
ev 

TAN ~j d3"} + d¢ 

- I_:_+ C'OS E] (Vd ?f1 ) 

[v Ve. (4.75) 

The results of this analysis are summarized in Table 2.4.4. Note that 
in contrast to all previous equations, the equations for dtp and dw contain 
terms of with factors (1/e). This fact displays the physical problem 
associated with the indeterminancy of the line of apsides. This approach, 
nonetheless, completely describes the propagation of the differentials around 
the orbit, as can be seen by examining the limits of the terms contained in 
the product matrix (matrix of Table 2.4.3 times the matrix of Table 2.4.4) 
and comparing the results with the terms of the matrix presented in Table 
2.4.1. 

2.4.2.2.2 Hyperbolic Mot.ion. The equations presented in Tables 2.4.3 and 
2.4.4 can be app~ied to the case of hyperbolic motion when the following 
substitutions are made. 

E =-iF 

sin E=i sinh F 

cos E = cosh F 

7t =ff. - 'tr" = L 7L 
Ji 

Ji 
ah = - a 

The results of this set of substitutions are presented in Tables 2.4.5 and 
2.4.o. 
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dr 

rdtp 

rd'I' 

dv 

vdo 

vd(l, 
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de 

dt:.p 

dw 

d.i. 

d.n.. 

- z_az 
r2 
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2.4.2.2.3 Elliptic and Hyperbolic Motion (Inertial Coordinates) 

2.L •• 2.2,3.1 Transition Matrices and Coordinate Transformation. The propagation 
equations developed previously (with the exception of the case of circular 
motion) were built around the transition matrix relating errors occurring in 
a rotating local coordinate system. However, there are sound reasons for 
studying this propagation in other frames of reference (e. g., in an inertial 
frame as in the case with an IMU, in systems which exhibit the principal 
values of the error ellipsoids of position and velocity on the coordinate 
axis, and for the purposes of propagation studies in patched conic tra
jectories). For this reason, several systems of primary interest will be 
introduced, and the mechanism through which these effects can be introduced 
will be presented. 

For the purposes of generality, a composite transformation matrix will 
be established which will transform the errors represented in the local 
system into those expressed in an arbitrary inertial system. In the process, 
the transformation necessary to establish the relationship between the ro
tating system and any other frame of reference will be apparent. 

/\ A 
R · S = 0 
A A A 

I\ RXS = w 
X A "" ?J' V 5 = cos 
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Referring to the sketch, if the following shorthand notation is adopted 

TX ( a: ) = CCW ROTATION ABOUT X 

Ty ( ex ) = CW ROTATION ABOUT Y 

Tz (ex: ) = CCW ROTATION ABOUT Z 
. 

the vectors X, Y, Z, X, Y, and Z can be readily expressed in terms of the 
known vectors R, S, W, v and V Ll ~ • 

X 

y 

Z: 

R 

s 

w 

. 
X . 
y 
• 
2 

= 

72 (-.fl..} 7x (-i..) 72 [-(e+w~ 

72 (- 90+ <J") 

I/ 

V Ll lJ' 

w 

R 

s 
w 

= '2 {-JL) Tx (-i) '2 [-90 -(0+w)+ ;,,] 

V 

- T~ V.17J" 

w 

- T 

V 

w 

R 

s 

w 

Now, combining the transformations and utilizing subscripts I and R to denote 
inertial and rotating, respectively, the transformation becomes: 
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Similarly, if other frames of reference are desired, the transformation can , 
be readily constructed by performing a series of rotations (in an inverse 
manner) from the inertial frame to any other frame. 

2.4.2.2.3.2 Transition Matrices from Universal Variables (Inertial Coordinates). 
The equations of conic motion in terms of the so-called universal variables 
of Dr. S. Herrick will be utilized to develop another means of defining the 
partial derivatives of the components of position and velocity at any given 
time (on the conic section) relative to the components of position and 
velocity at some other arbitrary epoch. This task will be performed to 
avoid limiting cases and to simplify the development when interest is 
centered with inertial coordinates. The development will utilize a formu
lation valid for a non-rotating coordinate system and will be based on the 
development presented in the discussion of the two-body problem (Ref. l.J). 
The required expressions for this analysis are: 

where 

--r- = I~ + ? so (4.76a) 

(4.76b) -s 

f 

t 
f . 
<J-

~ i 'ro + j-so 

= 1-o/i Yo 

:: <"' - u 

= - s/v-ro 
.., 

= 1- e/r 
~ ~k A A 
r = inertial position vector= XX+ YY + ZZ 

s = normalized velocity vector = vjvµ = c xx+ YY-t i! 2) v:u-
A 

X ~ is the X unit vector. (This notation is adopted to avoid 
confusion with a variable to be defined subsequently) 

A 

= a.. ( 1 - eos x) a. ( 1- eos h x) e = 
..., 

a_ !/2 (X -5/N X) ELL/PT/t (-a)¾ ('X-SINh X) HYPERBOLIC 
{/ = = 

MOTION MOTION 

" a. '12. ( SIN X) (- a.JY2. ( SIN h X) s = 
.II a. 1/z X == ( - a. ) r'z X X = 

a. == - Yoe. 
~ -Do = 'f"o · .So 

co ::: I+ )'o oC 

X = E-E0 (EL/PT/I! MOTION) F-F0 ( HYPERBOLIC MOTION) 
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The first step in obtaining the desired partial derivatives involves 
differentiation of the equations for rands with respect to the components 
of r ands. This task will be drastically simplified if full advantage is 
takeg of th~ similar form of these derivatives at the outset. Thus, a short
hand notation will be adopted in that u and v (u and v) can assume the values 
of s, Y, and z (x, Y, and z). 

01.1 - Lr +u ,H +u ;),_ 
- - Touv o JVo o ..,.,,, 
d~ v~ 

(4.77a) 

au = 9 OlJv + U0 iH -f iJ ~ (4.77b) 
av ~~ oli'0 

ou = f Ouv + Uo ~j + U
0
£$ (4.77c) 

oVo ;J Vo ;) L6 
(4.77d) 

~ti :. j 6uv f lfo?lf f U U 
oVo Jvo o o~ 

where 

0uv =o U =t=V 

= I u =-II 

Thusi the problem has reduced itsel_! to one of obtaining the derivatives 
off, g, f, and g with respect tor ands. This task will in turn be simpli
fied if a set of intermediate parameters is selected, since the x ... z 
do not appear explicitly in the equations for f •.. g. The set to be 
utilized is s~ggested by the equation for the magnitude of r in this set of 
variables. 

r = r; -r D 0 s f ( It r;, <X.) c 
= F ( ~ J t>o , o< ) 

Having selected the intermediate variables, the next task is the 
differentiation off, g, f, and g. 
For f 

A 

c)f -ro oc. re. 
ar;, = Jr;, r. 2 
0 

M " ::: -_J_ a c. 
c)Do ro o Do 

i)f = -J.. 08 
Jc/\ ro i),:;t, 
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A 

For g ~ = <)-Y - ~ 
Jr;, cl Ii, J ro (4.79a) 

A 

~ - ?JY au - - --
dDo dDo 'a- Do (4.79b) 

Est. = a,.,, au 
Jo. ~~ a"'- (4.79c) 

For f A 

~f = - ( r r0 ) ; ;
0 

t S ( r tr;, ~:; ) (4.80a) oro ( rr
0 

) 2 

af as "' 'or (4.80b) = -( rr0 ) TD. + 5 ( ro --;u,
0 

) 

~Do ( r r0 )2 
;'\ 

s(I:~) (4.8Uc) )f a.s 
= -(rt'o) oO\ + 

(J "OI. ac,.. 
( r ro )z 

' a9 A 

and for g _ r oc +c.qf' 
=- aro ar(J 

cro rZ 
(4.81a) 

(4.81b) 

(4.81c) 

A A .A 
Now, attention turns to the derivatives of C, S, U, 1", etc., with 

respect to r 0 , D0 , o\ • 

I\ 
For C 

(4.82a) 

(4.82b) 

(4.82c) 

A 

For U (4.83a) 

(4.83b) 

(4.83c) 
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For S 

For 'I 

and for r 

A 

"c)S' 
=Uri)'.'. 

ct 
oro J.ro 

I\ I\ 
~ .5 = c..o-:t K ~ 
d Do ;)Do 

?Js = doc 

~,,,_ - 0 
'o-Do -

C,,1X1 X at 
aOI'. -,~ ~~a,3/z 

ar=.!_a3~t = ..!..ar 
00'. 2 2 

(4.84a) 

(4.84b) 

(4.84c) 

(4.85a) 

(4.85b) 

(4.85c) 

(4.86a) 

(4.86b) 

(4.86c) 

/\ 
The final set of partials required is now recognized to be that of X 

with respect tor, D and O.. • This set requires the equation for time 
(analogous to Kep~er'~ equation) be differentiated as follows: 

"\~ /\ A A 

v Q t = T = fo X. -t Do C + (1 f o< t;,) l/ 

"' for ~x 
aro 

(4 .8?a) 
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/'\ 

for oX 
oDo 

/\ 

for ~X 
d,:1, 

0 = 

A 

;;it= 
JD,, 

.I\ A 
,A 

A C "oU r, ;n:: +c f D ac. f 
0 

JDo 
0 

JDo 
0 

J Do 

A 

C (4.87b) 
-7 

.,,..._ A. ..... 

=- U(rot JCoa)-1D0 (C 0 )f;;(r) 
(4.8'(c) 

= - ;{D(coo. f ,;,) t- ~(o"c -r" £)}= 

Now, substituting back into the previous expressions and col~ectin& 
terms, the derivatives required to compute the partials off, g, f and g 
with respect to the intermediate parameters are: 

!\ 
For C 

,\ 

For U 

A 

For S 

A " ..... c)U 
= _cs 

d ro r 

A ,.. 2 

~= -~ 
3Do r 

" A 

3 Oa. 'JV - _c. t + Jot- - r 2 

:? = -cc-:1-X..r 

(4.88a) 

(4.88b) 

(4 .88c) 

(4.89a) 

(4.89b) 

= Uq (4.89c) 

(4.90a) 

(4.9Ub) 

(4.9Uc) 
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For r 

(4.91a) 

(4.91b) 

(4.91c) 

Finally, the required partials off, g, f, and g with respect to r
0

, 
D

0
, and ex.. are: 

For f 

For g 

For f 

For g 

~= 
d- ro 

~= 
c)Do 

_.... A 

SC 
r 
AZ 
C. 

r 
A .A 

~= 
00{ 

..L a[-r- 3 uJ + ~ Y'. 
2 r Qt; 

. /\ 

~~o = ) r/ [ r 2 + r;, ( r U>-:I Y. + ro f) J 

"<:J{ = _I_ 5 
Jo< rr;, "" 

A 

= _ rCo<i f C r"I 

r2 
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(4.93a) 

(4.93b) 

(4.93c) 

(4.94a) 

(4.94b) 

(4.94c) 

(4.95a) 

(4.95b) 

(4.95c) 



Thus, the only remaining steps at this pojnt are to provide the 
derivatives of the intermediate set of parameters with respect to the 
componP,nts of r

0 
and¾, to construct the derivatives off, F, f, and g with 

respect to~ and s
0

, and to relate the results to the parameters rand v. 
The first step is accomplished b:v referring; to the definitions of r 0 , D0 , and 
0.. 

2. 
Y-o 

bDo 
a.>< l 

ex: = 

~ 
~ Xi 

x~ 
l 

Xi 

= Si 

5 
...... 

