5,291 research outputs found

    Binary and Ordinal Random Effects Models Including Variable Selection

    Get PDF
    A likelihood-based boosting approach for fitting binary and ordinal mixed models is presented. In contrast to common procedures it can be used in high-dimensional settings where a large number of potentially influential explanatory variables is available. Constructed as a componentwise boosting method it is able to perform variable selection with the complexity of the resulting estimator being determined by information criteria. The method is investigated in simulation studies both for cumulative and sequential models and is illustrated by using real data sets

    A concave pairwise fusion approach to subgroup analysis

    Full text link
    An important step in developing individualized treatment strategies is to correctly identify subgroups of a heterogeneous population, so that specific treatment can be given to each subgroup. In this paper, we consider the situation with samples drawn from a population consisting of subgroups with different means, along with certain covariates. We propose a penalized approach for subgroup analysis based on a regression model, in which heterogeneity is driven by unobserved latent factors and thus can be represented by using subject-specific intercepts. We apply concave penalty functions to pairwise differences of the intercepts. This procedure automatically divides the observations into subgroups. We develop an alternating direction method of multipliers algorithm with concave penalties to implement the proposed approach and demonstrate its convergence. We also establish the theoretical properties of our proposed estimator and determine the order requirement of the minimal difference of signals between groups in order to recover them. These results provide a sound basis for making statistical inference in subgroup analysis. Our proposed method is further illustrated by simulation studies and analysis of the Cleveland heart disease dataset

    Elastic net prefiltering for two class classification

    No full text
    A two-stage linear-in-the-parameter model construction algorithm is proposed aimed at noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal that is used as the desired output for the second stage which constructs a sparse linear-in-the-parameter classifier. The prefiltering stage is a two-level process aimed at maximizing a model’s generalization capability, in which a new elastic-net model identification algorithm using singular value decomposition is employed at the lower level, and then, two regularization parameters are optimized using a particle-swarm-optimization algorithm at the upper level by minimizing the leave-one-out (LOO) misclassification rate. It is shown that the LOO misclassification rate based on the resultant prefiltered signal can be analytically computed without splitting the data set, and the associated computational cost is minimal due to orthogonality. The second stage of sparse classifier construction is based on orthogonal forward regression with the D-optimality algorithm. Extensive simulations of this approach for noisy data sets illustrate the competitiveness of this approach to classification of noisy data problems

    Discrete-Continuous ADMM for Transductive Inference in Higher-Order MRFs

    Full text link
    This paper introduces a novel algorithm for transductive inference in higher-order MRFs, where the unary energies are parameterized by a variable classifier. The considered task is posed as a joint optimization problem in the continuous classifier parameters and the discrete label variables. In contrast to prior approaches such as convex relaxations, we propose an advantageous decoupling of the objective function into discrete and continuous subproblems and a novel, efficient optimization method related to ADMM. This approach preserves integrality of the discrete label variables and guarantees global convergence to a critical point. We demonstrate the advantages of our approach in several experiments including video object segmentation on the DAVIS data set and interactive image segmentation
    corecore