471 research outputs found

    Sensor-invariant Fingerprint ROI Segmentation Using Recurrent Adversarial Learning

    Full text link
    A fingerprint region of interest (roi) segmentation algorithm is designed to separate the foreground fingerprint from the background noise. All the learning based state-of-the-art fingerprint roi segmentation algorithms proposed in the literature are benchmarked on scenarios when both training and testing databases consist of fingerprint images acquired from the same sensors. However, when testing is conducted on a different sensor, the segmentation performance obtained is often unsatisfactory. As a result, every time a new fingerprint sensor is used for testing, the fingerprint roi segmentation model needs to be re-trained with the fingerprint image acquired from the new sensor and its corresponding manually marked ROI. Manually marking fingerprint ROI is expensive because firstly, it is time consuming and more importantly, requires domain expertise. In order to save the human effort in generating annotations required by state-of-the-art, we propose a fingerprint roi segmentation model which aligns the features of fingerprint images derived from the unseen sensor such that they are similar to the ones obtained from the fingerprints whose ground truth roi masks are available for training. Specifically, we propose a recurrent adversarial learning based feature alignment network that helps the fingerprint roi segmentation model to learn sensor-invariant features. Consequently, sensor-invariant features learnt by the proposed roi segmentation model help it to achieve improved segmentation performance on fingerprints acquired from the new sensor. Experiments on publicly available FVC databases demonstrate the efficacy of the proposed work.Comment: IJCNN 2021 (Accepted

    Facilitating sensor interoperability and incorporating quality in fingerprint matching systems

    Get PDF
    This thesis addresses the issues of sensor interoperability and quality in the context of fingerprints and makes a three-fold contribution. The first contribution is a method to facilitate fingerprint sensor interoperability that involves the comparison of fingerprint images originating from multiple sensors. The proposed technique models the relationship between images acquired by two different sensors using a Thin Plate Spline (TPS) function. Such a calibration model is observed to enhance the inter-sensor matching performance on the MSU dataset containing images from optical and capacitive sensors. Experiments indicate that the proposed calibration scheme improves the inter-sensor Genuine Accept Rate (GAR) by 35% to 40% at a False Accept Rate (FAR) of 0.01%. The second contribution is a technique to incorporate the local image quality information in the fingerprint matching process. Experiments on the FVC 2002 and 2004 databases suggest the potential of this scheme to improve the matching performance of a generic fingerprint recognition system. The final contribution of this thesis is a method for classifying fingerprint images into 3 categories: good, dry and smudged. Such a categorization would assist in invoking different image processing or matching schemes based on the nature of the input fingerprint image. A classification rate of 97.45% is obtained on a subset of the FVC 2004 DB1 database

    Investigating the Impact of Demographic Factors on Contactless Fingerprint Interoperability

    Get PDF
    Improvements in contactless fingerprinting have resulted in contactless fingerprints becoming a faster and more convenient alternative to contact fingerprints. The interoperability between contactless fingerprints and contact fingerprints and how demographic factors can change interoperability has been challenging since COVID-19; the need for hygienic alternatives has only grown because of the sudden focus during the pandemic. Past work has shown issues with the interoperability of contactless prints from kiosk devices and phone fingerprint collection apps. Demographic bias in photography for facial recognition could affect photographed fingerprints. The paper focuses on evaluating match performance between contact and contactless fingerprints and evaluating match score bias based on five skin demographics; melanin, erythema, and the three measurements of the CIELab color space. The interoperability of three fingerprint matchers was tested. The best and worst Area Under the Curve (AUC) and Equal Error Rate (EER) values for the best-performing matcher were an AUC of 0.99398 and 0.97873 and an EER of 0.03016 and 0.07555, respectively, while the best contactless AUC and EER were 0.99337 and 0.03387 indicating that contactless match performance can be as good as contact fingerprints depending on the device. In contrast, the best and worst AUC and EER for the cellphone contactless fingerprints were an AUC of 0.96812 and 0.85772 and an EER of 0.08699 and 0.22130, falling short of the lowest performing contact fingerprints. Demographic analysis was on the top two of the three matchers based on the top one percent of non-match scores. Resulting efforts found matcher-specific bias for melanin showing specific ranges affected by low and high melanin values. While higher levels of erythema and general redness of the skin improved performance. Higher lightness values showed a decreased performance in the top-performing matcher

