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Abstract
Large real-world networks typically follow a power-law degree distribution. To study such net-
works, numerous random graph models have been proposed. However, real-world networks are
not drawn at random. In fact, the behavior of real-world networks and random graph models
can be the complete opposite of one another, depending on the considered property. Brach, Cy-
gan, Lacki, and Sankowski [SODA 2016] introduced two natural deterministic conditions: (1) a
power-law upper bound on the degree distribution (PLB-U) and (2) power-law neighborhoods,
that is, the degree distribution of neighbors of each vertex is also upper bounded by a power
law (PLB-N). They showed that many real-world networks satisfy both deterministic properties
and exploit them to design faster algorithms for a number of classical graph problems like tran-
sitive closure, maximum matching, determinant, PageRank, matrix inverse, counting triangles
and maximum clique.

We complement the work of Brach et al. by showing that some well-studied random graph
models exhibit both the mentioned PLB properties and additionally also a power-law lower
bound on the degree distribution (PLB-L). All three properties hold with high probability for
Chung-Lu Random Graphs and Geometric Inhomogeneous Random Graphs and almost surely
for Hyperbolic Random Graphs. As a consequence, all results of Brach et al. also hold with high
probability for Chung-Lu Random Graphs and Geometric Inhomogeneous Random Graphs and
almost surely for Hyperbolic Random Graphs.

In the second part of this work we study three classical NP-hard combinatorial optimization
problems on PLB networks. It is known that on general graphs, a greedy algorithm, which chooses
nodes in the order of their degree, only achieves an approximation factor of asymptotically at
least logarithmic in the maximum degree for Minimum Vertex Cover and Minimum Dominating
Set, and an approximation factor of asymptotically at least the maximum degree for Maximum
Independent Set. We prove that the PLB-U property suffices such that the greedy approach
achieves a constant-factor approximation for all three problems. We also show that all three
combinatorial optimization problems are APX-complete, even if all PLB-properties hold. Hence,
a PTAS cannot be expected, unless P=NP.
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33:2 Greed is Good for Deterministic Scale-Free Networks

1 Introduction

A wide range of real-world networks, like Internet topologies [18], the Web [27, 8], social
networks [1], power grids [32], and many other networks [29, 5, 30], exhibit a power-law
degree distribution. Power-law degree distribution means that the number of nodes of degree
k is proportional to k−β , where β > 1 is the power-law exponent, a constant intrinsic to the
network. Networks with a power-law degree distribution are also called scale-free networks
and have been widely studied.

To capture the degree distribution and other properties of scale-free networks, a mul-
titude of random graph models have been proposed. These models include Preferential
Attachment [8], the Configuration Model [2], Chung-Lu Random Graphs [15] and Hyperbolic
Random Graphs [26]. Despite the multitude of random models, none of the models truly has
the same set of properties as real-world networks.

This shortcoming of random graph models motivates studying deterministic properties of
scale-free models, which can be verified on real-world networks. To describe the properties of
scale-free networks without the use of random graphs, Aiello et al. [4] define (α, β)-Power
Law Graphs. The problem of this model is that it essentially demands a perfect power-law
degree distribution, whereas the degree distributions of real networks normally exhibit slight
deviations from power laws. Therefore, (α, β)-Power Law Graphs are too constrained and do
not capture most real networks.

To allow for those deviations in the degree distribution Brach et al. [10] define buckets
containing nodes of degrees

[
2i, 2i+1). If the number of nodes in each bucket is at most

as high as for a power-law degree sequence, a network is said to be power-law bounded,
which we denote as a network with property PLB-U. They also define the property of PLB
neighborhoods: A network has PLB neighborhoods if every node of degree k has at most
as many neighbors of degree at least k, as if those neighbors were picked independently
at random with probability proportional to their degree. This property we abbreviate as
PLB-N. A formal definition of both properties can be found in Section 3. Brach et al. [10]
show that various classical graph problems can be solved more efficiently in networks with
properties PLB-(U,N). The graph problems addressed are transitive closure, maximum
matching, determinant, PageRank, matrix inverse, counting triangles and maximum clique.
Brach et al. [10] also showed experimentally that PLB-(U,N) properties hold for many
real-world networks, which implies that the mentioned graph problems can be solved faster
on these real-world networks than worst-case lower bounds for general graphs suggest.

