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Abstract 

There has been an increasing trend for the commercialization of electric vehicles (EVs) to reduce 

greenhouse gas emissions and dependence on petroleum. However, a key technical barrier to their wide 

application is the development of high power density electric drive systems due to limited space within 

EVs. High temperature environment inherent in EVs further introduces a new level of complexity. Under 

high power density and high temperature operation, system reliability and safety also become important. 

This dissertation deals with the development of advanced driving and protection technologies for high 

temperature high density power module capable of operating under the harsh environment of electric 

vehicles, while ensuring system reliability and safety under short circuit conditions. Several related 

research topics will be discussed in this dissertation.  

First, an active gate driver (AGD) for IGBT modules is proposed to improve their overall switching 

performance. The proposed one has the capability of reducing the switching loss, delay time, and Miller 

plateau duration during turn-on and turn-off transient without sacrificing current and voltage stress. 

Second, a board-level integrated silicon carbide (SiC) MOSFET power module is developed for high 

temperature and high power density application. Specifically, a silicon-on-insulator (SOI) based gate 

driver board is designed and fabricated through chip-on-board (COB) technique. Also, a 1200 V / 100 A 

SiC MOSFET phase-leg power module is developed utilizing high temperature packaging technologies.  

Third, a comprehensive short circuit ruggedness evaluation and numerical investigation of up-to-date 

commercial silicon carbide (SiC) MOSFETs is presented. The short circuit capability of three types of 

commercial 1200 V SiC MOSFETs is tested under various conditions. The experimental short circuit 

behaviors are compared and analyzed through numerical thermal dynamic simulation.  

Finally, according to the short circuit ruggedness evaluation results, three short circuit protection 

methods are proposed to improve the reliability and overall cost of the SiC MOSFET based converter. A 

comparison is made in terms of fault response time, temperature dependent characteristics, and 

applications to help designers select a proper protection method.  
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1 Introduction 

This chapter starts with the introduction of the background of this research, driving and protection of 

high density high temperature power module for electric vehicle application. Then, the research 

objectives, approaches, and the organization of this dissertation are presented. 

1.1  Background and Motivation 

Petroleum is the largest energy source in the Unites States (U.S.), and it contributes to around 32.5% 

of total U.S. greenhouse gas emissions in 2010 [1]. In the consumption of petroleum, transportation 

accounts for 70% of U.S. petroleum consumption, with a dominant part in light vehicles, as shown in 

Figure 1-1 [2]. In order to reduce greenhouse gas emissions and dependence on petroleum, there has been 

an increasing trend for the commercialization of electric vehicles (EVs). According to the recent report 

from International Energy Agency (IEA), the global EVs sold more than doubled from 45,000 in 2011 to 

113,000 in 2012 [3]. 

 

 

Figure 1-1. U.S. oil consumption in 2010. 

 

Residential&
Commercial 5%

Industrial 24%

Electric Power 1%
Water 3%

Rail 1%
Air 5%

Medium/Heavy 
trucks 15%

Buses 1%

Light vehicles 
45%

Transportation 
70%



2 
 

Although EVs possess many advantages, a number of key issues in electric traction drive systems must 

be overcome, such as cost, volume and weight, efficiency, and reliability. The U.S. Department of Energy 

(DOE) technical targets for electric traction drive system are shown in Figure 1-2 [4], where the left table 

lists the targets at system level and the right part indicates an approximate distribution between electric 

motors and power electronics. The on-the-road technology status presented in [5] identifies the gaps 

between the current status and the targets. As reported, the key reason for the gaps is that the electric 

machine and drive electronics are packaged separately. 

  

 

Figure 1-2. Technical targets for the electric traction drive systems [4]. 

 

The most common on-the-road technology is to integrate all the power electronic converters (including 

bi-directional DC/DC converter, three-phase inverter, on-board battery charger, etc.) in a central box. This 

kind of power architecture is simple, while the expensive and bulky housing is difficult to be integrated in 

the engine compartment of existing vehicles. Therefore, the power electronic converters are not able to 

share the 105 ˚C engine coolant, and usually a separate 65 ˚C liquid cooling system is required to remove 

the heat generated by the electric traction drive system. Another disadvantage is that a lot of “overhead” 

items (e.g., shielded high-voltage connectors and cables) are necessary to transfer the power from the 

central box to various loads (motor, battery, ancillary loads, etc.), which contributes heavily to the overall 

volume, weight and cost.  
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On the other hand, while achieving higher power density (due to limited space and carrier capability) 

and high temperature electrical design (due to inherent harsh environment), the ability to guarantee the 

reliability and safety of power modules becomes critical [4]. One of the key reliability issues is the short 

circuit capability and protection of power semiconductor devices. 

According to the classic transient thermal model, the short circuit capability of a power device can be 

expressed as a function of DC bus voltage (Vdc) and saturation current / power density (Jsat) [9], as shown 

in (1-1), where Rth and Cth are the thermal resistance and capacitance from junction to case, Tjcrit and Tc are 

the critical temperature and case temperature, and tsc is the short circuit withstand time.  

= 1 − 1 ∙ −∙ 																																																																																																																								(1 − 1) 
This equation indicates that under a given DC bus voltage and critical temperature point the short 

circuit capability will be reduced if the saturation current density or operating temperature is increased. 

The tradeoff between the high power density high temperature and high reliability needs to be carefully 

considered for a power module. Moreover, a fast short circuit / overcurrent protection scheme needs to be 

equipped for a power module.  

1.2  Research Objectives and Approaches 

The objective of this research is to develop advanced driving and protection technologies for high 

temperature high density power module that is capable of operating under the harsh environment of 

electric vehicles, while ensuring system reliability and safety under short circuit conditions. 

Corresponding to the challenges discussed in section 1.1, the research approaches are listed as follows. 

(1) To adaptively reduce the switching energy loss of IGBT power modules, a novel di/dt feedback 

based active gate driver is proposed, which can reduce the turn-on and turn-off energy loss under different 

operating conditions. Moreover, it shares the same isolated power supply with the push-pull buffer, and 

high bandwidth detection and regulation circuits (e.g. current/voltage sensors, operational amplifier, etc.) 

are avoided, which is beneficial to the overall reliability and potential integration into a gate drive chip. 
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(2) To thoroughly exploit the benefits of SiC devices under high temperature environment, a SiC 

MOSFET and SOI gate drive based board-level integrated power module is built, with the goal of high 

temperature capability (up to 225 °C for power module, 200 °C for SOI gate driver), high frequency 

capability (up to 100 kHz), high sourcing and sinking current capability (up to 4 A for each gate driver 

channel), and low volume / size. In addition, a thermo-sensitive electrical parameter (TSEP) is proposed 

for the junction temperature measurement. 

(3) To identify the key limiting factors, the short circuit capability of three types of commercial 1200 

V SiC MOSFETs is evaluated under various case temperatures (from 25 °C to 200 °C), DC bus voltage 

levels (from 400 V to 750 V), and fault types (hard switching fault and fault under load). The associated 

failure mechanism has also been analyzed and compared through electro-thermal model and leakage 

current model. 

(4) Based on the short circuit capability evaluation, the protection requirement is first proposed for SiC 

MOSFETs considering single-event, repetitive short circuit, and noise immunity. To help designers select 

a proper protection method for SiC power MOSFETs, two conventional candidates are implemented, i.e. 

solid-state circuit breaker (SSCB) and desaturation technique, and a novel protection scheme based on the 

fault current evaluation is also proposed, with special focus on the design optimization, potential issues of 

each method, and their performance comparison. 

1.3  Dissertation Organization 

This research report is organized as follows: 

Chapter 2 gives a detailed literature review on the key enabling technologies to develop a high 

temperature and high density power module. Based on the literature review, the associated challenges in 

each focused area are pointed out and addressed. 

Chapter 3 introduces an active gate driver (AGD) for IGBT modules to improve their switching 

performance under normal condition. The design consideration and circuit implementation of AGD are 

discussed. Experimental results are presented and compared with conventional gate driving strategy. 
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Chapter 4 presents the design, development, and testing of a high temperature silicon carbide 

MOSFET power module with an integrated silicon-on-insulator based gate drive. The junction 

temperature limitation of the developed power module is discussed as well. 

Chapter 5 discusses the temperature dependent short circuit capability of three different types of 

commercial SiC MOSFETs. The short circuit behavior and associated failure mechanism are compared 

and analyzed through transient thermal simulation. 

Chapter 6 evaluates the performance of three protection schemes under various conditions, considering 

variation of fault type, decoupling capacitance, protection circuit parameters, etc. A comparison is made 

to help designers select a proper protection method. 

Chapter 7 summarizes the dissertation and its key contributions, and provides suggestions for 

additional research in the future. 
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2 Literature Review  

The high density high temperature power module is a basic element for the development of high 

density electric drive system. As described in [10] and [11], the relationship of the key factors to achieve 

a high power density and high temperature power module is given in (2-1) $ ∝ = (1 − )− ∙ ( )																																																																																																																										(2 − 1) 
where Sdie is the power semiconductor device area; P is the total power handled by the corresponding 

power semiconductor devices; η is the efficiency; Rja(sp) is the specific thermal resistance; Tj and Ta 

represent the junction temperature and ambient temperature, respectively.  

As indicated in (2-1), there are several ways to increase the power density of a power module. The first 

way is reducing the power loss or increasing the efficiency of a power module. The second way is 

increasing the operating junction temperature of power devices utilizing high temperature packaging 

technologies and control electronics. Another way is reducing the thermal resistance through advanced 

cooling and packaging design. This dissertation presents the application of the first two techniques for the 

development of high density power module: reducing the switching loss of IGBT power modules and 

developing a high temperature integrated SiC MOSFET power module.  

On the other hand, the reliability of the power module is also critical. Usually, with the increase of 

current density/power density and operating temperature, the device life time will decrease. This 

dissertation will only focus on the short-term ruggedness, and the long-term reliability issues are out of 

the scope of this work. Since the voltage source converters are widely used in the EVs, the short circuit 

capability and protection of SiC MOSFETs are studied, aiming at improving the reliability and overall 

cost of the SiC MOSFET based converter in future electric vehicles. 

This section will first review the state-of-the-art research activities in the above mentioned areas. The 

issues and unsolved problems of previous research efforts are examined, and then the challenges of this 

research are addressed. 
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in [13] and [14] to realize optimal turn-on and turn-off performance, as shown in Figure 2-2. The 

switching delay and switching losses are effectively reduced using large gate current, and the current 

rising/falling rate are limited using small gate current. The main issues of this method are control 

complexity for accurate detection of the instances for changes in driving modes, and poor adaptivity to 

various IGBTs with different thresholds, internal gate resistance and capacitance, etc., due to fixed control 

instants for certain switching stages. 

  

 

Figure 2-2. Multistage gate drive concept [13] [14]. 

 

In [15]–[17], a gate driver based on the Miller plateau detection by a phase-locked loop was analyzed 

and proposed. This technique is able to reduce switching loss by injecting an additional gate current, 

however, it can result in poor operation under transient load current conditions, and the inherent one 

switching period delay of the updated control instructions impairs the overall effectiveness. References 

[18], [19] have described a sensorless gate driver with feedforward control of the turn-on dynamics to 

reduce switching losses, as shown in Figure 2-3. Without direct feedback control, high bandwidth 

current/voltage sensing and high sensitivity to EMI noise can be avoided. The gate signal reference comes 

from a ramp shape generator whose rising slope is designed based on data sheet parameters. The turn-off 

performance keeps unchanged, and turn-on delay is still quite large due to the intentionally designed low 

slew rate of the gate references.  
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(a) Circuit diagram 

 

 

 (b) Operating principle 

Figure 2-3. Feedforward active gate driver [18]. 
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Recently, there have been several research efforts on improving the switching performances using 

digital approaches [20]–[22], as shown in Figure 2-4. These techniques could provide optimization among 

minimization of switching losses, reverse recovery current, and turn-off collector-emitter overvoltage by 

controlling the gate current in accordance with the desired switching operation. The main drawbacks 

associated with the digital method is large delay times of the D/A and A/D conversion in the signal paths, 

as well as considerable cost for high performance digital controllers. 

Other references aiming at closed-loop/open-loop regulation of the collector current slope and 

collector-emitter voltage slope by means of either analog or digital approaches have been proposed and 

analyzed in [23]–[29]. Such techniques provide full di/dt or dv/dt control capability but sacrifice 

additional switching losses at switching transients. 

Based on the literature survey, there is no active gate drive capable of adaptively reducing the 

switching energy loss of IGBTs by optimizing turn-on/off switching performance. Moreover, the existing 

switching energy loss reduction techniques are difficult to be integrated into a gate drive chip, which 

impedes the potential commercial application. 

 

 

Figure 2-4. Digital control based active gate driver [20]-[22]. 
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Figure 2-6. 1200 V / 120 A SiC MOSFET module [41]. 

 

 

Figure 2-7. 1200 V / 120 A SiC MOSFET module [42]. 

 

High temperature SiC modules are still at the research stage, as reported in [43]–[50] (shown in Figure 

2-8). In [43], a 1200 V, 60 A SiC MOSFET module with optimized internal layout for fast switching 

speed and low turn-off overvoltage is presented. The power module is successfully operated at 100 kHz, 

with a junction temperature of 200 °C. Two generations of SiC MOSFET-JBS diode based multi-chip 

power modules are reported in [44] and [45] for 200 °C and 20 kHz operations. Reference [46] presented 

a line of 250 °C half-/full-bridge SiC power modules, which can be configured as either a half or full 

bridge through external bussing, and constructed with SiC MOSFETs, JFETs, or BJTs. Moreover, there 

are also some research efforts on high temperature SiC JFET power modules based on different 

packaging techniques [47]–[50]. All of these power modules are able to operate at a high junction 

temperature above 200 °C employing high temperature packaging technologies. Their full potential, 
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limitation of this concept is that only the basic driving function, i.e. totem-pole output buffer, is 

implemented using discrete SOI active devices. Also, the overall size, volume, sourcing and sinking 

current capability (below 2 A), and switching frequency (targeted at 15 kHz) of the integrated power 

module are limited by the high temperature gate driver based on discrete passive and active devices. 

  

 

Figure 2-9. Integrated high temperature SiC MOSFET power module [51]. 

 

There are some commercial high temperature gate driver boards and one product from Cissoid is 

shown in Figure 2-10. 

 

 

Figure 2-10. Commercial high temperature SOI gate driver [55]. 

