30,177 research outputs found

    Likelihood decision functions

    Get PDF
    In both classical and Bayesian approaches, statistical inference is unified and generalized by the corresponding decision theory. This is not the case for the likelihood approach to statistical inference, in spite of the manifest success of the likelihood methods in statistics. The goal of the present work is to fill this gap, by extending the likelihood approach in order to cover decision making as well. The resulting decision functions, called likelihood decision functions, generalize the usual likelihood methods (such as ML estimators and LR tests), in the sense that these methods appear as the likelihood decision functions in particular decision problems. In general, the likelihood decision functions maintain some key properties of the usual likelihood methods, such as equivariance and asymptotic optimality. By unifying and generalizing the likelihood approach to statistical inference, the present work offers a new perspective on statistical methodology and on the connections among likelihood methods

    An iterative thresholding algorithm for linear inverse problems with a sparsity constraint

    Full text link
    We consider linear inverse problems where the solution is assumed to have a sparse expansion on an arbitrary pre-assigned orthonormal basis. We prove that replacing the usual quadratic regularizing penalties by weighted l^p-penalties on the coefficients of such expansions, with 1 < or = p < or =2, still regularizes the problem. If p < 2, regularized solutions of such l^p-penalized problems will have sparser expansions, with respect to the basis under consideration. To compute the corresponding regularized solutions we propose an iterative algorithm that amounts to a Landweber iteration with thresholding (or nonlinear shrinkage) applied at each iteration step. We prove that this algorithm converges in norm. We also review some potential applications of this method.Comment: 30 pages, 3 figures; this is version 2 - changes with respect to v1: small correction in proof (but not statement of) lemma 3.15; description of Besov spaces in intro and app A clarified (and corrected); smaller pointsize (making 30 instead of 38 pages

    Likelihood Analysis of Power Spectra and Generalized Moment Problems

    Full text link
    We develop an approach to spectral estimation that has been advocated by Ferrante, Masiero and Pavon and, in the context of the scalar-valued covariance extension problem, by Enqvist and Karlsson. The aim is to determine the power spectrum that is consistent with given moments and minimizes the relative entropy between the probability law of the underlying Gaussian stochastic process to that of a prior. The approach is analogous to the framework of earlier work by Byrnes, Georgiou and Lindquist and can also be viewed as a generalization of the classical work by Burg and Jaynes on the maximum entropy method. In the present paper we present a new fast algorithm in the general case (i.e., for general Gaussian priors) and show that for priors with a specific structure the solution can be given in closed form.Comment: 17 pages, 4 figure

    On a continuation approach in Tikhonov regularization and its application in piecewise-constant parameter identification

    Full text link
    We present a new approach to convexification of the Tikhonov regularization using a continuation method strategy. We embed the original minimization problem into a one-parameter family of minimization problems. Both the penalty term and the minimizer of the Tikhonov functional become dependent on a continuation parameter. In this way we can independently treat two main roles of the regularization term, which are stabilization of the ill-posed problem and introduction of the a priori knowledge. For zero continuation parameter we solve a relaxed regularization problem, which stabilizes the ill-posed problem in a weaker sense. The problem is recast to the original minimization by the continuation method and so the a priori knowledge is enforced. We apply this approach in the context of topology-to-shape geometry identification, where it allows to avoid the convergence of gradient-based methods to a local minima. We present illustrative results for magnetic induction tomography which is an example of PDE constrained inverse problem

    The information bottleneck method

    Get PDF
    We define the relevant information in a signal xXx\in X as being the information that this signal provides about another signal y\in \Y. Examples include the information that face images provide about the names of the people portrayed, or the information that speech sounds provide about the words spoken. Understanding the signal xx requires more than just predicting yy, it also requires specifying which features of \X play a role in the prediction. We formalize this problem as that of finding a short code for \X that preserves the maximum information about \Y. That is, we squeeze the information that \X provides about \Y through a `bottleneck' formed by a limited set of codewords \tX. This constrained optimization problem can be seen as a generalization of rate distortion theory in which the distortion measure d(x,\x) emerges from the joint statistics of \X and \Y. This approach yields an exact set of self consistent equations for the coding rules X \to \tX and \tX \to \Y. Solutions to these equations can be found by a convergent re-estimation method that generalizes the Blahut-Arimoto algorithm. Our variational principle provides a surprisingly rich framework for discussing a variety of problems in signal processing and learning, as will be described in detail elsewhere

    Recursive Aggregation of Estimators by Mirror Descent Algorithm with Averaging

    Get PDF
    We consider a recursive algorithm to construct an aggregated estimator from a finite number of base decision rules in the classification problem. The estimator approximately minimizes a convex risk functional under the l1-constraint. It is defined by a stochastic version of the mirror descent algorithm (i.e., of the method which performs gradient descent in the dual space) with an additional averaging. The main result of the paper is an upper bound for the expected accuracy of the proposed estimator. This bound is of the order (logM)/t\sqrt{(\log M)/t} with an explicit and small constant factor, where MM is the dimension of the problem and tt stands for the sample size. A similar bound is proved for a more general setting that covers, in particular, the regression model with squared loss.Comment: 29 pages; mai 200

    Adaptive complexity regularization for linear inverse problems

    Full text link
    We tackle the problem of building adaptive estimation procedures for ill-posed inverse problems. For general regularization methods depending on tuning parameters, we construct a penalized method that selects the optimal smoothing sequence without prior knowledge of the regularity of the function to be estimated. We provide for such estimators oracle inequalities and optimal rates of convergence. This penalized approach is applied to Tikhonov regularization and to regularization by projection.Comment: Published in at http://dx.doi.org/10.1214/07-EJS115 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On the Optimal Control of the Free Boundary Problems for the Second Order Parabolic Equations. I.Well-posedness and Convergence of the Method of Lines

    Full text link
    We develop a new variational formulation of the inverse Stefan problem, where information on the heat flux on the fixed boundary is missing and must be found along with the temperature and free boundary. We employ optimal control framework, where boundary heat flux and free boundary are components of the control vector, and optimality criteria consists of the minimization of the sum of L2L_2-norm declinations from the available measurement of the temperature flux on the fixed boundary and available information on the phase transition temperature on the free boundary. This approach allows one to tackle situations when the phase transition temperature is not known explicitly, and is available through measurement with possible error. It also allows for the development of iterative numerical methods of least computational cost due to the fact that for every given control vector, the parabolic PDE is solved in a fixed region instead of full free boundary problem. We prove well-posedness in Sobolev spaces framework and convergence of discrete optimal control problems to the original problem both with respect to cost functional and control
    corecore