·S - 2 

Y-o 

2 Xi 
=- r;, ~ 

52 = 
0 

3 

L 
i = I 

= Si 

5~ 
L 

'T'he second step is acco'P'llplished throu!'!h the medium of the chain rn1e, i.e., 

= +- 3 Do 

etc., and the third anrl. final step is employed to remove the normalization 
factor applied to the corr.ponents of the ve 1 ori t:v. Since 

s = v 
./7i" 

c1s=_1_ 
✓J:i 

the desired matrix is 

dv 

.... 
dV 

(4.96) 
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2 .l~ .2 .1 Approximate V.ethod of Inrludj ni:r the Effects of 'l'ra.iectorv Perturbatj ons 

If the tra.iectorv itself is being generated with precision (i.e., all 
perturbative forces are being integrated in such a ma:r.ner that their net 
effect is accurately known), two simple means exist for compensatinP.' for the 
deJetion of the effects of the variations in the perturbin_g acce1erations 
in the computation of the transition matrix aloni:r the true tra.1ectnry. 'T'he 
first and most accurate of the two schemes is obtained by considerini;,; the 
true trajectory to be composed of a series of conic arcs, one terminal 
(i.e., r, v) of which matches the true tra,jectory at the epoch corresponding 
to the terminal selected. Under this assumption, the total transition matrix 
relatinp the nresent epoch and some arbitrary initial epoch is obtained by 
forming the product of the most recent transition matrix Lrelating t and 
tn-1; cf (t 0 , t 0 ) = i], anrl that formed using the present values of r 0 anrl v 
and a propagation time equal t0 the step size of the num~rj ra1 j nt.egration. 
'T'hat is, 

This method does not involve integration but is, nonetheless, subject to 
error accumulation due to the fact that loss of si1<riifica.nce can result in 
the series of required matrix multiplications. Thus, improved accuracy may 
result if larger steps are taken for the purpose of incrementing f (t, t ) 
{i.e., increment Cf (t, t ) each nth integration stey. It is importanr to 
note, however, that the lirJtinr assumption inherent in the equations of 
motion will never admit great precision in this approach. Thus, extremely 
involved logic to determine the proper propagation time appears unwarranted. 

A second, less accurate, approximatj on is obtained bv considerina onlv 
the two terminals r ' V ' t and r ' V ' T. For this case' two estimates of 

0 0 0 the transition matrix can be generated. The first is obtained simply bv 
evaluating one of the conic matrices for the conrlition r0 , v0 , T-t 0 , i.e., 

.... ~ T The seconrl estimate is obtained bv considering the tra.iectory frorr. rr, vrr, 
in ne.flative time L-i.e., - ('T' - t~)__7 

Oz (T) 

Thus, 

.... 
8 2 ( T) = 
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These two estimates can now be combined by weighing them in some fashion. 
For the case of equal weights 

This second procedure is easily mechanized if the transition matrices 
relate inertial errors, since the analytic inverse theorem can be applied to 
avoid numerical problems in the process. In fact, this theorem can be 
utilized even in those cases where rotating coordinates are employed when it 
is noted that the rotating and inertial matrices are related as follows: 

where S (t) is an orthogonal transformation. Thus, 

The accuracy of the second technique is somewhat unkno .. m. From physical 
reasoning of the case in which T-t is less than one period, it can be argued 
that the inclusion of the second estimate will provide an improvement in the 
accuracy. However, a measure of the improvement is difficult to construct 
since the magnitude of the perturbative displacement {secular plus periodic; 
resulting from the non-central forces of the problem) from the conic trajec
tory varies from point to point along the trajectory. For the case where T-t0 
is greater than one period, the same effects exist. In addition, errors are 
introduced due to the fact that pure conic reference is being assumed for 
increasingly long intervals of time. 

Another family of approximations can, of course, be generated by com
bining the first two types. 
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2.5 DATA WEIGHTING 

ThF> imnlF>mF>ntRtion of' thF> va.rioui:; est:lmat.o,..s +.ha+. A.,..e introduced in this 
mono1<,..Anh reaui ,..es a knowledge of thF> covari a.n,..e mR.t.rix of the observA.blF>s. 
This covariance matrjx can be determined from thF> covariance matrices of in
strument errori:: Rl"ld nav:igat.ion model e,..rors. This se<:!tion will nresF>Ylt 
the general exT1ression that. relates thesF> covari ::in,..e m,,.t,..i ces. The foJ lowi ri1< 

sect.i.nn (2.5.2) will give th"' det,ailF>d F>xo,..essions for eAch t.ynF> of n,airip;,:i+inn 
measurement. that will exnlicjt]y defjne this cova,..iance relationship for 
any combination of naviAAtion measurement. 

When a n,:i,vigation observation is made, it will djft'er from a predet.e,..
mined nominal measuremF>nt becA.use of' several reA.sons. First, t.hF> vehi ,..le 
will be off the nominal tra,jectory by some amount in both position and 
veloctt.y. SPcond. t.he constants of the navigation model that were used to 
CRlculate the nominal rr.easurement a,..e t.hemselves j 11 error, becaui::e of uncer
tR:l.nties in thF> physical dimensions and uncertainties in celestiA1 body 
positions. Finally, t.he uncertajrity of the instrumen+, t.hqt. is usF>d for the 
measurement will coni::tribute to the difference in the measurement. 

Since all of the sources of the deviations are small and t.he nominal 
meR.s urement j s a.s s umed to be known, the measurement mA.y be expanded j Y\. a 
Taylor Series about the nominal vaJue by includjng derivatjves with respPct 
to all of the variablF's thA.t. jnfluence the measuremPnt. Furthermo,..e, sjnce 
the contrjbution of each deviation source iR very small, the higher order 
terms may be neglected jn the Taylor Series. Lettjng qi be the measurement 
of interest, the Taylor Series can now be expressed as ,, .. = ffJ. r ~ dx .,.. 

~dM .,. ~ cl€, (5.1) 
o d~ - ?,/'1 - J€.· _ ... 

3: 

where qjo is the nominal value of the measurement 

dX is the true state vector deviation 
ai4 is a vector comoosed of the model uncertainties 
d~ i is the instrument measurement error associated with 4i 
X is the state vector 
M is the vector composed of the navigation model pa,..ameters 
€· -L 

js the vector of measurement parameters 

Eouatjon (5.1) can be reco~ized R,s a more general fo:rm of the position 
devia,t.ion eouRtion t.hat was present,Pd in a previous monograph, RF>f'erence 1.1. 
It is recalled that a deviation in some observation from a. nominal value 
could be related to the oosition deviat.jon as follows: 

(5.2) 
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where oq is an observation vector composed of the 
6% :c: ai - qio 
6R = position deviation from nominal 

6q 's i 

A comnarison of Equations (5.1) and (5.2) reveals that EqU.R.tion (5.2) 
corresponds to the second term of Equation (5.1), where the state vector 
deviation is considered to be position deviation only. The significance of 
all of terms in Eauation (5.1) should now be apparent. The first term is 
merely a. predetermined quantity that gives the value of the auantity under 
perfect conditions, 1.e., that value that would be measured if the vehicle 
were exactly on the nominal trajectory, all positions a.nd dimensions of 
objects uRed for the observation were known exactly, and the instrument 
used for the measurement were error free. The second term corresponds to 
the deviat.i ons in the measurement that are due to perturbations of the 
state vector about the ~onrlnal trajectory. The third term represents all 
measuremi=-nt deviAtions thR.t are introduced b'::I uncertainties i.n the navii;i;Rt,ion 
model. The number of' elements in this vector depends on the number of uncer
tainties in the mod.el that. have a direct first order effP.ct on thP mP.RRurement. 
Finally, thf' lA st tPT'Jll in Eauation ( 5. 1) rePresPnts the error due to the 
uncertRintiPs in the instrument. that is used for the ith measurement. In 
cases where the navigation observable and the measured quantity are the same, 
the vector ~'3 will merely contain a "one" in the appropriate location. 

o§. 

However. if the measured aUR.n+.i ty and the naviga.ti on observable differ, as 
in ra.dR.r measurements where phf1.se and freouency measurements are indirect . ~ range and range-rate measurements, then the vector cG must contain the 
appropriate partial derivative to account for the uncertainty in the sensor. 

If a series of navigation measuremPnts is made. Eau.at.ion (5.1) can be 
extended to a vector eaURtion. 

(5.3) 

It shouJ d be notPd that the model uncertainty term is now shown as the pro-
duct of a. mR.trix, !i:.. , and a vector dM. This notR.tion can be adopted because 

oM 

model uncertainties, even though they all may not be used for a particular 
observation, may be entered into a column vector. If a particular model 
uncertainty is not used for an obse:rvation, then the !1: matrix will con-
tain zeroes in the appropriate locations. 0 M 

The covariance matrix for g_ can be found by employing the expected 
value theorem. (See Appendix A.) The result is 

{5.4) 
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Enuation (5.4) can be evaluated once the expected value of a is determined. 
This step can be accom"Olished by takill@: the expected value of Equation 
(5.3), i.e., 

(5.5) 

Sjnce 9o i.s a calculated nominal vector, its expected value is ~- Further, 
the eXPect.ed value of dX is dX because dX is the t-rue deviat.i on. The last 
two terms in Equation T5.5) RXe zero, since dM and d.E are random variables 
with zero mean (by choice of the nominal values of the para.meters). It 
should be noted that the result obtai.ned from Eauation (5.5) after the 
expected value is ta.ken, js consistent with Equation (5.2) which assumes 
the true values of the measurements and ~osition deviation are known, i.e., 

E(.$.) = J_ (5.6) 

or 

Equation (5.4) can now be eva.luated if the auantity a - E (CJ.) is expressed 
as 

Ct -£($..) = <2
0 

.,. :$.. d.K_ t ?:i:-d!:1 t- ?..J: dt - 120 - oj.. dx 
-1;- ~ ol Jr:J. d€ - ...II.!= ax -

- - (5.7) 
:: 

The result i.s 

cov ($) = £[Bdl1 cft1...r8rt8<il:::J~rc 7+Cd€ dM 7B 7 tcd~ d€ 7 c 7 ] (5.8) 

where t3 : ~ 
dl1 

C =- ;)j. 
ae 

Before proceeding, it should be noted that cross correlations between the 
vectors dM and d, usually do not exist, since components of these two 
vectors are notaffected by one another. This statement becomes evident 
from an examination of the following chart that shows the nature of any 
correlation that would exist if the vectors were not uncorrelated. 
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Affected Vector 

I~ dM dE - -
Influences of uncertainties in 
t.he navigation model on the 

dM X accuracy of the instruments used - in the measurement. 

Influenr.e of instrument uncertain-
ti es on the uncert.ai nti es of the 

dE. navigation model. X -

Since there is no cross correlA.tion between dM and dt the exnected 
value of any l"rOSS nroduct term in Equation (5.8)wi.ll bethe null matrix. 
Hence, the covariance of' S\- CA.Tl be written A.s 

0 

= E[BdMdMr.B 7 ]+-E[8~rc 7
] 

0 

+E~rB 7
] +£[Cd€ d£

7
C'] 

= £ [.BdM dl'1 7 B 7
] +E[Cd€ d€ 7

C 7
] 

(5.9) 

J 

• 

Now, the covariance matri.x of the observables can be relA.ted to the covariance 
matrir.es of the navigA.tion model uncertainties and sensor uncertainties as 
follows: 

(5.10) 

The IDA.trices B and C have bePn defirn:'!d to be matrices of partial derivA.
tives. In the following sect.ion, 2.5.2, a. deta.iled analysis thAt will define 
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the elements of the Band C matrices will be presented for each type of 
navigation measurement and sensor developed in Reference 1.1. The covariance 
matrices for the navigation model and sensors can be constructed from the 
various uncertainties that are encountered in the particular measurements 
and sensors being used in the observations. Following the derivation of the 
elements of the Band C matrices for a particular measurement, a sample 
problem will be presented in Section 2.5.4 to demonstrate how the complete 
Band C matrices are constructed from several measurements and how the 
covariance matrices of the model and sensor uncertainties are determined. 

2.5.2 Navigation Measurement Uncertainties 

This section will develop the detailed expressions that represent the 
Banc C matrices introduced earlier. The expressions for the navigation 
model uncertainty will be presented in Section 2.5.2.1 and those for the 
sensor uncertainties in Section 2.5.2.2. It should be noted that each 
measurement (i.e., observable) defines but a row of these matrices; thus 
simultaneous measurement of several quantities requires that successive rows 
be added to both matrices. 

2.5.2.1 Navigation Model Uncertainties 

The following section will present the expressions for the navigation 
observable uncertainties as related to the navigation model uncertainties. 
The terms developed herein will be elements of the B matrix, i.e., they are 
the partial derivatives of the navigation observables with respect to the 
model uncertainties. The terminology was introduced in Reference 1.1. 

2. 5. 2 .1.1 Planet Diameter Measurement 

The planet diameter measurement as discussed in a previous monograph 
(Reference 1.1), assumed that the physical dimensions of the model were known 
exactly, so the deviations from the nominal trajectory could be found by taking 
first order variations of the angle measurement with respect to position 
deviation in the radial direction. If consideration is to be given to 
uncertainties in the model, the partial derivatives of the angle measured 
with respect to planet position and planet diameter must be found and be 
incorporated into the B matrix. 