 

A review of the state of the art of high temperature integrated gate drivers and the SOI gate driver used 

in this work (named as “Corinth”) are summarized in Table 2-1. 
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Table 2-1. Comparison of high temperature integrated gate drivers 

 Temperature Driving Capability Frequency Process 

Technology  

Input Isolation 

Valle-

Mayorga 

[56]  

Up to 225 °C  150 mA  

without external  

driver stages 

200 kHz  

Not capable of  

DC operation 

1 µm SOI 

CMOS 

Transformer 

based,  

on-board 

CISSOID  

Pallas  

 

–55 °C to  

225 °C  

junction  

 

80 mA (low-side 

channel)  

20 mA (high-side  

channel)  

N/A   N/A   N/A   

CISSOID 

Hyperion  

–55 °C to  

225 °C  

junction  

1 A 3 nF at up to 

500 kHz  

 

N/A  

 

N/A   

CISSOID 

Themis  

and Atlas  

–55 °C to  

225 °C  

junction  

2 A  

(two channels per chip 

in parallel can output 

4 A) 

N/A   N/A   Possible with  

additional chip  

CHT-RHEA  

CISSOID  

Hades   

 

175 °C   

 

2 A  

(can be 4 A  

through parallel 

drivers)  

150 kHz  

 

Polyimide 

PCB   

Transformer 

based,  

on-board 

Corinth −55 °C to > 

200 °C 

Sourcing: 5.5 A at 

−55 °C, 4.5 A at 

200 °C  

Sinking: 6.0 A at 

−55 °C, 5.0A at 

200 °C 

Minimum: DC 

(100% high-

side duty cycle) 

Maximum: > 

200 kHz   

(> 550 kHz 

measured with 

adjusted charge 

pump input 

voltage) 

BCD-on-

SOI  0.8-

micron,  2-

poly,  3-

metal  

process 

N/A   
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CISSOID has commercialized several high-temperature integrated circuits developed on an SOI 

process, while the maximum on-chip source and sink current is around 2 A for each channel [55]. From 

the maximum current driving capability point of view, although the authors in [56] reported successful 

operation of a SOI gate drive chip at ambient temperatures greater than 200 °C, their on-chip output stage 

was limited to 150 mA. In order to increase the current capability of the SOI gate driver IC, an off-chip 

buffer stage based on discrete SiC JFETs are added to reach a driving capability of 5 A.  

From the switching frequency point of view, all of these gate drivers are capable of high frequency 

operation (>150 kHz). However, there are currently no high-temperature integrated power modules based 

on either Cissoid’s or Valle-Mayorga’s solution. The only high-temperature integrated power module is 

reported by researchers from Arkansas Power Electronics International Inc. (APEI).  Their gate driving 

solution is implemented using discrete SOI active devices and passive components, which limits the 

operating frequency and overall size/volume of the integrated power module. 

In addition, during the testing of the aforementioned SiC power modules, the junction temperature 

measurement of the power module is either estimated through case temperature monitored by embedded 

thermocouples / thermistors close to the dies, or infrared radiation based measuring tool, e.g. thermal 

camera. All of these methods outlined necessitate visual or mechanical access to the die, which is not 

appropriate for an integrated power module. Is it possible to explore an online junction temperature 

monitoring technique for high temperature integrated power modules without any visual and mechanical 

access to the die? 

2.3  Short Circuit Capability of SiC MOSFETs 

The short circuit capability of Si IGBTs has been investigated in lots of previous literature. As reported 

in [57], IGBT short-circuit failure mechanism can be divided into four major modes, as shown in Figure 

2-11. 
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at 10 V gate voltage and 50 μs at 15 V. Similar investigation of 1200 V commercially available devices is 

reported in [59], with a DC bus voltage of 400 V, gate voltage of +18 / 0 V, and case temperatures of 90 

oC and 150 oC. A major concern of these testing results is that the short circuit test conditions may not 

represent the real application scenarios of 1200 V SiC MOSFETs that usually has a positive gate voltage 

as high as 20 V and DC bus voltage greater than 600 V. A more practical evaluation of short circuit 

capability can be found in [60] and [61] with 600 V DC bus voltage, 20 V / -5 V gate voltage, and 25 oC 

case temperature. However, the temperature dependent short circuit characteristics and associated failure 

mechanisms have not been investigated. In addition, it is still unclear what the key limiting factor (DC 

bus voltage level, temperature, fault type, device type, etc.) of short circuit capability is. 

2.4  Short Circuit Protection of SiC MOSFETs 

SiC MOSFETs are expected to be widely used in future converters. However, a key obstacle to its 

wide application is the lack of fast, reliable, low loss, and cost effective protection schemes for 

overcurrent/short-circuit faults. Like Si IGBTs that usually have at least 10 μs SCWT, SiC MOSFETs are 

also expected to have long enough SCWT for the protection circuit to detect and interrupt the fault. 

Compared to overcurrent protection of Si devices and SiC JEFTs, overcurrent protection of SiC 

MOSFETs is more challenging in the following aspects. 

From thermal point of view, SiC MOSFETs tend to have lower short circuit withstand capability 

compared to the Si IGBTs and MOSFETs due to smaller chip area and higher current density. According 

to [62], for 1200V/33A SiC MOSFETs experiencing a 600 V hard switching fault, the device failure 

occurs after approximately 13 μs. However, a significant leakage current is observed after 5 μs of the 

short-circuit condition, indicating degradation between gate and source electrodes during a short-circuit 

condition. As reported in [63], the short circuit withstand time of SiC MOSFETs in TO-247 package is 

around 8 to 10 μs under 700 V DC bus voltage and 18 V gate voltage. Recent investigation on SiC 

devices has shown that SiC MOSFETs present significantly lower ruggedness and robustness than SiC 

JFETs under short-circuit condition due to positive temperature coefficient of channel mobility up to 600 
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K [62]–[65]. The weaker short circuit withstand capability gives a higher pressure on the response time of 

the protection circuit to guarantee SiC MOSFETs operate within a safe operating area (SOA) margin.  

Besides thermal breakdown, an overcurrent condition also has a negative impact on the long term 

stability of SiC MOSFETs, which have traditionally suffered gate oxide reliability issues induced by poor 

interface quality [66], [67]. Although it has been effectively mitigated by recent process improvements 

when operated below the maximum temperature specified by the manufacturer (125 °C), significant 

degradation resulting from Fowler–Nordheim tunneling current into the dielectric is evident if the 

temperature is raised above 125°C under overcurrent condition [68]–[70]. Low channel mobility of SiC 

MOSFETs requires higher positive gate bias (+20 V), i.e. higher gate electric field, and further worsens 

this problem [71]–[73]. In addition, as shown in [68]–[70], pulsed overcurrent operation at room 

temperature also results in degradation due to high junction temperature induced electron trapping, and 

the variation of threshold voltage increases with enhanced current levels, and increased frequencies.  

Even when fast fault response time becomes the design focus of the protection scheme for SiC 

MOSFETs, the objective is quite challenging in a fast-switching environment. Since SiC MOSFET die 

has higher current density and smaller size than Si die, SiC MOSFETs tend to have lower junction 

capacitances and higher switching speed. Moreover, the switching speed presents different characteristics 

from other devices in that both the turn-on di/dt and dv/dt increases as junction temperature rises, due to 

the unique positive temperature coefficient of transconductance [72]. Under such high di/dt and dv/dt 

condition, fast response time and strong noise immunity of an overcurrent protection scheme would be a 

sharp contradiction. Unfortunately, currently no IEEE standard and published work exists on the 

allowable response time (which is a function of the amount of overcurrent, i.e. moderate overload, 

extensive overcurrent, and short-circuits), while a faster fault response time is always preferable to 

prevent it from damage and/or degradation as long as enough noise immunity can be guaranteed.  

Various approaches have been proposed to protect IGBTs based on the measurement of the collector 

current, collector-emitter voltage, and gate voltage. The most reliable method is the direct current sensing 

concept, i.e. connecting a current sensor, e.g. current transformer, shunt resistor, in series with the power 
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3 Active Gate Drive for IGBT Switching Loss Reduction 

In this chapter, the switching characteristics of IGBTs using a conventional gate driver are briefly 

analyzed. Based on the analysis, an active gate driver (AGD) for IGBT modules is proposed to reduce the 

switching energy loss through switching performance improvement. A step-down converter is built as 

well to evaluate the performance of the proposed driving schemes under various conditions, considering 

variation of turn-on/off gate resistance and current levels. Experimental results and detailed analysis are 

presented to verify the feasibility of the proposed approach. 

3.1  Analysis of IGBT Switching Characteristics 

Figure 3-1 depicts the IGBT switching behavior during turn-on and turn-off transients. The turn-on 

transient can be divided into four stages. Stage I: The gate voltage vge rises from negative bias Vee to its 

threshold Vth. Both the collector-emitter voltage vce and collector current ic are unaffected during this stage. 

Stage II: vge continues increasing from Vth to the Miller plateau voltage Vmiller, leading to the rapid increase 

of ic. The high di/dt causes a current spike ΔIrr(peak) across the device when ic approaches its final value IL. 

Stage III: vce begins to fall rapidly, while the IGBT is carrying current IL. A voltage tail is presented at the 

end of this stage due to nonlinear Miller capacitance. Stage IV: vge continues to increase from Vmiller to its 

final value Vcc. Meanwhile, the vce attains the on steady-state value Vce(on). 

 

 

Figure 3-1. Switching waveforms of an IGBT under clamped inductive load. 
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The turn-off transient also includes four stages. Stage I: vge decreases from positive bias Vcc to Vmiller, 

without changing the current and voltage across the IGBT. Stage II: The collector-emitter voltage vce 

begins to increase while ic maintains at the on steady-state current IL. vce rises slowly at the beginning due 

to large Miller capacitance, while it quickly increases to the DC bus voltage Vdc at the end. Stage III: vge 

falls to its threshold Vth and the current flowing through the IGBT deceases rapidly, inducing a voltage 

overshoot of ΔVos. Stage IV: The current continues deceasing, with a current tail caused by the slow 

recombination of stored minority charge in the drift region.  

3.2  Proposed Active Gate Drive 

Under normal condition, the proposed AGD comprised of a turn-on and a turn-off control section, 

focuses on reducing the switching loss, delay time, and total switching time, while maintaining the 

switching stress and EMI noise level during both turn-on and turn-off transients. 

3.2.1 Turn-on Control 

The block diagram of the turn-on AGD is shown in Figure 3-2. In addition to a conventional push-pull 

buffer, the proposed turn-on control is mainly composed of five parts: di/dt sensing, logic circuit, level 

shifter, source follower, and gate charger. The functionality of each part is described as follows. 

 

 

Figure 3-2. Turn-on control diagram. 
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The di/dt sensing network is used to detect the different turn-on stages based on the voltage across the 

parasitic inductance LEe between the Kelvin emitter and power emitter of an IGBT module. This is a 

pragmatic choice since using a current sensor would make the circuit more complicated and expensive. 

Another benefit is that the voltage is converted into logic control signals, independent of the specific 

inductance value of an IGBT module. 

The logic circuit powered by the negative power supply Vee receives both the feedback signal and the 

enabling signal so that the circuit works properly at different stages. The detailed circuit operation will be 

explained below. Considering that the feedback signal may exceed the normal input voltage range of the 

logic circuit at high di/dt and large parasitic inductance LEe, a clamping circuit is employed to protect it 

from failure. 

An open drain level shifter serves as an interface between the logic and source follower. The level 

shifter serves two purposes in this implementation: 1) it inverts the logic output, and 2) it references the 

logic output signal to the positive rail Vcc of the buffer. During operation of the level shifter, a small DC 

current flows in the level shifter keeping the source follower and gate charger biased in correct states. 

Both the buffer and the turn-on auxiliary circuit power are provided by a dc-dc power supply chip.  

The source follower receives the logic signal from the level shifter, and activates/deactivates the gate 

charger. Another key function is that it reduces power loss of the level shifter, as will be explained later.  

The gate charger, a voltage controlled current source driven by the source follower, injects an 

additional current into the gate at certain stages to minimize the turn-on delay time and switching losses. 

It also decouples the turn-on control from other parts of the whole AGD. 

Figure 3-3 illustrates the circuit implementation of the turn-on AGD, and its operating principle is 

described as follows. When the turn-on command Vin is applied at the turn-on delay stage, the voltage 

across parasitic inductance LEe is zero since no current is flowing through the IGBT module. The output 

of the AND logic gate becomes high, which activates the level shifter’s small-signal MOSFET M1, and 

subsequently the source follower MOSFET M3 and gate charger MOSFET M2 are turned on. Hence, the 

IGBT gate emitter capacitance Cge is now charged by the conventional gate current ig1 together with the 
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current source ig2. The delay time can be significantly reduced by adjusting the control gate resistor Rx. 

However, the resistance should not be too small to prevent potential gate loop oscillation. The resistance 

is selected for reasonable damping and low gate loop equivalent resistance, i.e.  

2	 < < 																																																																																																																																													(3 − 1) 
where, ξ is the damping factor (usually around 0.707). 

  

 

Figure 3-3. Circuit implementation of the turn-on control. 

 

The additional gate current continuously charges the gate capacitance until the gate voltage hits the 

threshold Vth and the IGBT starts to conduct current. The collector current is increased with a rate of di/dt 

defined by (3-2) 

= −+ / 																																																																																																																																							(3 − 2) 
where gm, Cies (=Cge+Cgc), and LE1 represent the transfer conductance, the input capacitance, and common 

emitter inductance of the IGBT, respectively. Accordingly, a negative voltage drop across parasitic 

inductance LEe is induced. When  

− = 																																																																																																																																																(3 − 3) 
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where VILmax is the maximum allowable low-level input voltage of the AND logic circuit,  the output of 

the AND logic circuit is flipped to low level close to Vee. The low level output deactivates the M1 of the 

level shifter, and consequently M3 and M2 are turned off, while M4 is turned on. The IGBT input 

capacitance is only charged by the conventional gate current ig1, which means the di/dt, peak reverse 

recovery current, and the corresponding EMI noise level stay the same as for the conventional gate drive 

circuit. The energy loss during the current rising stage is also not changed. 

The turn-on and turn-off speed of M2 depend on R3 and R4, respectively. To have fast switching speed 

of M2, R3 and R4 should be small. However, the resistive loss of the level shifter is increased. Considering 

that the power dissipation of the small signal device (MOSFETs, diodes) and logic gates (AND) is very 

small (from several μW to several mW), the total loss of the auxiliary circuit Ps can be estimated by 

= ∙ ∙ + ∙+ 																																																																																																																								(3 − 4) 
where Q2 is the gate charge of M2, fs is the switching frequency, and Dlogic is the duty cycle of the logic 

circuit’s output signal. The first term represents the driving loss of M2, which is much smaller than the 

resistive loss (usually in hundreds of mW) in the second term. The source follower is an integral part in 

accelerating the switching speed of M2 under the large resistance of R3 and R4. The source follower 

effectively decouples M2’s gate capacitance from the level shifter resistors. M3 and M4 are selected based 

on (3-5) to guarantee fast switching of M2, 

≈ = 15~ 110 ∙ 																																																																																																																								(3 − 5) 
where Ciss2, Ciss3, and Ciss4 represent the input capacitance of M2, M3 and M4, respectively. 

At the end of the current rising stage, the reverse recovery current of the freewheeling diode (FWD) 

decays from its peak value back to zero. The FWD stops conducting and starts to block voltage. The 

device enters into the voltage falling stage. Since the current has reached its steady-state value, the output 

of the logic circuit is flipped back to a logic high level, and the gate charger is activated again. Higher 
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gate current charges the input capacitance more rapidly. As a result, the duration of the Miller plateau and 

the voltage tail are reduced. The turn-on energy loss due to the voltage tail is considerably reduced.  