1.1 Motivation and Results

PLB properties in power-law random graph models

The PLB-(U,N) properties are designed to describe power-law graphs in a way that allows
analyzing algorithms deterministically. As already mentioned, there is a mutitude of random
graph models [2, 15, 8, 26], which can be used to generate power-law graphs. Brach et al. [10]
proved that the Erased Configuration Model [2] follows PLB-U and w. h. p. also PLB-N.
Since the Erased Configuration Model has a fixed degree sequence, it is relatively easy to
prove the PLB-U property, but it is quite technical to prove the PLB-N property. There are
other power-law random graph models, which are based on the expected degree sequence, e.g.
Chung-Lu Random Graphs [15]. Brach et al. argued that for showing the PLB-U property
on these models, a typical concentration statement does not work, as it accumulates the
additive error for each bucket. They leave it as a challenging open question, whether other
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random graph models also produce graphs with PLB-(U,N) properties with high probability1.
In section 4 we address this question and extend the list of random graph models with

the PLB-U and PLB-N property. We prove that Chung-Lu Random Graphs and Geometric
Inhomogeneous Random Graphs are PLB-(U,N) graphs with high probability and that
Hyperbolic Random Graphs are PLB-(U,N) graphs almost surely.

Algorithmic Results

The above results imply that all results of Brach et al. [10] also hold w. h. p. for Chung-Lu
Random Graphs and Geometric Inhomogeneous Random Graphs and almost surely for
Hyperbolic Random Graphs. Therefore the problems transitive closure, maximum matching,
determinant, PageRank, matrix inverse, counting triangles and maximum clique have faster
algorithms on Chung-Lu and Geometric Inhomogeneous Random Graphs w. h. p. and on
Hyperbolic Random Graphs almost surely.

In this work we additionally consider the three classical NP-complete problems Minimum
Dominating Set(MDS), Maximum Independent Set(MIS) and Minimum Vertex
Cover(MVC) on PLB-U networks. For the first two problems, positive results are already
known for (α, β)-Power Law Graphs, which are a special case of graphs with the PLB-(U,L)
properties. Note that this deterministic graph class is much more restrictive and does not
cover typical real-world graphs. On the contrary, our positive results only assume the PLB-U
property. Our algorithmic results can therefore be applied to real-world networks after
measuring the respective constants of the PLB-model. In section 5 we prove our main
lemma, Lemma 5.2 (the potential volume lemma). Using the potential volume lemma, we
prove lower bounds for MDS, MIS and MVC in the order of Θ(n) on PLB-U networks with
exponent β > 2. This essentially means, even taking all nodes as a solution gives a constant
factor approximation. Furthermore, in Theorem 5.5 we prove that the greedy algorithm
actually achieves a better constant approximation ratio. These positive results also hold for
(α, β)-Power Law Graphs.

In section 6, we consider the mentioned NP-Complete problems and prove that these
problems are APX-hard even for PLB-(U,L,N) networks with β > 2. As a side product
we also get a lower-bound on the approximability of the respective problems under some
complexity theoretical assumptions. Since the negative results for (α, β)-Power Law Graphs
imply the same non-approximability on graphs with PLB-(U,L), we only consider graphs
with PLB-(U,L,N) in Section 6.

Technical Ideas

The intuition behind our positive results is simple: In a power law graph with exponent
β > 2, any set of o(n) vertices has a volume of at most o(n). The potential volume lemma
gives upper bounds on

∑
x∈S h(deg(x)) in terms of |S|, where S is any set with a certain

minimum volume. This is done by upper-bounding the density
∑
x∈S h(deg(x))/|S| by the

highest possible density of a set of size |S| in a PLB-U graph. The lemma does not only
enable us to prove the stated intuition formally, but also allows us to give upper bounds on
the approximation ratios of some greedy algorithms.

Our negative results rely on the graph embedding technique introduced by Shen et al. [33]
for (α, β)-Power Law Graphs.

1 We say that an event E holds w. h. p., if there exists an δ > 0 such that Pr[E] > 1−O(n−δ), and almost
surely if it holds with probability Pr[E] > 1− o(1).

FSTTCS 2016
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Table 1 Comparison of the approximation ratios achieved by greedy algorithms on networks
with an upper bound on the power-law degree distribution (PLB-U) and β > 2, and on general
graphs. While on general graphs, greedy achieves only a logarithmic or polynomial approximation,
greedy achieves a constant-factor-approximation on graphs with PLB-U and β > 2.