Consider the following planet.diameter measurement: 

g 
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If the planet were in a slightly different Position than anticipated and 
all else were exactly correct, then a first order change in the angle 
measurement due to this plane position uncertainty could be shown as 
follows: 

...4-
' Q 

_,,...... .,,,,,..../ \ '\ .,,,,,.... \ - ' I 
(IL z ' 

/ 

Since the original relationship that des~ribP.s the exact measurement is 

. A 
~2 = (c;.11) 

the variat.ion o-r A w:i t.h resnect to Z can be determined by str.ai 12:htforwR.rd 
diff'e-rentiation. The same techniaue cA.n be used t0 find t,hP. fjrst order 
variation of A with resnect to the uncertainty in the planet di.a.meter. 
The di-fferentiatjon is shown below: 

(5.12) 

Hence, the totR.l model uncertainty in the measure,:;, angle is 

dA = -Odz + dO 

The quantity d~ is the projection of the bl vector in the rR<·J_ial direction. 
So d .z can be writ ten as !n · 4.1 , i:i.nd now 
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-f dD 
(5.14) 

Eauation (5.14) is the final ex:oressjon for the measurement uncerti:i.int.v 
due to the navigat. ion model uncertai. nt.y in +,he PlA.ne+. diame+.er measurement. 

The previ.ous A.nal,ysis Also assumed a -oerf'ect.ly snhertcA.l -oli:i.ne-t-.. 
However, signif:lcA.nt di.ffi.cult.y is encountered if A:n analysi.s thR.t col"lsi.de-r.s 
planet flattening is attempted. The difftculty stems from the need to 
express j_n an R.nalytical manner the general angle subtended by A.Il ellipsoid 
from a ooint in space. An a.nnrox;111A,+-e AnA.lysts of the flA.ttened PlA.net 
meA.surement can be performed by defining an eouivi::i.lent sphere as shown in 
the followi.ng sketch: 

' ---
\ 

- y -, 
-

center of equivalent circle 

In this sket.ch, a circle is defined in the subtended angle that is formed 
by the flattened PlA.net. In order for this circle to be as close to the 
flR.ttened planet in its diameter mea..c;urement chA.racteristics, it should 
have its center as close as possible to the center of the planet. In 
general, the two center points will not coincide. Therefore, t.hP. l'.!ircle 
centernust. be defined to be at a ooint such that a radius that is nerpendi.culRr 
to a line of sigh+. PAsses through the center point of the planet. An 
uncertainty in the relative attitude between the observatjon point and the 
planet would introduce an uncertainty in the diameter of the ooui.valent circle 
to be used. Furthermore, the flattening will cause a different measurement 
for every different plane that is defined by the lines of sight of the 
measuremP.nt of the ell i.psoid. Such an a-pnroxjmate analysis would be 
acceptable if the eautvalent planet diameter uncertainties were known for 
some nredetermined nominal model. Usually, however, a continuous mathematical 
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relationship between the obser.vable and the unr.ertajnty is desired so that 
a general case can be t~eated. The derivation of this relationship is ouite 
le-nl'!+.hv And hfls been nl<>r.Pd -In Anpendi.., D f'or r.ompletenesfil. 

2 . 5 . 2 . 1. 2 The Ang le Between t.he ti Close ti Bodi es 

The mndel and sensor unr>ertaint.i PS t.hat inf'luence t.he measurement of 
the Mpi:le between two close bodies will now be considered. (There are 
uncertainties due to the fact that the positions of thP bodies "re not 
known exactly, and due to the fact that the sensor has a limited accuracy). 
First, the uncertainties in the angle due to the uncertainties in the bo~v 
nositions will be coTisidered. If P.Rt"h body nositioTI deviation vect.or is 
resolved ; nt.o <"onrnonent.s in t.he ?!, And ?1z di -rectinTis. i=md Pach is rel,,.ted 
to a <"h<>ngP in th,=, angJ e me<i suremPnt. ; t i s evident t.hA.t. the comnonPnts 
that are perpPndicular to th«:> li11es-of-sight have a contribution to the 
anglP measurement. (Reference 1. 1 defined I'/, (Vz) to be a unit VP.ct.or 
pernendicular to j.(n and in the nlane dete:nnined by the R.ngle meA.surement.) 
Those that are narallel to t.he line-of-sight have TIO r.ontribution. From 
the followiTIQ' s1<-etc-h. the bod,v position uncertainties, 1:,.y A.nd esz, can be 
seen to have R.n influen<"e dA on A, wherP 

dA = f 
l'J, -~ 

y 

Body 1 

UncertaintiPs due to body 
nosition uncertainties 

(5.15) 

Since the sensor device measures the angle directly, the uncertainty in the 
angle duP. to the sensor uncert.aintv is just the Amount in the sensor. 
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2.5.2,1.3 The Angle Between a "Close11 Body and a Star 

The inaccuracies associated with the measurement of the angle between 
a close celestial body and a star are the uncertainty in the position of 
the celestial body, the uncertainty in the direction of the star, and the 
uncertainty in the instrument maki,ng the measurement. However, only the 
component of the body position uncertainty vector that is perpendicular to 
line-of-sight to the body has a direct influence of the angle measurement. 
Therefore, the total model uncertainty in this measurement is 

where the parameters are defined by the following sketch: 

"Close11 Body 

~ ~) 

Angle of 
Uncertainty in 
Planet Position 

2.5.2.1.4 Star Elevation Measurement 

(5.16) 

* 

The inaccuracies associated with the star elevation measurement are 
the planet diameter, planet position, and star direction. From a previous 
monograph, Reference 1.1, the geometry of the star elevation measurement 
is recalled to be: 
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Thus, if an error in the planet diameter is considered, the corresponding 
error in the elevation angle can be found by keeping all of the other para
meters of the measurement fixed. The geometry for the diameter uncertainty 
analysis is shown in the following sketch: 
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Since changes in D do not change the magnitude of the angle (A+ t ), then 
it can be said that .1 A = -6 l5 Hence, the uncertainty in the angle 
A is the same as the uncertainty in t. The relationship between the 
uncertainty in O and D can be found from the following relationship: 

~ 0 = D 
% 

(5.17) 

Now, 

a~ - I -oD z Ur.I cf (5.18) 

The uncertainty in the elevation angle due to the planet diameter uncertainty 
can now be expressed as 

(5.19) 

Another uncertainty that will influence the elevation angle measurement 
is the uncertainty in the planet position. The following sketch shows the 
geometry of this condition with ~z being the planet position uncertainty 
vector and all other parameters fixed to their nominal values. 

f_ 
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Here, the vector !::.Z can be resolved into components in the z and c!. 
directions. The component in the£._ direction will influenc~ angle A, but 
the component in the Z direction will not. Hence, the uncertainty in A 
due to the uncertainty in the planet position is 

(LJA) :: 
z 

(5.20) 

Any uncertainties in the star direction or the instrument have a 
direct influence on the measurement and require no further analysis. The 
total model uncertainty in the star elevation measurement is thus: 

(5.21) 

2.5.2.1.5 Star Occulation Measurement 

The model uncertainties that influence the star occultation measurement 
include the planet position, the planet velocity, the vehicle velocity, the 
point of tangency during occultation, and the star direction. The effect 
of each uncertainty will be investigated independently in order that the 
effective partial differential change can be found. 

First, consider a change in thep..anet position with all other para
meters being exact. The following sketch shows the geometry: 

\ I 

\ - ./ 

\ ~At 

\ 
\ 
\ 
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During the change in time between the expected and actual occultation, the 
vehicle moved a distance~ ~t • The planet, being slightly off the expected 
position, moved a distance '!p fa • Now, an equation relating the components 
in thee. direction can be written as 

(5.22) 

or 

(5.23) 

Thus, the uncertainty in the occultation time that is due to the uncertainty 
in the planet position can be written as 

(5 .24) 

where 

The following sketch shows the effect of an uncertainty in the planet 
velocity on the occultation time: 

\ 

\ 

Vt:d \ 
\ 

\ 
e. 
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A completely analogous derivation can be perfonned for this case. Here 
ti'!£ 6f is the additional distance that the planet travels during the 
time difference between the expected and the actual occultation. 

The equation for the components in the B.. direction becomes: 

P· Vllt = P· Ypllt + f•L!JVp l::.t (5.25) 

In order to detennine the differential that 4Yi, introduces in c.t. , the 
occultation time deviation, it is necessary to find the deviation without 

• 

l:i'!J?.. • This requirement introduces a problem since there would be no time 
deviation if all parameters were exactly correct during the occultation. 
Yet,the partial differential change is desired, requiring that all parameters 
other than those being considered be assumed known. The paradox can be 
circumvented if a fictitious 6t is assumed to exist. c5t is the result 
of some parameter being off nominal. This parameter will not be specified 
since the parameter being considered, .1 V;, , has already been specified. 
With b. Vp :Q , equation (5.25) becomes 

f · V 8t = P · "!_e St (5.26) 

where St is the fictitious time deviation. The influence of LlYp on Llt. 
can now be detennined by subtracting Equation (5.26) from Equation (5.25). 
The result is 

,.O•V(Llt-St) = P· Vp(l::.t-ot) + f: ·l::.Vp llt ( 5. 27) 

The quantity (t.t -St) can be considered to be the uncertainty in the 
occultation time deviation (M) due to the uncertainty in the planet 
velocity. v, 

(5.28) 

Where 

The uncertainty in the vehicle velocity can be handled in a manner 
similar to that of the planet velocity. The following sketch shows the 
geometry: 
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The equation for the components in the .e_ direction becomes 

P-VLlt 1-/0•LlVLlt= P-v. At - - - - - J!~ (5.29) 

For no inaccuracy in Y, the previous expression becomes 

E'·VBt = P·V. ot 
- - - :P (5.30) 

where 8t is again the fictitious time deviation discussed earlier. The 
uncertainty in the time deviation due to the vehicle velocity uncertainty 
can now be found as before by the difference between Equations (5.30) and 
(5.29). Solving for the time difference ( lit -ot ), the result is 

(6t) = (llt-5t)= e-~ Llt. 
V p. !'.a_ (5.31) 

If the actual point of tangency differs from the nominal point of 
tangency during the occultation time, a correction term for this effect 
could be included in the ti.Ille deviation equation. This is pointed out in 
Reference l.l. Since the point of tangency cannot be determined exactly, 
there is an uncertainty in the time deviation due to this tangent point 
uncertainty. The component of the time deviation, St , due to the change 
of the point of tangency is shown in Reference 1.1 to be 
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P· (£ -E,) 
(St) == - - i -

E f:_•~ 
(5 .32) 

If there are uncertainties involved with an exact determination of E and 
f, , then the difference vector, ( l.-. -g-, ), has a corresponding-~cer-

tajnty, 6E • Associated with ~ is a time uncertainty ( 6t )'" • The 
final expression for the deviation time uncertainty due to the taneent 
point uncertainty can be written immediately from Equation (5.32) as 

(lH.) = £·A£ 
• P·\I. 

- .:a 

(5.33) 

The last model error to be considered for the star occultation measure
ment is the uncertainty in the direction of the star used for the occultation. 
The following sketch illustrates how such an uncertajnty can influence the 
occult.ation time deviation uncertainty: 

Once again the fictitious time deviation { St ) used earlier is emrloyed 
so that the partial differential change can be evaluated. Note should be 
made of the fact that the vector between the two points of tangency is 
te~t, because all parameters other than star direction are assumed to be 

known exactly. If the components of the vectors in the~ direction are 
written, the following expression is obtained. 
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(5.34) 

where Aft is a vector from the observer to the point of tangency. As 
before, the expression that is obtained with no star direction uncertainty 
is 

(5.35) 

The difference in F_.quations (5.35) and (5.34) gives the time uncertainty 
due to the star direction uncertainty • 

or 

Hence, 

.fl · Y ( L1 t -8 t ) + / ~!:) /J.(X "' ~ • 'y p ( ~ t -5 t ) 

p. ( V- Vp )( ot -At) =f ~tf lJ.O< 

(~ ) = /A4./1Joc 
t ~ P·'}/. 