The gate charger stays in the active state until the turn-off command is received by the logic circuit. 

The large gate current speeds up the gate voltage rising to the steady-state value Vcc, and minimizes the 

third part of turn-on switching loss which is much smaller than the current rising and voltage falling 

induced switching loss. The IGBT will spend less time in the active region while transitioning to the 

ohmic region. Hence, the total turn-on switching time and loss are reduced. 

3.2.2 Turn-off Control 

The block diagram of the turn-off control is shown in Figure 3-4. It is mainly composed by four 

function blocks: di/dt sensing, logic circuit, voltage regulator, and gate discharger. Similar to the turn-on 

control, the di/dt sensing aims at detecting different turn-off stages, irrespective of the variation of stray 

inductance for different IGBT modules. A logic circuit activates/deactivates the gate discharger to remove 

current from the gate capacitance of the IGBT during part of the turn-off transient.  

 

Power Emitter

Kelvin Emitter

E2

e2

g2Rg

E1C2

Logic 
Gate 

Discharger

di/dt 
sensing 

LEe

Buffer IGBT Module

Voltage 
Regulator
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Vcc

Vee

 

Figure 3-4. Turn-off control diagram. 

 

Figure 3-5 illustrates the circuit implementation of the turn-off AGD. Like the logic circuit of the turn-

on AGD, the turn-off logic circuit receives not only the switching command Vin but also the power supply 

from the buffer. The difference is that the turn-on logic circuit is powered by the negative power supply 
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Vee, while the turn-on one is powered by a positive voltage regulator (Rz, Cz , Sz and Dz), due to the 

opposite polarity of di/dt induced voltage across LEe during the turn-on and turn-off transients.  

The small-signal transistors (S1 ~ S3) are paralleled to enhance the sinking current capability of the 

gate discharger. The design principle of the turn-off control gate resistor Ry is the same as that of the turn-

on. The diode Dy decouples the turn-off control from other parts of the whole AGD. 

The operating principle of the turn-off AGD is described as follows. When the turn-off command Vin is 

applied to the AGD, the voltage across parasitic inductance LEe stays zero during both the turn-off delay 

stage and voltage rising stage since no current is flowing through the IGBT. The output of the NOR logic 

gate is high, which activates the paralleled small-signal MOSFETs of the gate discharger. The IGBT input 

capacitance is then discharged by the conventional gate current ig1 together with the current sink ig3. The 

higher total gate current discharges the Miller capacitance more rapidly, contributing to a shorter voltage 

tail duration and lower turn-off switching loss. 

 

 

Figure 3-5. Circuit implementation of the turn-off control. 

 

During the current falling stage, the collector current is decreased with a rate of di/dt defined by (3-6)	
= −+ / 																																																																																																																																							(3 − 6) 
A positive voltage drop across parasitic inductance LEe is induced accordingly. When there is  
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− > 																																																																																																																																																(3 − 7) 
where VIHmin is the minimum allowable high-level input voltage of the NOR logic gate, the output of the 

gate is flipped to a logic low level. This low level output deactivates the gate discharger by turning S1 ~ S3 

off. The gate is only discharged through the CGD. Therefore, the current falling induced switching loss 

and voltage spike through power loop parasitic inductance are the same as that of using a CGD. 

As soon as the device enters into the current tail stage, the gate discharger is activated again to speed 

up the gate voltage to its final value, Vee. The switching loss, however, caused by the tail current cannot 

be reduced with this gate driving strategy. 

For the turn-off control auxiliary circuit, the power dissipation primarily comes from the small signal 

device (MOSFETs, diodes) and logic gates (NOR), which is even less than that of the turn-on auxiliary 

circuit due to the elimination of the level shifter with relatively large resistive loss.  

According to the above analysis, the proposed active gate driver is actually an open-loop control 

system based on the event feedback of the switching transients, and therefore the circuit stability is not a 

key issue. However, all of the active devices and logic gates should have small switching and propagation 

delay times for a minimum control delay and high control accuracy. Moreover, in the design of the AGD, 

the dynamic and steady state behavior of the small signal transistors and the diodes should be taken into 

account. The on-state resistance of the gate charger/discharger transistor (M2, S1~S3) and the on-resistance 

of the decoupling diodes (Dx and Dy) should also be low for proper operation. 

3.3  Experimental Verification 

Experimental results are presented for an IGBT module using both the CGD and AGD. The test circuit 

is a step down converter shown in Figure 3-6, which represents one phase leg of a three phase inverter 

with a clamped inductive load. In addition, to verify the protection function of the AGD, the short circuit 

control switch, composed by two paralleled IGBT modules, is used to create a shoot-through fault. 
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Figure 3-6. Experimental test circuit. 

 

3.3.1 Test and Measurement Setup 

The device used for the experimental test is a 600 V / 400 A IGBT module (CM400DY-12NF) from 

Powerex. The experimental waveforms are recorded by a Tektronix DPO5204 2 GHz 4 channel digital 

phosphor oscilloscope. The voltages are measured with calibrated active high voltage probe Tektronix 

P5205, with bandwidth of 100 MHz. The collector current is measured using a T&M Research SSDN-015 

coaxial shunt with resistance of 0.015 Ω and bandwidth of 1.2 GHz. The switching energy loss is 

calculated by programming a math function of the oscilloscope. Moreover, the channel delays caused by 

different types of probes are compensated before testing. 

The experimental test and measurement setup is shown in Figure 3-7. The low side IGBT serves as the 

device under test (DUT) in this work. The high side IGBT could also be adopted as the DUT as long as its 

stray inductance is identified. The operation principle of the AGD for low side and high side device is 

similar, regardless of the constantly changing emitter potential of high side IGBTs. The two channel 

synchronous waveform generator sends one signal (vin) to the gate driver of the DUT, and the other one 

(vshort) to the gate driver of the short circuit control switch. All testing waveforms are extracted by 

MATLAB to compare switching performances and protection performances under different conditions. 
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 (a) Conventional gate driver                                            (b) Active gate driver 

Figure 3-10. Comparison of turn-on waveforms with different gate resistors using CGD and AGD. 

 

        

 (a) Conventional gate driver                                        (b) Active gate driver 

Figure 3-11. Comparison of turn-on waveforms with different current levels using CGD and AGD. 
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More testing waveforms are recorded under different current levels (10 A, 50 A, 120 A, 200 A), with a 

gate resistance of 10 Ω and DC bus voltage of 300 V, as shown in Figure 3-11(a) and (b). Similar to the 

trend in Figure 3-10, the turn-on switching time is reduced by the AGD under different current levels, 

while the di/dt and associated peak reverse recovery current keeps nearly unchanged in both cases.  

The turn-on AGD is also extensively evaluated with different combinations of gate resistance and 

current levels. The turn-on energy loss, delay time, Miller plateau duration, and peak reverse-recovery 

current as functions of the gate resistance Rg and current level Ic are plotted for both gate drive circuits 

under 300 V DC bus voltage, as shown in Figure 3-12(a) to (d), respectively. 

 

   

(a) Turn-on energy loss                                                           (b) Turn-on delay 

   

(c) Turn-on Miller plateau duration                  (d) Turn-on reverse recovery current peak 

Figure 3-12. Comparison of the two gate drivers under different current levels and gate resistors. 
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The AGD reduces the turn-off delay time from 0.75 µs to 0.3 µs, and turn-off switching energy loss 

from 5.72 mJ to 4.48 mJ, while keeping the same turn-off overvoltage (50 V) as that of using the CGD. 

The Miller plateau time is reduced from 0.4 µs to 0.25 µs, which contributes to the contraction of voltage 

tail and turn-off energy loss.  

Different turn-off gate resistors are also used under a constant load current of 200 A and DC bus 

voltage of 300 V for both the CGD and AGD to compare their switching characteristics, as shown in 

Figure 3-14(a) and (b). With different turn-off gate resistors, a large variation of turn-off switching time is 

clearly observed when CGD is used, while the switching waveforms tend to merge with each other when 

AGD is adopted, indicating a reduction of total switching time as well as energy loss.  

 Turn-off experimental waveforms are also measured and compared under different current levels (10 

A, 50 A, 120 A, 200 A), with a gate resistor of 10 Ω and DC bus voltage of 300 V for both gate drivers, 

as shown in Figure 3-15(a) and (b). The turn-off switching time is reduced by the AGD under different 

current levels, while the di/dt and associated voltage overshoot stays nearly unchanged for both. 

 

         

 (a) Conventional gate driver                                     (b) Active gate driver 

Figure 3-14. Comparison of turn-off waveforms with different gate resistors using CGD and AGD. 
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 (a) Conventional gate driver                                      (b) Active gate driver 

Figure 3-15. Comparison of turn-off waveforms with different current levels using CGD and AGD. 
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The voltage overshoot with both drivers keeps nearly unchanged not only at high gate resistance and 

high current level region, but also low gate resistance and low current level region. This is because the 

turn-off di/dt feedback control delay is much smaller compared to the total current falling time. 

 

 

(a) Turn-off energy loss                                                   (b) Turn-off delay 

    

 (c) Turn-off Miller plateau duration                             (d) Turn-off voltage overshoot 

Figure 3-16. Comparison of the two gate drivers under different current levels and gate resistances. 

 

3.4  Conclusion 

In this chapter, a di/dt feedback based IGBT gate driver is proposed for switching performance 

improvement and short circuit protection. The design consideration and circuit implementation of the gate 
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driver are discussed. Experimental results are presented and compared with conventional gate driving 

strategy. The key features of the proposed gate driver could be summarized as follows:  

1) The switching loss, delay time, and Miller plateau duration are reduced by means of auxiliary 

current source/sink, regardless of power level, gate resistance, as well as IGBT types with some variation 

of parasitic inductance LEe. Switching stresses are still controlled by conventional gate drivers. 

2) The AGD could detect an overcurrent fault through evaluation of the current through IGBT modules 

without any blanking time. The built-in protection modes prevent the interruption of converter operation 

in the event of momentary short circuits.  

3) The AGD shares the same isolated power supply with the push-pull buffer, and high bandwidth 

detection and regulation circuits (e.g. current/voltage sensors, operational amplifier, etc.) are avoided, 

which is beneficial to the overall reliability and potential integration into a gate drive chip. 

One drawback of the AGD is the lack of online regulation of di/dt and dv/dt. Also, the fault response 

time of the AGD is subjected to considerable extension under faults with large short-circuit impedance, 

e.g. ground fault. Fortunately, this type of short circuit leading to a fault current with low di/dt generally 

can be detected by current sensors of converters.  
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4 High Temperature Integrated Power Module 

This chapter presents a board-level integrated silicon carbide (SiC) MOSFET power module for high 

temperature and high power density application. Specifically, a silicon-on-insulator (SOI) based gate 

driver capable of operating at 200 °C ambient temperature is designed and fabricated. Also, a 1200 V / 

100 A SiC MOSFET phase-leg power module is developed utilizing high temperature packaging 

technologies. The static characteristics, switching performance, and short-circuit behavior of the 

fabricated power module are evaluated at different temperatures. Moreover, a buck converter prototype 

composed of the SOI gate driver and SiC power module is built for high temperature continuous 

operation. The converter is operated at different switching frequencies up to 100 kHz, with its junction 

temperature monitored by a thermo-sensitive electrical parameter (TSEP) and compared with thermal 

simulation results. The experimental results from the continuous operation demonstrate the high 

temperature capability of the power module at a junction temperature greater than 225 °C.  

4.1  Silicon-on-Insulator Gate Drive  

Although SiC power devices are commercially available for high temperature application, SiC control 

electronics and integrated circuits are still in early stages of development [85]. For high temperature 

integrated circuits (up to approximately 300 °C), the most mature and commercially available alternative 

is SOI process technology [56], [86].  

The high temperature SOI gate drive chip used in this work was fabricated on a Bipolar-CMOS-

DMOS (BCD) on silicon-on-insulator (BCD-on-SOI) 0.8-micron, 2-poly, 3-metal process, which 

combines the advantages of high-voltage LDMOS devices with SOI technology. Instead of utilizing a die 

bonded to a package (e.g. dual in-line package or small-outline IC packages) and mating the package to a 

printed circuit board (PCB) through a socket, the chip-on-board (COB) approach is adopted, which 

directly bonds the die to a PCB. One advantage of this approach is that the overall size / volume and thus 

power density of the integrated power module can be enhanced. This implementation could also have a 
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In order to operate at high junction temperature, packaging materials for each part of the power 

module are selected based on the literature study and past research experience at Oak Ridge National 

Laboratory [88]–[90].  

4.2.2 Static Characterization  

The static characteristics of the fabricated power module are measured using a Tektronix 371B curve 

tracer. The power module is heated by a controlled hotplate so that it can be characterized under various 

temperatures up to 225 °C. The case temperature, nearly identical to the junction temperature due to 

negligible self-heating under static characterization, is monitored by two K-type thermocouples. All 

testing results are extracted by MATLAB to clearly show the temperature dependent characteristics. 

Figure 4-3(a) illustrates the temperature dependent output characteristics of the SiC MOSFET. At low 

gate voltage (5 V), the curve moves up with the increase of junction temperature, indicating a decrease in 

on-state resistance. However, it presents the opposite trend at high gate voltage (20 V). At medium 

voltage levels, e.g. 10 V, the curve first moves up and then moves down as temperature rises. Similar 

temperature dependent behavior can also be observed in the transfer characteristic, as shown in Figure 

4-3(b). The slope, i.e. transconductance, increases at elevated temperatures with low gate voltages, 

decreases with high gate voltages, and first increases and then decreases at medium gate voltages. 

These temperature behaviors, different from the Si MOSFET, can be explained by the competition 

between the channel resistance (negative temperature coefficient) and the drift region resistance (positive 

temperature coefficient) [43]. A more direct representation of this phenomenon is seen in Figure 4-4. A 

valley appears in the curve with the gate voltage vgs = 15 V, whereas the on-state resistance Rds(on) 

monotonously increases in the case of vgs = 20 V. The higher gate voltage level contributes to not only 

lower Rds(on), but also easier device paralleling or current sharing. In this work, +20 V is selected as the 

positive gate bias. 
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 (a) Output characteristics                                           (b) Transfer characteristics 

Figure 4-3. Static characteristics of the SiC MOSFET (one die) at various temperatures. 

  

 

Figure 4-4. Temperature dependent on state resistance. 

 

  Another important characteristic is the leakage current of the power module at various temperatures. 
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shown in Figure 4-5, the leakage current of the upper and lower switch position shows close trend, and is 

below 100 μA within the tested temperature range. This low leakage current and corresponding negligible 

power dissipation prevents the power module from potential thermal runaway issue at high temperature 

operation, a key issue for high temperature operation of Si devices.  

                     

       

Figure 4-5. Temperature dependent leakage current. 

