1,431 research outputs found

    Redefining part-of-speech classes with distributional semantic models

    Full text link
    This paper studies how word embeddings trained on the British National Corpus interact with part of speech boundaries. Our work targets the Universal PoS tag set, which is currently actively being used for annotation of a range of languages. We experiment with training classifiers for predicting PoS tags for words based on their embeddings. The results show that the information about PoS affiliation contained in the distributional vectors allows us to discover groups of words with distributional patterns that differ from other words of the same part of speech. This data often reveals hidden inconsistencies of the annotation process or guidelines. At the same time, it supports the notion of `soft' or `graded' part of speech affiliations. Finally, we show that information about PoS is distributed among dozens of vector components, not limited to only one or two features

    Token and Type Constraints for Cross-Lingual Part-of-Speech Tagging

    Get PDF
    We consider the construction of part-of-speech taggers for resource-poor languages. Recently, manually constructed tag dictionaries from Wiktionary and dictionaries projected via bitext have been used as type constraints to overcome the scarcity of annotated data in this setting. In this paper, we show that additional token constraints can be projected from a resource-rich source language to a resource-poor target language via word-aligned bitext. We present several models to this end; in particular a partially observed conditional random field model, where coupled token and type constraints provide a partial signal for training. Averaged across eight previously studied Indo-European languages, our model achieves a 25% relative error reduction over the prior state of the art. We further present successful results on seven additional languages from different families, empirically demonstrating the applicability of coupled token and type constraints across a diverse set of languages

    Automated Morphological Segmentation and Evaluation

    Get PDF
    In this paper we introduce (i) a new method for morphological segmentation of part of speech labelled German words and (ii) some measures related to the MDL principle for evaluation of morphological segmentations. The segmentation algorithm is capable to discover hierarchical structure and to retrieve new morphemes. It achieved 75 % recall and 99 % precision. Regarding MDL based evaluation, a linear combination of vocabulary size and size of reduced deterministic finite state automata matching exactly the segmentation output turned out to be an appropriate measure to rank segmentation models according to their quality

    Sparse Coding of Neural Word Embeddings for Multilingual Sequence Labeling

    Get PDF
    In this paper we propose and carefully evaluate a sequence labeling framework which solely utilizes sparse indicator features derived from dense distributed word representations. The proposed model obtains (near) state-of-the art performance for both part-of-speech tagging and named entity recognition for a variety of languages. Our model relies only on a few thousand sparse coding-derived features, without applying any modification of the word representations employed for the different tasks. The proposed model has favorable generalization properties as it retains over 89.8% of its average POS tagging accuracy when trained at 1.2% of the total available training data, i.e.~150 sentences per language

    Character-Aware Neural Language Models

    Full text link
    We describe a simple neural language model that relies only on character-level inputs. Predictions are still made at the word-level. Our model employs a convolutional neural network (CNN) and a highway network over characters, whose output is given to a long short-term memory (LSTM) recurrent neural network language model (RNN-LM). On the English Penn Treebank the model is on par with the existing state-of-the-art despite having 60% fewer parameters. On languages with rich morphology (Arabic, Czech, French, German, Spanish, Russian), the model outperforms word-level/morpheme-level LSTM baselines, again with fewer parameters. The results suggest that on many languages, character inputs are sufficient for language modeling. Analysis of word representations obtained from the character composition part of the model reveals that the model is able to encode, from characters only, both semantic and orthographic information.Comment: AAAI 201
    corecore