- R 

(5 .36) 

(5.37) 

Finally, the total uncertainty for the star occultation measurement is: 

!Jt=(flt)l+-(bt) t(llt) +(Llt) +(!Jt) 
Vp V E 0< 

t>, -Z ·P _t)· Ll V9 flt _{)•LlV Llt 
= -==-=- + -----'--- +- ---- t-

/~/ Ll oc 
+-

(_f, ¥.e_) (f· V,e) _t. Yfi 

2.5.2.l.6 Elevation-Azimuth Angle Measurement 

The model inaccuracies associated with the elevation and azimuth angle 
measurement are the inaccuracies in the planet position, landmark position, 
and the reference attitude of the platform from which the measurement is 
made. The following sketch illustrates the geometry for the case where the 
planet position is uncertain by an amounttJz (~ is a unit vector in the X-Y 
plane and is perpendicular to the pro,jection of 6 on the X-Y plane and~ is 
a unit vector in the elevation angle plane and is perpendicular to i). 
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/j,Z -

This 1:,.z can be resolved into components in the l?a, ~, and l. directions 
( _g_ is a vector from the vehicle to the planet center). The component 
in the z direction does not influence either of the two measurements, 
because its change is not seen from the origin. The component in the~ 
direction does have an influence on the measurement of A by an amount 

(5.38) 

Similarly, the component in theLlcdirection contributes to the measurement 
of E. 

Ile. • A 2 
(~£) : - -

l. I~ I 
(5.39) 

A completely analogous derivation can be performed for the uncertainty in 
the landmark position, .6.P • 

190 



.. 
i .), 

11' J 

The results are 

I?' . A p 
(1::,.£) = _e, -
t.: P 11 -1- !! I 

/ 

I ,_--...- I 
_.. _.. I 

I ..C:::: -----~ 

E - - --
~' - - -------

(5.40) 

where£; ~,and ~ are defined with respect to ~ +E. instead of l_ 

The uncertainty in the attitude of the platform is a function of the 
hardware limitations and the accuracy of the star directions with which 
the platfonn is aligned. These uncertainties can be expressed directly in 
terms of A and E and will not be discussed any further here. In summary, 

llA = {/iA)z + (/iA)P + /iAsu,,. 

'll • Ill 'Jl.' ·tlP = :.:.a. - +- :.:a. + Ii A 
I Z/ CIJ<J£ /!_ +~/ cux,£' STAR 
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2. 5.2.1. 7 Tracking Station Measurement 

An earth based tracking station has a position uncertainty that introduces 
corresponding uncertainties in both the position and velocity observables 
for the object that is being tracked. Since the station location is usually 
expressed in terms of altitude, latitude, and longitude, the uncertainty 
can best be described for present purposes in terms of the topodetic axis 
system described in Reference 5.1. In this system, the uncertainty in the 
altitude can be expressed in the Jro , or outward nonnal to spheroid 
model direction. The uncertainty in latitude and longitude can similarly 
be expressed in the x,

0 
or south and iTo or east directions respectively. 

Using the geocentric spherical coordinates to specify the station location, 
the uncertainty in the location can be written as 

where R~ = geocentric radial distance to station 
¢:C: = geocentric latitude of station 
AGG = geocentric longitude of station 

Now, the effect of this station location error on 
some object will be investigated. The position of the 
the vehicle are shown below in an inertial system such 
system of 1950.0. 

'l'RU'E 'fRACICillG 
STATI01' LOCA'l'IOB 

Y. 
GEso 
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the observation of 
tracking station and 
as the geoequatorial 
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The position of the vehicle can be expressed in terms of the topodetic 
system by specifying the range, azimuth and elevation, ( r,.

0
, AT0 , Ero ) • 

It is desired to find the partial differential changes in r: A and 
TD , TO 

£ro that are caused by t:, R, • This step can be accomplished by expressing 
the vehicle position in the true tracking station coordinate system and the 
nominal tracking station coordinate system. 

'fRUE '!RACKI~ 
S'fATIO'B POSITI0:1 

.lTI) 

VEHICLE 

IOMIIAL TRACKIIIG 
STAflOI POSI'HOX 

Although the topodetic systems that could be constructed at these two dis
tinct points would not align with each other, they are considered to be 
aligned in this analysis because the partial differential changes in range, 
azimuth, and elevation are desired as functions of the original displacement. 

The vectors of interest can now be expressed in one coordinate system 
and the influence of ti.QT can now be found. This is done by defining the 
unit vector 7J.A and !J.E as shown in the following sketch, and resolving 

6 QT into components in the directions of g_~ , 2'ZA , and ??t, • 
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11,,. and l?E are defined in a manner that is similar to the azimuth and 
elevation measurement. ~ is in the X-Y plane and is perpendicular to the 
projection of R~ on the X-Y plane. l/E is also perpendicular to g: , but 
in the plane of the elevation angle measurement. When Mr is resolved 
into components previously mentioned, the differential influences can be 
found as follows: 

(5.42a) 

fl£ = '?11 ·t1Rr 
TO /R' I 

-V 

(5.42b) 

(5.42c) 

The uncertainty in the velocity observables, due to the tracking 
station uncertainty, will now be considered. The geometry of the problem 
is shown in the following sketch. 
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Venic~ 

As before, there are two aligned coordinate systems for the true and 
-uncertain tracking station. The notation specifies these systems as being 
topodetic systems. Hence, they are fixed to the surface of the earth and 
experience the corresponding motion associated with the surface. The inertial 
reference is shown to be the geoequatorial system of 1950.0. 
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The object of the analysis is to dete:nnine any uncertainties in the 

velocity observables that are introduced by the tracking station location 
uncertainty. The observables that are necessary for a tracking station 
to determine velocity are the range, range-rate, elevation, elevation-rate, 
azimuth, and azimuth-rate. From the previous analysis on observable angle 
deviations, the true and uncertain observables can be related as follows: 

A\o = ATO +- AATO 

£;0 = £ +-/if TD TD (5.43) 
!<' 

V = Rv + lif<v 

Thus, the rates of these observables may be written as 

A ~o = Aro + t1Ar0 

·, -t +fl£ fro - TD ro 
(5.44) 

tl=R+~R V V V 

The quantities 6AT0 , .t.ET0 ,and AR.., may be considered the velocity 
observable deviations that are introduced by the station location uncertainty 
and may be determined from the time derivatives of F.,quations (5.42). Before 
the time derivatives can be taken, however, the time derivatives of the 
vectors & , /'IE , A I?, ,and J?.~ must be calculated. 

Since these vectors are expressed j_n a moving coordinate system, the 
total derivatives are 

where 

a~ 
?fa= ~t .,.~ X ?!a 

. - 8 ?!.r. 
-,,.,....-+GJX?1 
J at - ....E 

al!..Rr 
l!.R = -- + GJ X IJ.I? 
-

1 at - =:::::r 

nl o.i:1 Qr 
K. = ---C;;;.. + GJ X R~, 
~ ar _,, 

(5.45) 

i = the apparent rate of change seen by the moving observer in 
the topodetic system. 

~ = the rotation of the moving coordinate system which is the 
rotation of the earth in this case. 
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But, the apparent rate of change of~ and ,,?E can be easily found as 

where 

a??a = _A at .x ?7a. 

A = -A " 
TO "J 

. . 
D=A+£ n 
- - TO~ 

(5.46) 

Further, the vector ~ 1 is always fixed in the topodetic axis system. 
This corresponds to the fact that the true and uncertain stations are fixed 
in position with respect to each other in terms of their own coordinate system. 
Hence, 

04&-
- =0 at 

Finally, ~~ can be expressed in orthogonal components as follows 

R.' := 
V 

so that the vector 

= 

where 

can be found as 
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(5.47) 

(5 .48) 

(5.49) 



. ~ 

Now that the terms in the total derivative expressions of F,quation 
(5.45) have been defined, the differentiation of F,quations (5.43) may be 
performed. First, the uncertainty in the azimuth rate will be derived.. 
The expression of the azimuth deviation is 

So 

Di.A = ?!a ·A_& 
ro R' coo£ 

V TO 

= 

[~ -~] [-.Q: £(.4£«£J 1-R/ (Al<)£] 

[R; ~f] 

[~ -~Rr] [-R; £ .&« £ + R; ~ f] 
[R~ CQoE] l 

and finally, 

_[~ ·~r] [-R~ £ 4/dt E +R~ GOof] 
[R~ ~fl 

In a similar manner, the expression for a£ can be found. 

~ ·4.Br 
'1£ :::c R~ 

. ~ [~ · 4&] -l~ · ~1 k~ 
LlE = Ri + [R~] a 

= [~ . 4t. +- ~. LlQ T] 

I<~ 
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(5.51) 

(5.52) 



or 

The expression for AR can be obtained by differentiating 

:!_ [till · !<.'] . dt=~ 
t::..R = R' 

y 

[~·~] R: 
[,e~J2 

(5.53) 

(5.54) 

·, 
Using the expression for ~RT and g~ developed earlier, .:::l R becomes 

I (o& ) 
( ~ X ~) • ~ r ~. Tt .,. ~ I-~ 'fMr . ~} R~ 

~R = R' [R~J 2 (5.55) 
V 

:Equations (5.51, (5.53), and (5.55) are thus the final expressions for the 
uncertainty in the velocity observables due to the uncertainty in the 
tracking station location. 

2.5.-2.2 Sensor Uncertainties 

In the previous section, 2.5.2.1, the measurement accuracies were 
related to the navigation model dimension uncertainties. This section will 
present the relationships that are necessary in order to convert sensor 
uncertainties that are not originally expressed in terms of the navigation 
observables to navigation observable uncertainties. Several measurements 
are accomplished by indirectly measuring the phase or time delay of wave 
forms electronically. The uncertainties of these measurements are expressed 
in tenns of the measured quantity. If such infonnation is to be useful in 
detennining the covariance matrix of the observables, it must be converted 
to a measurement uncertainty in terms of the navigation observables. It is 
pointed out that many measurements are originally expressed in the corrected 
form, e.g., sextant a~gle measurements, and thus the conversion factor is 1. 

199 



The relationships derived in this section are those which are of use in deter
mining the C matrix as discussed in the General Theory, Section 2.5.1. 

2.5.2.2.1 Range Measurement Conversion 

In a previous monograph, Reference 1.1{ three basic methods of deter
mining range were discussed. They were: (lJ Pulse Time Dealy, (2) Fre
quency Modulated Continuous Wave Rada:r, and (3) Multiple Frequency Con
tinuous Wave Radar. The fjn;:il expressions relating the navigation observable, 
R, and the measured parameters are respectively: 

R ::. 
c(tz-t,) (Pulse Time Delay) (5.56a) z 

R 
fr C.. 

(FM-CW) (5.56b) = 
4.fn, Af 

R ... C A.¢ 
(Multiple Freq. CW)(5.56c) 

411(~ -!z) 

The three different technjques require three different types of 
measurement for the same navigation observable. In the first case, a time 
delay between the transmitted and reflected signal is measured. The accuracy 
with which the time of the occuranceof the leading edge of a pulse can be 
measured is discussed in Reference 1.1. For convenience, the result is 
repeated here 

lJ t. = (5.57) 

Hence, the accuracy of the range measurement can be related to the accuracy 
of the pulse measurement as 

4R = ~£1t (5.58) 

If the known accuracy of the radar is given in terms of ~R, then a conversion 
is not necessary. However, if the accuracy parameters are given in tenns 
of signal-to-noise ratios, then this relationship must be used in order to 
convert the accuracy to navigation observable terms. 

The second method of measuring range (FM-CW Radar) consists of measuring 
the beat frequency between the transmitted and reflected signal. The 
accuracy with which this frequency can be detennined is discussed in Reference 
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1.1. The range accuracy can thus be dete:md.ned as 

4R -= (5.59) 

where L'::.fr is the uncertainty of the beat frequency measurement. 

The third method of range measurement, Multiple Frequency C-W Radar, 
uses a phase measurement as the measured quantity. If the instrument uncertainty 
is known in terms of the phase measurement accuracy, F.,quation (5.56c) can be 
used to determine the range accuracy as 

(5.60) 

where ti(ti~Jis the uncertainty with which the instrument can measure phase. 

2.5.2.2.2 Range-Rate Measurement Conversion 

Reference 1.1 gives the range-rate measurement as 

(5.61) 

The accuracy of the range-r~te measurement, therefore, depends on the ability 
to measure Doppler frequency. Since the accuracy for the Doppler frequency 
is given in Reference 1.1, the accuracy of the range-rate measurement can 
be found from Equation (5.61) to be 

where A fd is the uncertainty in the Doppler frequency measurement. 