 

4.2.3 Switching Characterization  

The board-level integrated power module is shown in Figure 4-6, incorporating the fabricated SiC 

MOSFET phase-leg power module, the SOI gate driver board discussed above, and a gate driver power 

supply board with two-channel isolated output for a phase-leg configuration. The final volume of the 

integrated power module (without including the gate driver power supply, baseplate and heatsink) is 46.5 

mm × 21 mm ×  11 mm. 
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During turn-off transient, the power loop parasitic inductance resonates with the output capacitance of the 

low side switches, causing strong current and voltage ringing. For lower ringing, the parasitic parameters 

need to be reduced through circuit board layout optimization, power module packaging improvement, and 

better decoupling techniques. 

 

   

 (a) Turn-on transient                                           (b) Turn-off transient 

Figure 4-9. Temperature dependent switching waveforms. 

 

The turn-on switching energy loss Eon and turn-off switching energy loss Eoff under different current 

and temperature levels are plotted in Figure 4-10(a). Both of them increases monotonously with current 

but show the opposite trend with temperature. A more clear representation is shown in Figure 4-10(b), 

with a current level of 50 A. Eon decreases with temperature and Eoff increases with temperature, which 

together results in an almost constant total switching energy loss Etot within the plotted temperature range. 

This temperature dependent feature would be beneficial for thermal stability under high temperature 

operation. 
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(a) Turn-on and off switching loss  

 

 (b) Total switching loss 

Figure 4-10. Temperature dependent switching energy loss. 

 

4.2.4 Fault Characterization  

The fault characterization is also carried out based on the multifunction power stage shown in Figure 

4-7 and Figure 4-8. The short-circuit control switch, connected in parallel with the reverse-biased upper 
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short-circuit current peak decreases slightly due to the increase of Rds(on) at higher temperatures. Such a 

stable temperature behavior owes to the solid state circuit breaker that relies on its own power device 

instead of the SiC MOSFET power module subject to high temperature environment. The performance 

evaluation of the temperature dependent overcurrent protection guarantees the safe continuous operation 

of the integrated power module at elevated temperatures.  

 

 

(a) HSF                                                                          (b) FUL 

 Figure 4-12. Temperature dependent short circuit protection waveforms. 

 

4.3  Power Density Limitation 

According to the switching performance characterization in the previous section, it can be seen that 

both switching loss and conducting loss (or on-state resistance) are junction temperature dependent, 

which together cause a junction temperature rise. The power loss and junction temperature present a 

circular relationship, as shown in Figure 4-13. 
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Figure 4-13. Temperature dependent power loss. 

 

In order to increase the power density of a power module, one can either push more power into the 

power module while keeping the same heat sink size, or maintain the power while reducing the heat sink 

size. The subsequent questions are: (1) What is the maximum power that can be increased and largest heat 

sink volume that can be reduced?  (2) What is the junction temperature limit? 

Under thermal steady-state, the junction temperature is determined by the total power loss Pg1(Tj) and 

the cooling system with a thermal resistance of Rth1, as shown in Figure 4-14. When the power loss is 

increased to Pg2(Tj), or the thermal resistance is increased to Rth2, the steady-state junction temperature 

will increase correspondingly. However, under a certain condition, if the power loss is always higher than 

the power that can be dissipated by the cooling system, a thermal runaway issue occurs. 
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Based on the derived relationship, the thermal runaway temperatures under different operating 

conditions are plotted in Figure 4-15. As can be observed, the power density improvement becomes 

exponentially less at higher junction temperatures. The minimum thermal runaway temperature is 

achieved under pure conduction mode and is independent of cooling conditions. The low thermal 

resistance, i.e. better cooling conditions, is beneficial for higher power density but is not helpful to realize 

a higher thermal runaway temperature.  

To verify the junction temperature limitation, thermal simulation has been conducted for the developed 

power module under different ambient and cooling conditions, as shown in Figure 4-16. The thermal 

performance of a commercial SiC JFET is also evaluated under pure conduction state. From the 

simulation comparison, the thermal runaway temperature increases with ambient temperature, but is 

independent of thermal resistance. The thermal runaway temperature is around 260 oC, which matches 

with the calculated value in Figure 4-15. In addition, SiC MOSFETs tend to present a higher thermal 

runaway temperature than SiC JFETs since their on-resistance is relatively less sensitive to the rise of 

junction temperature. 

 

 

Figure 4-15. Thermal runaway temperature under different operating conditions. 
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While the whole power module is heated to 225 °C for static and dynamic characterization, under 

continuous operation the junction temperatures of each die within the power module are different due to 

uneven power losses. As with [43], [47], [50], the junction temperature of the device under test, i.e., the 

low-side SiC MOSFET, is selected to verify the feasibility of the high temperature packaging technology. 

The power loss will heat up the module and the steady-state junction temperature depends on the 

cooling system. Given that the objective of the continuous operation test is to verify the high temperature 

capability of the integrated power module, the cooling system is not specifically designed and optimized. 

In this work, an aluminum alloy heatsink with natural air convection is applied to the integrated power 

module, with an ambient temperature of 25 °C.  

In order to determine a proper heatsink size and evaluate the temperature distribution of the power 

module, finite element simulation based on the multiphysics software COMSOLTM has been carried out. 

The 3D geometry model of the assembly is built in SolidWorks®, and then imported into COMSOLTM 

through the interface software – LiveLinkTM, enabling a real time interactive simulation environment. 

Materials of the 3D model are set according to the fabricated power module. The power losses of each 

part are applied to the corresponding dies as heat sources.  

The thermal simulation results with switching frequencies of 50 kHz and 100 kHz are shown in Figure 

4-17(a) and (b), respectively. The hottest point appears in the middle area of the low-side SiC MOSFETs 

due to high power loss and poor cooling conditions. The junction temperature of the low-side SiC 

MOSFET reaches 157 °C at 50 kHz, and 238 °C at 100 kHz under continuous operation. 

4.4.2 Junction Temperature Measurement 

The junction temperature should be monitored during the converter operation. An infrared thermal 

camera is inappropriate considering that the power module is perpendicularly covered by its gate driver 

and the emissivity decreases with an increasing viewing angle. Moreover, uniform emissivity is difficult 

to be achieved due to the encapsulation material of the power module. The widely used thermocouple 

needs mechanical access to the die during module fabrication, and can be only embedded on the substrate. 
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The temperature difference from junction to the bottom pad of the die may induce fairly large 

measurement errors. 

 

 

 (a) 50 kHz buck operation 

         

 

(b) 100 kHz buck operation                 

 Figure 4-17. Temperature distribution by thermal simulation. 
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In this study, a thermo-sensitive electrical parameter (TSEP) is proposed for the junction temperature 

measurement. Based on the switching characterization shown in Figure 4-9, the turn-on / off delay, 

current rising / falling time, and voltage falling / rising time are all functions of temperature. Among those 

candidates, the turn-off delay time td(off), defined as the time interval between the moment when the gate-

source voltage falls to 90% of its initial value and the drain-source voltage rises to 10 % of the blocking 

voltage, is selected for the temperature measurement due to its high sensitivity and good linearity. 

The relationship between the turn-off delay time td(off) and the junction temperature Tj should be 

determined through calibration prior to real application. The calibration circuit and continuous operation 

circuit are kept the same (except for different loads and heating methods) to avoid any hardware induced 

calibration error. Furthermore, the current and voltage probes are also the same. The turn-off delay time 

can be estimated as  

( ) ≈ / 																																																																																																																	(4 − 5)  
where, Rg is the gate resistance; Ciss, Vth and gm represent the input capacitance, threshold voltage and 

transcondutance of the SiC MOSFET, respectively; Vcc and Vee are the positive and negative gate voltage 

level; IL is the load current.  

The gate resistance and gate voltage levels are constant values (Rg = 10 Ω, Vcc = 20 V and Vee = -2 V), 

while the others are DC bus voltage, load current and/or junction temperature dependent variables. In 

order to simplify the calibration efforts, the DC bus voltage is set to 600 V for both the calibration circuit 

and the continuous operation circuit. The calibration process is carried out under different temperature 

points (25 °C, 75 °C, 125 °C, 175 °C, 225 °C) and current points (10 A, 20 A, 30 A, 40 A, 50 A), as 

shown in Figure 4-18. The turn-off delay time increases with temperature due to the reduced threshold 

voltage and increased transconductance, while it decreases with load current thanks to the increased 

miller plateau voltage. 
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Figure 4-18. Calibration curves under different load current levels and junction temperatures. 

 

 

Figure 4-19. Turn-off waveforms under different junction temperatures. 
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is preferable for high temperature operation thanks to its low leakage current, small variation in total 

switching loss, positive temperature coefficient of on-state resistance, etc. A buck converter prototype 

incorporating the phage-leg power module and the silicon-on-insulator gate drive is operated successfully 

at a switching frequency of 100 kHz. The junction temperatures are 238 °C according to finite element 

thermal simulation and 232 °C based on the proposed thermo-sensitive electrical parameter measurement 

method, which together demonstrates the high temperature capability of the power module through 

continuous operation. 

The junction temperature limitation of the fabricated power module related to thermal runaway 

phenomenon is investigated. Theoretical and thermal simulation results demonstrate that: 

(1) The power density improvement becomes exponentially reduced by pushing junction temperatures.  

(2) The minimum thermal runaway temperature is around 265 oC, which is lower than the solder 

melting point  

(3) The lowest thermal runaway temperature is independent of device scaling and external cooling 

condition, while increases with ambient temperature 

(4) SiC MOSFETs tend to present a higher thermal runaway temperature than SiC JFETs thanks to 

their negative temperature coefficient effect of MOS-channel resistance  

(5) With the same total power loss, less conduction loss is beneficial to prevent the thermal runaway 

issue. 
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5 Short Circuit Capability Evaluation of SiC MOSFETs 

This chapter presents a comprehensive short circuit ruggedness evaluation of up-to-date commercial 

SiC MOSFETs. The short circuit capability of three types of commercial 1200 V SiC MOSFETs is tested 

under various case temperatures from 25 oC to 200 oC. The short circuit behavior and associated failure 

mechanism are also compared and analyzed through transient thermal simulation.  

5.1  Evaluation Methodology and Hardware Test Setup 

Three commercially available discrete 1200 V SiC MOSFETs with TO-247 package are investigated 

in this work, as shown in Table 5-1. These devices have the same on-state resistance and comparable 

current rating, while their die sizes are different.  

 

Table 5-1. SiC MOSFETs under test [93]-[96] 

 

 

The test circuit configuration for short circuit capability and protection evaluation is shown in Figure 

5-1, which represents one phase leg of a three phase voltage source converter with a clamped inductive 

load. The inductances L, Lσ, and Lfa are the load inductance, main-loop parasitic inductance, and short-

circuit impedance, respectively. The lower side device serves as the device under test (DUT). The short-

circuit control switch in Figure 5-1, connected in parallel with the upper SiC MOSFETs (always off for 

the inductor current free-wheeling through its body diode), is controlled to create a short circuit fault 

                 Device 
Types 

 
 
Parameters 

 

 
1st Generation (1G) 2nd Generation (2G) 

Rated Voltage / 
Current 

1200 V / 24 A (100
oC ) 

1200 V / 20 A (100 oC ) 
1200 V / 28 A (100

oC ) 

On-Resistance 80 mΩ 80 mΩ 80 mΩ 

Normalized Die Area 1.59 1.0 1.21 



67 
 

when the lower device is on. In order to prevent the potential damage of the whole test setup when the 

DUT fails, a solid state circuit breaker with a proper short circuit protection threshold is employed, as 

discussed in detail later. 

Depending on the time sequence of the drive signals (vshort and vin in Figure 5-1), the DUT could 

present a short circuit during the turn-on switching transient or during the on-state condition, resulting in 

hard switching fault (HSF) or fault under load (FUL) respectively. The detailed analysis of the short 

circuit behavior of the two fault types is given in [92]. In this work, the short circuit capability under both 

fault types will be evaluated. 

The experimental test setup is shown in Figure 5-2. A two channel synchronous waveform generator 

sends one signal (vin) to the gate driver of the DUT, and the other one (vshort) to the gate driver of the 

short-circuit control switch. To test its temperature dependent characteristics, the DUT is heated by a 

controlled hot plate at the bottom side of the test board, and the case temperature is monitored by a 

thermocouple. A fan is used to cool the current sensor and gate driver loop to guarantee measurement 

accuracy. Testing waveforms can be extracted by MATLAB for performance comparison under different 

conditions and/or transient thermal analysis. 

 

 

Figure 5-1. Test circuit configuration for short circuit capability and protection evaluation. 
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Stage II [t2 ~ t3]: The device conducts in saturation as the full DC bus voltage appears across it. This 

involves considerable power loss, and as a consequence the semiconductor junction temperature increases 

rapidly due to self-heating. The temperature rise leads to reduction in the MOS channel (and drift region) 

carrier mobility, and thus the short circuit current presents a negative slope. The device can be 

successfully turned off if the semiconductor temperature is within safe range. 

Stage III [t3 ~ t4]: As junction temperature continues increasing, the di/dt of the short circuit current 

waveform changes to be positive. This is likely because the decreasing rate of MOS channel electron 

current is lower than the rising rate of leakage current induced by thermally assisted impact ionization.  

Stage IV [t4 ~]: When the device is switched off at t4, a tail leakage current remains after the turn-off 

process and eventually leads to a thermal runaway phenomenon and device failure. This failure mode, 

occurring after a delay time from the device turn-off, has been reported by some authors in Si field-stop 

IGBTs [98].  

The short circuit withstand time (from t1 to t4) is 12 μs under HSF, and 11.5 μs under FUL. The 

slightly lower SCWT for FUL is associated with the higher peak fault current caused by a gate voltage 

spike during the fault transient. The short circuit critical energy Ec, defined by (5-1), is around 1.18 J for 

both cases.  

= ∙ .																																																																																																																																														(5 − 1) 
The high temperature short circuit capability of the CREE 1G SiC MOSFETs is also evaluated with 

DC bus voltage Vdc = 600 V, gate voltage vgs = + 20 / - 2 V, and case temperature Tc = 200 ºC, as shown 

in Figure 5-5. Compared to Figure 5-4, several observations can be made regarding the current 

waveforms: 1) the SCWT decreases slightly from 12 μs (25 ºC) to 11 μs (200 ºC) under HSF, and 11.5 μs 

(25 ºC) to 10 μs (200 ºC) under FUL; 2) the peak fault current point (occurring at time t2) moves towards 

fault starting moment (at t1); 3) the delay time to failure becomes shorter. 
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5.3.1 Delayed Failure Mode 

According to the experimental results, both the CREE 1G and 2G devices present a delayed failure 

mode. In order to further investigate the evolution of the failure mode, the short circuit duration is 

gradually increased until the failure of the power device, as illustrated in Figure 5-11. When the device is 

turned off, the initial leakage current ILK gradually increases with the extension of short circuit duration. 

Once the leakage current is large enough, the internal thermal instability after device turn-off occurs 

following a delay time (depending on heat diffusion), which eventually leads to a thermal runaway. 

Moreover, the delay time to failure tdf is short circuit duration or energy dependent. With the increase of 

short circuit duration (i.e. higher energy), the delay time to failure becomes shorter. 

