5,825 research outputs found

    Exponential Domination in Subcubic Graphs

    Full text link
    As a natural variant of domination in graphs, Dankelmann et al. [Domination with exponential decay, Discrete Math. 309 (2009) 5877-5883] introduce exponential domination, where vertices are considered to have some dominating power that decreases exponentially with the distance, and the dominated vertices have to accumulate a sufficient amount of this power emanating from the dominating vertices. More precisely, if SS is a set of vertices of a graph GG, then SS is an exponential dominating set of GG if vS(12)dist(G,S)(u,v)11\sum\limits_{v\in S}\left(\frac{1}{2}\right)^{{\rm dist}_{(G,S)}(u,v)-1}\geq 1 for every vertex uu in V(G)SV(G)\setminus S, where dist(G,S)(u,v){\rm dist}_{(G,S)}(u,v) is the distance between uV(G)Su\in V(G)\setminus S and vSv\in S in the graph G(S{v})G-(S\setminus \{ v\}). The exponential domination number γe(G)\gamma_e(G) of GG is the minimum order of an exponential dominating set of GG. In the present paper we study exponential domination in subcubic graphs. Our results are as follows: If GG is a connected subcubic graph of order n(G)n(G), then n(G)6log2(n(G)+2)+4γe(G)13(n(G)+2).\frac{n(G)}{6\log_2(n(G)+2)+4}\leq \gamma_e(G)\leq \frac{1}{3}(n(G)+2). For every ϵ>0\epsilon>0, there is some gg such that γe(G)ϵn(G)\gamma_e(G)\leq \epsilon n(G) for every cubic graph GG of girth at least gg. For every 0<α<23ln(2)0<\alpha<\frac{2}{3\ln(2)}, there are infinitely many cubic graphs GG with γe(G)3n(G)ln(n(G))α\gamma_e(G)\leq \frac{3n(G)}{\ln(n(G))^{\alpha}}. If TT is a subcubic tree, then γe(T)16(n(T)+2).\gamma_e(T)\geq \frac{1}{6}(n(T)+2). For a given subcubic tree, γe(T)\gamma_e(T) can be determined in polynomial time. The minimum exponential dominating set problem is APX-hard for subcubic graphs

    Limited packings of closed neighbourhoods in graphs

    Full text link
    The k-limited packing number, Lk(G)L_k(G), of a graph GG, introduced by Gallant, Gunther, Hartnell, and Rall, is the maximum cardinality of a set XX of vertices of GG such that every vertex of GG has at most kk elements of XX in its closed neighbourhood. The main aim in this paper is to prove the best-possible result that if GG is a cubic graph, then L2(G)V(G)/3L_2(G) \geq |V (G)|/3, improving the previous lower bound given by Gallant, \emph{et al.} In addition, we construct an infinite family of graphs to show that lower bounds given by Gagarin and Zverovich are asymptotically best-possible, up to a constant factor, when kk is fixed and Δ(G)\Delta(G) tends to infinity. For Δ(G)\Delta(G) tending to infinity and kk tending to infinity sufficiently quickly, we give an asymptotically best-possible lower bound for Lk(G)L_k(G), improving previous bounds

    Distributed Dominating Sets on Grids

    Full text link
    This paper presents a distributed algorithm for finding near optimal dominating sets on grids. The basis for this algorithm is an existing centralized algorithm that constructs dominating sets on grids. The size of the dominating set provided by this centralized algorithm is upper-bounded by (m+2)(n+2)5\lceil\frac{(m+2)(n+2)}{5}\rceil for m×nm\times n grids and its difference from the optimal domination number of the grid is upper-bounded by five. Both the centralized and distributed algorithms are generalized for the kk-distance dominating set problem, where all grid vertices are within distance kk of the vertices in the dominating set.Comment: 10 pages, 9 figures, accepted in ACC 201

    Greed is Good for Deterministic Scale-Free Networks

    Get PDF
    Large real-world networks typically follow a power-law degree distribution. To study such networks, numerous random graph models have been proposed. However, real-world networks are not drawn at random. In fact, the behavior of real-world networks and random graph models can be the complete opposite of one another, depending on the considered property. Brach, Cygan, Lacki, and Sankowski [SODA 2016] introduced two natural deterministic conditions: (1) a power-law upper bound on the degree distribution (PLB-U) and (2) power-law neighborhoods, that is, the degree distribution of neighbors of each vertex is also upper bounded by a power law (PLB-N). They showed that many real-world networks satisfy both deterministic properties and exploit them to design faster algorithms for a number of classical graph problems like transitive closure, maximum matching, determinant, PageRank, matrix inverse, counting triangles and maximum clique. We complement the work of Brach et al. by showing that some well-studied random graph models exhibit both the mentioned PLB properties and additionally also a power-law lower bound on the degree distribution (PLB-L). All three properties hold with high probability for Chung-Lu Random Graphs and Geometric Inhomogeneous Random Graphs and almost surely for Hyperbolic Random Graphs. As a consequence, all results of Brach et al. also hold with high probability for Chung-Lu Random Graphs and Geometric Inhomogeneous Random Graphs and almost surely for Hyperbolic Random Graphs. In the second part of this work we study three classical NP-hard combinatorial optimization problems on PLB networks. It is known that on general graphs, a greedy algorithm, which chooses nodes in the order of their degree, only achieves an approximation factor of asymptotically at least logarithmic in the maximum degree for Minimum Vertex Cover and Minimum Dominating Set, and an approximation factor of asymptotically at least the maximum degree for Maximum Independent Set. We prove that the PLB-U property suffices such that the greedy approach achieves a constant-factor approximation for all three problems. We also show that all three combinatorial optimization problems are APX-complete, even if all PLB-properties hold. Hence, a PTAS cannot be expected, unless P=NP

    Generation of cubic graphs and snarks with large girth

    Full text link
    We describe two new algorithms for the generation of all non-isomorphic cubic graphs with girth at least k5k\ge 5 which are very efficient for 5k75\le k \le 7 and show how these algorithms can be efficiently restricted to generate snarks with girth at least kk. Our implementation of these algorithms is more than 30, respectively 40 times faster than the previously fastest generator for cubic graphs with girth at least 6 and 7, respectively. Using these generators we have also generated all non-isomorphic snarks with girth at least 6 up to 38 vertices and show that there are no snarks with girth at least 7 up to 42 vertices. We present and analyse the new list of snarks with girth 6.Comment: 27 pages (including appendix
    corecore