Problem General Graph Graphs with PLB-U

Minimum Dominating Set O(ln ∆) [25] Θn(1) [Theorem 5.5]
Minimum Vertex Cover O(ln ∆) [34] Θn(1) [Theorem 5.8]
Maximum Independent Set O(∆) [17] Θn(1) [Theorem 5.7]

2 Related Work

MDS, MVC and MIS are well studied NP-complete problems. It is know that MDS can-
not be approximated within a factor of (1 − ε) ln |V | for any ε > 0 [19] unless NP ⊆
DTIME(|V |log log |V |) and not to within a factor of ln ∆− c ln ln ∆ for some c > 0 [14] unless
P = NP, although a simple greedy algorithm achieves an approximation ratio of 1 + ln ∆ [25].
Even for sparse graphs, MDS cannot be approximated within a factor of o(ln(n)), since we
could have a graph with a star of n −

√
n nodes to which an arbitrary graph of the

√
n

remaining nodes is attached [28].
MIS cannot be approximated within a factor of ∆ε for some ε > 0 unless P = NP [7],

although a simple greedy algorithm achieves an approximation factor of ∆+2
3 [23]. We also

know from Turán’s theorem that every graph with an average degree of d̄ has a maximum
independent set of size at least n

d̄+1 . This lower bound can already be achieved by the same
greedy algorithm [23, Theorem 1].

MVC cannot be approximated within a factor of 10
√

5 − 21 ≈ 1.36 unless P=NP,
whereas the simple algorithm which greedily constructs a maximal matching achieves an
approximation ratio of 2 [31]. The greedy algorithm based on node degrees only achieves an
approximation factor of ln ∆.

All three problems have already been studied in the context of (α, β)-Power Law Graphs.
Ferrante et al. [21] showed that these problems remains NP-hard for β > 0. Shen et al. [33]
proved that there is no

(
1 + 1

3120ζ(β)3β

)
-approximation for MDS and no

(
1 + 1

1120ζ(β)3β − ε
)
-

approximation for MIS when β > 1 unless P = NP, showing that in this case the problem is
APX-hard. For MVC, Schen et al. [33] proved that there is no PTAS when β > 1 under the
Unique Games Conjecture. They also showed that the greedy algorithm achieves a constant
approximation factor for β > 2. Gast et al. [22] also proved a logarithmic lower bound on the
approximation factor when β 6 2 for MDS. Hauptmann et al. [24] gave the first non-constant
bound on the approximation ratio for MIS when β 6 1. In contrast to (α, β)-Power Law
Graphs the PLB-U property captures a wide range of real networks, making it possible to
transfer our results to them.

3 Preliminaries and Notation

We generally consider undirected multigraphs G = (V,E) without loops, where V denotes
the set of vertices and E the multiset of edges. If we consider simple graphs, we state so
specifically. Throughout the paper we use deg(v) to denote the degree of node v, di for the
set of nodes of degree i , d>i for the set of nodes of degree greater than or equal to i. We will
also let bi denote the set of nodes v ∈ V with deg(v) ∈ [2i, 2i+1) and for v ∈ V we let N+(v)
denote the inclusive neighborhood of v in G. We also use dmin and ∆ to denote the minimum
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Table 2 Comparison of the approximation lower bounds for polynomial-time algorithms (assuming
P 6= NP) on networks with an upper (PLB-U) and lower (PLB-L) bound on the power-law degree
distribution and with PLB neighborhoods (PLB-N) with the approximation lower bounds on general
graphs. Even with the additional properties of PLB-L and PLB-N the problems on graphs with
PLB-U remain APX-hard, i.e. these problems cannot admit a PTAS. Better lower bounds for each
problem are in respective theorem, Ω(1) hides the PLB-L parameters β, t and constant c2.

Problem General Graph Graph with PLB-(U,L,N)

Minimum Dominating Set (MDS) Ω(ln ∆) [14] 1 + Ω(1) [Theorem 6.9]
Minimum Vertex Cover (MVC) > 1.3606 [16] 1 + Ω(1) [Theorem 6.10]
Maximum Independent Set (MIS) Ω(poly(∆)) [7] 1 + Ω(1) [Theorem 6.11]

and maximum degree of the graph respectively. For a set of nodes S ⊆ V , the volume of S,
denoted by vol(S) is the sum of degrees of vertices in S, vol(S) =

∑
v∈S deg(v). We denote

the optimal value of an objective function f on input x by optf (x). If not stated otherwise
log denotes the logarithm of base 2.

Now we give a formal definition of the PLB properties for (multi-)graphs.

I Definition 3.1 (PLB-U [10]). Let G be an undirected n-vertex graph and c1 > 0 be a
universal constant. We say that G is power law bounded (PLB-U) for some parameters
1 < β = O(1) and t > 0 if for every integer d > 0, the number of vertices v, such that
deg(v) ∈

[
2d, 2d+1) is at most

c1n(t+ 1)β−1
2d+1−1∑
i=2d

(i+ t)−β .

I Definition 3.2 (PLB-L). Let G be an undirected n-vertex graph and c2 > 0 be a universal
constant. We say that G is power law bounded PLB-L for some parameters 1 < β = O(1)
and t > 0 if for every integer blog dminc 6 d 6 blog ∆c, the number of vertices v, such that
deg(v) ∈

[
2d, 2d+1) is at least

c2n(t+ 1)β−1
2d+1−1∑
i=2d

(i+ t)−β .