  

       

 (a) CREE 1G SiC MOSFETs                                                      (b) CREE 2G SiC MOSFETs 

Figure 5-11. Evolution of delayed failure mode with different short circuit durations. 

 

After the destructive tests, the impedance between the three terminals of the DUT and the forward 

voltage of the body diode are measured using a digital multimeter. The typical measurement values are 

summarized in Table 5-2. As can be observed, all three terminals are nearly shorted together for the 

CREE 1G and 2G SiC MOSFETs. The ROHM SiC MOSFETs only show a short circuit in gate-source 

junction. The gate-drain, drain-source junction, and body diode still appear to be normal. However, a 

Leakage current ILK

tdf

Leakage current ILK

tdf
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detailed comparison with a new device reveals that the two junctions and the body diode are actually 

degraded. Both the impedance and forward voltage drop tend to decrease. 

 

Table 5-2. Summary of typical data of failed devices 

 

 

5.3.2 Short Circuit Withstand Time and Critical Energy 

Based on the testing results under different case temperatures up to 200 oC, the temperature dependent 

short circuit withstand time and critical energy are summarized in Figure 5-12, where the DC bus voltage 

is 600 V and the gate voltages are + 20 / - 2 V for the CREE devices and + 18 / - 2 V for the ROHM 

devices. 

Under low temperature levels, more dissipated energy is required for the devices to reach the critical 

failure temperature point and the corresponding SCWT is longer. The short circuit capability of the CREE 

2G devices is nearly independent of temperature, and the short circuit critical energy and withstand time 

remain nearly constant. Similarly, the short circuit capability of the CREE 1G SiC MOSFETs show a 

slight dependence on temperature. In contrast to the CREE devices, both the short circuit critical energy 

and withstand time of the ROHM devices decrease linearly with the increase of case temperature.  

The SCWT and critical energy under different DC bus voltage levels are also investigated, as shown in 

Figure 5-13. The case temperature is kept at 200 ºC by a hot plate. The short circuit capability of the three 

                 Device 
Types 
 
 
Parameters 

 

 
1st Generation 

(1G) 
2nd Generation 

(2G) 

Rgs/Rsg (Ω) 0.1 / 0.1 0.2 / 0.2 0.3 / 0.3 

Rgd/Rdg (Ω) 10.4 / 10.4 17.2 / 17.2 800k / ∞ 

Rds/Rsd (Ω) 10.5 / 10.5 17.4 / 17.4 ∞ / 800k 

VF (V) 0.015  0.018  1.222  
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SiC MOSFETs is strongly voltage dependent. With the increase of DC bus voltage, less dissipated energy 

is needed to cause a thermal destruction, and the device can survive for shorter time duration. 

 

 

Figure 5-12. Comparison of temperature dependent short circuit capability. 

 

 

Figure 5-13. Comparison of DC bus voltage dependent short circuit capability. 
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5.3.3 Electro-Thermal Model 

In order to evaluate the temperature distribution across the device assembly and thus further 

investigate the failure mechanism of the tested power devices as well as other SiC MOSFETs, an electro-

thermal model (including the power semiconductor die, die-attach material, and case) is built, as shown in 

Figure 5-14.  

 

 

Figure 5-14. Electro-thermal model of SiC MOSFET with TO-247 package. 

 

During short circuit transient, the full DC bus voltage Vdc applies to the power device, leading to a 

depletion layer width of xp in the P-well and xn in the N- drift region 

= + 2 + 																																																																																																																	(5 − 2) 
= + 2 + 																																																																																																																	(5 − 3) 
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where, εs is the dielectric constant for the 4H-SiC material; q is the electron charge; Na and Nd represent 

the doping density of P well and N- drift region respectively. For the three types of SiC MOSFETs, the 

breakdown voltage provides an estimated N- drift region thickness of 20 μm and doping density of 2×1015 

cm-3.  

The temperature distributions within the device T (x, y, z) under various short-circuit condition can be 

obtained by solving the heat diffusion equation in Cartesian coordinates  

+ + + = ( , , ) 																																																													(5 − 4) 
where, kp, ρ, and cp are the thermal conductivity, material density, and specific thermal capacity; Q is the 

heat generation source due to the power dissipation during short circuit transient. Since the generated heat 

flux essentially flows in one dimension, from upper surface (i.e. source metallization layer) of the die to 

the case, (5-4) reduces to 

+ = ( ).																																																																																																																										(5 − 5) 
The thermal properties of the die attach material and the case are assumed to be constant due to small 

temperature variation. However, the temperature dependence of thermal conductivity and specific heat of 

4H-SiC material should be considered for SiC MOSFETs because of high internal temperature gradient 

[100] 

( ) = 1−0.0003 + 1.05 × 10 																																																																																																																(5 − 6) 
( ) = 925.65 + 0.3772 − 7.9259 × 10 − 3.1946 × 10 	.																																																						(5 − 7) 

The internal heat generation Q can be given as 

= ( ) ( ) 	= 	 ( ) ( )	 																																																																																																																														(5 − 8) 
where J (t) is the short circuit current density; S is the power device active area; I (t) is the short circuit 

current in experiments; E (x) is the electric field distribution in the space charge region given by (5-9) and 

(5-10) 
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( ) = − ( − )																					0 ≤ 	 ≤ 																																																																																										(5 − 9) 
( ) = + 																							− ≤ 	 ≤ 0.																																																																																			(5 − 10) 

Substituting (5-8) – (5-10) and (5-2) – (5-3) into (5-5) yields  

+ + 2 + − ( ) = ( )																																								(5 − 11) 
+ + 2 + + ( ) = ( )	.																																						(5 − 12) 

The above equations can be applied to all SiC MOSFETs to obtain their temperature distribution. 

According to (5-11) and (5-12), several qualitative conclusions can be drawn as follows: (a) The increase 

of DC bus voltage Vdc (thus the increase of short circuit saturation current I (t)), causes a fast junction 

temperature rise (∂T/∂t). For a given failure temperature, the short circuit withstand time will be reduced. 

(b) The increase of current density, by larger channel width to length ratio (W/L) and/or higher gate 

voltage levels, will be at the cost of lower short circuit capability. Currently, the low channel mobility of 

SiC MOSFETs requires higher positive gate bias (+18 V~ +20 V) than Si devices (+15 V). Under the 

same DC bus voltage, the temperature rising rate is actually proportional to the current density. (c) The 

device scaling through die paralleling should not affect the failure temperature and short circuit withstand 

time. 

The derived heat equations can be solved by finite-difference methods. Since (5-11) and (5-12) are 

second order in spatial coordinates and first order in time, two boundary conditions and one initial 

condition must  be specified. In this work, the case temperature is fixed (from 25 ºC to 200 ºC) at the 

bottom surface of the case. The generated heat flux is assumed to be unidirectional, and the top surface of 

the die is considered to be adiabatic. In addition, the device junction temperature before short circuit test 

equals to the case temperature. These boundary conditions and initial conditions are summarized as ( = , ) = 																																																																																																																																															(5 − 13) 
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 = 0																																																																																																																																																	(5 − 14) ( , = 0) = .																																																																																																																																																(5 − 15) 
 

5.3.4 Leakage Current Model 

Since the leakage current seems to be responsible for device failure in experiments, the temperature 

dependence of leakage current is also evaluated using the derived electro-thermal model. In this work, 

three essential leakage current mechanisms are taken into account, namely the thermal generation current, 

diffusion current, and avalanche multiplication current. 

(1) Thermal Generation Current 

The thermally activated carrier generation is described by Shockley-Read-Hall (SRH) theory, and the 

corresponding leakage current is given by (5-16) [101] 

_ = 		 2 + 																																																																																																																(5 − 16) 
where, ni is intrinsic carrier concentration and τg is the  SRH generation lifetime. As can be observed, the 

SRH generation current is actually both voltage and temperature dependent. With the increase of DC bus 

voltage (from 400 V to 750 V in this work), the thermal generation current will also increase. The 

temperature dependence of this leakage is mainly caused by the intrinsic charge carrier density of 4H-SiC 

material  

( ) = 		1.7 × 10 × 	× . × .																																																																																																				(5 − 17) 
Although the intrinsic carrier concentration for SiC is far smaller than for Si due to the large difference in 

band gap energy, its impact on the leakage current of SiC MOSFETs at high junction temperatures cannot 

be neglected. The generation lifetime depends on not only temperature but also other factors, such as the 

material dislocation density, surface effects, the capture cross sections, and the trap energy [101]. Based 

on the previous measurement results in [102]–[104], the carrier generation lifetime in 4H-SiC epilayers 
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ranges from less than 1 ns to approximately 1 μs. Due to its high uncertainty, several different lifetimes 

will be used in the later simulation to obtain a realistic value.   

(2) Diffusion Current 

As mentioned above, the intrinsic minority carriers in P well and N- drift layer will quickly increase 

due to the rise of junction temperature during short circuit transient. These minority carriers diffuse into 

the depletion region and drift across the PN- junction with the aid of electric field E (x), leading to a 

saturation current proportional to the doping concentration at the low doped side of the junction. 

According to [105]–[109], the temperature dependence of the saturation current Ig_diff is given by the 

diffusion coefficient (Dp and Dn), minority diffusion length (Lp or Ln), and the intrinsic carrier 

concentration (ni) as follows 

_ = 	 + 																																																																																																																								(5 − 18) 
= 																																		 = 																																																																																															(5 − 19) 
= 																																				 = 																																																																																																(5 − 20) 

	 ( ) = 300 . 													 ( ) = 300 . 																																																																									(5 − 21) 
( ) = 300 . 																 ( ) = 300 . 																																																																											(5 − 22) 

where k is the Boltzmann constant; μp and μn are the temperature dependent hole and electron mobility of 

4H-SiC epilayers; μp0 and μn0 are the hole and electron mobility at 300 K; τp and τn are the temperature 

dependent hole and electron lifetime in N- region and P well region respectively; τp0 and τn0 are the hole 

and electron lifetime at 300 K.  

(3) Avalanche Generation Current 

Under short circuit condition, both the majority electron charge and thermally induced minority charge 

carriers in the depletion region will be accelerated by the electric field E(x). Like the well-known 

avalanche breakdown mechanism, if the kinetic energy of the charge carriers is high enough to generate 
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new electron hole pairs, an additional leakage current gradually forms based on the avalanche 

multiplication. 

For a given DC bus voltage Vdc, the avalanche current is given as 

_ = 		 2 + 	 | | + 																																																																																				(5 − 23) 
In (5-23), Jn and Jp are the electron and hole current density, respectively. Since most of the short circuit 

current within SiC MOSFETs are composed by electrons, hole current density is neglected (i.e. Jn = J ) in 

the following analysis. αn and αp represent the impact ionization coefficient for electrons and holes, 

which depend not only on electric field but also temperature. As reported in [110] and [111], the impact 

ionization rate of SiC material is much larger for holes than for electrons, which can be curve-fitted with 

the empirical law of impact ionization coefficient proposed by Chynoweth: 

( ) = (6.3 × 10 − × 1.07 × 10 ) × −1.75 × 10( ) 																																																											(5 − 24) 
( ) = (1.6 × 10 − × 2.67 × 10 ) × −1.72 × 10( ) .																																																										(5 − 25) 

5.3.5 Simulation Results 

Using the experimental short circuit waveforms and derived electro-thermal model, the temperature 

distribution within the SiC MOSFETs can be evaluated and the temperature dependent leakage current is 

calculated numerically.  

Figure 5-15 shows the comparison of depletion region boundary (x = 0) temperature evolution for the 

three types of devices, under a DC bus voltage of 600 V and case temperature of 25 ºC. As can be seen, 

the failure temperatures of CREE SiC MOSFETs are close, while that of ROHM device is higher. Under 

the same short circuit condition, the device with higher current density presents faster temperature rising 

rate, as predicted by the electro-thermal model in (5-11) and (5-12). For example, the CREE 2G and 

ROHM SiC MOSFETs have the highest ∂T/∂t at the initial and end stage, respectively. For the CREE SiC 

MOSFETs, the higher current density or ∂T/∂t eventually leads to a lower SCWT. However, ROHM 
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device has higher saturation current density, but also longer SCWT. Their different failure mechanisms 

will be discussed in detail later. 

 

 

Figure 5-15. Comparison of saturation current density and junction temperature. 

 

The x-axis temperature distribution of the three devices at turn-off moment is plotted in Figure 5-16. 

The maximum temperature is reached at the depletion region boundary (x = 0) due to the highest electric 

field. It is shown that the heat flux only diffuses less than 200 μm for the three types of devices. 

Compared with the other two devices, CREE 2G SiC MOSFETs tend to have a higher temperature 

gradient (∂T/∂x) and lower heat diffusion distance. This is probably because the current density of CREE 

2G device is the highest at the turn-off moment. Such a low heat diffusion distance reveals that the short 

circuit capability of SiC MOSFETs can be independent of packaging technologies and external cooling 

conditions. Moreover, the concentrated heat generated within the depletion region could cause the 

degradation or even damage of the gate oxide and metallization layer [112].  



85 
 

 

Figure 5-16. Comparison of temperature distribution along vertical path. 

 

The leakage current of the three devices can be calculated from the junction temperature information. 

However, as discussed above, the thermal generation lifetime is not easy to be identified precisely for SiC 

MOSFETs from different device manufacturers. The simulation results will be tentatively obtained using 

different average generation lifetimes to match with experimental testing results. Based on the junction 

temperature and leakage current model, the total leakage current is shown in Figure 5-17(a) and Figure 

5-17(b), with an average SRH generation lifetime of 1 ns and 100 ns, respectively. The simulated leakage 

currents decrease with the increase of generation lifetime. A comparison of the simulated leakage current 

with the previous experimental results reveals that CREE SiC MOSFETs tend to present a much lower 

thermal generation lifetime than ROHM SiC MOSFETs.  

For CREE SiC MOSFETs, such a high additional bipolar leakage current flowing horizontally in the P 

well region may activate the parasitic BJT structure shown in Figure 5-14. Moreover, high junction 

temperature will further contribute to the activation of the parasitic BJT, since the built-in voltage of the 

PN junction decreases with temperature (-2.3 to -3.5 mV / K for 4H-SiC [113]). If the parasitic BJT is on, 

short circuit current will increase quickly and eventually leads to a device failure due to typical second 

breakdown and associated thermal runaway issues. On the other hand, the small leakage current of 

ROHM SiC MOSFETs is difficult to initiate a thermal runaway phenomenon. They are more likely to be 

damaged because of the high local temperature close to the gate oxide.  
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(a) 1 ns 

                                                                       

 (b) 100 ns  

Figure 5-17. Comparison of total leakage current with different generation lifetimes. 

 

Figure 5-18 gives the calculated components of the total leakage current for the three devices. As can 

be observed, the thermal generation current (Ig_th) is dominant during the whole short circuit transient. The 

reason is that the heat wave within the depletion region creates a positive feedback on the intrinsic carrier 

density when flowing towards the substrate of the power devices.  

The thermal generation current, responsible for the thermal runaway issue, increases monotonously 

with temperature evolution and reaches around 20 A for CREE SiC MOSFETs before device turn-off. 