    A new algorithm for minutiae extraction and matching in fingerprint

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.A novel algorithm for fingerprint template formation and matching in automatic fingerprint recognition has been developed. At present, fingerprint is being considered as the dominant biometric trait among all other biometrics due to its wide range of applications in security and access control. Most of the commercially established systems use singularity point (SP) or ‘core’ point for fingerprint indexing and template formation. The efficiency of these systems heavily relies on the detection of the core and the quality of the image itself. The number of multiple SPs or absence of ‘core’ on the image can cause some anomalies in the formation of the template and may result in high False Acceptance Rate (FAR) or False Rejection Rate (FRR). Also the loss of actual minutiae or appearance of new or spurious minutiae in the scanned image can contribute to the error in the matching process. A more sophisticated algorithm is therefore necessary in the formation and matching of templates in order to achieve low FAR and FRR and to make the identification more accurate. The novel algorithm presented here does not rely on any ‘core’ or SP thus makes the structure invariant with respect to global rotation and translation. Moreover, it does not need orientation of the minutiae points on which most of the established algorithm are based. The matching methodology is based on the local features of each minutiae point such as distances to its nearest neighbours and their internal angle. Using a publicly available fingerprint database, the algorithm has been evaluated and compared with other benchmark algorithms. It has been found that the algorithm has performed better compared to others and has been able to achieve an error equal rate of 3.5%

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/08/2010.This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims

    A Survey on Modality Characteristics, Performance Evaluation Metrics, and Security for Traditional and Wearable Biometric Systems

    Get PDF
    Biometric research is directed increasingly towards Wearable Biometric Systems (WBS) for user authentication and identification. However, prior to engaging in WBS research, how their operational dynamics and design considerations differ from those of Traditional Biometric Systems (TBS) must be understood. While the current literature is cognizant of those differences, there is no effective work that summarizes the factors where TBS and WBS differ, namely, their modality characteristics, performance, security and privacy. To bridge the gap, this paper accordingly reviews and compares the key characteristics of modalities, contrasts the metrics used to evaluate system performance, and highlights the divergence in critical vulnerabilities, attacks and defenses for TBS and WBS. It further discusses how these factors affect the design considerations for WBS, the open challenges and future directions of research in these areas. In doing so, the paper provides a big-picture overview of the important avenues of challenges and potential solutions that researchers entering the field should be aware of. Hence, this survey aims to be a starting point for researchers in comprehending the fundamental differences between TBS and WBS before understanding the core challenges associated with WBS and its design

    On the Feasibility of Interoperable Schemes in Hand Biometrics

    Get PDF
    Personal recognition through hand-based biometrics has attracted the interest of many researchers in the last twenty years. A significant number of proposals based on different procedures and acquisition devices have been published in the literature. However, comparisons between devices and their interoperability have not been thoroughly studied. This paper tries to fill this gap by proposing procedures to improve the interoperability among different hand biometric schemes. The experiments were conducted on a database made up of 8,320 hand images acquired from six different hand biometric schemes, including a flat scanner, webcams at different wavelengths, high quality cameras, and contactless devices. Acquisitions on both sides of the hand were included. Our experiment includes four feature extraction methods which determine the best performance among the different scenarios for two of the most popular hand biometrics: hand shape and palm print. We propose smoothing techniques at the image and feature levels to reduce interdevice variability. Results suggest that comparative hand shape offers better performance in terms of interoperability than palm prints, but palm prints can be more effective when using similar sensors

    Naval Reserve support to information Operations Warfighting

    Get PDF
    Since the mid-1990s, the Fleet Information Warfare Center (FIWC) has led the Navy's Information Operations (IO) support to the Fleet. Within the FIWC manning structure, there are in total 36 officer and 84 enlisted Naval Reserve billets that are manned to approximately 75 percent and located in Norfolk and San Diego Naval Reserve Centers. These Naval Reserve Force personnel could provide support to FIWC far and above what they are now contributing specifically in the areas of Computer Network Operations, Psychological Operations, Military Deception and Civil Affairs. Historically personnel conducting IO were primarily reservists and civilians in uniform with regular military officers being by far the minority. The Naval Reserve Force has the personnel to provide skilled IO operators but the lack of an effective manning document and training plans is hindering their opportunity to enhance FIWC's capabilities in lull spectrum IO. This research investigates the skill requirements of personnel in IO to verify that the Naval Reserve Force has the talent base for IO support and the feasibility of their expanded use in IO.http://archive.org/details/navalreservesupp109451098
    • 

    corecore