Since the PLB-U property alone can capture a much broader class of networks, for example
empty graphs and rings, this lower-bound is important to restrict networks to those with
an actual (approximate) power-law degree distribution. In the definition of PLB-L dmin is
necessary because in real-world power law-networks the minimum degree is not always 1.

I Definition 3.3 (PLB-N [10]). Let G be a PLB (multi-)graph with parameters β > 2 and
t > 0, and let c2 > 0 be a universal constant. We say that G has PLB neighborhoods
(PLB-N) if for every vertex v of degree k, the number of neighbors of v of degree at least k
is at most c3 max

(
logn, (t+ 1)β−2k

∑n−1
i=k i(i+ t)−β

)
.

Note that throughout the paper we assume the parameters, ci, β, and t, of the above
definitions to be constants.

I Definition 3.4 (Graphical degree sequence). A graphical sequence is a sequence of numbers
which can be the degree sequence of some graph.

FSTTCS 2016
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4 Power-Law Random Graphs and the PLB properties

In this section we consider some well known power law random graph models and prove
that w. h. p. or almost surely graphs generated by these models have PLB-U and PLB-N
properties. We chose Chung-Lu Random Graphs, Geometric Inhomogeneous Random Graphs,
and Hyperbolic Random Graphs, because they are common models and rather easy to analyze.
Furthermore, they assume independence or some geometrically implied sparseness of edges,
which is important for establishing the PLB-N property.

4.1 (α, β)-Power Law Graphs
I Definition 4.1 ((α, β)-Power Law Graph [3]). An (α, β)-Power Law Graph is an undirected
multigraph with the following degree distribution depending on two given values α and β.
For 1 6 i 6 ∆ =

⌊
eα/β

⌋
there are yi =

⌊
eα

iβ

⌋
nodes of degree i.

I Theorem 4.2. The (α, β)-Power Law Graph with β > 1 has the PLB-U property with
c1 = 1

ζ(β) , t = 0, and exponent β and the PLB-L property with c2 = 1
2ζ(β) , t = 0, and

exponent β.

Proof. The number of nodes of degree i is exactly
⌊
eα

iβ

⌋
. It holds that the number of nodes

of degree between 2d and 2d+1 − 1 is at most

eα
2d+1−1∑
i=2d

i−β = n
ζ(β)

2d+1−1∑
i=2d

i−β

due to the definition of the degree distribution and the fact that n = ζ(β)eα for β > 1.
Furthermore, since i 6

⌊
eα/β

⌋
,
⌊
eα

iβ

⌋
is at least one. Therefore

⌊
eα

iβ

⌋
> 1

2
eα

iβ
. It now holds

that the number of nodes of degree between 2d and 2d+1 − 1 is at least

eα

2

2d+1−1∑
i=2d

i−β = n
2ζ(β)

2d+1−1∑
i=2d

i−β . J

I Corollary 4.3. A random (α, β)-Power Law Graph with β > 1 created with the Erased
Configuration Model has the PLB-U and PLB-N properties with high probability.

4.2 Geometric Inhomogeneous Random Graphs
I Definition 4.4 (Geometric Inhomogeneous Random Graphs (GIRGs) [11]). For n ∈ N let
w = (w1, · · · , wn) be a sequence of positive weights. Let W =

∑n
i=1 wi be the total weight.

For any vertex v, draw a point xv ∈ Td uniformly and independently at random. We connect
vertices u 6= v independently with probability puv = puv(r), which now depends not only
on the weights wu, wv but also on the positions xu, xv, more precisely, on the distance
r = ‖xu − xv‖. We require for some constant α > 1 the following edge probability condition

puv = Θ
(
min

{ 1
||xu − xv||αd

(wuwv
W

)α
, 1
})

.

I Definition 4.5 (General Power-law [11]). A weight sequence ~w is said to follow a general
power-law with exponent β > 2 if wmin := min {wv | v ∈ V } = Ω(1) and if there is a
w̄ = w̄(n) > nω(1/ log logn) such that for all constants η > 0 there are c1, c2 > 0 with

c1
n

wβ−1+η 6 |{v ∈ V | wv > w}| 6 c2
n

wβ−1−η ,

where the first inequality holds for all wmin 6 w 6 w̄ and the second holds for all w > wmin.
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To prove that GIRGs fulfill PLB-U and PLB-N we need the following theorem and some
auxiliary lemmas by Bringmann et al. [12]. For the sake of brevity these lemmas as well as
the remaining proofs of this section can be found in the full version of the paper [13].

