21,644 research outputs found

    A Selective Scheduling Problem with Sequence-dependent Setup Times: A Risk-averse Approach

    Get PDF
    This paper addresses a scheduling problem with parallel identical machines and sequence-dependent setup times in which the setup and the processing times are random parameters. The model aims at minimizing the total completion time while the total revenue gained by the processed jobs satisfies the manufacturer’s threshold. To handle the uncertainty of random parameters, we adopt a risk-averse distributionally robust approach developed based on the Conditional Value-at-Risk measure hedging against the worst-case performance. The proposed model is tested via extensive experimental results performed on a set of benchmark instances. We also show the efficiency of the deterministic counterpart of our model, in comparison with the state-of-the-art model proposed for a similar problem in a deterministic context

    Scheduling unrelated parallel machines with resource-assignable sequence-dependent setup times

    Full text link
    [EN] A novel scheduling problem that results from the addition of resource-assignable setups is presented in this paper. We consider an unrelated parallel machine problem with machine and job sequence-dependent setup times. The new characteristic is that the amount of setup time does not only depend on the machine and job sequence but also on the amount of resources assigned, which can vary between a minimum and a maximum. The aim is to give solution to real problems arising in several industries where frequent setup operations in production lines have to be carried out. These operations are indeed setups whose length can be reduced or extended according to the amount of resources assigned to them. The objective function considered is a linear combination of total completion time and the total amount of resources assigned. We present a mixed integer program (MIP) model and some fast dispatching heuristics. We carry out careful and comprehensive statistical analyses to study what characteristics of the problem affect the MIP model performance. We also study the effectiveness of the different heuristics proposed. © 2011 Springer-Verlag London Limited.The authors are indebted to the referees and editor for a close examination of the paper, which has increased its quality and presentation. This work is partially funded by the Spanish Ministry of Science and Innovation, under the project "SMPA-Advanced Parallel Multiobjective Sequencing: Practical and Theoretical Advances" with reference DPI2008-03511/DPI. The authors should also thank the IMPIVA-Institute for the Small and Medium Valencian Enterprise, for the project OSC with references IMIDIC/2008/137, IMIDIC/2009/198, and IMIDIC/2010/175.Ruiz García, R.; Andrés Romano, C. (2011). Scheduling unrelated parallel machines with resource-assignable sequence-dependent setup times. International Journal of Advanced Manufacturing Technology. 57(5):777-794. https://doi.org/10.1007/S00170-011-3318-2S777794575Allahverdi A, Gupta JND, Aldowaisan T (1999) A review of scheduling research involving setup considerations. OMEGA Int J Manag Sci 27(2):219–239Allahverdi A, Ng CT, Cheng TCE, Kovalyov MY (2008) A survey of scheduling problems with setup times or costs. Eur J Oper Res 187(3):985–1032Balakrishnan N, Kanet JJ, Sridharan SV (1999) Early/tardy scheduling with sequence dependent setups on uniform parallel machines. Comput Oper Res 26(2):127–141Biggs D, De Ville B, and Suen E (1991) A method of choosing multiway partitions for classification and decision trees. J Appl Stat 18(1):49–62Chen J-F (2006) Unrelated parallel machine scheduling with secondary resource constraints. Int J Adv Manuf Technol 26(3):285–292Cheng TCE, Sin CCS (1990) A state-of-the-art review of parallel machine scheduling research. Eur J Oper Res 47(3):271–292Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann Discrete Math 5:287–326Grigoriev E, Sviridenko M, Uetz M (2007) Unrelated parallel machine scheduling with resource dependent processing times. Math Program Ser A and B 110(1):209–228Guinet A (1991) Textile production systems: a succession of non-identical parallel processor shops. J Oper Res Soc 42(8):655–671Guinet A, Dussauchoy A (1993) Scheduling sequence dependent jobs on identical parallel machines to minimize completion time criteria. Int J Prod Res 31(7):1579–1594Horn WA (1973) Minimizing average flow time with parallel machines. Oper Res 21(3):846–847Kass GV (1980) An exploratory technique for investigating large quantities of categorical data. Appl Stat 29(2):119–127Kim DW, Kim KH, Jang W, Chen FF (2002) Unrelated parallel machine scheduling with setup times using simulated annealing. Robot Comput-Integr Manuf 18(3–4):223–231Lam K, Xing W (1997) New trends in parallel machine scheduling. Int J Oper Prod Manage 17(3):326–338Lee YH, Pinedo M (1997) Scheduling jobs on parallel machines with sequence dependent setup times. Eur J Oper Res 100(3):464–474Marsh JD, Montgomery DC (1973) Optimal procedures for scheduling jobs with sequence-dependent changeover times on parallel processors. AIIE Technical Papers, pp 279–286Mokotoff E (2001) Parallel machine scheduling problems: a survey. Asia-Pac J Oper Res 18(2):193–242Morgan JA, Sonquist JN (1963) Problems in the analysis of survey data and a proposal. J Am Stat Assoc 58:415–434Ng CT, Edwin Cheng TC, Janiak A, Kovalyov MY (2005) Group scheduling with controllable setup and processing times: minimizing total weighted completion time. Ann Oper Res 133:163–174Nowicki E, Zdrzalka S (1990) A survey of results for sequencing problems with controllable processing times. Discrete Appl Math 26(2–3):271–287Pinedo M (2002) Scheduling: theory, algorithms, and systems, 2nd edn. Prentice Hall, Upper SaddleRabadi G, Moraga RJ, Al-Salem A (2006) Heuristics for the unrelated parallel machine scheduling problem with setup times. J Intell Manuf 17(1):85–97Radhakrishnan S, Ventura JA (2000) Simulated annealing for parallel machine scheduling with earliness-tardiness penalties and sequence-dependent set-up times. Int J Prod Res 38(10):2233–2252Ruiz R, Sivrikaya Şerifoğlu F, Urlings T (2008) Modeling realistic hybrid flexible flowshop scheduling problems. Comput Oper Res 35(4):1151–1175Sivrikaya-Serifoglu F, Ulusoy G (1999) Parallel machine scheduling with earliness and tardiness penalties. Comput Oper Res 26(8):773–787Webster ST (1997) The complexity of scheduling job families about a common due date. Oper Res Lett 20(2):65–74Weng MX, Lu J, Ren H (2001) Unrelated parallel machines scheduling with setup consideration and a total weighted completion time objective. Int J Prod Econ 70(3):215–226Yang W-H, Liao C-J (1999) Survey of scheduling research involving setup times. Int J Syst Sci 30(2):143–155Zhang F, Tang GC, Chen ZL (2001) A 3/2-approximation algorithm for parallel machine scheduling with controllable processing times. Oper Res Lett 29(1):41–47Zhu Z, Heady R (2000) Minimizing the sum of earliness/tardiness in multi-machine scheduling: a mixed integer programming approach. Comput Ind Eng 38(2):297–30

