262 research outputs found

    On Directed Feedback Vertex Set parameterized by treewidth

    Get PDF
    We study the Directed Feedback Vertex Set problem parameterized by the treewidth of the input graph. We prove that unless the Exponential Time Hypothesis fails, the problem cannot be solved in time 2o(tlogt)nO(1)2^{o(t\log t)}\cdot n^{\mathcal{O}(1)} on general directed graphs, where tt is the treewidth of the underlying undirected graph. This is matched by a dynamic programming algorithm with running time 2O(tlogt)nO(1)2^{\mathcal{O}(t\log t)}\cdot n^{\mathcal{O}(1)}. On the other hand, we show that if the input digraph is planar, then the running time can be improved to 2O(t)nO(1)2^{\mathcal{O}(t)}\cdot n^{\mathcal{O}(1)}.Comment: 20

    Odd Paths, Cycles and TT-joins: Connections and Algorithms

    Full text link
    Minimizing the weight of an edge set satisfying parity constraints is a challenging branch of combinatorial optimization as witnessed by the binary hypergraph chapter of Alexander Schrijver's book ``Combinatorial Optimization'' (Chapter 80). This area contains relevant graph theory problems including open cases of the Max Cut problem, or some multiflow problems. We clarify the interconnections of some problems and establish three levels of difficulties. On the one hand, we prove that the Shortest Odd Path problem in an undirected graph without cycles of negative total weight and several related problems are NP-hard, settling a long-standing open question asked by Lov\'asz (Open Problem 27 in Schrijver's book ``Combinatorial Optimization''. On the other hand, we provide a polynomial-time algorithm to the closely related and well-studied Minimum-weight Odd {s,t}\{s,t\}-Join problem for non-negative weights, whose complexity, however, was not known; more generally, we solve the Minimum-weight Odd TT-Join problem in FPT time when parameterized by T|T|. If negative weights are also allowed, then finding a minimum-weight odd {s,t}\{s,t\}-join is equivalent to the Minimum-weight Odd TT-Join problem for arbitrary weights, whose complexity is only conjectured to be polynomially solvable. The analogous problems for digraphs are also considered.Comment: 24 pages, 2 figure

    Min-max results in combinatorial optimization

    Get PDF

    A Study of Arc Strong Connectivity of Digraphs

    Get PDF
    My dissertation research was motivated by Matula and his study of a quantity he called the strength of a graph G, kappa\u27( G) = max{lcub}kappa\u27(H) : H G{rcub}. (Abstract shortened by ProQuest.)

    The Component Packaging Problem: A Vehicle for the Development of Multidisciplinary Design and Analysis Methodologies

    Get PDF
    This report summarizes academic research which has resulted in an increased appreciation for multidisciplinary efforts among our students, colleagues and administrators. It has also generated a number of research ideas that emerged from the interaction between disciplines. Overall, 17 undergraduate students and 16 graduate students benefited directly from the NASA grant: an additional 11 graduate students were impacted and participated without financial support from NASA. The work resulted in 16 theses (with 7 to be completed in the near future), 67 papers or reports mostly published in 8 journals and/or presented at various conferences (a total of 83 papers, presentations and reports published based on NASA inspired or supported work). In addition, the faculty and students presented related work at many meetings, and continuing work has been proposed to NSF, the Army, Industry and other state and federal institutions to continue efforts in the direction of multidisciplinary and recently multi-objective design and analysis. The specific problem addressed is component packing which was solved as a multi-objective problem using iterative genetic algorithms and decomposition. Further testing and refinement of the methodology developed is presently under investigation. Teaming issues research and classes resulted in the publication of a web site, (http://design.eng.clemson.edu/psych4991) which provides pointers and techniques to interested parties. Specific advantages of using iterative genetic algorithms, hurdles faced and resolved, and institutional difficulties associated with multi-discipline teaming are described in some detail

    Packing odd TT-joins with at most two terminals

    Get PDF
    Take a graph GG, an edge subset ΣE(G)\Sigma\subseteq E(G), and a set of terminals TV(G)T\subseteq V(G) where T|T| is even. The triple (G,Σ,T)(G,\Sigma,T) is called a signed graft. A TT-join is odd if it contains an odd number of edges from Σ\Sigma. Let ν\nu be the maximum number of edge-disjoint odd TT-joins. A signature is a set of the form Σδ(U)\Sigma\triangle \delta(U) where UV(G)U\subseteq V(G) and UT)|U\cap T) is even. Let τ\tau be the minimum cardinality a TT-cut or a signature can achieve. Then ντ\nu\leq \tau and we say that (G,Σ,T)(G,\Sigma,T) packs if equality holds here. We prove that (G,Σ,T)(G,\Sigma,T) packs if the signed graft is Eulerian and it excludes two special non-packing minors. Our result confirms the Cycling Conjecture for the class of clutters of odd TT-joins with at most two terminals. Corollaries of this result include, the characterizations of weakly and evenly bipartite graphs, packing two-commodity paths, packing TT-joins with at most four terminals, and a new result on covering edges with cuts.Comment: extended abstract appeared in IPCO 2014 (under the different title "the cycling property for the clutter of odd st-walks"
    corecore