The avalanche generation current (Ig_av) is negligible, and decreases with temperature due to reduced 

impact ionization rate at higher temperatures. The diffusion generation current (Ig_diff) is also small before 

device turn-off, while it increases quickly at the end of the short circuit transient. 
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Figure 5-18. Calculated leakage current components of the three SiC MOSFETs. 

 

More numerical simulation studies have also been conducted for the CREE 1G SiC MOSFETs based 

on the previous testing results. Figure 5-19 illustrates the comparison of depletion region boundary (x = 0) 

temperature evolution and total leakage current of the CREE 1G SiC MOSFETs with different 

combinations of DC bus voltage (600 V to 750 V) and case temperature (25 ºC to 200 ºC).  

As can be observed, even though the short circuit critical energy and withstand time are different for 

the three cases, the leakage currents start to increase quickly when the temperature is higher than 700 ºC. 

The leakage currents continue increasing until the temperature reaches around 1000 ºC. With the 

assumption of the same device failure temperature, the short circuit withstand time can be predicted under 

given short circuit conditions. In addition, for the same die size (or current density), higher voltage stress 

(or electric field) results in a faster temperature rise, as revealed by the heat diffusion equation. 
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Figure 5-19. Numerical simulation results with different combinations of DC bus voltage and case 

temperature. 

 

5.3.6 Repetitive Short Circuit Robustness 

Up to this point, the ruggedness of SiC MOSFETs has been evaluated under single-event short circuit 

condition. The device under test fails immediately after a single-event short circuit. However, long term 

reliability of SiC MOSFETs under repetitive short circuit condition is still a concern. 

The repetitive short circuit robustness of IGBT and MOSFETs has been reported in previous work 

[114]. It is shown that the relative value of short circuit energy versus critical energy plays an important 

role in different robustness, as illustrated in Figure 5-20. For short circuit energies above the critical value 

(E > Ec), the device cannot survive after a short circuit event. For short circuit energies below the critical 
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value (E < Ec), the device fails after a certain number of short circuits due to cumulative aging effects. 

More interestingly, when the short-circuit energy equals to the critical value (E = Ec), the number of short 

circuit events that the device can withstand is randomly distributed. 

 

 

Figure 5-20. Repetitive robustness of IGBTs and MOSFETs. 

 

The robustness of SiC MOSFETs under repetitive short circuit conditions is analyzed in this work 

based on the developed electro-thermal model and leakage current model. The numerical simulation 

results of CREE 1G SiC MOSFETs is redrawn in Figure 5-21. 

According to the junction temperature and leakage current information, five-level repetitive short 

circuit robustness can be observed: 

(i) Thermal runaway (around 1000 oC)  

(ii) Leakage current surge (around 750 oC)  

(iii) Metallization degradation (660 oC for aluminum melting points) 

(iv) Ohmic contact and passivation (< 450 oC [115]) 
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(v) Gate oxide degradation (135 oC for CREE 1G, 150 oC for CREE 2G [116])  

These robustness levels actually determine the response time of a protection circuit, as discussed in 

detail in the next chapter. 

 

 

Figure 5-21. Numerical simulation results for repetitive short circuit analysis. 

 

5.4  Conclusion 

In this chapter, the temperature dependent short circuit capability of three different types of 

commercial SiC MOSFETs has been evaluated experimentally. An electro-thermal model and a leakage 

current model, taking temperature dependent thermal properties of SiC material into account, have also 
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been built to calculate the junction temperature distribution and leakage current components. The key 

points of this chapter can be summarized as follows:  

1) The short circuit withstand time and critical energy of SiC MOSFETs will be reduced with the 

increase of current density, case temperature, and DC bus voltage. However, these are nearly independent 

of device scaling (i.e. die paralleling) and fault types (i.e. HSF and FUL). 

2) The junction temperature will increase quickly during a short circuit transient, which reaches a 

maximum point at the boundary of depletion region. The higher current density results in a faster 

temperature rise and larger temperature gradient.  

3) The high temperature heat wave within the depletion region creates a positive feedback on the 

intrinsic carrier density. The fast increase in intrinsic carrier density leads to a thermal generation current 

which dominates the total leakage current during the whole short circuit transient.  

4) The short circuit failure mechanisms of SiC MOSFETs can be thermal generation current induced 

thermal runaway or high temperature related gate oxide damage. 

5) The heat flux diffuses a limited distance toward the substrate before device failure, which indicates 

the short circuit capability of modern SiC MOSFETs can be independent of packaging materials and 

external cooling conditions. 

The experimental results and numerical simulation results presented in this chapter aim at helping 

designers to evaluate actual safety margins for SiC MOSFET based converters. Additionally, it may 

provide device manufacturers with some useful feedback to improve their future device technologies. 
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protection schemes under various conditions, considering variation of fault type, decoupling capacitance, 

turn-on gate resistance, protection circuit parameters, etc. Finally, a comparison is made in terms of fault 

response time, temperature dependent characteristics, and applications to help designers select a proper 

protection method. 

6.1  Methodology and Test Setup 

An overcurrent condition can be caused by either a short-circuit or an overload fault, and the current 

level of both can be different depending on the impedance of the fault current path. Shoot-through fault, 

usually with very low short-circuit impedance, is considered as the most dangerous type, which is also the 

focus of this work. 

The testing circuit is shown in Figure 6-2, which represents one phase leg of a three phase inverter 

with a clamped inductive load. The short-circuit control switch, composed of four paralleled SiC 

MOSFETs, is controlled to create a shoot-through fault.  

The device under test (DUT) could present overcurrent during the turn-on switching transient or 

during the on-state condition, resulting in hard switching fault (HSF) or fault under load (FUL), 

respectively [92], and their corresponding drive signal and ideal short-circuit waveforms are shown in 

Figure 6-3. In this work, the performance of the three protection schemes under both fault types will be 

evaluated. 

The device used for the experimental test is a 1200 V/42 A discrete SiC MOSFET (CMF20120D) 

from CREE. The experimental waveforms are recorded by a Tektronix DPO5204 2GHz 4 channel digital 

phosphor oscilloscope. The gate-source voltage and drain-source voltage are measured by passive probe 

Tektronix P6139A (500 MHz) and high voltage passive probe Tektronix P5100 (250 MHz), respectively. 

The drain current is measured by a T&M RESEARCH SSDN-10 coaxial shunt (0.1 Ω, 2000 MHz) in the 

SSCB, SSDN-015 coaxial shunt (0.015 Ω, 1200 MHz) in the desaturation technique, and Pearson current 

transformer 2877 (1V/A, 200 MHz) in the fault current evaluation method. Moreover, the channel delays 

caused by different types of probes are compensated before testing. 
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Figure 6-2. Overcurrent protection testing circuit. 

 

           

 (a) HSF                                                                (b) FUL 

Figure 6-3. Drive signal and ideal short-circuit waveforms. 
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The SSCB could be inserted either in series with the energy storage capacitors (position A), or in 

series with the main power loop (position B). Inserting it into the main power loop can reliably detect and 

clear overcurrent faults, while minimizing power dissipation is also a priority. Alternatively, the loss 

associated with the SSCB is small since only ripple current goes through the SSCB in series with the DC 

link energy storage capacitors. However, SiC MOSFETs could still be destroyed by the short-circuit loop 

from the DC source Vdc or front-end rectifier to the device. 

6.2.1 Design Guideline 

The circuit implementation of an IGBT and a commercial gate driver IC IR2127 based SSCB is 

illustrated in Figure 6-7. The voltage divider, Rd1 and Rd2, is used to adjust the gate voltage and saturation 

current level of the IGBT. The gate resistor Rg and gate diode Dg determine the turn-off speed and voltage 

spike under overcurrent condition. The Rho is selected to minimize the increased miller capacitance effect 

from sensing diode Dsat, and makes sure there is no significant current being drawn from the HO output. 

 

 

Figure 6-7. Circuit implementation of the SSCB.  

 

The value of Rcs1 and Rcs2 should be carefully selected considering that a protection is triggered as long 

as the voltage on the CS-pin Vcs is greater than the threshold voltage Vcs_th. Under normal operation, the 

diode Dsat together with the on-state resistance Rce(on) is in parallel with Rcs1 and Rcs2. Under fault 
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condition, the diode Dsat still conducts when the IGBT is slightly saturated, and then becomes reverse 

biased when the IGBT is highly saturated.  

To make sure a fault can be detected when the IGBT is highly saturated, 

_ = ∙+ + 		> _ 																																																																																																											(6 − 1) 
where, Vcs_off is the CS-pin voltage when the diode Dsat is off. For fast fault response, an overcurrent 

condition should be detected when the IGBT is slightly saturated (e.g. Vce = 8 V),  

_ = ( + ) ∙+ 	= _ 																																																																																																										(6 − 2) 
where, Vdiode is the voltage across Dsat, and Vcs_on is the CS-pin voltage when the diode Dsat is on. 

6.2.2 Impact of dv/dt 

During both normal turn-on transient and short-circuit transient of the SiC MOSFET, the collector-

emitter voltage of the IGBT increased dramatically due to current with high di/dt flowing through the 

IGBT of SSCB. The high dVce/dt causes three displacement currents through either the junction 

capacitance of diode Dsat or the miller capacitance of IGBT, as shown in Figure 6-8. 
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Figure 6-8. Impact of dVce/dt on the SSCB. 
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The first current increases the gate voltage by flowing through the resistance Rho, Rd1 and Rd2. The 

second current induces an additional voltage noise across CS-pin by flowing through the resistance Rcs1 

and Rcs2, which might falsely trigger an overcurrent protection during normal turn-on transient. In 

addition, high dVce/dt may push the CS-pin voltage to exceed its normal range. The third current flows 

through the gate loop, which increases the internal gate voltage of the IGBT Vge_in according to (6-3) 

_ = + ∙ + _ + 																																																																								(6 − 3) 
where, Vpreset, Cgc, Lg, and Rg_in represent the preset gate voltage, miller capacitance, gate loop equivalent 

inductance, and IGBT internal gate resistance, respectively.  

To avoid a false trigger and regulate the CS-pin voltage within normal range, several sensing diodes 

are connected in series to minimize the equivalent junction capacitance effect, as shown in Figure 6-8. 

Furthermore, a clamping diode Dcs is placed in parallel with Rcs2 to absorb the noise caused by high 

dVce/dt. To suppress the increase of gate voltage, a zener diode is added in the gate to decouple the 

external gate resistance and gate-loop inductance. The zener diode must be located physically closest to 

the IGBT–an easily overlooked aspect, in order to minimize the internal gate loop inductance.  

Besides a proper power rating, the IGBT should have low internal gate resistance and low miller 

capacitance to mitigate the dVce/dt effects, as shown in (6-3). Table 6-1 shows a comparison of several 

IGBT candidates. With nearly equal miller capacitance, APT35GP120BG with internal gate resistance as 

low as 0.6 Ω is selected in this work.  

The output characteristic of the IGBT is measured by a Tektronix 371B curve tracer at room 

temperature, as shown in Figure 6-9. According to the measured output characteristic, the theoretical 

protection threshold is set to 35 A by tuning the preset gate voltage of the IGBT to be 7.5 V. However, 

the actual saturation current level is subject to change somewhat by increased junction temperature at 

protection transient. 
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Table 6-1. Comparison of IGBTs used for the SSCB 

IGBT Type Power Rating Internal Gate 
Resistance Rgi 

Miller Capacitance 
Cres (Vce =0~10V) 

APT25GT120BRG 1200V/54A (25oC) 4.3 Ω 2000pF~150 pF 

IRG4PH50S 1200V/57A (25oC) 1.6 Ω 3000pF~600 pF 

IXGH30N120B 1200V/60A (25oC) 4.8 Ω 2000pF~400 pF 

APT35GP120BG 1200V/96A (25oC) 0.6 Ω 3000pF~200 pF 

APT75GN120LG 1200V/200A (25oC) 10.5 Ω 2000pF~300 pF 
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Figure 6-9. Output characteristic of the selected IGBT. 

 

Comparative results using the proposed SSCB with/without gate zener diode to protect a HSF and 

FUL with a DC bus voltage of 600 V are shown in Figure 6-10 and Figure 6-11, where vge, vce, vds, and id 

represent the gate voltage, collector-emitter voltage of the IGBT, the drain-source voltage, and drain 

current of the SiC MOSFET, respectively.  
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internal gate loop parasitic inductance and resistance. Second, the protection delay, mainly the chip 

internal logic delay, deteriorates the overall performance.  

6.2.3 Impact of Decoupling Capacitors 

In most practical applications, decoupling capacitors are required and placed close to the SiC 

MOSFETs to minimize the equivalent power loop parasitic inductance. During the on-state, the current of 

the device is mainly supplied by the energy storage capacitor Cdc. However, during a short-circuit, most 

of the fault current is supplied first by the decoupling capacitor Cs (current ①) due to relatively lower 

high frequency impedance, and then by the energy storage capacitor Cdc (current ②), as shown in Figure 

6-12. This mechanism would definitely cause fault detection error and delayed fault response as the 

current through the SSCB is smaller than the actual fault current through the SiC MOSFETs. The 

detection error becomes larger with higher decoupling capacitance, and lower protection threshold. 

 

 

Figure 6-12. Impact of decoupling capacitance. 

 

Figure 6-13 shows the testing results without and with 1.32 μF decoupling capacitance under HSF 

condition. Without decoupling capacitance, the SSCB quickly responds to the short circuit, and the fault 

current is cleared in 300 ns. With the decoupling capacitance, the SSCB presents delayed response. It cuts 
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 (a) HSF                                                                              (b) FUL 

Figure 6-14. Impact of different decoupling capacitances under HSF and FUL condition. 

 

For unipolar devices, e.g. MOSFETs, the desaturation protection would depend on individual types. 

Generally, it can be applied to high voltage MOSFETs given that their output characteristics are similar to 

IGBTs in the active region. However, some low voltage MOSFETs have very low drain-source voltage at 

rated maximum pulse current, and there is a large range of Id that will cause device destruction before Vds 

rises to the protection threshold. Since the protection region lies far beyond the rated maximum pulse 

current, they would be destroyed by overcurrent before a protection circuit ever triggers.  

The subsequent question is that whether desaturation technique could be used for SiC MOSFETs. The 

output characteristic of the SiC MOSFET under test is shown in Figure 6-15. Unlike most Si devices 

which have a high impedance constant current active region (Figure 6-9), the transition from ohmic to 

active region for SiC MOSFETs is not clearly defined and spread over a wide range of drain current due 

to its short-channel effects [117]. According to Figure 6-15, the desaturation protection circuit could be 

triggered by the increased drain-source voltage Vds of SiC MOSFETs under overcurrent condition. 

However, some unique features should be carefully considered in the design of desaturation detection 
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circuit. First, commercial IGBT/MOSFET gate drivers with desaturation detection usually have a 

minimum fault response time of around 3 μs. This level of response time is unsatisfactory for SiC 

MOSFETs taking the long-term reliability into account, and design optimization is required to achieve a 

sub-microsecond response time. Second, the voltage threshold is set at the knee point (around 7 V) for Si 

devices, while an appropriate threshold voltage for SiC MOSFETs is not straightforward due to unclearly 

defined active region. Third, under higher switching speed environment, the noise immunity of a 

desaturation detection circuit should be enhanced to avoid false triggering while maintaining a faster 

response time. 