2.5.2.2.3 Angular Measurements 

(5.62) 

The uncertainties of most instruments that measure angles are usually 
expressed in terms of the navigation observables originally. In such cases 
the C matrix will contain l's in the appropriate locations so that the un
certainty in the navigation observable due to the instrument is identically 
the uncertainty in the instrument. Reference 1.1 gives the accuracy to be 
expected from the measurement of az:i.muth and elevation angles by radar devices. 
Most other- angle measuring devices have uncertainties that are intimately 
related to the features of the device. 
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2.5 .3 Accuracy ,Pata_ 

In order to use the weighting theory that has previously been discussed, 
it is necessary to have a knowledge of the uncertainties that are involved 
in the navigation model and the sensors that are being used for the particular 
observation. The purpose of this section is to provide sources of data that 
enable the determination of these uncertainties. When feasible, the actual 
data will be presented in the text. Many quantities, however, require extensive 
tables and can only be referenced. 

2.5.3.1 Planet Diameter Uncertainty 

The diameters of the planets in our solar system have been measured 
by many individuals. For convenience, the values adopted by R.M.L. Baker, 
Jr. are included in this section. A compilation of other available sources 
of planet diameter measurements is presented in Reference 5.4 alone with 
confidence levels. 

Planet Equatorial Diameter Polar Diameter 1/f 
(km) (km) 

Mercury 4,6&J .± 30 ? ? 

Venus 12,200 .± 20 ? ? 

Earth 6,378.150 .± .050 6,356. + ? 298.30 .± 0.05 -
Mars 6,830 .± 10 6,784 .± 24 150 .± 50 

Jupiter 142,750 .± 100 133,358 ± 100 15.2 .± 0.1 

Saturn 121,000 .± 100 109,138 ± 90 10.2 .±? 

Uranus h9, 700 .± 100 ? ? 

Neptune 50,000 ± 500 49,146 .± 500 58.5 +? -
Pluto 3,000 ± 1,000 ? ? 

F.arth I s Moon 1,738.57 .± 0.07 1,738.21 .± 0.07 
1,738.58 .± 0.07 

Since the purpose of this section is to provide sources of data that 
estimate the uncertainty in the navigation model, the detailed infonnation 
will not be discussed any further. Instead, the reader who is interested in 
more data as .determined by other individuals is referenced to Reference 5.3, 
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5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, and 5.15. 

2.5.3.2 Planet Position and Velocity Uncertainty 

The uncertainties associated with planet positions and velocities stem 
from the fact that the astrodynamical constants of the solar system are 
not known accurately. Realizing that the accuracy of these constants will 
continually be :improved, astronomers decided to "freezen the values of the 
astrodynamical constants in order that an Ephemeris could be written. This 
enabled them to construct tables of the planets that matched previous 
observations and predicted future observations. The uncertainties in the 
constants prohibited the use of standard units in these catalogs, for the 
values would have to be modified each t:ime a constant became known more 
accurately. Instead, a system of units that were independent of the uncertain 
constants was employed. This gave rise to the use of the astronomical unit. 
Although the astronomical unit is not known accurately in terms of conventional 
length measurements, it still provides an excellent parameter to describe 
the_ orbital behavior of the planets, because the relative motion of the bodies 
in our solar system can be defined very precisely in terms of this unit. 
Further, the Ephemeris is independent of the uncertainties of the astrodynamical 
constants. For these reasons~ the Ephemeris can contain an extremely precise 
and self consistent set of data that describes the motion of the planets. 

It should be noted that although the data in the Ephemeris is extremely 
precise, the accuracy with which it agrees with reality may not be as good. 
This observation results from the fact that the conversions to conventional 
measurements require a knowledge of the constants which are usually not known 
as accurately as the precision of the Ephemeris. In particular, the position 
of a planet may be known to an uncertainty in the eighth plance in terms of 
astronomical units, but the astronomical unit is only known to five places. 
The uncertainty in position can now be defined in terms of conventional units. 

A convenient way to visualize the relationship between the uncertainty 
in the astronomical unit and the planet positions is to consider the Ephemeris 
as a·catalog of the planets that differs from reality by some scale factor. 
The scale factor does not change the apparent angular motion of the planets, 
but does change their absolute positions and velocities. The uncertainty in 
the value of the astronomical unit can be thought of as a change in the scale 
of the solar system model. The accuracy of the model to reality depends on 
the accuracy of the astronomical unit. 

The predicted position of a planet for a navigation observation can be 
obtained from the Ephemeris in terms of astronomical units. The uncertainty 
in the astronomical unit can then be used in order to find the position 
uncertainty. This estimate of the position uncertainty is about the best that 
can be achieved with the Rphemeris. If the astronomical unit is someday 
known much more accurately, the method of computing the uncertainty from 
the Ephemeris will be the same, although the uncertainty will be smaller. 
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The uncertainty jn the velocity of a planet is needed in the star 
occultation measurement. A very good approximation can be made by assuming 
the orbit of the planet to be perfectly circular. Since the angular velocity 
is lmown, the uncertainty in the radius of the orbit can be used to calculate 
a very good estimate of the velocity uncertainty. Furthermore, the uncertainty 
in the direction of the velocity vector for circular orbits is not affected 
by variations in the rc>,dius. The reader interested in the exact expressions 
of elliptical orbit velodty sensUivities is referred to Table 3 in Section 
2.4 of thi.s monoeraph. It can be seen that the enumerated approximations are 
very good for most practical cases, if the appropriate values for the eccentricity 
are used. The follo~ring sketch illustrates the velocity uncertainty associated 
with the orbital radius uncertainty of a circular orbit. 

If the known mean aneular velocity of the planet about the sun is w, the 
tangential velocity of the planet is 

(5 .63) 

Now a small change in V that would be introduced by the uncertainties in the 
angular velocity and the radial distance can be found as 

.:1V::. RLJW -1- W/JR (5.64) 

where !).w is the uncertainty in the angular velocity of the planet 

L':,R is the uncertainty in the radial distance of the circular orbit 

The uncertainty in w will come from the limited precision that can be found 
in the Ephemeris, and the uncertainty in LlR is the result of the limited 
accuracy of the astronomical unit. References 5.3, 5.5, 5.6, 5.7, 5.ll, 5.12, 
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5.13, 5.16, 5.17, 5.18, 5.19, 5.20, 5.21, 5,22, 5.23 give some of the more 
recent determinations of the astronomical unit. At present, there is some 
discrepancy in the value for the astronomical unit calculated from radar 
reflections and dynamical theory. The consistency of the various radar 
measurements has been so good that astronomers interested in the best value 
of the astronomical unit have been impressed. Although some discrepancies 
have been explained, there are still differences between results of radar 
reflections and astronomical methods that cannot be explained. If successive 
results are obtained by the radar method under differing conditions and with 
planets other than Venus, then the radar method figure will probably be 
accepted as the standard figure. 

2.5.3.3 Star Direction Uncertainty 

The determination of the locations of stars in the celestial sphere 
is part of the field of Astrometry. It is beyond the scope of this monograph 
to discuss the error analysis in the star direction measurement. The reader 
interested in such analysis is referred to Reference 5.24. An order of 
magnitude estililate for the mean squared error in modern catalogs is 

and 

.± 0.008 to.± 0,010 for right ascension (units - sec. of time) 

!: 0,15 to.± 0.20 for declination (units - sec. of arc) 

'J'he unjt of measurement for right ascension is the second of time and 
of the declination is the second of arc. Since the earth rotates 15° in 
one hour, the second of time corresponds to about 15 seconds of arc. 

that 

Hence, 
as the the accuracy of the right ascension is of the same order of magnitude 

declination measurement. 

2.5.3.4 Tracking Station Location Uncertainty 

The tracking station location uncertainties for various tracking station 
locations are given in Reference 5.2. There are several coordinate systems 
that are used in order to specify the station location error. Reference 5.2 
uses the X-down range, Y-off range, and 2-verticle system. The system used 
in this monograph, however, is the topodetic coordinate system (Reference 5.1). 
This system was chosen because of itscompatibility with the radar range, 
azimuth, elevation system and its compatibility with the uncertainties expressed 
in terms of latitude, longitude and altitude. A suitable transformation can 
be used to find the station uncertainty in terms of the topodetic system 
if not originally expressed in these coordinates, 

2.5.4 Sample Problem 

For convenience, a sample problem will be presented in order that the 
theory of Section 2.5 can be associated with a practical problem. The 
problem will be simple in nature for the sake of clarity. The final result, 
of course, is the covariance matrix of the observables. 
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Consider the measurement of a planet diameter, the angle between a 
planet and a star, and the angle between two planets. 

/ 

!l. 

Assuming that the flattening effect is negligible, the uncertainty in 
the angle of the diameter measurement, A, is 

Rewriting this equatjon in terms of vector components yields 

A fx 
bf~ 

~fr 

~o ( 

Dm)( 
dB= f2cr.t (-i) 

D m~ 011"1z I ] 

f2.trl (-f) r~(:) Fun(f) 

(5.65) 

(5.66) 

where mx, ~, IDz are direction cosines of unit vector m. Similarly, the 
uncertainties in the planet-star and planet-planet measurement are 
respectively: 
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dA = [~ ] [ n · 6el 
I AAsrA-:-

(5.67) 

de [~ l [ 1 . A~ l 
; 0 -~ 

(5.68) 

:Expressed in terms of vector components, F,quations (5.67) and (5.68) yield 

[nx 
dA =re 

dC = [! ~ 
h 

.lz 0)( 

h ;) 

Ae.x 

lH2.1;1 

f).e~ 

;·] O!J , 

(5.69) 

A),i 

~/2:, 
I;}. .J, z 

(5.70) 
Lljx 

Aj!1 
Lljz 

Generally speaking, the measurement of angles A, B, and C will be at 
different epochs. But, if the covariance matrix of the observables is to be 
meaningful, it must be related to the covariance matrix of the model uncertain
ties when all components of the model uncertainty vector, gM, are related to 
the same epoch. However, it is noted that each of the dM vectors utilized 
(Equations 5.66, 5.69, 5.70) must be expressed in components of the particular 
epoch of the measurement. (The same is true of the direction cosines of the 
various unit vectors,~, n, m, and Q.) Since it is desired to have one model 
uncertainty vector and one model uncertainty covariance matrix, the components 
that change are related to an epoch at which error data is avail.able by a 
transition matrix for the particular uncertainty being considered. For instance, 
if all uncertainties in the position of the planet used in the diameter measure
ment are to be related to epoch I and the planet diameter measurement is taken 
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at epoch II, then 

t1 fx 

Ar..-· 
~ 

A-f2i 

b. fx 
A f~ 
t1 Fz 

= 

I 

.1 fx 

Af~ 

fl fz 
td)( 

Lll~ 
fl I? 

(5.71) 

lI 

where f ~I.n is the transition matrix for L:i.f from Epoch II to epoch I. 
Although the velocity uncertainty is of no concern in this error analysis, 
it must be included for epoch transition calculations because of the coupling 
to subsequent position errors. 

If the planet-star measurement is taken at epoch III and the planet
planet measurement at epoch IV, the following relations can be written: 

btex ~ex 
ll e':i Ll e.~ 
,6 el e A e1 -

~Im: (5. 72) 
Cl €.x 

-
/J. ex ) 

6e~ 6 e'j 
Ll €.z fJ e_l 

I 1Ir 

b,, /, X b,. J,1-

A J,'j .6 hi 
flJ,l -Ii .6 ,A z 

/). j,K 4' J:J :m: A ,1,1-- (5.73) 

fjj,!J Ll ~i 
b. ,I,~ ~ .J,z 

r N' 

208 



.L\ ~ )( 69,.: 

.6~'j ll~j 

A'3 z ~ A~z 
= q> :t;nr 6~)( A~;t 

6j'j 69} 

6 1l A~2 
I nr 

Equations (5.66), (5.69), and (5.70) can now be written as: 

om, 

~ ex 
11e~ 

/1 
~ ex. 

(Ax /')!I I), 
O O 0 6 ex 

dA=e e e Ll e~ 
6 e_l 
A AsrAR 

TII 

209 

(5.74) 

fl -fx 

L\~ 

l:!. {,,_ 

-r (5.75) .A X. 

