970 research outputs found

    Minimising the kullback-leibler divergence for model selection in distributed nonlinear systems

    Full text link
    © 2018 by the authors. The Kullback-Leibler (KL) divergence is a fundamental measure of information geometry that is used in a variety of contexts in artificial intelligence. We show that, when system dynamics are given by distributed nonlinear systems, this measure can be decomposed as a function of two information-theoretic measures, transfer entropy and stochastic interaction. More specifically, these measures are applicable when selecting a candidate model for a distributed system, where individual subsystems are coupled via latent variables and observed through a filter. We represent this model as a directed acyclic graph (DAG) that characterises the unidirectional coupling between subsystems. Standard approaches to structure learning are not applicable in this framework due to the hidden variables; however, we can exploit the properties of certain dynamical systems to formulate exact methods based on differential topology. We approach the problem by using reconstruction theorems to derive an analytical expression for the KL divergence of a candidate DAG from the observed dataset. Using this result, we present a scoring function based on transfer entropy to be used as a subroutine in a structure learning algorithm. We then demonstrate its use in recovering the structure of coupled Lorenz and Rössler systems

    Reinforcement learning or active inference?

    Get PDF
    This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain

    Generalised Probabilistic Control Design for Uncertain Stochastic Control Systems

    Get PDF
    In this paper a novel generalised fully probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented for a linear Gaussian uncertain class of stochastic systems. A single layer neural network is used to approximate the probability density function of the system dynamics. The generalised probabilistic control law is obtained by solving the recurrence equation of dynamic programming to the fully probabilistic design control problem while taking into consideration the dependency of the parameters of the estimated probability density function of the system dynamics on the input values. It is shown to be of the class of cautious type controllers which accurately minimises the value of the Kullback-Leibler divergence without disregarding the variance of the model prediction as an element to be minimised. Comparison of theoretical and numerical results obtained from the F-16 fighter aircraft application with existing state-of-the-art demonstrates the effectiveness of the proposed method

    Probabilistic topographic information visualisation

    Get PDF
    The focus of this thesis is the extension of topographic visualisation mappings to allow for the incorporation of uncertainty. Few visualisation algorithms in the literature are capable of mapping uncertain data with fewer able to represent observation uncertainties in visualisations. As such, modifications are made to NeuroScale, Locally Linear Embedding, Isomap and Laplacian Eigenmaps to incorporate uncertainty in the observation and visualisation spaces. The proposed mappings are then called Normally-distributed NeuroScale (N-NS), T-distributed NeuroScale (T-NS), Probabilistic LLE (PLLE), Probabilistic Isomap (PIso) and Probabilistic Weighted Neighbourhood Mapping (PWNM). These algorithms generate a probabilistic visualisation space with each latent visualised point transformed to a multivariate Gaussian or T-distribution, using a feed-forward RBF network. Two types of uncertainty are then characterised dependent on the data and mapping procedure. Data dependent uncertainty is the inherent observation uncertainty. Whereas, mapping uncertainty is defined by the Fisher Information of a visualised distribution. This indicates how well the data has been interpolated, offering a level of ‘surprise’ for each observation. These new probabilistic mappings are tested on three datasets of vectorial observations and three datasets of real world time series observations for anomaly detection. In order to visualise the time series data, a method for analysing observed signals and noise distributions, Residual Modelling, is introduced. The performance of the new algorithms on the tested datasets is compared qualitatively with the latent space generated by the Gaussian Process Latent Variable Model (GPLVM). A quantitative comparison using existing evaluation measures from the literature allows performance of each mapping function to be compared. Finally, the mapping uncertainty measure is combined with NeuroScale to build a deep learning classifier, the Cascading RBF. This new structure is tested on the MNist dataset achieving world record performance whilst avoiding the flaws seen in other Deep Learning Machines

    Sparse kernel density estimation technique based on zero-norm constraint

    Get PDF
    A sparse kernel density estimator is derived based on the zero-norm constraint, in which the zero-norm of the kernel weights is incorporated to enhance model sparsity. The classical Parzen window estimate is adopted as the desired response for density estimation, and an approximate function of the zero-norm is used for achieving mathemtical tractability and algorithmic efficiency. Under the mild condition of the positive definite design matrix, the kernel weights of the proposed density estimator based on the zero-norm approximation can be obtained using the multiplicative nonnegative quadratic programming algorithm. Using the -optimality based selection algorithm as the preprocessing to select a small significant subset design matrix, the proposed zero-norm based approach offers an effective means for constructing very sparse kernel density estimates with excellent generalisation performance

    Likelihood-free inference by ratio estimation

    Get PDF
    | openaire: EC/H2020/742158/EU//SCARABEEWe consider the problem of parametric statistical inference when likelihood computations are prohibitively expensive but sampling from the model is possible. Several so-called likelihood-free methods have been developed to perform inference in the absence of a likelihood function. The popular synthetic likelihood approach infers the parameters by modelling summary statistics of the data by a Gaussian probability distribution. In another popular approach called approximate Bayesian computation, the inference is performed by identifying parameter values for which the summary statistics of the simulated data are close to those of the observed data. Synthetic likelihood is easier to use as no measure of “closeness” is required but the Gaussianity assumption is often limiting. Moreover, both approaches require judiciously chosen summary statistics. We here present an alternative inference approach that is as easy to use as synthetic likelihood but not as restricted in its assumptions, and that, in a natural way, enables automatic selection of relevant summary statistic from a large set of candidates. The basic idea is to frame the problem of estimating the posterior as a problem of estimating the ratio between the data generating distribution and the marginal distribution. This problem can be solved by logistic regression, and including regularising penalty terms enables automatic selection of the summary statistics relevant to the inference task. We illustrate the general theory on canonical examples and employ it to perform inference for challenging stochastic nonlinear dynamical systems and high-dimensional summary statistics.Peer reviewe

    Stochastic Treatment Choice with Empirical Welfare Updating

    Full text link
    This paper proposes a novel method to estimate individualised treatment assignment rules. The method is designed to find rules that are stochastic, reflecting uncertainty in estimation of an assignment rule and about its welfare performance. Our approach is to form a prior distribution over assignment rules and to update this prior based upon an empirical welfare criterion. The social planner then assigns treatment by drawing a policy from the resulting posterior. We show analytically a welfare-optimal way of updating the prior using empirical welfare. The posterior obtained by implementing the optimal updating rule is not feasible to compute, so we propose a variational Bayes approximation for the optimal posterior. We characterise the welfare regret convergence of the assignment rule based upon this variational Bayes approximation and show that it converges to zero at a rate of ln(n)/sqrt(n). We apply our methods to experimental data from the Job Training Partnership Act Study and extensive numerical simulations to illustrate the implementation of our methods.Comment: 65 pages, 19 Figure
    corecore