 

 

Figure 6-15. Output characteristic of the device under different temperatures. 

 

The desaturation protection circuit implemented in this work is shown in Figure 6-16. The drain-

source voltage of DUT is monitored by the sensing diode Dss, and the R-C network (Rsat1, Rsat2 and Cblk). 

When the DUT is “on” and saturated, Dss will pull down the voltage across Cblk. When the DUT pulls out 

of saturation under overcurrent condition, the buffer output will charge Cblk up and trip the comparator. 
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Figure 6-16. Implementation of desaturation technique. 

 

6.3.1 Blanking Time Delay 

To avoid false triggering during normal turn-on switching transients, blanking time is required to allow 

the drain-source voltage of the DUT to drop to its steady-state value. However, fault current could surge 

to a very high value during the blanking time, due to their rather large triode region.  

A proper blanking time can be selected based on the turn-on switching characteristics of the power 

device. Since higher gate resistance and higher current level result in a longer switching transient, the 

turn-on switching time is compared under different voltage levels at room temperature, with an external 

gate resistance of 10 Ω and drain current of 20 A, as shown in Figure 6-17. In the figure, Vbuffer is the gate 

drive output voltage which is synchronized with the desaturation protection circuit to charge Cblk.  

As shown in the testing results, all of the turn-on switching transients are completed within 70 ns. With 

some margin, a 100~200 ns blanking time is preferable for the DUT. 

The blanking time is determined by the threshold voltage Vdesat_th and time constant of the R-C circuitτ,  

= ln − _ 	,																										 = ( + ) ∙ .																																																					(6 − 4) 
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Figure 6-17. Comparison of turn-on switching waveforms under different voltage levels. 

 

The selected Vdesat_th in (6-4) should guarantee that the DUT operates within the SOA before the 

protection circuit is triggered. Based on the temperature dependent output characteristics shown in Figure 

6-15, the instantaneous power dissipation of the DUT at point N Pd(N) is close to the maximum allowable 

power dissipation Pd(max) provided by the manufacturer in [118] 

( ) = ( ) ∙ ( ) = 225	( ) 	≈ ( ) = 215			( ).																																																																				(6 − 5) 
From a normal operating point (e.g. point M) to the point N, the power dissipation is well below Pd(max) 

and the DUT always operates within the SOA before protection triggering. Actually, even though the 

power dissipation is fairly higher than Pd(max), it does not necessarily indicate that the DUT would have 

thermal breakdown if the pulse duration is not long enough. In this work, a somewhat conservative 

threshold voltage, i.e. 5 V, is selected due to limited knowledge of the device physic characteristics. 
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The different performance can be explained in terms of fault response, as shown in Table 6-2. 

Although the blanking time is the same, the induced detection delay presents a significant difference 

between HSF and FUL. It is a little higher than the preset value in HSF due to the parasitic capacitance of 

diode Dblk, and negative dvds/dt across the junction capacitance of the sensing diode Dss. The detection 

delay of FUL fault is much lower than the preset value owing to initial voltage of blanking capacitance 

Cblk at fault instant, and positive dvds/dt across the junction capacitance of Dss. Moreover, dvds/dt induced 

gate voltage spike in FUL is suppressed by the clamping diode Dz within its upper limit, and potential 

degradation can be mitigated.  

 

Table 6-2. Comparison of fault response time for HSF and FUL using desaturation technique 

Fault Type Detection     

delay (t0~t1): 

Comparator 

delay (t1~t2): 

Logic control 

delay (t2~t3): 

Total delay 

HSF 120 ns 65 ns 25 ns 210 ns 

FUL 20 ns 65 ns 25 ns 110 ns 

 

 

Figure 6-22 shows waveforms of desaturation protection scheme with different blanking time under 

HSF and FUL condition. As can be observed, longer blanking time results in higher fault current and 

longer protection delay. 

Compared to HSF, FUL is less sensitive to the variation of blanking time since the dvds/dt effect 

contributes to the acceleration of fault response. More testing results with different turn-on gate resistance 

are shown in Figure 6-23. For HSF, lower gate resistance will increase the fault current due to higher 

dids/dt. However, the performance is nearly unchanged for FUL. This is because the DUT is already on 

before a FUL occurs, and the gate resistance has no impact on the dids/dt and fault current. 
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 (a) HSF                                                                         (b) FUL 

Figure 6-22. Desaturation protection with different blanking time. 

 

 

  

 (a) HSF                                                                          (b) FUL 

Figure 6-23. Desaturation protection with different turn-on gate resistances. 
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6.4  Fault Current Evaluation Scheme 

A new overcurrent protection scheme is also proposed to realize fast response time and strong noise 

immunity simultaneously. The block diagram of the proposed fault current evaluation scheme is shown in 

Figure 6-24. There are mainly four function blocks: fault current evaluation, logic control, gate voltage 

clamping, and soft turn-off, as discussed in detail later.  

Compared to the di/dt monitoring based protection method [80], [84], the proposed one in this 

dissertation aims at estimating the peak fault current level through the passive integration of di/dt by a RC 

filter. The key advantage of the proposed method is that it could detect a short circuit without any 

programmed delay, despite strong ringing of drain current. 

 

 

Figure 6-24. Proposed fault current evaluation protection scheme. 

 

6.4.1 Kelvin Source Connection 

The common source inductance is the inductance that is shared by the main power loop and the gate 

loop. During turn-on and turn-off switching transients, this inductance establishes a negative feedback 

from the main power loop to the gate loop by counteracting part of the gate voltage. Consequently, SiC 

MOSFETs present lower switching speed, higher switching loss, and higher ringing. The impact of 

common source inductance has been extensively evaluated in [119]–[121].  
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6.4.2 Functionality Implementation 

The circuit implementation of the proposed protection scheme is shown in Figure 6-26. 

 

 

Figure 6-26. Proposed fault current evaluation protection scheme. 

      

(1) Fault Current Evaluation 

The circuit implementation of fault current evaluation functionality is shown in Figure 6-27. The 

current through the device during turn-on switching transient is dynamically evaluated by measuring the 

induced voltage across the stray inductance LSs between the Kelvin emitter and power emitter of the 

device. 

At current rising stage of turn-on transients, the voltage drop VSs across stray inductance LSs is given as ( ) = ( ) ∙ .																																																																																																																																											(6 − 7) 
When a RC filter is applied in parallel with the stray inductance, the output voltage of the filter is 

( ) = ( )+ 1 	 ∙ 	 1 = ( )+ 1																																																																																																												(6 − 8) 
where, Rf and Cf are the resistance and capacitance of the RC filter respectively. Substituting (6-7) into (6-

8), the solution for the drain current id yields 
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Figure 6-27. Circuit implementation of fault current evaluation functionality. 

 

( ) = ( ) + 1	.																																																																																																																																		(6 − 9) 
During a short circuit transient, the steep fault current can be evaluated by 

( ) = ( ) + 1 ≈ ( ) 	.																																																																																																							(6 − 10) 
Equation (6-10) indicates that the fault current is proportional to the output voltage of the filter. Under 

certain stray inductance LSs and fixed values of Rf and Cf, the current protection threshold could be 

adjusted by selecting different references for voltage Vo(s). 

The stray inductance LSs between the Kelvin source and power source can be identified through 

experimental measurement of VSs and id during turn-on transient, as shown in Figure 6-28, where Ld(int),  

Ls(int),  and Lg(int), represent the drain, source, and gate parasitic inductance within device package, 

respectively; Rg represents the internal gate resistance; Lks is the parasitic inductance induced by Kelvin 

connection.  
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Figure 6-28. Identification of stray inductance LSs through experiment. 

 

The resulting voltage VSs between the power and the Kelvin source terminals is given by the 

inductances Lks, LSs, and the derivatives of the gate and drain currents: 

( ) = − + 	.																																																																																																																								(6 − 11) 
As the polarities of the two induced voltages in (6-11) are different and the gate has to be partially 

charged through gate resistance before the rising of drain current, the did/dt and dig/dt induced voltage 

which appear at different stages can be easily identified, as shown in Figure 6-29. Moreover, since the 

dig/dt is much lower than did/dt during drain current rising stage, LSs is simplified as 

≈ − ( ) = −6.8	1.045 = 6.5	( ).																																																																																																						(6 − 12) 
In practical measurements, LSs values at different current/voltage levels and gate resistance, are 

evaluated and averaged for more accurate results. The inductance LSs is estimated to be 6.5 nH. The 

current evaluation waveform with Rf = 200 Ω, and Cf = 1 nF is shown in Figure 6-30. The experimental 

value (0.92 V) is a little lower than the theoretical evaluation given by (6-10), due to neglecting the term 

1/s,  
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while it deviates from the calculation in the case of a higher Rf (2 kΩ) and lower Cf (0.1 nF). The reason is 

that the total parasitic capacitances (including the input capacitance of the comparator and junction 

capacitances of clamping diodes Df1 to Df2) are comparable to Cf, and the increased equivalent capacitance 

would decrease the output voltage Vo. Generally, Cf should be higher than 1 nF to avoid the parasitic 

capacitance effects. On the other hand, the capacitance of Cf should be as low as possible to present high 

impedance together with Rf during switching transients, and thus the normal switching performance 

would not be affected.  

 

 

Figure 6-31. Measured filter output voltage Vo and peak drain current. 

 

(2) Logic Control 

The proposed overcurrent fault detector consists of a latch circuit and a clamping circuit regulating the 

feedback signal to normal ranges, as shown in Figure 6-26. 

One input of the latch circuit (S terminal) is connected to the output of the RC filter. During normal 

operation, the S terminal is in high state, the detector output keeps unchanged. Under fault condition, 
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fault is detected. In order to realize flexible protection thresholds, an additional voltage comparator can be 

inserted between the S terminal and RC filter in a practical implementation. With the default threshold of 

R-S latch, Rf = 200 Ω, and Cf = 1 nF, the protection threshold is set to 25 A according to Figure 6-31. 

Upon the change in detector state, the high level output will drive the following stages to respond to the 

fault. In addition, the detector is able to report a fault to the system microprocessor when a fault is 

detected.  

The other input (R terminal) receives the protection mode information determined by users. 

Specifically, two optional protection modes are implemented:  single-mode, with R terminal set to be high 

level, and multiple-mode, with R terminal synchronized to the input PWM signal of gate driver (vin). For 

single-mode, the gate driver will be shut down once a fault is detected. However, for multiple-mode, the 

gate driver will only be blocked in the fault switching cycle. The gate driver continues to work until a 

shutdown signal is sent by a microprocessor counting the reported fault times. For example, the 

microprocessor may send a shutdown command to the gate driver when the cumulative number of faults 

is greater than three within a certain period of time. 

 (3) Gate Voltage Clamping 

Under fault condition, especially FUL condition, the gate voltage of SiC MOSFET would be increased 

and eventually exceed its upper limit specified by the manufacturer (+25 V) [118], due to a large dv/dt 

across the miller capacitance and gate resistance. This increased gate bias, i.e. increased electric field in 

the gate oxide, causes a higher tunneling current into the dielectric, thus accelerating the degradation and 

destruction of SiC MOSFETs. On the other hand, the gate voltage spike would induce a larger fault 

current during short circuit transient, like the case in SSCB discussed above.  

To deal with these issues, a discharging capacitor Cgp and zener diode Dgp, actively controlled by 

transistor M1, are employed as shown in Figure 6-26. Once a fault is detected, M1 is turned on, which 

causes Cgp to charge up to the voltage level of Dgp, thus effectively discharging the gate capacitance and 

suppressing gate voltage spikes. The final gate voltage and fault current level are clamped by Dgp.  
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The value of Cgp should be selected carefully in that a large Cgp value results in unexpected fast turn-

off of IGBT modules and a slow ramp up to the clamp current level, while a small one results in a high 

peak fault current due to insufficient gate discharge. The value of the zener voltage is selected such that 

the fault current is clamped to a safe current level and the clamped gate voltage is above the threshold 

voltage to avoid fast turn-off, e.g. 10 V ~ 13 V, while an optimized one should still be determined through 

experimental test. 

Compared to the active clamping with a single voltage level, zener clamping is more flexible since 

there is a wide range of zener diodes with different breakdown voltages. In addition, some variation of the 

gate clamping voltage due to the spread of the zener diode breakdown voltage and the slope in the output 

characteristics is allowed because the clamped safe current level does not need to be very accurate. 

(4) Soft Turn-off 

Although the negative voltage bias is able to accelerate the process of interrupting a short-circuit 

current, the SiC MOSFET has to be softly turned off to reduce voltage overshoot due to the effect of 

power-loop stray inductance and high di/dt under short-circuit condition. When the logic control output is 

activated, the buffer is disabled by turning on M3, and a large gate resistor Rsoft is inserted into the gate to 

turn off the device at a reduced rate of gate voltage change following a delay. 

6.4.3 Performance Evaluation 

Figure 6-32 shows experimental waveforms with the fault current evaluation protection scheme under 

HSF and FUL condition. With Rf = 200 Ω, Cf = 1 nF and Vfce(th) = -3 V, the current protection threshold is 

around 100 A in both cases according to (6-10). 

 The HSF fault current is limited to 130 A within 140 ns, and then it is clamped to around 50 A, with a 

corresponding clamped gate voltage of 12 V. Following a delay of 400 ns, the device is softly turned off. 

Similar protection characteristics are also shown under FUL, while its fault peak current (120 A) is a little 

higher due to larger protection delay. The detailed fault response analysis is shown in Table 6-3.  

Although the protection threshold is the same, the induced detection delay still presents some 

difference. The reason is that the di/dt of HSF and FUL depends respectively on the DUT and short-
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 (a) HSF                                                                                       (b) FUL 

Figure 6-33. Fault current evaluation protection with different threshold voltages. 

 

 

  

 (a) HSF                                                                        (b) FUL 

Figure 6-34. Fault current evaluation protection with different turn-on gate resistances. 
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6.5  Discussion 

Up to this point, three different protection schemes that can be used for overcurrent protection of SiC 

MOSFETs have been discussed. The purpose of this section is not to determine the best one, but explore 

the benefits and drawbacks of each method, and its potential applications. A fair comparison among the 

three protection techniques is difficult, considering that application cases and design optimization targets 

vary from design to design. The focus of this discussion is a comparison of their fault response time, 

temperature dependent performance, and potential applications.    

6.5.1 Fault Response Time 

The fault response time is one of the most crucial factors in overcurrent protection, while it depends on 

different design cases. In this work, the fault response time is pushed closer to its lowest limit in order to 

avoid potential degradation of the SiC devices.  

Based on the experimental results shown in the previous sections, the fault response time and 

corresponding fault peak current of the three methods under HSF and FUL are summarized in Figure 6-37. 