6 i'j 
11 fz 
/JD 

(5.76) 



[ i, J.';j lz Ox 0~ Ol 
0 0 0] de=,;- 000 .,, ,J,, J ' J 

Now combining the notations yields 

Dtn!J t>1'J.z 

/"~{~) ;rzcu:,.(~) 

1 
/ ] •p I 0 

ooo!rU';t(~) -~~:---
o I / 
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t::, -Ax 
tJ. ~, 

tJ. .),L 

L:::. ..Ax 
f:J .),, 

/},. ),I 

t:.Jx (5.77) 
Li 'J_y 

l!.Jz . 
ll3x 

t:.J~ 
t:.jz 

nz: 

6.fx 

t:.+; 
t:. fa 

(5.78) t:. fx 

t:. f~ 
A t1 - - --
llD 
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[ R, ~ de-:: -;; .J, 

where 

n!f 
e 

I t'z 
0 0 o' ;, I 

f f _, 

4>:ir,I = q> r,n 

O,c , 

e e _, 

<Pnr I = <P:r. m , I 

• h -I 

g> .ll7,I = Q) i.,m-

1 , -J 

<P01,1 = Q>x,w 

000 

~ 
j 

o o oJ o.l 

'j 
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6. e)C 

A e'j 

A el 
6. ex 
~e~ 
b. e. 1. 

- - - - - --
:r 

ll hx 

I). J,!J 

LL~2 

I 

~~ I 10 
ml' 

- - - ~'----

LL~x 

~ j,!J 

~ ~~ 
'3f 0 
: ml 
I J 

A3x 

Aj~ 
A~z 

A ~x 

Aj~ 
A~z 

(5.79) 
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In order to obtain a form that is compatible with the theory presented 
in Section 2.5.1, these equations can be written symbolically as 

[::] = 
(5.81) 

where 

om)( ovn~ Dr'lz 
0 

-rz~(!)f~(¾) f~1) 

0 

0 

0 

0 

0 

0 

l I I : 

I / : I I I 

o 01 _J.i.J.o o o o oolo1 o o o 00010 o o ooo 
1f ""'l.z. I I I 
I I I I 

iflt n11 llz , I o O 0 1 o 1- - -o o d I o o o o oo 1o o o o o o 
I ,e e e. I I 

I I I 
I I I I Rx ,J~ I.: I Ox, C\:, 0,1 

o O I O :o o O O 00,01- - ...1. 000,- - - 00 0 
01 I 1'1 Ji /t I~ J :J 

(5.82) 

I I 

f P.II,I 0 0 0 0 0 

0 I 0 0 0 0 

e 
0 0 p.or.,r 0 0 0 

~::: 
(5.83) 

0 0 0 I 0 0 

Ii 
0 0 0 0 

~llll:. O 
J ~ 

0 0 0 0 
0 ~Ji' 1 

J 
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6.fl 
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----

IJ.D __ -

~ ex 
fl e'j 
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.ti ex 
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(5.84) 
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, 

It should be noted that many zeroes are :i.ntroduced into the matrices 
in this process at the expense of space for purposes of illustration of the 
form of the problem. In an actual mechanization of this problem on a computer, 
it is more desirable to perform the computations in parts in order to avoid 
useless core storage of zeroes. 

Now that the covariance InA.trix of the observables (£.(dM q_Mr)) has 
been "frozen" to a part:i.cular epoch, the results of Section 2.5.1 can be 
applied to detennine the covariance matrix of observables to be 

(5.85) 

Note should be made that the previous results s:implify if the three measu~e
ments are taken close enough in time to be considered simultrtneous. If dM 
is known during the epoch of the three measurements, then 

~=~(the identity matrix) 

and then 

where ~ and /> h11ve been defined previously. 

(5.86) 

Since the measure1nent made in this sample problem are angles, it is 
not necessary to convert the measurements to navigation observables. Hence, 
the covariance matrix of the instrument inaccuracies can be added to the 
result of Equation (5.86) in order to obtain the total covariance due to 
the model and instrument uncertainties. 
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3. 0 RECOMMENDED PROCEDURES 

The discussions presented within the state-of-the-art review present 
several variations of the means which may be employed to obtain initial esti
mates of the orbit and subsequently improve these estimates through data 
smoothing. Thus, it is desirable to suggest specific applications for this 
material or conversely recommend combinations of these techniques for problems 
of common interest. 

The initial fix on the trajectory as was shown can be accomplished in 
several distinctly different means depending on the data available. These 
methods are summarized in Table 3.1. 

However, as was discussed, there is a distinct chance for non-negligible 
error in the initial orbit if raw data are employed in the process. Rather, 
it, was shown in Section 2.1.4 that a series of preliminary operations should 
be performed to eliminate biases and random scatter in the data resulting 
from errors in the observation process, the mathematical model, and the instru
ment employed for the measurement. 

The developments then turn to means of improving lmowledge of the initial 
orbit and including the affects of perturbing accelerations. In particular, 
three types of estimators are developed: 

least squares 

weighted least squares 

mini.mum variance (recursive and non-recursive) 

are developed from simple concepts of 11loss 11 or 11optimality11 of the fit. 
Subsequent developments then addressed themselves to the task of explaining 
the basic estimation problem, the mechanism in which the statistics of the 
errors, non-linear estimation techniques and/or non-linear dynamics might be 
introduced to the problem, and the equivalence of the estimators previously 
developed under certain assumptions regarding the statistics of the data. It 
was in this latter discussion where the concept of sufficient statistics was 
introduced and there it was shown that, in general, the Bayes estimator was 
superior to others which might be developed. It was also in this latter dis
cussion that it was sho'W!l that the minimum variance biased estimator (MVB or 
Kalman) was a Bayes estimator where the statistics are Gaussian and where the 
loss function is simple. 

Since the set of assumptions utilized in developing the MVB estimator 
closely corresponds to the nature of~ orbit determination problems, it is 
recommended that the l-1VB estimator of the form developed in Sections 2.2.2.4 
and 2.2.2.5 be applied. Care must be exercised, however, to confirm for any 
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Range-Rate 

Range-Rate 

Azimuth & 
Elevation 

TABLE J.l APPLICABLE INITIAL FIX METHODS 

Range 

6 epochs 
employ Eq. (1.25) 
without assuming 
R(t) = R(o) 

Range-Rate 

J epochs 
employ Section 
2.1.J in the 
form of Equation 
(1.28) then dif
ferentially car-

t .... ... rec r 0 , v0 as in 
Eq. (l.ll) 

6 epochs 
employ Eq. (1.26) 
to solve for 
estimate of ro, 
Vo then differen
tially correct 
[Eq. (1.1)] to 
adjust for 
approximations in 
the formulation 
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Azimuth & Elevation 

2 epochs 
employ Section 2.1.1 in 
conjunction with Lambert's 
Theorem (Ref. 1.3) 

2 epochs 
this combination of data 
was not investigated - but 
rather, it was assumed that 
3 measurements would be 
taken and only azimuth and 
elevation data utilized 

employ Gauss's method 
[Eq.(1.16), (1.19), and 
1.20)/ or Laplace's method 
/Eq. (1.6), (1.7), (1.8)] 
then differentially correct 
for errors as in Eq. (l.ll), 
Gauss's method is prefered 
for low eccentricity orbits, 
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motion and 
equations for 
observations 

No 

{ ~] ={ ~} +o~n) 
· :tn -l11 
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FIGURE 3 .1 MECHANIZATION OF THE KALl1AN ESTIMATOR 



given application that the use of this estimator is justified. If not, an 
alogrithm must be developed from the Bayes formulation for that specific, 
application. This test will not, in general, be easily performed; however, 
should the statistics of the problem be sufficiently different from those used 
in developing the MVB, the results could differ to a large degree. There is, 
however, one means of applying the MVB so that the results will be approxi
mately correct if the number of error sources is large. This means exists 
due to the central limit theorem of statistics which states that the distribu
tion of a function of random variables approaches Gaussian as the number of 
variables increases. Thus, a Gaussian model can be constructed which will be 
equivalent to the more precise process. 

The mechanization of Kal.man 1s form of the nu.nimum variance estimator is 
shown in Figure 3.1. This procedure is preferred above other 11VB estimators 
because of the fact that it provides for the utilization of initial data 
regarding the state of the system and because it is recursive (to minimize 
estimation problems and to provide a means of limiting the assumed duration 
for linear expansion about the nominal trajectory). One source of trouble may 
exist in that the procedure illustrated for updating the matrix J involves 
differencing. If J ever approaches the null matrix, it is thus possible for 
one of the eigenvalues of the updated matrix to be negative (due to roundoff, 
loss of numerical significance, etc.). Thus, for these cases, J should be 
updated in the manner specified in Equation (2.77). 

Attention is drawn specifically to the decision function illustrated in 
the lower right-hand corner of the previous figure. A simple test is made to 
determine if the covariance matrix for the estimation errors is sufficiently 
SillB.11 to allow the estimated state to be added to the reference trajectory so 
that future computations can employ a more precise reference. One such test 
consists of comparing the summation of the terms along the diagonal of J (or 
its diagonal equivalent, Appendix C) to a comparison function constructed to 
define a.~ acceptable re&ion (6 dimensions) for errors in the radius and veloc
ity vectors. (For example, 

Attention then turns to the development of the state transition matrix 
for perturbed and conic motions. This material is intended to provide the 
user with a series of tools which can be applied to achieve a level of accuracy 
adequate for his needs. This objective is accomplished by approximating the 
true trajectory (for the purposes of constructing the transition matrix only) 
with a series of aonic arcs, as described in Section 2.4.2.3, and by employing 
an analytic inverse property which is developed for this matrix. 

The covariance matrix for the errors in the observables is constructed as 
the final major step in the presentation. This development relates the affects 
of navigation model uncertainties and sensor errors on the observables being 
processed for the purpose of providing the navigational filter mth data 
required to weight the observed minus computed residuals. This step is accom
plished by constructing the linear relationships between the errors in the 
observables and the errors in the model itself for each of the navigational 
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techniques discussed in Reference 1.1. These partial derivatives are then 
utilized in conjunction with error data for constants of the model (assumed 
to be normally distributed) to construct the desired covariance matrix. This 
procedure, while not always precise (due to non-Gaussian errors, etc.) is 
recommended for all cases in which more accurate data are not available. 

The monograph concludes with a series of appendices which are designed 
to provide a background in the most normally applied statistical procedures. 
This material leads to the development of the concept of an error volume and 
the assignment of a probability'of enclosure within the volume, thus allowing 
the covariance matrix for estimation errors (Sections 2.2 and 2.3) to be 
interpreted geometrically. This fact is particularly useful in discussing 
the results of a specific analysis. 
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APPENDIX A 

The Expected Value Theorem 

Throughout the text of this monograph, linear functions of variables 
(normally, the observed minus computed residuals, instrument errors, etc.) 
have been formed, and the question has been tacitly posed, "If the original 
variables themselves are normally distributed, what are the distributions of 
the functions which are formed?" and answered, "The functions themselves are 
normal." This appendix was prepared to substantiate this conclusion, and to 
develop the mathematics describing the moments of the resulting functions. 

Consider any element of a multi-dimensional vector function defined to 
be a linear function of a set of normally distributed parameters (not 
necessarily independent) 

m 
l<-:: E a .. X · 

t j•I '.J J l =I •• • n 

and form the moment generating function of this scalar 

m(t, . .. t,,) 

where E denotes the expected value. Now substituting for Ui yields 

where 

,, '" 
( Et-~a .. x•; - ( t .L } = r e ,., ' r-, 'J J 

,rf I • • • c; n e:_ 

,, 
T = L art· 
J {c/ 'J l 

,,,, 
( r r: ~-) :.£ em J 'J 

Thus, upon replacing the notation Eby its mathematical equivalent 
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where 

m(t, . .. t.) =J-~. j .. 
-ca -ao 

/;er·'/ 
(Z 7r) 11/:z 

exp [f "fjx.. 
,I •I J 

0--
1
is the inverse of the matrix of variances and covariances for 
them-vector X 

CTii is the element in the ith row and jth colwnn of 

"' 7T is a product function 
jc/ 

iK denotes the average value of the kth element of them-vector X 

Now, adopting the simplifying notation Y = X - X and completing the 
square of the terms in the exponent, will allow integration. This process 
will be perfored below. First note that 

i3 r.- ( V- t- :£.)-.!_ f '£ (!" ij V · ii · = - -
1 r f £ r tj" I.I· ~ · - 2 t T. llJ 

J•' J ,, J Z N j=I rl rJ 2 Ll=1 j=I r' l'J j•' J rJ 

(4) 

Now note that the portion of exponent within the brackets will be a perfect 
square if a term involving Tis added. This term is recognized to be 

n ,.,, 
"C"" " n-.. TT 
L, L., v,J l J (where is an element of the covariance matrix, i.e., 
f=I j•I 

<T: = ,,.,.0 0-: (T. 
I) l J 

which is required so that the product terms of ~ 

will not be a function of either 

Performing the required addition, the exponent becomes 
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I ,, '" £· ( ,,, ) • -- E L' tr J v- - E rr . T 
2. i=J j~I ,, k. /(.t " 

(5) 

At this point, if this form of the exponent is substituted into equation 
(4) and if the final two terms (those not involving y) are factored outside 
of the multiple integral, the result is 

( 6) 

( '/,· -!, ~- ~)] if dfi 
But this expression reduces to 

[

fl 1nm ] 
m(t, ... t,,) = exp E f i.+-E E rr..T T 

ial l 2 i:J jsl '.J l J 

since the density function being integrated represents a multivariate normal 
distribution (with means of if,·= r:: a;, "1j (l<=J,m) and i/.· - E v;j 7j (1= J,m) 
and with variance ~ ), and since this function is integrated over the 
entire region of definition. 

