1,190 research outputs found

    Broadcasting Protocol for Effective Data Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    VANET topology is very dynamic due to frequent movements of the nodes. Using beacon information connected dominated set are formed and nodes further enhanced with neighbor elimination scheme. With acknowledgement the inter section issues are solve. A modified Broadcast Conquest and Delay De-synchronization mechanism address the broadcasting storm issues. Although data dissemination is possible in all direction, the performance of data dissemination in the opposite direction is investigated and compared against the existing protocols

    PAMPA in the wild:a real-life evaluation of a lightweight ad-hoc broadcasting family

    Get PDF
    Broadcast is one of the core building blocks of many services deployed on ad-hoc wireless networks, such as Mobile Ad-Hoc Networks (MANETs) or Wireless Sensor Networks (WSNs). Most broadcast protocols are however only ever evaluated using simulations, which have repeatedly been shown to be unreliable, and potentially misleading. In this paper, we seek to go beyond simulations, and consider the particular case of PAMPA, a promising family of wireless broadcast algorithms for ad-hoc and wireless networks. We report on our efforts to further our experimental understanding of PAMPA, and present the first ever characterisation of the PAMPA family on a real deployment. Here it has to deal with real network problems such as node, message and sending failure. Our experiments show that the standard PAMPA algorithm out-performs all other protocols in the family, with a delivery ratio consistently around 75%, and a retransmission ratio as low as 44%, for a failure-free run. We use this opportunity to reflect on our findings and lessons learnt when moving from simulations to actual experimentsab

    Power assignment problems in wireless communication

    No full text
    A fundamental class of problems in wireless communication is concerned with the assignment of suitable transmission powers to wireless devices/stations such that the resulting communication graph satisfies certain desired properties and the overall energy consumed is minimized. Many concrete communication tasks in a wireless network like broadcast, multicast, point-to-point routing, creation of a communication backbone, etc. can be regarded as such a power assignment problem. This paper considers several problems of that kind; for example one problem studied before in (Vittorio Bil{\`o} et al: Geometric Clustering to Minimize the Sum of Cluster Sizes, ESA 2005) and (Helmut Alt et al.: Minimum-cost coverage of point sets by disks, SCG 2006) aims to select and assign powers to kk of the stations such that all other stations are within reach of at least one of the selected stations. We improve the running time for obtaining a (1+ϵ)(1+\epsilon)-approximate solution for this problem from n((α/ϵ)O(d))n^{((\alpha/\epsilon)^{O(d)})} as reported by Bil{\`o} et al. (see Vittorio Bil{\`o} et al: Geometric Clustering to Minimize the Sum of Cluster Sizes, ESA 2005) to O(n+(k2d+1ϵd)min{  2k,    (α/ϵ)O(d)  })O\left( n+ {\left(\frac{k^{2d+1}}{\epsilon^d}\right)}^{ \min{\{\; 2k,\;\; (\alpha/\epsilon)^{O(d)} \;\}} } \right) that is, we obtain a running time that is \emph{linear} in the network size. Further results include a constant approximation algorithm for the TSP problem under squared (non-metric!) edge costs, which can be employed to implement a novel data aggregation protocol, as well as efficient schemes to perform kk-hop multicasts

    Reliable Message Dissemination in Mobile Vehicular Networks

    Full text link
    Les réseaux véhiculaires accueillent une multitude d’applications d’info-divertissement et de sécurité. Les applications de sécurité visent à améliorer la sécurité sur les routes (éviter les accidents), tandis que les applications d’info-divertissement visent à améliorer l'expérience des passagers. Les applications de sécurité ont des exigences rigides en termes de délais et de fiabilité ; en effet, la diffusion des messages d’urgence (envoyés par un véhicule/émetteur) devrait être fiable et rapide. Notons que, pour diffuser des informations sur une zone de taille plus grande que celle couverte par la portée de transmission d’un émetteur, il est nécessaire d’utiliser un mécanisme de transmission multi-sauts. De nombreuses approches ont été proposées pour assurer la fiabilité et le délai des dites applications. Toutefois, ces méthodes présentent plusieurs lacunes. Cette thèse, nous proposons trois contributions. La première contribution aborde la question de la diffusion fiable des messages d’urgence. A cet égard, un nouveau schéma, appelé REMD, a été proposé. Ce schéma utilise la répétition de message pour offrir une fiabilité garantie, à chaque saut, tout en assurant un court délai. REMD calcule un nombre optimal de répétitions en se basant sur l’estimation de la qualité de réception de lien dans plusieurs locations (appelées cellules) à l’intérieur de la zone couverte par la portée de transmission de l’émetteur. REMD suppose que les qualités de réception de lien des cellules adjacentes sont indépendantes. Il sélectionne, également, un nombre de véhicules, appelés relais, qui coopèrent dans le contexte de la répétition du message d’urgence pour assurer la fiabilité en multi-sauts. La deuxième contribution, appelée BCRB, vise à améliorer REMD ; elle suppose que les qualités de réception de lien des cellules adjacentes sont dépendantes ce qui est, généralement, plus réaliste. BCRB utilise les réseaux Bayésiens pour modéliser les dépendances en vue d’estimer la qualité du lien de réception avec une meilleure précision. La troisième contribution, appelée RICS, offre un accès fiable à Internet. RICS propose un modèle d’optimisation, avec une résolution exacte optimale à l'aide d’une technique de réduction de la dimension spatiale, pour le déploiement des passerelles. Chaque passerelle utilise BCRB pour établir une communication fiable avec les véhicules.Vehicular networks aim to enable a plethora of safety and infotainment applications. Safety applications aim to preserve people's lives (e.g., by helping in avoiding crashes) while infotainment applications focus on enhancing the passengers’ experience. These applications, especially safety applications, have stringent requirements in terms of reliability and delay; indeed, dissemination of an emergency message (e.g., by a vehicle/sender involved in a crash) should be reliable while satisfying short delay requirements. Note, that multi-hop dissemination is needed to reach all vehicles, in the target area, that may be outside the transmission range of the sender. Several schemes have been proposed to provide reliability and short delay for vehicular applications. However, these schemes have several limitations. Thus, the design of new solutions, to meet the requirement of vehicular applications in terms of reliability while keeping low end-to-end delay, is required. In this thesis, we propose three schemes. The first scheme is a multi-hop reliable emergency message dissemination scheme, called REMD, which guarantees a predefined reliability , using message repetitions/retransmissions, while satisfying short delay requirements. It computes an optimal number of repetitions based on the estimation of link reception quality at different locations (called cells) in the transmission range of the sender; REMD assumes that link reception qualities of adjacent cells are independent. It also adequately selects a number of vehicles, called forwarders, that cooperate in repeating the emergency message with the objective to satisfy multi-hop reliability requirements. The second scheme, called BCRB, overcomes the shortcoming of REMD by assuming that link reception qualities of adjacent cells are dependent which is more realistic in real-life scenarios. BCRB makes use of Bayesian networks to model these dependencies; this allows for more accurate estimation of link reception qualities leading to better performance of BCRB. The third scheme, called RICS, provides internet access to vehicles by establishing multi-hop reliable paths to gateways. In RICS, the gateway placement is modeled as a k-center optimisation problem. A space dimension reduction technique is used to solve the problem in exact time. Each gateway makes use of BCRB to establish reliable communication paths to vehicles

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    corecore