I Theorem 4.6 ([12]). Let G be a GIRG with a weight sequence that follows a general
power-law with exponent β and average degree Θ(1). Then, with high probability the degree
sequence of G follows a power law with exponent β and average degree Θ(1), i.e there exist
constants c3, c4 > 0 such that w. h. p.

c3
n

kβ−1+η 6 |{v ∈ V |deg(v) > k}| 6 c4
n

kβ−1−η ,

where the first inequality holds for all 1 6 d 6 w̄ and the second holds for all d > 1.

I Theorem 4.7. Let G be a GIRG whose weight sequence ~w follows a general power-law
with exponent β′ > 2 and an η with β′ − η > 2. Then, w. h. p. G fulfills PLB-U and PLB-N
with β = β′ − η, t = 0 and some constants c1 and c2.

4.3 Hyperbolic Random Graphs

I Definition 4.8. (Hyperbolic Random Graph [26]) Let αH > 0, CH ∈ R, TH > 0, n ∈ N
and R = 2 logn+ CH . Then the Hyperbolic Random Graph GαH ,CH ,TH (n) is a graph with
vertex set V=[n] and the following properties:

Every vertex v ∈ [n] draws coordinates (rv, φv) independently at random, where the
angle πv is chosen uniformly at random in [0, 2π) and the radius rv ∈ [0, R] is random
according to density f(r) = αH sinh(αHr)

cosh(αHR)−1 .

Every potential edge e = {u, v} ∈
([n]

2
)
is present independently with probability

pH(d(u, v)) =
(

1 + e
d(u,v)−R

2TH

)−1
.

I Lemma 4.9 ([11]). Hyperbolic random graphs are a special case of GIRGs.

This lemma directly leads to the following consequence.

I Theorem 4.10. Let G be a hyperbolic random graph with αH > 1
2 . Then, almost surely G

fulfills PLB-U and PLB-N with β = 2αH + 1− η, t = 0, constant η > 0 and some constants
c1 and c2.

4.4 Chung-Lu Random Graphs

Chung-Lu Random Graphs [15] assume a sequence of expected degrees w1, w2, . . . , wn
and each edge (i, j) exists independently at random with probability min(1, wi·wjW ), where
W =

∑n
i=1 wi. Using exactly the same techniques as for Theorem 4.6 we can prove the

theorem below.

I Theorem 4.11. Let G be a Chung-Lu random graph whose weight sequence ~w follows a
general power-law with exponent β′ > 2 and an η with β′ − η > 2. Then w. h. p. G fulfills
PLB-U and PLB-N with β = β′ − η, t = 0 and some constants c1 and c2.

FSTTCS 2016
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5 Greedy Algorithms

In this section we try to understand why simple greedy algorithms work efficiently in practice.

I Definition 5.1. An algorithm is an α-approximation for problem P if it produces a solution
set S with α > |S|

|opt| if P is a minimization problem and with α > |opt|
|S| if P is a maximization

problem.

Greedy Algorithm on PLB-U Networks

In this section we state our main lemma, Lemma 5.2, and use it to derive bounds on the
solution size and approximation ratio of covering problems.

I Lemma 5.2 (Potential Volume Lemma). Let G be a (multi-)graph with the PLB-U property
for some β > 2, some constant c1 > 0 and some constant t > 0. Let S be a solution set for
which we can define a function g : R+ → R continuously differentiable and h(x) := g(x) + C

for some constant C such that
1. g non-decreasing,
2. g(2x) 6 c · g(x) for all x > 2 and some constant c > 0,
3. g′(x) 6 g(x)

x ,
then it holds that

∑
x∈S h(deg(x)) is at mostc

1 + β − 1
β − 2

1

1−
(
t+2
t+1

)1−β

 g

((
c1
β−1
β−2

n
M · 2

β−1 · (t+ 1)β−1
) 1
β−2
)

+ C

 · |S|,
where M(n) > 1 is chosen such that

∑
x∈S deg(x) >M .

For the proof one can refer to the full version of the paper [13].
All our bounds are in terms of the following two constants, which stem from the Potential

Volume Lemma and which we will define for the sake of brevity:

aβ,t :=

1 + β − 1
β − 2

1

1−
(
t+2
t+1

)1−β

 and bc1,β,t :=
(
c1
β−1
β−2 · 2

β · (t+ 1)β−1
) 1
β−2

.