The rth moment of the distribution for the variable UK can now be 
obtained by differentiating the moment generating function with respect to 
tK r times and evaluating the result for all t = 0. For the distribution 
just developed, this process yields 

V m ( t, ... t n ) === e 

dm (t, ... tn) I = ~· = 
J<. dtl(_ t,-=O 

evdvl =~1 n 
'£ 

dil< dt"' 
= 

l::./ 
t;=O t, ~o 
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Thus, 

The variances and covariance are obtained in the same manner when it is 
noted that 0- = .,t/' - ~ · _a, 

K.1 0 J( ,I 

But 

Thus 

~I/ 
J(.I 

v dv dvj 
e -

dt" dt,,1 

- .,tt' I 

- ".,,u.,t 

tr. _ d~v j 
K1 - dt"' dt_i 

t,=O 

2 EL'a-:. -- __ J +_J , = _ 
11 

m id"{ dT. dT: dT.] 
i=I j =I ':I dtl( dti dt J(. dt .I 

J n r.i [ 
= - L' I: rr:. a . a t- a 2 i=I jc/ 'J Kt 1j kj a..,J 

But since the summation is performed over all i and all j, this result reduces 
to 

n m 
=Er; 

bl j=I <r..[a a] 'J Ki ~j 

Finally, this result is equivalent to 

[rr] = A [er] Ar 
'I t. 

(8) 
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where [er]= a real symmetric matrix of variances and covariances 

(T,. = rr;~ 
LL l. 

q;. -
I.J - ,;Orj<r: 

J 

Equations(?) and (8) are basic to most of the discussion of this mono
graph and studies of error propagation in general. However, their application 
requires knowledge that the process being analyzed approximates the assump
tions made in this derivation to an acceptable degree. This assumption was 
that all of the variables X. were normally distributed (had no higher 
moments). 1 

It is interesting to note that the general linear transformation 

u. =A~ 
conserves the moments such that 

71 =- AX 
and 

Howeve~, :'..n th:'..s ca~e, ::~ _:.:,.::._,::...__o:.:der moments become extremely difficult to 
compute. This fact is the underlying reason that most of the ''simple" 
estimation formulations and propagation techniques concern themselves with 
only the first and second moments. 
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APPENDIX B 

COMPUTATION OF MARGINAL DENSITY FUNCTION 

For problems in which the probability associated with a particular sub
set of the variates of the multi-variate normal density function is desired, 
it is necessary to modify the approach of the previous analysis. This 
approach evolves from the fact that the desired probability is defined by 
integrating the density function f(X1 •••~)over the volume of the m-dimen
sional volu.me element; i.e., 

PU x., I '- a. , I z ~ I L b ... I x'" I .t. c) =f f ( -x., • •· r., ) d ~. • • • d ~ m 
V 

where the Xi a.re not statistically independent. The question at hand is thus 
11how can the density function f(X1 ••• ~) be obtained from the more general 
form f(X1 ••• ~), n > m" or "what is the marginal density function f(X1 ••• ~). 11 

First it is noted that the definition of a marginal density is 

F(x., ... -t,,,) = ('::.ff(t-, ... -x.,,) d-t4 ••• dz,. 
) ~00 '""'' 

3 ----. -1[(x-Z:)ra--'i(z-l,)} 
{(1-, ... z.n)=~~) //tr'l/ e - - -

where 

(l"''i·= [a;:;l 
_, 

I- K = vector composed of ~, ••• , ~ 

Because of problems of functional complexity, consider the transforma
tion~= 2!: - &, and complete the square in the exponent of the terms involving 

Y..K ( n, + 1 ) ~ K ~ n) 
T .. n n 

( x- i) (T LJ ( -x - X ) = L L (Tij u. 'I.. 
- - - - i=I j•I ,, J 

228 



T tj -) kit. t n t 
(~-!) er ti-~ =-rr (11 +- I: rr'a) 

f J( (T lilt. i•I 
-IK. 

I ( ~ Ki )t n " ij 
- -,;; ~ (T q . + I: L <r II; 1./J· 
fr 4::./ f'- i.•I j•I r' (IJ 

tK JK 'K 

But the second term can be written as 

I ( n l{i )~ I " n 
~ I; rr u. = - I: r: 
(J"" i-../ tf' q-l<lf. i•I "•I 

~I<. t-1<. ~K 

so that the exponent becomes 

JU< I n .)~ n 
(T ( f I( 1" (T l<lt. ~ (r J<, + £ 

1-K 'I-It 
Now again transforming variables, 

I I. . z =I.I + - E <JI(..,_ 
ti!< q-KI< ,l-:.1 

'f:K 

~i.j: g-ij _ [ (0-K.i d'-l<'J)j ()'KK] 

the exponent becomes 
T ii K.K fl n ·· 

t,L (T JV = .(T z + r:. E ~ 'J IL. ti. 
,- r '=I j"' r, fJ • 

'1-X 'IK 

But the function Z is involved in such a manner that it can now be conveniently 
integrated out of the density function since 

f(:J ... ':111) ::.fcof(<:J, ... :Jm I z J ~m+, .. '. :Jn )dz 
r,, r,, l."/K 

= (-L )SfzJI lf'"iJ I I e -~[ f, t, .r=' s/ ;ii Jj] 
Zr'l (I'" Kl<. 1-K '/-K 

The questton is now what is ~J, and can it be constructed in a simple 
manner from er1 j or "ij• Consider the matrix product 

[<r'i] [<r9] = [1] 
or ,, 

ifl'I 
1:a- <r.=-6 .. 

1'1J lj 
m=I 

Now consider the definition of ~ij and the same produce. 
I 

Assume the sum is 

Dij ~i liWI 
11 ~ im n ,,,, <T (T ) , 

E o; . rr == E rr,,, . ( rr - "" = 8 ,1· · ,,,., '.I ,,,., 'I (T 

tk "K. 
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n "- . n . q- "' n 
£ r. . ~(.,,, = I: q-_ . <r "" - --C (T_ <r "'" 
,.,~, "'.I ,,,., "'J (Tl(I( flt&( "'i 
t-K ., K ~ J( 

ii( (T J(i, 

= (o .. -q- <r } - - ( 8 - u r "") 
'J "-i (T U Kj Kj 

where j f K. Thus 
n 

-im iK. iK 
I::: ~'I- rr =o .. -rr rr rrr <r 
Wh/ lJ kj Kj 
-IK 

or 

[<'\i]itK. = [ ~;.] 

i-1 J( 

This relation requires that the matrix cP-J be the matrix formed by inverting 
the matrix constructed from a--ij by deleting the row and column containing 
0--KK • 

Two further observations are also possible. First, the resultant density 
function is that of a multi-variate normal distribution; and second, since 
o--KK is the ratio of the cofactor of ~ divided by the determinant 6'-ij, 

u;;;;J r-;- It I; ?' ij I . 
✓~ =1~ =/J7v = 

This process can be continued indefinately to construct the marginal 
density function for any set of variables of interest. As an example, the 
marginal covariances for position (or velocity) errors can be constructed from 
the total covariance matrix for both position and velocity errors as follows: 

/ 

<r,, <r.2 er; S • • • 

Oi;e a;., ... 
a;~ r;, . [ 

a;, Q"iz 

[ (Ttj.] = Ii, 
v;, 'iii, 

Since the result of this process is a normal distribution, a 3-dimensional 
surface which contains the variables ( ar or AV) to a specified probability 
level can be generated by 

1. Performing a coordinate transformation to produce a set of uncorre
lated error axes (diagonalization of the covariance matrix discussed 
in Appendix C) • 
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2. Integrating the resultant distribution (Appendix C) to evaluate the 
radius of the equivalent sphere. 

3. Using the radius of the equivalent sphere as a constraint on the 
values, which can be attained by the variables measured along the 
three principal axes, generate the 3-D ellipsoid. 

4. Transforming the coordinate system to construct the error ellipsoid 
in the desired coordinate system. 
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APPENDIX C 

DIAGONALIZATION OF REAL SYMMETRIC 

MATRICES AND THE DEVELOPMENT OF PROBABILITY ELLISOIDS 

r 

Previous appendices have proved that deviations resulting from any linear 
combination of Gaussian errors will be elements of a multivariate, normal dis
tribution. Since this is the case, the probability that a given value of a 
variable lies in a given region can be found by integrating the joint proba
bility density function and the variance, covariance matrix which is real and 
symmetric can be diagonalized by an orthogonal transformation to display the 
eigenvalues on the principal diagonal. To accomplish these objectives (in 
reverse order), consider the mathematical representation of the density func
tion of an error vector: 

'½ r-----, [ 7 .• 
:f(X)-:: (f/7) z.v,a-,j(e-lz (X-x) o"J(x-x)] 

where: o--ij is the inverse of oij and is also symmetric. 

Now, consider a general symmetric matrix M (H can be '½_j, etc.) and 
the set of equations 

(tn -;.. I.) X .: o (1) 

where Mis an (H, M) symmetric matrix; I the corresponding identity matrix; 
A is a vector of scalar parameters; and Xis an (m, 1) column matrix. Let 
t-. 1, t\2, .•• , 'A.. n be the eigen values of the matrix M and let the corresponding 

eigen vectors be denoted by ;;u, ~' ... , bi. That is to say, the A ex and 
X,~ satisfy the equations 

(2) 

a corresponding set of equations is represented by 

~ = 1✓ 2.1 • . . .1 11 . 
(3) 

Thus, from Equations (2) and (J) 

l'J1 Xt,;1,, = J\p1. >( ti.. 

m x~ -= /'\~ )(13 
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If the first of these last equations is multiplied by 2£1 
of X /3 ) and the second K~, the result is: 

x; t?? x~ = A"' x.J ~ 
x; 1?? XtS = ;,.~ x; ~ 

but Equation (5) can be transposed as 

which, since Mis symmetric, reduce to 

x;f fta XO( = A_a x; Ao( 

Subtracting Equation (7) from Equation (4) now gives 

Hence, for 'Ao..-=,. 'A;3 

x; x~ =o 

(the transpose 

(4) 

( 5) 

( 6) 

(7) 

(8) 

(9) 

This la.st equation is expressed by the statement 11the column vectors XO\ 
a.nd Xp a.re orthogonal if,\~ -:/- A(} for o.. t- p • Since Equations (2) and (3) do 
not determine the values of X"' and X;s uniquely, that is, the equations are 
still satisfied if x~ and Xp are multiplied by arbitrary scalar constants, 
it is possible to select those arbitrary scalars so as to normalize the vec
tors. That is 

x;, X o\ ::: ; (10) 

~7 ~ =-1 

Equations (9) and (10) can be expressed by the single equation 

(11) 

where the Kronecker delta ( 6 Ct',JJ ) is defined by 

8<:ii 8 =- I for 

and (12) 

8c:1.,p = 0 for ex. = ./3 
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Substituting into Equation (5) from Equation (ll) now yields 

T 
~o< /?1 .5 A. = A.a 6_, A ( -' ~ 1 ,._, r'"' .,,,_ vi, I'"' = .J 2J • • • J 11) 

(13) 

The relationships expressed by Equations (ll) and (13) can be exhibited 
in the more conventional matrix. form by deferring a compound matrix. of eigen 
vectors 

X. = ( x, > X z l • • • J x,, ) (14) 

in terms of Equation (ll) becomes 

From Equation (15), 

X 7 =- x.-, (16) 

where x-• is the inverse of the matrix X. This last equation states that X 
is an orthogonal matrix. 

