25 research outputs found

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Bayesian Dictionary Learning for Single and Coupled Feature Spaces

    Get PDF
    Over-complete bases offer the flexibility to represent much wider range of signals with more elementary basis atoms than signal dimension. The use of over-complete dictionaries for sparse representation has been a new trend recently and has increasingly become recognized as providing high performance for applications such as denoise, image super-resolution, inpaiting, compression, blind source separation and linear unmixing. This dissertation studies the dictionary learning for single or coupled feature spaces and its application in image restoration tasks. A Bayesian strategy using a beta process prior is applied to solve both problems. Firstly, we illustrate how to generalize the existing beta process dictionary learning method (BP) to learn dictionary for single feature space. The advantage of this approach is that the number of dictionary atoms and their relative importance may be inferred non-parametrically. Next, we propose a new beta process joint dictionary learning method (BP-JDL) for coupled feature spaces, where the learned dictionaries also reflect the relationship between the two spaces. Compared to previous couple feature spaces dictionary learning algorithms, our algorithm not only provides dictionaries that customized to each feature space, but also adds more consistent and accurate mapping between the two feature spaces. This is due to the unique property of the beta process model that the sparse representation can be decomposed to values and dictionary atom indicators. The proposed algorithm is able to learn sparse representations that correspond to the same dictionary atoms with the same sparsity but different values in coupled feature spaces, thus bringing consistent and accurate mapping between coupled feature spaces. Two applications, single image super-resolution and inverse halftoning, are chosen to evaluate the performance of the proposed Bayesian approach. In both cases, the Bayesian approach, either for single feature space or coupled feature spaces, outperforms state-of-the-art methods in comparative domains

    Deep learning for characterizing full-color 3D printers: accuracy, robustness, and data-efficiency

    Get PDF
    High-fidelity color and appearance reproduction via multi-material-jetting full-color 3D printing has seen increasing applications, including art and cultural artifacts preservation, product prototypes, game character figurines, stop-motion animated movie, and 3D-printed prostheses such as dental restorations or prosthetic eyes. To achieve high-quality appearance reproduction via full-color 3D printing, a prerequisite is an accurate optical printer model that is a predicting function from an arrangement or ratio of printing materials to the optical/visual properties (e.g. spectral reflectance, color, and translucency) of the resulting print. For appearance 3D printing, the model needs to be inverted to determine the printing material arrangement that reproduces distinct optical/visual properties such as color. Therefore, the accuracy of optical printer models plays a crucial role for the final print quality. The process of fitting an optical printer model's parameters for a printing system is called optical characterization, which requires test prints and optical measurements. The objective of developing a printer model is to maximize prediction performance such as accuracy, while minimizing optical characterization efforts including printing, post-processing, and measuring. In this thesis, I aim at leveraging deep learning to achieve holistically-performant optical printer models, in terms of three different performance aspects of optical printer models: 1) accuracy, 2) robustness, and 3) data efficiency. First, for model accuracy, we propose two deep learning-based printer models that both achieve high accuracies with only a moderate number of required training samples. Experiments show that both models outperform the traditional cellular Neugebauer model by large margins: up to 6 times higher accuracy, or, up to 10 times less data for a similar accuracy. The high accuracy could enhance or even enable color- and translucency-critical applications of 3D printing such as dental restorations or prosthetic eyes. Second, for model robustness, we propose a methodology to induce physically-plausible constraints and smoothness into deep learning-based optical printer models. Experiments show that the model not only almost always corrects implausible relationships between material arrangement and the resulting optical/visual properties, but also ensures significantly smoother predictions. The robustness and smoothness improvements are important to alleviate or avoid unacceptable banding artifacts on textures of the final printouts, particularly for applications where texture details must be preserved, such as for reproducing prosthetic eyes whose texture must match the companion (healthy) eye. Finally, for data efficiency, we propose a learning framework that significantly improves printer models' data efficiency by employing existing characterization data from other printers. We also propose a contrastive learning-based approach to learn dataset embeddings that are extra inputs required by the aforementioned learning framework. Experiments show that the learning framework can drastically reduce the number of required samples for achieving an application-specific prediction accuracy. For some printers, it requires only 10% of the samples to achieve a similar accuracy as the state-of-the-art model. The significant improvement in data efficiency makes it economically possible to frequently characterize 3D printers to achieve more consistent output across different printers over time, which is crucial for color- and translucency-critical individualized mass production. With these proposed deep learning-based methodologies significantly improving the three performance aspects (i.e. accuracy, robustness, and data efficiency), a holistically-performant optical printer model can be achieved, which is particularly important for color- and translucency-critical applications such as dental restorations or prosthetic eyes

    Hardware-accelerated algorithms in visual computing

    Get PDF
    This thesis presents new parallel algorithms which accelerate computer vision methods by the use of graphics processors (GPUs) and evaluates them with respect to their speed, scalability, and the quality of their results. It covers the fields of homogeneous and anisotropic diffusion processes, diffusion image inpainting, optic flow, and halftoning. In this turn, it compares different solvers for homogeneous diffusion and presents a novel \u27extended\u27 box filter. Moreover, it suggests to use the fast explicit diffusion scheme (FED) as an efficient and flexible solver for nonlinear and in particular for anisotropic parabolic diffusion problems on graphics hardware. For elliptic diffusion-like processes, it recommends to use cascadic FED or Fast Jacobi schemes. The presented optic flow algorithm represents one of the fastest yet very accurate techniques. Finally, it presents a novel halftoning scheme which yields state-of-the-art results for many applications in image processing and computer graphics.Diese Arbeit prĂ€sentiert neue parallele Algorithmen zur Beschleunigung von Methoden in der Bildinformatik mittels Grafikprozessoren (GPUs), und evaluiert diese im Hinblick auf Geschwindigkeit, Skalierungsverhalten, und QualitĂ€t der Resultate. Sie behandelt dabei die Gebiete der homogenen und anisotropen Diffusionsprozesse, Inpainting (BildvervollstĂ€ndigung) mittels Diffusion, die Bestimmung des optischen Flusses, sowie Halbtonverfahren. Dabei werden verschiedene Löser fĂŒr homogene Diffusion verglichen und ein neuer \u27erweiterter\u27 Mittelwertfilter prĂ€sentiert. Ferner wird vorgeschlagen, das schnelle explizite Diffusionsschema (FED) als effizienten und flexiblen Löser fĂŒr parabolische nichtlineare und speziell anisotrope Diffusionsprozesse auf Grafikprozessoren einzusetzen. FĂŒr elliptische diffusionsartige Prozesse wird hingegen empfohlen, kaskadierte FED- oder schnelle Jacobi-Verfahren einzusetzen. Der vorgestellte Algorithmus zur Berechnung des optischen Flusses stellt eines der schnellsten und dennoch Ă€ußerst genauen Verfahren dar. Schließlich wird ein neues Halbtonverfahren prĂ€sentiert, das in vielen Bereichen der Bildverarbeitung und Computergrafik Ergebnisse produziert, die den Stand der Technik reprĂ€sentieren

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis
    corecore