5.1 Minimum Dominating Set

The idea for lower-bounding the size of a dominating set is essentially the same as the one
by Shen et al. [33] and by Gast et al. [22] in the context of (α, β)-Power-Law Graphs: Every
set of o(n) nodes in a power-law graph can dominate only o(n) many nodes. For graphs with
PLB-U this is implied by our Potential Volume Lemma. Finally, we will show that

I Theorem 5.3. For a multigraph without loops and isolated vertices and with the PLB-U
property with parameters β > 2, c1 > 0 and t > 0, the minimum dominating set is of size at
least

(2 · aβ,t · bc1,β,t + 1)−1
n = Θ(n).
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5.1.1 The Greedy Algorithm
Theorem 5.3 implies that taking all nodes already gives a constant approximation factor, but
now we want to show that using the classical greedy algorithm actually guarantees an even
better approximation factor.

The proof of the following theorem is an adaptation of the proof for the greedy Set
Cover algorithm to the case of unweighted Dominating Set.

I Theorem 5.4 ([25]). Let S the solution of the greedy algorithm and opt an optimal
solution for Dominating Set. Then it holds that

|C| 6
∑
x∈opt

Hdeg(x)+1,

where Hk is the k-th harmonic number.

The interested reader can find the proof of the above theorem in the full version [13] of
the paper. By using the inequality from Theorem 5.4 together with the Potential Volume
Lemma 5.2, we can derive the following approximation factor for the greedy algorithm.

I Theorem 5.5. For a multigraph without loops and isolated vertices and with the PLB-U
property with parameters β > 2, c1 > 0 and t > 0, the classical greedy algorithm for Minimum
Dominating Set (cf. [17]) has an approximation factor of at most

log3(5) · aβ,t · ln (bc1,β,t + 1) + 1 = Θ(1).

Proof. From the analysis of the greedy algorithm we know that for its solution C and an
optimal solution opt it holds that

|C| 6
∑
x∈opt

Hdeg(x)+1 6
∑
x∈opt

ln(deg(x) + 1) + 1,

where Hk denotes the k-th harmonic number. We can now choose h(x) = g(x) + 1 with
g(x) = ln(x+ 1). g(x) satisfies (i), (ii) with c = log3(5) and (iii). As we assume there to be
no nodes of degree 0, it holds that∑

x∈opt
deg(x) > n

2 =: M,

since all nodes have to be covered. We can now use Lemma 5.2 with S = opt to derive that

|C| 6 (log3(5) · aβ,t · ln (bc1,β,t + 1) + 1) |opt|. J

Note that in PLB networks the maximum degree can be ∆ = Θ(n
1

β−1 ). That means the simple
bound for the greedy algorithm gives us only an approximation ratio of ln(∆ + 1) = Θ(logn).

5.2 Maximum Independent Set
For networks with the PLB-L property only, we can already derive the following lower bound
on the size of an optimal solution.

I Lemma 5.6. A graph with the PLB-L property with parameters β > 2, c2 > 0 and t > 0,
has an independent set of size at least c2(t+1)β−1

(t+dmin)β(dmin+1) · n or of size at least c2
(t+1) · n if we

assume G to be connected and dmin = 1.
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We can even go a step further and show that all maximal independent sets have to be
quite big, even if we only have the PLB-U property. Since the PLB-U property with β > 2
induces a constant average degree, this already gives us a constant approximation factor
for Maximum Independent Set on networks with this property due to Turán’s theorem.
Although we can not give better bounds for the maximum independent set, Theorem 5.3
immediately implies a lower bound for the size of all maximal independent sets:

I Theorem 5.7. In a multigraph without loops and isolated vertices and with the PLB-U
property with parameters β > 2, c1 > 0 and t > 0, every maximal independent set is of size
at least

(2 · aβ,t · bc1,β,t + 1)−1
n = Θ(n).

Especially, it holds that computing any maximal independent set gives an approximation
factor of at most 2 ·aβ,t ·bc1,β,t+1. The above theorem holds since every maximal independent
set is also a dominating set. It is easy to see that these lower bounds do not hold in sparse
graphs in general, since in a star the center node also constitutes a maximal independent set.

5.3 Vertex Cover
From the results we know about Dominating Set, we can also derive some results about
Vertex Cover in graphs without isolated vertices.

I Theorem 5.8. In a multigraph without loops and isolated vertices and with the PLB-U
property with parameters β > 2, c1 > 0 and t > 0, the minimum vertex cover is of size at
least

(2 · aβ,t · bc1,β,t + 1)−1
n.

The above theorem follows because every vertex cover in a graph without isolated vertices is
also a dominating set. Again, the theorem immediately implies an approximation factor of
at most 2 · aβ,t · bc1,β,t + 1.

6 Approximation Hardness for Simple Graphs

To show the actual non-approximability and APX hardness, we use the embedding framework
by Shen et al. [33].

