7 research outputs found

    Minimization of electro-mechanical interaction with posicast strategies for more-electric aircraft applications

    Get PDF
    This paper studies strategies to minimize the electromechanical interaction (EMI) within aircraft power systems. With the growth of electrical power on-board aircraft, the interaction between the electrical systems and the engine core will become significant. The behaviour of electrical loads (on/off, transient etc.) will have significant impacts on the engine shaft, such as producing transient vibrations, creating stability problems and reducing the efficiency etc. To avoid these problems, an advanced electrical power management system (PMS) is required. This paper introduces novel loading methods for PMS applications to minimize the interactions between electrical and mechanical systems. The strategies, referred as Single Level Multi-edge Switching Loads (SLME), Multilevel Loading (MLL), and Multi-load Single Level Multi-edge Switching Loads (MSLME) are developed based on the Posicast method. An insight look of the developed technique has been studied using the zero-pole root locus. It is demonstrated that the excited poles in the system are cancelled by the addition of zeros, and thus supressed the EMI vibrations

    Reduction of torsional vibrations due to electromechanical interaction in aircraft systems

    Get PDF
    With the growth of electrical power onboard aircraft, the interaction between the electrical systems and the engine will become significant. Moreover, since the drivetrain has a flexible shaft, higher load connections can excite torsional vibrations on the aircraft drivetrain. These vibrations can break the shaft if the torque induced is higher than the designed value, or reduce its lifespan if the excitation is constant. To avoid these problems, the electromechanical interaction between the electrical power system and the drivetrain must be evaluated. Past studies have identified the electromechanical interaction and introduced experimental setups that allow its study. However, strategies to reduce the excitation of the torsional vibrations have not been presented. This thesis aims to analyse the electromechanical interaction in aircraft systems and develop an advanced electrical power management system (PMS) to mitigate its effects. The PMS introduces strategies based on the load timing requirements, which are built on the open loop Posicast compensator. The strategies referred as Single Level Multi-edge Switching Loads (SLME), Multilevel Loading (MLL), and Multi-load Single Level Multi-edge Switching Loads (MSLME) are applied to different loads, such as pulsating loads, ice protection system, and time-critical loads, such as the control surfaces. The Posicast based strategies, eliminate the torsional vibrations after a switching event, by the addition of zeros that cancel the poles of the system. For this reason, the knowledge of the natural frequencies of the mechanical system is necessary. Experimentally, the system parameters are obtained through Fourier analysis of the step response and the strategies are applied. A robust analysis of the strategies allows the establishment of the range of uncertainty on the frequencies that allow the proper operation of the strategies. Simulation and experimental results show that the torsional vibrations can be reduced to values close to zero by the application of the strategy. Therefore, the PMS mitigates the electromechanical interaction between the electrical power system and the aircraft drivetrain

    Reduction of torsional vibrations due to electromechanical interaction in aircraft systems

    Get PDF
    With the growth of electrical power onboard aircraft, the interaction between the electrical systems and the engine will become significant. Moreover, since the drivetrain has a flexible shaft, higher load connections can excite torsional vibrations on the aircraft drivetrain. These vibrations can break the shaft if the torque induced is higher than the designed value, or reduce its lifespan if the excitation is constant. To avoid these problems, the electromechanical interaction between the electrical power system and the drivetrain must be evaluated. Past studies have identified the electromechanical interaction and introduced experimental setups that allow its study. However, strategies to reduce the excitation of the torsional vibrations have not been presented. This thesis aims to analyse the electromechanical interaction in aircraft systems and develop an advanced electrical power management system (PMS) to mitigate its effects. The PMS introduces strategies based on the load timing requirements, which are built on the open loop Posicast compensator. The strategies referred as Single Level Multi-edge Switching Loads (SLME), Multilevel Loading (MLL), and Multi-load Single Level Multi-edge Switching Loads (MSLME) are applied to different loads, such as pulsating loads, ice protection system, and time-critical loads, such as the control surfaces. The Posicast based strategies, eliminate the torsional vibrations after a switching event, by the addition of zeros that cancel the poles of the system. For this reason, the knowledge of the natural frequencies of the mechanical system is necessary. Experimentally, the system parameters are obtained through Fourier analysis of the step response and the strategies are applied. A robust analysis of the strategies allows the establishment of the range of uncertainty on the frequencies that allow the proper operation of the strategies. Simulation and experimental results show that the torsional vibrations can be reduced to values close to zero by the application of the strategy. Therefore, the PMS mitigates the electromechanical interaction between the electrical power system and the aircraft drivetrain

    Advancements in Real-Time Simulation of Power and Energy Systems

    Get PDF
    Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics

    Driving and Protection of High Density High Temperature Power Module for Electric Vehicle Application

    Get PDF
    There has been an increasing trend for the commercialization of electric vehicles (EVs) to reduce greenhouse gas emissions and dependence on petroleum. However, a key technical barrier to their wide application is the development of high power density electric drive systems due to limited space within EVs. High temperature environment inherent in EVs further introduces a new level of complexity. Under high power density and high temperature operation, system reliability and safety also become important. This dissertation deals with the development of advanced driving and protection technologies for high temperature high density power module capable of operating under the harsh environment of electric vehicles, while ensuring system reliability and safety under short circuit conditions. Several related research topics will be discussed in this dissertation. First, an active gate driver (AGD) for IGBT modules is proposed to improve their overall switching performance. The proposed one has the capability of reducing the switching loss, delay time, and Miller plateau duration during turn-on and turn-off transient without sacrificing current and voltage stress. Second, a board-level integrated silicon carbide (SiC) MOSFET power module is developed for high temperature and high power density application. Specifically, a silicon-on-insulator (SOI) based gate driver board is designed and fabricated through chip-on-board (COB) technique. Also, a 1200 V / 100 A SiC MOSFET phase-leg power module is developed utilizing high temperature packaging technologies. Third, a comprehensive short circuit ruggedness evaluation and numerical investigation of up-to-date commercial silicon carbide (SiC) MOSFETs is presented. The short circuit capability of three types of commercial 1200 V SiC MOSFETs is tested under various conditions. The experimental short circuit behaviors are compared and analyzed through numerical thermal dynamic simulation. Finally, according to the short circuit ruggedness evaluation results, three short circuit protection methods are proposed to improve the reliability and overall cost of the SiC MOSFET based converter. A comparison is made in terms of fault response time, temperature dependent characteristics, and applications to help designers select a proper protection method

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 05)

    Get PDF
    Bibliographies and abstracts are listed for 1363 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and July 31, 1992. Topics covered include technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion and solar power satellite systems

    Minimization of electro-mechanical interaction with posicast strategies for more-electric aircraft applications

    No full text
    This paper studies strategies to minimize the electromechanical interaction (EMI) within aircraft power systems. With the growth of electrical power on-board aircraft, the interaction between the electrical systems and the engine core will become significant. The behaviour of electrical loads (on/off, transient etc.) will have significant impacts on the engine shaft, such as producing transient vibrations, creating stability problems and reducing the efficiency etc. To avoid these problems, an advanced electrical power management system (PMS) is required. This paper introduces novel loading methods for PMS applications to minimize the interactions between electrical and mechanical systems. The strategies, referred as Single Level Multi-edge Switching Loads (SLME), Multilevel Loading (MLL), and Multi-load Single Level Multi-edge Switching Loads (MSLME) are developed based on the Posicast method. An insight look of the developed technique has been studied using the zero-pole root locus. It is demonstrated that the excited poles in the system are cancelled by the addition of zeros, and thus supressed the EMI vibrations
    corecore