    Malleable Scheduling Beyond Identical Machines

    Get PDF
    In malleable job scheduling, jobs can be executed simultaneously on multiple machines with the processing time depending on the number of allocated machines. Jobs are required to be executed non-preemptively and in unison, in the sense that they occupy, during their execution, the same time interval over all the machines of the allocated set. In this work, we study generalizations of malleable job scheduling inspired by standard scheduling on unrelated machines. Specifically, we introduce a general model of malleable job scheduling, where each machine has a (possibly different) speed for each job, and the processing time of a job j on a set of allocated machines S depends on the total speed of S for j. For machines with unrelated speeds, we show that the optimal makespan cannot be approximated within a factor less than e/(e-1), unless P = NP. On the positive side, we present polynomial-time algorithms with approximation ratios 2e/(e-1) for machines with unrelated speeds, 3 for machines with uniform speeds, and 7/3 for restricted assignments on identical machines. Our algorithms are based on deterministic LP rounding and result in sparse schedules, in the sense that each machine shares at most one job with other machines. We also prove lower bounds on the integrality gap of 1+phi for unrelated speeds (phi is the golden ratio) and 2 for uniform speeds and restricted assignments. To indicate the generality of our approach, we show that it also yields constant factor approximation algorithms (i) for minimizing the sum of weighted completion times; and (ii) a variant where we determine the effective speed of a set of allocated machines based on the L_p norm of their speeds

    Scheduling Jobs in Flowshops with the Introduction of Additional Machines in the Future

    Get PDF
    This is the author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier and can be found at: http://www.journals.elsevier.com/expert-systems-with-applications/.The problem of scheduling jobs to minimize total weighted tardiness in flowshops,\ud with the possibility of evolving into hybrid flowshops in the future, is investigated in\ud this paper. As this research is guided by a real problem in industry, the flowshop\ud considered has considerable flexibility, which stimulated the development of an\ud innovative methodology for this research. Each stage of the flowshop currently has\ud one or several identical machines. However, the manufacturing company is planning\ud to introduce additional machines with different capabilities in different stages in the\ud near future. Thus, the algorithm proposed and developed for the problem is not only\ud capable of solving the current flow line configuration but also the potential new\ud configurations that may result in the future. A meta-heuristic search algorithm based\ud on Tabu search is developed to solve this NP-hard, industry-guided problem. Six\ud different initial solution finding mechanisms are proposed. A carefully planned\ud nested split-plot design is performed to test the significance of different factors and\ud their impact on the performance of the different algorithms. To the best of our\ud knowledge, this research is the first of its kind that attempts to solve an industry-guided\ud problem with the concern for future developments

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    Online Scheduling on Identical Machines using SRPT

    Full text link
    Due to its optimality on a single machine for the problem of minimizing average flow time, Shortest-Remaining-Processing-Time (\srpt) appears to be the most natural algorithm to consider for the problem of minimizing average flow time on multiple identical machines. It is known that \srpt achieves the best possible competitive ratio on multiple machines up to a constant factor. Using resource augmentation, \srpt is known to achieve total flow time at most that of the optimal solution when given machines of speed 2−1m2- \frac{1}{m}. Further, it is known that \srpt's competitive ratio improves as the speed increases; \srpt is ss-speed 1s\frac{1}{s}-competitive when s≥2−1ms \geq 2- \frac{1}{m}. However, a gap has persisted in our understanding of \srpt. Before this work, the performance of \srpt was not known when \srpt is given (1+\eps)-speed when 0 < \eps < 1-\frac{1}{m}, even though it has been thought that \srpt is (1+\eps)-speed O(1)O(1)-competitive for over a decade. Resolving this question was suggested in Open Problem 2.9 from the survey "Online Scheduling" by Pruhs, Sgall, and Torng \cite{PruhsST}, and we answer the question in this paper. We show that \srpt is \emph{scalable} on mm identical machines. That is, we show \srpt is (1+\eps)-speed O(\frac{1}{\eps})-competitive for \eps >0. We complement this by showing that \srpt is (1+\eps)-speed O(\frac{1}{\eps^2})-competitive for the objective of minimizing the ℓk\ell_k-norms of flow time on mm identical machines. Both of our results rely on new potential functions that capture the structure of \srpt. Our results, combined with previous work, show that \srpt is the best possible online algorithm in essentially every aspect when migration is permissible.Comment: Accepted for publication at SODA. This version fixes an error in a preliminary versio
    • …
    corecore