I Definition 6.1 (Embedded-Approximation-Preserving Reduction [33]). Given an optimal
substructure problem O, a reduction from an instance on graph G = (V,E) to another
instance on a (power law) graph G′ = (V ′, E′) is called embedded approximation-preserving
if it satisfies the following properties:
1. G is a subset of maximal connected components of G′;
2. The optimal solution of O on G′, opt(G′), is upper bounded by C·opt(G) where C is a

constant correspondent to the growth of the optimal solution.

I Theorem 6.2 ([6]). Minimum vertex cover, Maximum independent set and Mini-
mum dominating set are APX-complete for cubic simple graphs.

Having shown an embedded-approximation-preserving reduction, we can use the following
lemma to show hardness of approximation.
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I Lemma 6.3 ([33]). Given an optimal substructure problem O, if there exists an embedded-
approximation-preserving reduction from a graph G to another graph G′ and if O is ε-
inapproximable on G, then O is δ-inapproximable on G′, where δ is lower bounded by

εC
(C−1)ε+1 if O is a maximization problem and by ε+C−1

C if O is a minimization problem.

I Theorem 6.4 ([6, 14]). In 3-bounded simple graphs it is NP-hard to approximate MDS
within a factor of 391

390 .

I Theorem 6.5 ([6, 9]). In 3-bounded simple graphs it is NP-hard to approximate MIS within
a factor of 140

139 − γ for any γ > 0.

I Theorem 6.6 ([16, 20]). In regular simple graphs MVC is hard to approximate within a
factor of 10

√
5 − 21 ≈ 1.3606 unless P = NP.

We will use this framework as follows: First, we show how to embed cubic graphs into
simple graphs with PLB-U, PLB-L and PLB-N. Then, we derive the value of C as in
Definition 6.1 for each problem we consider. Last, we use Lemma 6.3 together with the
known inapproximability results for the considered problems on cubic graphs to derive the
approximation hardness on graphs with PLB-U, PLB-L and PLB-N.

We start by showing the embedding of cubic simple graphs into simple graphs with
PLB-U, PLB-L and PLB-N. To this end we use stars as the gadgets for our embeddings.
The following is a simple observation and is therefore stated without a formal proof.

I Lemma 6.7. A star of size n has a minimum dominating set and a minimum vertex
cover of size 1 and maximum independent set of size n− 1. Also, these can be computed in
polynomial time.

I Lemma 6.8. Any cubic simple graph G can be embedded into a simple graph GPLB having
the PLB-U, PLB-L and PLB-N properties for any β > 2 and any t > 0.

Proof. Suppose we are given β and t. Again, we want to determine c1 and c2 of PLB-U
and PLB-L respectively. Let n be the number of nodes in graph G and let N = cn be the
number of nodes in GPLB for some constant c to be determined. Like in Lemma 6.3 we have
to ensure a number of conditions to get a graphical degree sequence. To hide a cubic graph
in the respective bucket of GPLB , we need

c1N(t+ 1)β−1
3∑
i=2

(i+ t)−β = c1N(t+ 1)β−1
(

1
(2 + t)β + 1

(3 + t)β

)
> n.

As we will see, we can choose the constant c1 arbitrarily large, so the former condition is no
real restriction. Then we choose the maximum degree ∆ such that

dmax(GPLB) = (cn)
1

β−1 .

In our embedding we just fill each bucket i > 2 with the number of stars of size 2i + 1 it
needs to reach its lower bound. Bucket 1 can get up to n nodes, since we hide the graph G in
it and bucket 0 gets all the degree-one nodes of our star gadgets. By filling a bucket (other
than buckets 0 and 1) we might deviate by at most one from the lower bound of that bucket.
Then, we add additional stars within the bounds of our buckets until we have exactly N
nodes. If we only need one more node, we just add it and connect it to an arbitrary star.
This does not change the properties of the star or the degree of its center enough to make it
change its bucket.
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In order for this to be possible we need to ensure that after filling all buckets to their
lower bound, there is still some slack until we reach N . This is the case if the following
inequality holds true

n+
blog ∆c∑
i=0

(2i + 1)

1 + c2N(t+ 1)β−1
2i+1−1∑
j=2i

(j + t)−β


6
N

c
+ logN

1
β−1 + c2

(t+ 1)N + c2
β − 1N + 2∆ + c2N + c2

β − 2N(t+ 1)

6 N

(
1
c

+ η + c2
t+ 1 + c2

β − 1 + η + c2 + c2
β − 2(t+ 1)