 

 

Figure 6-37. Comparison of fault response time and peak current. 
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The SSCB has the quickest fault response time and nearly the same response time for both HSF and 

FUL. The desaturation (Desat) technique has the longest fault response time under HSF, but very short 

fault response time under FUL. This large difference results from the dvds/dt across the junction 

capacitance of the desaturation detection diode at fault transient. The fault current evaluation (FCE) 

method shows moderate performance under HSF, but the worst performance when protecting a FUL, the 

most serious threat to SiC MOSFETs.  

The fault peak current has a similar trend as that of fault response time since the di/dt is identical under 

different cases. Without decoupling capacitance, the fault peak current can be controlled to a very low 

level by the SSCB. However, it will increase far beyond this level due to the discharge of decoupling 

capacitance. Unfortunately, many applications do have more or less decoupling capacitance, which limits 

its application to some extent. Regardless of decoupling capacitance values, both the desaturation 

technique and fault current evaluation have fast response against shoot-through faults where di/dt is 

extremely high, whereas this response time is subject to extension under faults with large short-circuit 

impedance, e.g. ground fault. The high impedance short-circuit caused low di/dt fault current generally 

can be detected by current sensors of converters. The impact of different short-circuit impedance is 

beyond the scope of this dissertation.  

6.5.2 Temperature Dependent Performance 

The variation of junction temperature will cause some changes on device characteristics/parameters. 

However, it has no impact on SSCB that relies on its own power device instead of the SiC MOSFET.  

The influence of different temperature on desaturation protection is shown in Figure 6-38. Both the 

turn-on dvds/dt and did/dt become faster as the temperature rises, as explained in [72]. As seen, the fault 

response time keeps unchanged with the variation of temperature under both HSF and FUL. The clamped 

current levels in both fault types increase due to the increase of transconductance gm as temperature rises. 
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 (a) HSF                                                                  (b) FUL 

Figure 6-38. Desaturation protection under different junction temperature. 

 

The influence of different temperatures on fault current evaluation scheme is shown in Figure 6-39. 

The fault current evaluation method presents faster fault response time of HSF thanks to the increased 

dids/dt at high temperature. The clamped current levels also increase due to the increase of 

transconductance gm as temperature rises. 

The temperature dependent fault peak current of the three methods under HSF and FUL is illustrated 

in Figure 6-40. The SSCB shows the best temperature dependent performance since it is operated 

independent of junction temperature of the device under test. For the desaturation technique, the dids/dt of 

HSF increases with the rise of temperature, while the dids/dt of FUL controlled by short-circuit control 

switch does not change. Consequently, the fault peak current of HSF increases slightly at higher 

temperature, and remains the same in FUL. The fault current evaluation method presents opposite 

temperature dependent characteristics under HSF and FUL. The peak value of HSF decreases a little 
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thanks to the faster response time at higher temperatures, while the fault current peak value of FUL 

increases with temperature. 

  

 

 (a) HSF                                                                 (b) FUL 

Figure 6-39. Fault current evaluation under different junction temperature. 

 

 

Figure 6-40. Comparison of temperature dependent fault peak current. 
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The possible reason is that the filter resistance Rf, which is physically close to the SiC MOSFET, is 

heated together with the power device. Hence, the protection threshold becomes higher due to the 

temperature effect, as shown in Figure 6-39(b). Moreover, the current sensor (Pearson 2877), which is not 

fully heat-shielded, may also have an impact on the current measurement at high temperatures, while the 

specific temperature characteristic is not clearly indicated by the manufacturer. 

6.5.3 Applications 

According to their operating principle, it can be observed that the SSCB does not rely on the specific 

device packages but it strongly depends on the system-level packages due to its relatively large volume. 

The desaturation technique is neither device package dependent nor system-level package dependent, and 

thus can be readily integrated into a gate drive circuit. However, the fault current evaluation method is 

inherently suitable for power modules with built-in parasitic inductance between Kelvin source and power 

source terminal. However, this parasitic inductance, depending on packaging techniques, varies from 

module to module, which impairs the generality of this method to some extent. Nonetheless, this 

inductance is not difficult to be identified and calibrated through experimental measurements. Moreover, 

for the whole converter using the same SiC MOSFET devices/power module, the calibration process 

needs to be done only once.  

Because the protection performance of the SSCB is independent of specific devices, it is suitable to 

protect a converter including different types of SiC MOSFETs and even Si devices.  Also, it can be used 

for any power/current level. They key issue is the considerable power loss under high power/current level 

applications such as the typical back-to-back converter in a renewable energy system. However, the 

power dissipation would still acceptable in the application with low active power flow in the DC link, e.g. 

active power filters (APF), static var generator (SVG), double pulse tester (DPT). 

The desaturation technique can be applied to a wide range of power/current levels, while it may not 

work effectively at low voltage levels. As a result of easy integration and low power dissipation, it is 

preferable to be used in high temperature and high density application, like electric vehicle (EV) / hybrid 

electric vehicle (HEV) and aircraft.  
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The fault current evaluation method is targeted at power modules and high power/current levels. 

Similar to the desaturation technique, it may not work effectively at low voltage levels due to low di/dt. 

From the integration point of view, it has a large overlap with the desaturation technique, while the 

potential application in high temperature environment still needs further investigation. 

The primary difference between the potential applications of desaturation and fault current evaluation 

method is summarized as follows:  

1) As mentioned above, desaturation technique can be used for any device package and current level, 

while fault current evaluation method is generally applied to power modules.  

2) Compared to the desaturation technique based on the temperature dependent nonlinear I-V 

characteristics, the fault current evaluation method has a temperature independent linear I-V relationship, 

which indicates that the latter one is much easier to set an accurate protection threshold to limit the fault 

current to an expected level.  

3) In a converter built by different types of SiC MOSFETs, the fault current evaluation method needs 

more effort on calibration, while desaturation technique only needs to change the voltage protection 

threshold slightly according to their output characteristics. 

6.5.4 Other Factors 

Besides those aspects discussed above, other factors including overall cost, reliability, power 

dissipation, implementation and integration complexity should also be taken into consideration to select a 

proper overcurrent protection method for SiC MOSFET based converters. 

For example, the SSCB has fairly good reliability and generality to protect different types of SiC 

MOSFETs. However, it creates high power dissipation, and is relatively expensive and bulky. In addition, 

it requires a separate isolated power supply and gate driver to operate. The reliability of the protection 

method in this work means that whether the protection technique can be triggered under any short-circuit 

condition. A broader definition of the reliability should be a comprehensive factor with many other 

aspects involved, power dissipation and related degradation issues, component number, component failure 

rate, etc. 



131 
 

In contrast, the desaturation detection circuit has very low power dissipation and low cost. This 

technique, however, is rather complex because it requires deliberate circuit design to achieve a fast fault 

response, accurate synchronization with the gate signal, as well as good reliability for different types of 

SiC MOSFETs. 

The fault current evaluation scheme also has very low power dissipation and cost, while it may present 

relatively lower reliability to protect different types of SiC MOSFETs due to the variation of stray 

inductance. The comparison of the three overcurrent protection methods is summarized in Table 6-4. 

  

Table 6-4. Comparison of the three protection methods. 

Features SSCB Desat FCE 

Power Loss High Low Very low 

Generality Very good Good Bad 

Reliability Very good Good Good 

Implementation Complexity Medium High High 

Integration  
Complexity 

High Low Medium 

Cost High Low Low 

 

 

6.6  Conclusion 

In this chapter, the requirements for short circuit protection of SiC MOSFETs are proposed 

considering single-event, repetitive fault conditions, and noise immunity. To meet these requirements, 

three overcurrent protection methods have been presented for SiC MOSFETs under both hard switching 

fault and fault under load condition. The design consideration and associated issues of these methods are 

analyzed and verified through experiments. A qualitative comparison of these techniques is made for fault 

response time, temperature dependent performance, and their potential applications to help the designer 
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select an appropriate protection scheme. The experimental results based on a step-down converter indicate 

that the proposed protection schemes have the capability of clearing a short-circuit fault within 200 ns, 

irrespective of junction temperature variation of SiC MOSFETs. 
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7 Conclusion and Future Work 

This chapter summarizes this dissertation including its major contributions and provides suggestions 

for future research. 

7.1  Conclusion 

This dissertation investigates the development of a high power density integrated phase-leg power 

module capable of operating under the harsh environment of electric vehicles, while ensuring system 

reliability and safety under short circuit conditions. The key points of this dissertation are summarized as 

follows. 

(1) A di/dt feedback based active gate driver is proposed for switching performance improvement of 

IGBT power modules. The switching loss, delay time, and Miller plateau duration are reduced by means 

of auxiliary current source/sink, regardless of power level, gate resistance, as well as IGBT types with 

some variation of parasitic inductance. Moreover, the proposed active gate drive is suitable to be 

integrated since no separate power supply, high bandwidth detection and regulation components (e.g. 

current/voltage sensors, operational amplifier, etc.) are needed. 

(2) The design, development, and testing of a high temperature silicon carbide MOSFET power 

module with an integrated silicon-on-insulator based gate drive are presented. A two-channel high 

temperature gate driver board is built based on the chip-on-board technique, and experimental results 

demonstrate the high temperature driving capability of the gate driver up to 200 °C. In addition, a silicon 

carbide MOSFET phase-leg module is fabricated utilizing high temperature packaging technologies. The 

junction temperature limitation of the fabricated power module related to thermal runaway phenomenon 

is investigated. A buck converter prototype incorporating the phage-leg power module and the silicon-on-

insulator gate drive is operated successfully at a switching frequency of 100 kHz, with a junction 

temperature of 232 °C. 

 (3) The temperature dependent short circuit capability of three different types of commercial SiC 

MOSFETs is evaluated. It is found that the short circuit withstand time and critical energy of SiC 
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MOSFETs will be reduced with the increase of current density, case temperature, and DC bus voltage. 

However, these are nearly independent of device scaling (i.e. die paralleling), fault types (i.e. HSF and 

FUL), packaging materials, and external cooling conditions. The associated failure mechanism is also 

analyzed and compared through the developed electro-thermal model and leakage current model. 

According to the models, the short circuit failure mechanisms of SiC MOSFETs can be thermal 

generation current induced thermal runaway or high temperature related gate oxide damage. 

(4) Based on the short circuit capability evaluation results, the requirements for short circuit protection 

of SiC MOSFETs are first proposed, considering single-event, repetitive fault conditions, and noise 

immunity. Three overcurrent / short circuit protection methods are designed and implemented for SiC 

MOSFETs under both hard switching fault and fault under load condition. The design consideration and 

associated issues of these methods are analyzed and verified through experiments. A comparison of these 

techniques is made for fault response time, temperature dependent performance, and their potential 

applications to help the designer select an appropriate protection scheme.  

7.2  Future Work 

Some recommended future work is focused on the following aspects:  

(1) Advanced IGBT Active Gate Driver 

Although the proposed active gate driver is able to reduce the switching loss stage by stage for the 

selected IGBT, it may not be as effective as the testing results when applied to other IGBTs with much 

faster switching speed, due to the inherent propagation delay issues. Design optimization of the active 

gate driver circuits is necessary to achieve a fast response and thus more accurate control. The chip-level 

integration of these auxiliary circuits will also be helpful to improve their overall performance. 

The proposed IGBT active gate driver in this dissertation focuses on the switching performance 

improvement, especially reduction of switching loss and switching time. During the current rising stage 

of turn-on and falling stage of turn-off transient, the di/dt of the IGBT is still controlled by a conventional 

gate resistance. The dv/dt is always higher than that of using a conventional gate driver. However, this 
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kind of control strategy may not fit some real application scenarios. For example, under certain operating 

conditions, electric vehicle drive system may require a controlled di/dt to guarantee the IGBTs to operate 

within their safe operating areas, and a lower dv/dt to meet with the vehicle EMI standards. Closed-loop 

di/dt and dv/dt control with device health information feedback is desired to be implemented, in addition 

to switching loss reduction. 

(2) High Temperature Integrated Power Module 

The high junction temperature operation of the integrated SiC MOSFET power module has been 

demonstrated, while it cannot be qualified as a full high temperature version without the integration of a 

high temperature signal isolation chip. A continuous operation of the full high temperature integrated 

power module needs to be demonstrated under a high ambient temperature environment, such as thermal 

chamber. In addition, advanced cooling techniques instead of natural air cooling should be used to 

support high power density and high temperature operation. 

In this dissertation, a thermo-sensitive electrical parameter, i.e. turn-off delay time, is proposed for the 

junction temperature monitoring. This technique is effective and easy for lab demonstration. However, it 

cannot be used for the online junction temperature measurement. Dedicated detection and control circuits 

are required to be developed to obtain the junction temperature during high temperature continuous 

operation.  

Another interesting research aspect is the experimental investigation of the thermal runaway issue. 

Specifically, the thermal runaway temperatures of the fabricated power module should be quantified 

under different operation conditions (cooling condition, switching frequency, duty cycle, etc.) and 

compared with other types of SiC MOSFETs and SiC JFETs. 

(3) Short Circuit Capability of SiC MOSFETs 

According to the electro-thermal model, the higher current density results in a faster temperature rise 

and larger temperature gradient. The tradeoff between current density and short circuit capability needs to 

be carefully considered in the device design, especially for the next generation trench gate SiC MOSFETs.  
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Recently, ROHM Semiconductor demonstrated its third generation SiC MOSFETs based on trench 

gate structure technology. On one hand, compared to the commercially available planar gate SiC 

MOSFETs, the trench gate device has even lower on-state resistance and higher current density due to the 

elimination of JFET region resistance. On the other hand, the device short circuit behavior can be 

optimized through more homogeneous electric field distribution and specific arrangement of cell size, 

width, and distance [122]. The short circuit capability of the new device needs to be investigated and 

compared to the previous devices. 

The repetitive short circuit capability and its associated long-term reliability have been studied to some 

extent for Si devices and SiC JFETs, while there is still no report on the SiC MOSFETs. The temperature 

dependent repetitive short circuit capability is critical for the wide application of SiC MOSFETs, 

especially under high temperature environment. Another interesting research aspect is the impact of 

repetitive short circuit condition on the gate oxide reliability of the SiC MOSFETs. 

(4) Short Circuit Protection of SiC MOSFETs 

For a conventional solid state circuit breaker, Si IGBTs are widely used with regard to fast, high 

voltage, and high current switching devices. However, IGBT conduction losses become quite large at 

high currents and voltages, which is not acceptable in electric vehicle application. The development of 

SiC MOSFET and SiC JFET based solid state circuit breaker is attractive, allowing low loss, high 

temperature operation, and simplified cooling requirements. Specifically, normally-on SiC JFET is 

preferable since solid state circuit breaker basically operates in pure conduction mode. The multi-chip SiC 

power module with integrated cooling system and gate drive are the core technologies to achieve a high 

power density and high temperature solid state circuit breaker. 

Compared to solid state circuit breaker, desaturation and fault current evaluation techniques are 

relatively easy to be chip-level integrated. The integration will likely supposed to further improve the 

fault response time by reducing circuit parastics. The high temperature version of these techniques needs 

to be developed as well for harsh environment application. 
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