Equation (13) may be written in terms of this compound matrix. as 

X7
m K :: t:,. (17) 

where \ 0 0 

b. \a 8ot./i 
0 At. 0 - -- (18) 

0 - "-n 
Equation (17) indicates that the matrix. M is transformed to diagonal :Corm by 
means of the matrix of its eigenvectors. Moreover, from Equations (15), (16), 
and (17) 

(19) 

Equation (19) expresses the symmetric matrix.Min terms of its eigenvalues 
and·eigen vectors. 

The model matrix ( X) can thus be computed. The steps required in this 
process are: 

1. the characteristic equation is found by expanding the detenninant of 
Q'-ij - -A[I] and equating the result to zero 

2. the roots to the characteristic equation are found ( A 1, ••• A 6) 

3. the column vectorsft}are found by equating the result of the following 
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matrix multiplications to zero 

there will be n vectors {,8ij} because there are n values of ~- and 
these vectors are linearly independent if the Aj are distinct 

4. construct the matrix X by ordering the column vectors 

Consider now the quadratic form 

(20) 

where Xis an arbitrary column matrix of M elements and Mis a symmetric matrix 
as previously discussed. If the scalar q is assigned a fixed value and if the 
vector Xis considered to be a variable o.f M components, Equation (20) describes 
a 11 surface 11 in H-dimensional "space." Now, performing the coordinate trans
formation 

X = Xy 

transforms the quadratic form q to 

j:: yTjTrYtjy::: YT 6Y 

Thus, defining the M-vectors Y by 
Y, 

y = 
Yi 

(21) 

(22) 

(23) 

yfl 
and performing the indicated matrix multiplications of Equation (22) yields q 
as 

J :: A, y,Z r.>r2. r: + ... + )\I') Ynl (24) 

Now, denoting the value assigned to q as K2 requires that Yi, Y2, ••• , Yn be 
chosen to satisfy the equation 

For the case in which Y1 = Y2 = ••• Yi-1 = Yi+l = Yn = 0 or 

v.z. ~ K 
h ,,\. 

4 

X. = +- K .(. - r:-
'".i 
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• I 

Hence,K//Ji"2 is the ith semi-principal axis of the surface represented by 
Equation (25). 

Now, getting back to the task at hand, since the correlations in the 
covariance matrix can be eliminated with a coordinate transformation, the 
exponent of the density fW1ction contains the term 

/I 

"" Z;z. I L ... WA-<- I'",! ?,.; =- :J~· A,· 
,t,'=-1 ~ 

.. 

But, this is the form for the square of the radius of an n-dimensional hyper
sphere (if considering only the cases for thich the summation is constant). 
Thus, a further transformation suggests itself in the evaluation of the prob
ability that a given random sample from the statistically described distribu
tions will fall within the specified radius. This transformation results from 
the fact that 

-JK f f(_2") I ½. - L' ' ,, (~7) 
P - · · · ( 2..,,-) e. 2.L~;, 1T dz, 

-/( -f(i,,;) ;, .. , 

(This equation is the integral of f(x) dx after transforming coordinates) is, 
in fact, the integral over the volume of hypersphere. This being the case, 
the integral can be written as 

k I ')i'2 - fz r 2 ( 28) 
P=--,,f(z;) -e. j(r)dr 

S> 

where f(r)dr is the spherically symmetric volume element of n-dimensions 

71n/2 rn 
v:: = volume of hypersphere re n~z) 

r = gamma fW1ction 

n - dimensionality of hypersphere 

n = 1 f(r)dr = 2dr (29a) 

- 2 - 2nr dr (29b) 

= 3 = 4 TT r 2 dr (29c) 

= 4 = 2 rr2 r3 dr (29d) 

= 5 = _§. TT 2 r4 dr (29e) 
3 

= 6 = 773 r5 dr (29f) 

Thus, the probabilities that the resultant error will be within a given 
"distance" of the center of the hypersphere can be computed as follows: 

236 



• 

n=I 

=2 

p :: 

= 

2[erf (K) -.s] 

I - e-K½ 

==3 = Z[el'f(K)-. sJ - Ke.-"3/z [ vr] 
:: 4 = I - e - K_% ( I f K,½ ) 

= s = z [er { ( K) - . s J - Ke - K;,'z [~ f ~ f ] 
=- 1::, ~ / - e - Ko/2 ( I f K/2 f K% ) 

where erf(K) denotes the error function. 

Numerical data are tabulated for these six cases as a function of the 
radius, K, in Table c.1. 
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TABLE C.l PROBABILITY OF INCLUSION AS A FUNCTION OF KAND N 

P R O B A B I L T Y 

K N = l N = 2 N = 3 N = 4 N = 5 N = 6 

= 0 0 0 0 0 0 0 
.2 .1586 .0198 .0021 .0002 .0000 .0000 
.4 .3108 .0769 .0162 .0030 .0005 .0001 
.6 .4515 .1647 .0515 .0144 .0035 .0008 
.8 .5762 .2739 .1127 .0415 .0138 .0043 

= l.0 6826 .3935 .1987 .0902 .0374 .0144 
.2 .7698 .5133 .3038 .1628 .0801 .0366 
.4 .8384 .6247 .4192 .2569 .1452 .0767 
.6 .8904 .7220 .5355 .3661 .2326 .1383 
.8 .9282 .8021 .6440 .4815 .3370 .2218 

= 2.0 .9544 .8647 • 7384 .5940 .4504 .3233 
.2 .9722 .9111 .8161 .6959 .5643 .4355 
.4 .9836 .9314 .8523 .7477 .6002 .4634 
.6 .9906 .9676 • 9234 .8581 .7720 .6731 
.8 .9984 .9802 .9506 .9085 .8351 .7567 

= 3.0 .9974 .9889 • 9708 .9389 .8911 .8265 
.2 .9986 .9940 .9833 .9633 .9310 .8847 
.4 .9994 .9969 .9910 .9790 .9587 .9274 
.6 .9998 • 9985 .9954 .9886 .9765 .9727 
.8 .9999 .9993 .9977 .9940 .9870 .9844 

= 4.0 .99995 .9997 .9988 .9969 .9930 .9915 
.2 .99998 .9999 .9995 .9985 .9965 • 9956 
.4 .99999 .9999 .9998 .9993 .9985 .9980 
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APPENDIX D 

FLA. TTENED PLANET MF.ASUREMENT 

Section 2.5.2.1.1 discussed the measurement of the angle subtended by 
a planet. The analysis was based on a perfectly spherical model of a planet. 
The following is a derivation of the measurement of the angle subtended by 
a flattened planet. The subtended angle is expressed as a function of the 
equatorial and polar radii, the relative attitude of the planet with respect 
to the observer, and the distance from the planet center to the observer. 
Although Section 2.5.2.1.1 presented the variation in the measured angle due 
to distance and diameter uncertainties, it must be remembered that these 
analyses were only for a spherical planet, though in most cases the results 
are acceptable. If an "exact" analysis is desired, the results of this 
appendix can be extended to find the variations in the angle measurement due 
to uncertainties in the distance and the planet radii. The general expression 
for the subtended angle will be found, and its variation with respect to 
the relative attitude will be derived. other variations can be found in a 
completely analogous manner. 

The geometry of the analysis is shown below: 

The previous sketch shows the intersection of the plane of the measurement 
and the ellipsoid model of the flattened planet. Since the exact shape of 
the planet is not known and the most accurately lmown parameters of the size 
are the equatorial and polar radii, the best results are obtained if the 
measurement plane is. selected to be that which is determined by either of 
the two radii. Thus, the planar case may by analyzed for purposes of detenning 
flattening effects on the measurement. 
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If the planar analysis is pursued, the slopes of 1:i_ and 1
2 

can be 
found from the negative reciprocal slope of the gradient at P(X1, X2) and 
P(X2, Y2). Since 

')('2 ~z 
-I =O f (X 1 ':7) :: + 

a_ll oa ) 

then 

2X "" 2.y A ·F= 
a2 ax + b2 a.!:1 

so the slope of L
1 

= h 2 X1 __ and the slope of L
2 

= 
a,2 .Yi 

The equations of L_i_ and 12 can now be written as 

X, Z Gtr.J 0 + !f{ Z ~ B :: / 
a.• !J2 

+ !:f 2 z ~ B ::. I 
b2 

,; 

These equations must be combined with the restricting equation of the ellipse. 
A quadratic equation results, the solutions of which are 

b 2 ~e - a V.,,_;.,f9 ; b• ur.;.20 ~20 -
b2 

~20 
z2 z a,.2 

X :: 
b2. I 

u>-;,20 ~ 2 0 I-
a.2 

a.a ~B 
b V =•,, a,2 

~ 2{? Ur.1.2 0 -
a,2 

~fj + ,f z2 i! ba. 
J, = a.,2 

~ 2 0 + ~a0 
1,z 
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The slopes of L1 and L2 can now be written explicitly in tenns of a, b, E 
and Q. 

b 2
Ul:J{} - ZaAJ<A-0 V 4,(A2{; 

"2 62 
f- - ~ZS 

Slope of ½_ = -
a,2 zZ 

V e-n2e 
aa a.a 

a,2 ~ 0 t z b UJ-:J. 0 -I- -~2.B 
ba z.2 

An exact solution of A could be found by taking the difference in the 
arctangents of the above slopes. Since the partial derivative of A with 
respect to Q is desired, the algebra will be significantly simplified if an 
approximation to b2/a2 is made. Since the flattening of the planets is not 
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very severe (particularly of the earth), the following is a good approximation 

1:,2. 
= l-2f-f"z ~ I 

where f is the flattening ( { = 1/.2 98 for the earth). Now the slopes of 
L1 and L2 can be written as 

Sl f L f bz U>-:2 0 - a .,4,<A 0 ope o -.L=-
Q.2~0 r 6,,un-9 

and A can be written as A= arctan (U2) - arctan (U+). At this point the 
uncertainty in A can be found by taking partial derivatives with respect to 
the uncertain parameters; i.e., !: , ~A , 'iJA and ~A • The first 

,,,,_ va. 'iJb q9 

three quantities have been derived for the spherical planet in Section 2.5.2.1.1. 
For this reason, they will not be pursued here. Instead, :: will be determined. 

If more accurate results are desired for 
is exactly analogous. 

oA 
cJZ. 

oA 

The chain rule is employed in order to determine 

The result is 

I 

ltllff 
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aA =Jfl...wie •htb.18 ~){-h2.AUne-1athl)~)-(b2Cld01-aAiAe'{i0l){a2~a +b:B '{iQ)] 
dB l (a 2 ~&-bt,i1:1@Vz2 -a2 ) +(h2 un0t-a-4u1-0 Vz 2 -h 2

) 

+ (a2~r;+1,~&,;;;:;ii){--tlM0-a~0,fi½l)-(1/~&-a ~&~,¥z~e·h~~Vz¼1l 
(a2,,W,.Bfo~v~2-a2)2+(b2Ul3.8-a.-4Ule v~2-1i2)2 J 

The preceding equation gives the uncertainty in the measurement of the angle 
subtended by a flattened planet due to the uncertajnty in the relative attitude 
uncertainty of the observer. It is noted that the an::tlysis s:implifies if 
the planet is assumed to be an oblate spheroid. In this case, the flattening 
effect can be neglected if the choice of the measurement plane is the one 
detennined by the equatorial radius. This can be seen if the variations in 
the measurement angle due to planet attitude are examined. 

Due to the fact that part of the planet that would nom.ally be used 
for an angle measurement may not be experiencing sunlight, some modification 
must be made to the conventional measurement. Unless suitable sensors thA.t 
can detect the dark horizon are used, the measurement will resort to some 
estj_mation of the center of the planet, and the angle to be measured becomes 
the angle between one line of tangency and the est:i.Jnated center point of the 
planet. Of course, the estimation of the center point introduces stHl 
another inaccuracy into the measurement. The expression for the measurement 
angle becomes 

A*= Q - arctan (U1) 

The variation of A* due to planet attitude uncertainty becomes 

I 
:. I -

11-u/ 

This must be added to the uncertainty of the estjJP.ated center point of the 
planet. The total model uncertainty for the measurement of the anele between 
the center point and the planet edge becomes 
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where the first three terms may be determined from the results of the 
spherical planet in Section 2.5.2.1.1 (using A'l~ =A/t.), and .69c is 
the uncertainty anele of the centerpoint of the planet. p. 

A similar expression results for the measurement of the total angle 
subtended by the planet: 

The uncertainty in planet center does not enter into this expression since 
it is not used. 

,, 
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