)
6 N,

where in the second line we used the inequalities

blog ∆c∑
i=0

1 + c2N(t+ 1)β−1
2i+1−1∑
j=2i

(j + t)−β
 6 logN

1
β−1 + c2

(t+ 1)N + c2
β − 1N,

blog ∆c∑
i=0

2i
1 + c2N(t+ 1)β−1

2i+1−1∑
j=2i

(j + t)−β
 6 2∆ + c2N + c2

β − 2N(t+ 1)

and choose a constant η > 0 arbitrarily small.
From this last condition we can derive

c > 1 +
η′ + c2

(
1
t+1 + 1

β−1 + t+1
β−2 + 1

)
1− η′ − c2

(
1
t+1 + 1

β−1 + t+1
β−2 + 1

) ,
since η and therefore η′ can be arbitrarily small. We choose η′ = c2

(
1
t+1 + 1

β−1 + t+1
β−2 + 1

)
to get

c = 1 +
2c2
(

1
t+1 + 1

β−1 + t+1
β−2 + 1

)
1− 2c2

(
1
t+1 + 1

β−1 + t+1
β−2 + 1

) = 1
1− 2c2

(
1
t+1 + 1

β−1 + t+1
β−2 + 1

) .
The use of star gadgets means we also have to guarantee that c1 is big enough for all
degree-one nodes to fit into bucket 0. Since c1 can be arbitrarily large, this is no problem.

Now we can essentially choose c1 arbitrarily large and c2 arbitrarily small, guaranteeing
c > 1 and a large enough gap to have a graphical degree sequence. At the same time our
choice of c guarantees that we can fill the graph with exactly N nodes. Furthermore, since
every node has a constant number of neighbors of equal or higher degree, GPLB also fulfills
PLB-N, which always allows us at least c3 logN many neighbors. J

6.1 Dominating Set

I Theorem 6.9. For every β > 2 and every t > 0 Minimum Dominating Set cannot be

approximated to within a factor of 1 +
(

130 ·
(

4 1− c2
t+1

1−2c2( 1
t+1 + 1

β−1 + t+1
β−2 +1) + 1

))−1
on simple

graphs with PLB-U, PLB-L and PLB-N unless P = NP.
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Proof. Lemma 6.8 gives us an L-reduction from a cubic graph G to a simple graph GPLB
with the PLB-U, PLB-L and PLB-N properties. The L-reduction from a cubic graph G

to a simple graph GPLB together with Theorem 6.2 implies that MDS is APX hard for
simple graphs with PLB-(U,L,N). Let opt(G) and opt(GPLB) denote the size of a minimum
dominating set for G and GPLB respectively. Let bi be the set of nodes in PLB bucket i, i.e.
the set of nodes v ∈ V with deg(v) ∈

[
2i, 2i+1 − 1

]
. We know that opt(G) > n

4 and from
Lemma 6.7 we can derive opt (GPLB\G) = N − n− |b0|. It now holds that

opt(GPLB) = opt(G) + opt(GPLB\G)
= opt(G) +N − n− |b0|

6 opt(G) +N − n− c2
t+ 1N

= opt(G) +
(
c− 1− c c2

t+ 1

)
n

6 opt(G) +
(
c− 1− c c2

t+ 1

)
4opt(G)

=
(

4c
(

1− c2
t+ 1

)
− 3
)

opt(G).

In the context of Definition 6.1 and Lemma 6.3 this means C = 4c
(

1− c2
t+1

)
− 3. Due

to Theorem 6.4 it also holds that ε = 391
390 in the context of Lemma 6.3. This gives us an

approximation hardness of

1 + ε− 1
C

= 1 + 3
390 · (4c

(
1− c2

t+1

)
− 3)

= 1 + 3

390 ·
(

4 1− c2
t+1

1−2c2( 1
t+1 + 1

β−1 + t+1
β−2 +1) + 1

)

= 1 +

130 ·

4
1− c2

t+1

1− 2c2
(

1
t+1 + 1

β−1 + t+1
β−2 + 1

) + 1

−1

due to our choice of c in Lemma 6.8. J

By using similar arguments as for Theorem 6.9 we can prove Theorem 6.10 and Theorem 6.11.

I Theorem 6.10. For every β > 2 and every t > 0 Minimum Vertex Cover cannot be
approximated to within a factor of 1 + (1−2c2( 1

t+1 + 1
β−1 + t+1

β−2 +1))(10
√

5−22)
2c2( 1

β−1 + t+1
β−2 +1)+1

on simple graphs
with PLB-U, PLB-L and PLB-N unless P = NP.

I Theorem 6.11. For every β > 2 and every t > 0 Maximum Independent Set cannot
be approximated to within a factor of 1 + ( 1

139−γ)((t+1)(1−2c2( 1
t+1 + 1

β−1 + t+1
β−2 +1)))

4c1( 140
139−γ)+(t+1)(1−2c2( 1

t+1 + 1
β−1 + t+1

β−2 +1)) for any
γ > 0 on simple graphs with PLB-U, PLB-L and PLB-N unless P = NP.
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